Modellek ellenőrzése és tesztelése
|
|
- Magda Pintér
- 6 évvel ezelőtt
- Látták:
Átírás
1 Modellek ellenőrzése és tesztelése Rendszermodellezés imsc gyakorlat Budapesti Műszaki és Gazdaságtudományi Egyetem Hibatűrő Rendszerek Kutatócsoport Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék 1
2 1. Folyamat statikus analízise Ellenőrizzük az alábbi folyamatmodellt. a) Milyen feltételek mellett teljesen specifikált a folyamat? b) Milyen feltételek mellett determinisztikus is a folyamat? c) Milyen feltételek mellett holtpontmentes is a folyamat? d) Milyen további feltételek mellett termináló a folyamat? e) Jólstrukturált-e a folyamat? Ha nem, hogyan lehetne azzá tenni? Segít-e ez a problémákon? 2
3 Temporális logika P X P F P G P P U Q P P P P P P P P P P P P Q 3
4 Az f() függvénnyel szemben a következő követelményeink vannak: R1 R2 R3 Az f() függvénynek minden végrehajtása során legalább egyszer outputot kell kiadnia. Az f() függvénynek tetszőleges inputsorozat esetén terminálnia kell. Az f() függvény végrehajtása során kiadott legutolsó output 4
5 5
6 a) Ábrázoljuk folyamatmodellként f() vezérlési folyamát! b) Miért lehetünk biztosak az R1 teljesülésében? 6
7 c) Miért lehetünk biztosak az R2 teljesülésében? 7
8 Terminálás bizonyítása Általános séma: 2x+y > 0 Keressünk egy függvényt o A ciklus őrfeltételében szereplő változók felett A következő feltételekkel I. A ciklus minden végrehajtásában szig. mon. csökken 2x+y II. Diszkrét értékkészlete x = x - 1van y = y + 1 III. Alulról korlátos 2x +y = 2(x-1)+y+1 = 2x+y-1 2x+y x = x y = y - 1 2x +y = 2x+(y-1) Jól megalapozott halmaz (well-founded set) 8
9 Megállási probléma Adott program esetén az a kérdés, hogy tetszőleges bemenet hatására garantáltan terminálódik-e, eldönthetetlen. Praktikusan: o Léteznek programok, amikre bizonyítható, hogy leáll/nem áll le o Léteznek olyanok is, amikre nem lehet bizonyítást adni A fenti tétel bizonyítása vázlatosan: Tfh. Létezik a halts(p) függvény, ami minden programra el tudja dönteni a megállási problémát Ekkor a következő program ellentmondásra vezet: void g() { } if (halts(g)) loop_forever(); 9
10 Megállási probléma - példa #loops Nem létezik bizonyítás a következő program terminálására (bár minden eddig vizsgált bemenetre terminált): 10 input
11 Megállási probléma - példa #loops Nem létezik bizonyítás a következő program terminálására (bár minden eddig vizsgált bemenetre terminált): 11 input
12 d) (Kiegészítő feladat.) Építsünk olyan állapotgépet, amely az f() függvénnyel ekvivalens módon működik. Modellezzük a readinput() hívásokat input csatornaként, valamint a writeoutput() hívást output csatornaként. Az f() függvény terminálását modellezzük úgy, hogy az automata ad egy speciális outputot, és átmegy egy nyelő (kimenő átmenet nélküli) állapotba. 12
13 e) Az R3 követelményt teszteléssel ellenőrizzük. A t1 = 2, 3, 5, 7, 11, 13,... input szekvencia a tesztesetünk. Detektálunk-e hibát? 13
14 f) Számítsunk utasításszintű tesztfedést a programkódon, vagyis hogy az utasítások mekkora hányadát járja be a tesztelt függvény a teszteset végrehajtása során! Hogy jelenik meg ez a mérőszám a vezérlési folyamon? 14
15 g) Az R3 követelményhez a t2 = h1, 2, 4, 1, 2, 4,... input szekvencia a második tesztesetünk. Detektál-e hibát ez a teszteset? Mekkora a két tesztből álló tesztkészlet együttes utasításfedése? 15
16 h) (Kiegészítő feladat.) Milyen tesztfedettségi metrika számítható a korábban megépített állapotgép alapján? 16
17 i) Készítsünk olyan tesztorákulum állapotgépet, amely f() input és output szekvenciái és terminálása alapján el tudja dönteni, hogy az adott lefutás során az R3 követelmény sérült-e! Hogy viselkedik az orákulum a fenti tesztinputra? 17
18 j) Adjunk meg egy tesztesetet, amely kimutat egy hibát a programban! Milyen elv alapján sejthettük volna meg, hogy a korábban összeállított tesztkészletünk kiegészítésre szorul? 18
19 k) (Kiegészítő feladat.) Vegyük hozzá a tesztkészlethez a t3 = 0, 1, 2, 3, 4, 5,... és t4 = 1, 2, 3, 4, 5, 6,... input szekvenciákat mint további teszteseteket! Detektálunk-e hibát? Hogyan változnak a tesztfedési számok? 19
20 l) (Kiegészíto feladat.) Határozzuk meg, hogy pontosan milyen input szekvenciák esetén sérül R3, és javasoljunk hibajavítást! 20
5. gyakorlat Modellek ellenőrzése és tesztelése Megoldások
5. gyakorlat Modellek ellenőrzése és tesztelése Megoldások Figyelem: Jelen anyag belső használatra készült megoldási útmutató, melyet a ZH felkészülés segítése érdekében publikáltunk. A feladatok részletesebb
Programkonstrukciók A programkonstrukciók programfüggvényei Levezetési szabályok. 6. előadás. Programozás-elmélet. Programozás-elmélet 6.
Programkonstrukciók Definíció Legyen π feltétel és S program A-n. A DO A A relációt az S-ből a π feltétellel képezett ciklusnak nevezzük, és (π, S)-sel jelöljük, ha 1. a / [π] : DO (a) = { a }, 2. a [π]
Modell alapú tesztelés mobil környezetben
Modell alapú tesztelés mobil környezetben Micskei Zoltán Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék A terület behatárolása Testing is an activity performed
Szoftverminőségbiztosítás
NGB_IN003_1 SZE 2017-18/2 (9) Szoftverminőségbiztosítás Specifikáció alapú (black-box) technikák A szoftver mint leképezés Szoftverhiba Hibát okozó bement Hibás kimenet Input Szoftver Output Funkcionális
Rendszermodellezés. Modellellenőrzés. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék
Rendszermodellezés Modellellenőrzés Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Ismétlés: Mire használunk modelleket? Kommunikáció, dokumentáció Gondolkodás,
3. gyakorlat Folyamatmodellek, kooperáló viselkedésmodellek Megoldások
3. gyakorlat Folyamatmodellek, kooperáló viselkedésmodellek ok 1. Összetett rendszer modellezése Felhő alapú adattárolást modellezünk (ld. Dropbox, Google Drive, Tresorit), egyetlen állományra szorítkozva.
Automatikus tesztgenerálás modell ellenőrző segítségével
Méréstechnika és Információs Rendszerek Tanszék Automatikus tesztgenerálás modell ellenőrző segítségével Micskei Zoltán műszaki informatika, V. Konzulens: Dr. Majzik István Tesztelés Célja: a rendszerben
Szoftver karbantartási lépések ellenőrzése
Szoftverellenőrzési technikák (vimim148) Szoftver karbantartási lépések ellenőrzése Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék http://www.inf.mit.bme.hu/
Algoritmizálás, adatmodellezés tanítása 6. előadás
Algoritmizálás, adatmodellezés tanítása 6. előadás Tesztelési módszerek statikus tesztelés kódellenőrzés szintaktikus ellenőrzés szemantikus ellenőrzés dinamikus tesztelés fekete doboz módszerek fehér
Feladatgyűjtemény. 4. Modellek ellenőrzése Folyamat statikus analízise Dinamikus analízis teszteléssel... 7
Feladatgyűjtemény Tartalomjegyzék 1. Struktúra alapú modellezés 1 1.1. Struktúra modellezése gráffal................................ 1 1.2. Tulajdonságmodellezés.................................... 1 1.3.
3. gyakorlat Folyamatmodellek, kooperáló viselkedésmodellek Megoldások
3. gyakorlat Folyamatmodellek, kooperáló viselkedésmodellek ok Figyelem: Jelen anyag belső használatra készült megoldási útmutató, melyet a ZH felkészülés segítése érdekében publikáltunk. A feladatok részletesebb
Megoldások a mintavizsga kérdések a VIMIAC04 tárgy ellenőrzési technikák részéhez kapcsolódóan (2017. május)
Megoldások a mintavizsga kérdések a VIMIAC04 tárgy ellenőrzési technikák részéhez kapcsolódóan (2017. május) Teszt kérdések 1. Melyik állítás igaz a folytonos integrációval (CI) kapcsolatban? a. Folytonos
A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel
A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel Majzik István Micskei Zoltán BME Méréstechnika és Információs Rendszerek Tanszék 1 Modell alapú fejlesztési folyamat (részlet)
5. előadás. Programozás-elmélet. Programozás-elmélet 5. előadás
Elemi programok Definíció Az S A A program elemi, ha a A : S(a) { a, a, a, a,..., a, b b a}. A definíció alapján könnyen látható, hogy egy elemi program tényleg program. Speciális elemi programok a kövekezők:
3. gyakorlat Folyamatmodellek, kooperáló viselkedésmodellek Megoldások
3 gyakorlat Folyamatmodellek, kooperáló viselkedésmodellek ok 1 Felhőalapú adattárolás Felhő alapú adattárolást modellezünk (ld Dropbox, Google Drive, Tresorit), egyetlen állományra szorítkozva Az állománynak
A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel
A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel Majzik István Micskei Zoltán BME Méréstechnika és Információs Rendszerek Tanszék 1 Modell alapú fejlesztési folyamat (részlet)
Specifikáció alapú teszttervezési módszerek
Szoftverellenőrzési technikák Specifikáció alapú teszttervezési módszerek Majzik István, Micskei Zoltán http://www.inf.mit.bme.hu/ 1 Klasszikus tesztelési feladat A tesztelendő program beolvas 3 egész
Specifikáció alapú teszttervezési módszerek
Szoftverellenőrzési technikák Specifikáció alapú teszttervezési módszerek Majzik István, Micskei Zoltán http://www.inf.mit.bme.hu/ 1 Klasszikus tesztelési feladat A tesztelendő program beolvas 3 egész
Formális módszerek GM_IN003_1 Program verifikálás, formalizmusok
Formális módszerek GM_IN003_1 Program verifikálás, formalizmusok Program verifikálás Konkurens programozási megoldások terjedése -> verifikálás szükséges, (nehéz) logika Legszélesebb körben alkalmazott
Mesterséges intelligencia alapú regressziós tesztelés
Mesterséges intelligencia alapú regressziós tesztelés Gujgiczer Anna, Elekes Márton* * AZ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA ÚNKP-16-1-I. KÓDSZÁMÚ ÚJ NEMZETI KIVÁLÓSÁG PROGRAMJÁNAK TÁMOGATÁSÁVAL KÉSZÜLT
1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét!
Függvények 1 1. Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon!. Írja fel az alábbi lineáris függvény grafikonjának egyenletét! 3. Ábrázolja + 1 - függvényt a [ ;] -on! 4. Az f függvényt a valós
Szoftverminőségbiztosítás
NGB_IN003_1 SZE 2014-15/2 (11) Szoftverminőségbiztosítás Tesztautomatizálás A tesztelés kivitelezése Tesztelési feladatok Detektálatlan maradék hibák számának csökkentése hatásosan és hatékonyan megfelelő
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. ősz 1. Diszkrét matematika 2.C szakirány 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.
Java programozási nyelv
Java programozási nyelv 2. rész Vezérlő szerkezetek Nyugat-Magyarországi Egyetem Faipari Mérnöki Kar Informatikai Intézet Soós Sándor 2005. szeptember A Java programozási nyelv Soós Sándor 1/23 Tartalomjegyzék
Komplex számok. A komplex számok algebrai alakja
Komple számok A komple számok algebrai alakja 1. Ábrázolja a következő komple számokat a Gauss-féle számsíkon! Adja meg a számok valós részét, képzetes részét és számítsa ki az abszolút értéküket! a) 3+5j
Szoftver karbantartás
Szoftver karbantartás Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék http://www.mit.bme.hu/~majzik/ Áttekintés Követelményspecifikálás Architektúra
Algoritmuselmélet 12. előadás
Algoritmuselmélet 12. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Április 9. ALGORITMUSELMÉLET 12. ELŐADÁS 1 Turing-gépek
Szoftverminőségbiztosítás
NGB_IN003_1 SZE 2014-15/2 (13) Szoftverminőségbiztosítás Szoftverminőség és formális módszerek Formális módszerek Formális módszer formalizált módszer(tan) Formális eljárások alkalmazása a fejlesztésben
Folyamatmodellezés. Budapesti Műszaki és Gazdaságtudományi Egyetem. Hibatűrő Rendszerek Kutatócsoport. Budapesti Műszaki és Gazdaságtudományi Egyetem
Folyamatmodellezés Budapesti Műszaki és Gazdaságtudományi Egyetem Hibatűrő Rendszerek Kutatócsoport Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék 1 Tartalom
9. előadás. Programozás-elmélet. Programozási tételek Elemi prog. Sorozatszámítás Eldöntés Kiválasztás Lin. keresés Megszámolás Maximum.
Programozási tételek Programozási feladatok megoldásakor a top-down (strukturált) programtervezés esetén három vezérlési szerkezetet használunk: - szekvencia - elágazás - ciklus Eddig megismertük az alábbi
Programtervezés. Dr. Iványi Péter
Programtervezés Dr. Iványi Péter 1 A programozás lépései 2 Feladat meghatározás Feladat kiírás Mik az input adatok A megoldáshoz szükséges idő és költség Gyorsan, jót, olcsón 3 Feladat megfogalmazása Egyértelmű
Számításelmélet. Második előadás
Számításelmélet Második előadás Többszalagos Turing-gép Turing-gép k (konstans) számú szalaggal A szalagok mindegyike rendelkezik egy független író / olvasó fejjel A bemenet az első szalagra kerül, a többi
2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont)
(11/1) Függvények 1 1) Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon! (pont) ) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont) 3) Ábrázolja + 1 - függvényt a [ ;] -on! (3pont)
Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján
Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Számsorozatok, vektorsorozatok konvergenciája Def.: Számsorozatok értelmezése:
Szoftver értékelés és karbantartás
Szoftver értékelés és karbantartás Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék http://www.mit.bme.hu/~majzik/ Emlékeztető: Biztonsági követelmények
Unit Teszt. Tóth Zsolt. Miskolci Egyetem. Tóth Zsolt (Miskolci Egyetem) Unit Teszt / 22
Unit Teszt Tóth Zsolt Miskolci Egyetem 2013 Tóth Zsolt (Miskolci Egyetem) Unit Teszt 2013 1 / 22 Tartalomjegyzék 1 Bevezetés 2 Unit Teszt 3 Példa Tóth Zsolt (Miskolci Egyetem) Unit Teszt 2013 2 / 22 Szoftvertesztelés
Algoritmuselmélet. Bonyolultságelmélet. Katona Gyula Y.
Algoritmuselmélet Bonyolultságelmélet Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 12. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet
Való szí nű sé gi va ltózó, sű rű sé gfű ggvé ny, élószla sfű ggvé ny
Való szí nű sé gi va ltózó, sű rű sé gfű ggvé ny, élószla sfű ggvé ny Szűk elméleti összefoglaló Valószínűségi változó: egy függvény, ami az eseményteret a valós számok halmazára tudja vetíteni. A val.
2011.11.29. JUnit. JUnit használata. IDE támogatás. Parancssori használat. Teszt készítése. Teszt készítése
Tartalom Integrált fejlesztés Java platformon JUnit JUnit használata Tesztelési technikák Demo 2 A specifikáció alapján teszteljük a program egyes részeit, klasszikus V-modell szerint Minden olyan metódust,
Teszttervezés. Majzik István, Micskei Zoltán. Integrációs és ellenőrzési technikák (VIMIA04) Méréstechnika és Információs Rendszerek Tanszék
Integrációs és ellenőrzési technikák (VIMIA04) Teszttervezés Majzik István, Micskei Zoltán Méréstechnika és Információs Rendszerek Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és
Elérhetőségi probléma egyszerűsítése: Állapottér és struktúra redukció Petri-háló alosztályok
Elérhetőségi probléma egyszerűsítése: Állapottér és struktúra redukció Petri-háló alosztályok dr. Bartha Tamás Dr. Pataricza András BME Méréstechnika és Információs Rendszerek Tanszék Elérhetőségi probléma
Teszttervezés. Majzik István, Micskei Zoltán. Integrációs és ellenőrzési technikák (VIMIA04) Méréstechnika és Információs Rendszerek Tanszék
Integrációs és ellenőrzési technikák (VIMIA04) Teszttervezés Majzik István, Micskei Zoltán Méréstechnika és Információs Rendszerek Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és
Szoftver-modellellenőrzés absztrakciós módszerekkel
Szoftver-modellellenőrzés absztrakciós módszerekkel Hajdu Ákos Formális módszerek 2017.03.22. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék 1 BEVEZETŐ 2
Analízis II. Analízis II. Beugrók. Készítette: Szánthó József. kiezafiu kukac gmail.com. 2009/ félév
Analízis II. Analízis II. Beugrók Készítette: Szánthó József kiezafiu kukac gmail.com 2009/20 10 1.félév Analízis II. Beugrók Függvények folytonossága: 1. Mikor nevez egy függvényt egyenletesen folytonosnak?
Az informatika elméleti alapjai 2 elővizsga december 19.
Név (aláírás): Az informatika elméleti alapjai 2 elővizsga 2017. december 19. A vizsgadolgozat 1. feladatára helyes válaszonként 1-1 pont kapható, a 2-3. feladatok megoldásáért 6-6 pont, a 4. feladatra
ALAPFOGALMAK 1. A reláció az program programfüggvénye, ha. Azt mondjuk, hogy az feladat szigorúbb, mint az feladat, ha
ALAPFOGALMAK 1 Á l l a p o t t é r Legyen I egy véges halmaz és legyenek A i, i I tetszőleges véges vagy megszámlálható, nem üres halmazok Ekkor az A= A i halmazt állapottérnek, az A i halmazokat pedig
Szoftver tesztelés a gyakorlatban 2
Szoftver tesztelés a gyakorlatban 2 Struktúrális tesztelés 2 Struktúrális tesztelés! Implementációs részletek figyelembevétele! Tesztelési célok -> lefedettség! Implicit hibamodell! A hibák a vezérlési
Sorozatok határértéke SOROZAT FOGALMA, MEGADÁSA, ÁBRÁZOLÁSA; KORLÁTOS ÉS MONOTON SOROZATOK
Sorozatok határértéke SOROZAT FOGALMA, MEGADÁSA, ÁBRÁZOLÁSA; KORLÁTOS ÉS MONOTON SOROZATOK Sorozat fogalma Definíció: Számsorozaton olyan függvényt értünk, amelynek értelmezési tartománya a pozitív egész
1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy
/. Házi feladat. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy mindig igaz. (p (( p) q)) (( p) ( q)). Igazoljuk, hogy minden A, B és C halmazra A \ (B C) = (A \ B) (A \ C) teljesül.
Gyakorló feladatok: Formális modellek, temporális logikák, modellellenőrzés. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék
Gyakorló feladatok: Formális modellek, temporális logikák, modellellenőrzés Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Formális modellek használata és értelmezése Formális modellek
Modellek ellenőrzése
Modellek ellenőrzése Budapest University of Technology and Economics Fault Tolerant Systems Research Group Budapest University of Technology and Economics Department of Measurement and Information Systems
Szkriptelési feladat megoldása
Intelligens rendszerfelügyelet (VIMIA370) Szkriptelési feladat megoldása Micskei Zoltán http://mit.bme.hu/~micskeiz Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek
Matematika A1a Analízis
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika Aa Analízis BMETE90AX00 Az exp és ln függvények H607, EIC 209-04-24 Wettl
Digitális technika (VIMIAA02) Laboratórium 1
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 1 Fehér Béla Raikovich Tamás,
Szerző Lővei Péter LOPSAAI.ELTE IP-08PAEG/25 Daiki Tennó
Szerző Név: Lővei Péter ETR-azonosító: LOPSAAI.ELTE Drótposta-cím: petyalovei@gmail.com Kurzuskód: IP-08PAEG/25 Gyakorlatvezető neve: Daiki Tennó Feladatsorszám: 11 1 Tartalom Szerző... 1 Tartalom... 2
Digitális technika (VIMIAA01) Laboratórium 4
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA01) Laboratórium 4 Fehér Béla Raikovich Tamás,
Digitális technika (VIMIAA02) Laboratórium 1
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 1 Fehér Béla Raikovich Tamás,
Diszkrét matematika I.
Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 3. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Relációk Diszkrét matematika I. középszint 2014.
definiálunk. Legyen egy konfiguráció, ahol és. A következő három esetet különböztetjük meg. 1. Ha, akkor 2. Ha, akkor, ahol, ha, és egyébként.
Számításelmélet Kiszámítási problémának nevezünk egy olyan, a matematika nyelvén megfogalmazott kérdést, amire számítógéppel szeretnénk megadni a választ. (A matematika nyelvén precízen megfogalmazott
Folyamatmodellezés. Rendszermodellezés Budapesti Műszaki és Gazdaságtudományi Egyetem. Hibatűrő Rendszerek Kutatócsoport
Folyamatmodellezés Rendszermodellezés 2018. Budapesti Műszaki és Gazdaságtudományi Egyetem Hibatűrő Rendszerek Kutatócsoport Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika 1 és Információs
Algoritmizálás és adatmodellezés tanítása beadandó feladat: Algtan1 tanári beadandó /99 1
Algoritmizálás és adatmodellezés tanítása beadandó feladat: Algtan1 tanári beadandó /99 1 Készítette: Gipsz Jakab Neptun-azonosító: ABC123 E-mail: gipszjakab@seholse.hu Kurzuskód: IT-13AAT1EG 1 A fenti
HORVÁTH ZSÓFIA 1. Beadandó feladat (HOZSAAI.ELTE) ápr 7. 8-as csoport
10-es Keressünk egy egész számokat tartalmazó négyzetes mátrixban olyan oszlopot, ahol a főátló alatti elemek mind nullák! Megolda si terv: Specifika cio : A = (mat: Z n m,ind: N, l: L) Ef =(mat = mat`)
Szoftverminőségbiztosítás
NGB_IN003_1 SZE 2014-15/2 (8) Szoftverminőségbiztosítás Szoftvertesztelési folyamat (folyt.) Szoftvertesztelési ráfordítások (Perry 1995) Tesztelésre fordítódik a projekt költségvetés 24%-a a projekt menedzsment
Modellek fejlesztése
Modellek fejlesztése Budapesti Műszaki és Gazdaságtudományi Egyetem Hibatűrő Rendszerek Kutatócsoport Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék 1 Tartalom
Digitális technika (VIMIAA02) Laboratórium 3
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 3 Fehér Béla Raikovich Tamás,
Modellek fejlesztése
Modellek fejlesztése Molnár Vince, Dr. Pataricza András Budapesti Műszaki és Gazdaságtudományi Egyetem Hibatűrő Rendszerek Kutatócsoport Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és
Digitális technika (VIMIAA02) Laboratórium 4
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 4 Fehér Béla Raikovich Tamás,
Digitális technika (VIMIAA02) Laboratórium 3
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 3 Fehér Béla Raikovich Tamás,
Informatikai rendszertervezés
Informatikai rendszertervezés Dr. Varró Dániel Budapesti Műszaki és Gazdaságtudományi Egyetem Hibatűrő Rendszerek Kutatócsoport Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs
Rendszermodellezés 1. ZH, A csoport, nagyfeladatok
Rendszermodellezés 1. ZH, A csoport, nagyfeladatok 2017. március 30. Beugró /10 + F1 /13 F2 /12 Szumma /35 1. nagyfeladat Állapot alapú modellezés (13+3 pont) Antropológusok körében nagy népszerűségnek
Algoritmusok. Hogyan csináljam?
Algoritmusok Hogyan csináljam? 1 Az algoritmus fogalma Algoritmusnak olyan pontos előírást nevezünk, amely megmondja, hogy bizonyos feladat megoldásakor milyen műveleteket milyen meghatározott sorrendben
Szoftverminőségbiztosítás
NGB_IN003_1 SZE 2014-15/2 (10) Szoftverminőségbiztosítás Struktúra alapú (white-box) technikák A struktúrális tesztelés Implementációs részletek figyelembevétele Tesztelési célok -> lefedettség Implicit
PROGRAMOZÁS tantárgy. Gregorics Tibor egyetemi docens ELTE Informatikai Kar
PROGRAMOZÁS tantárgy Gregorics Tibor egyetemi docens ELTE Informatikai Kar Követelmények A,C,E szakirány B szakirány Előfeltétel Prog. alapismeret Prog. alapismeret Diszkrét matematika I. Óraszám 2 ea
Előfeltétel: legalább elégséges jegy Diszkrét matematika II. (GEMAK122B) tárgyból
ÜTEMTERV Programozás-elmélet c. tárgyhoz (GEMAK233B, GEMAK233-B) BSc gazdaságinformatikus, programtervező informatikus alapszakok számára Óraszám: heti 2+0, (aláírás+kollokvium, 3 kredit) 2019/20-es tanév
Folyamatmodellezés (BPMN), adatfolyamhálók
Folyamatmodellezés (BPMN), adatfolyamhálók Rendszermodellezés 2015. Budapesti Műszaki és Gazdaságtudományi Egyetem Hibatűrő Rendszerek Kutatócsoport Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika
Digitális technika (VIMIAA02) Laboratórium 4
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 4 Fehér Béla Raikovich Tamás,
Informatikai rendszertervezés
Informatikai rendszertervezés Budapesti Műszaki és Gazdaságtudományi Egyetem Hibatűrő Rendszerek Kutatócsoport Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Algoritmusok helyességének bizonyítása. A Floyd-módszer
Algoritmusok helyességének bizonyítása A Floyd-módszer Algoritmusok végrehajtása Egy A algoritmus esetében a változókat három változótípusról beszélhetünk, melyeket az X, Y és Z vektorokba csoportosítjuk
The modular mitmót system. DPY kijelző kártya C API
The modular mitmót system DPY kijelző kártya C API Dokumentációkód: -D 01.0.0.0 Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Beágyazott Információs Rendszerek
Metrikus terek, többváltozós függvények
Metrikus terek, többváltozós függvények 2003.10.15 Készítette: Dr. Toledo Rodolfo és Dr. Blahota István 1. Metrikus terek, metrika tulajdonságai 1.1. A valós, komplex, racionális, természetes és egész
Ipari mintavételes PID szabályozóstruktúra megvalósítása
Ipari mintavételes PID szabályozóstruktúra megvalósítása 1. A gyakorlat célja Készítsen diszkrét PID szabályozót megvalósító programot C++, obiektumorientált környezetben. Teszteléssel igazolja a szabályozó
1. Kombinációs hálózatok mérési gyakorlatai
1. Kombinációs hálózatok mérési gyakorlatai 1.1 Logikai alapkapuk vizsgálata A XILINX ISE DESIGN SUITE 14.7 WebPack fejlesztőrendszer segítségével és töltse be a rendelkezésére álló SPARTAN 3E FPGA ba:
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x
függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0(
FÜGGVÉNYEK 1. (008. okt., 14. fel, 5+7 pont) Fogalmazza meg, hogy az f : R R, f ( x) x 1 függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0( x) x függvény grafikonjából! Ábrázolja
Dr. Schuster György február / 32
Algoritmusok és magvalósítások Dr. Schuster György OE-KVK-MAI schuster.gyorgy@kvk.uni-obuda.hu 2015. február 10. 2015. február 10. 1 / 32 Algoritmus Alapfogalmak Algoritmus Definíció Algoritmuson olyan
Modell alapú tesztelés: célok és lehetőségek
Szoftvertesztelés 2016 Konferencia Modell alapú tesztelés: célok és lehetőségek Dr. Micskei Zoltán Budapesti Műszaki és Gazdaságtudományi Egyetem Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika
Véges állapotú gépek (FSM) tervezése
Véges állapotú gépek (FSM) tervezése F1. A 2. gyakorlaton foglalkoztunk a 3-mal vagy 5-tel osztható 4 bites számok felismerésével. Abban a feladatban a bemenet bitpárhuzamosan, azaz egy időben minden adatbit
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Kriptográfia 0. A biztonság alapja. Számítás-komplexitási kérdések
Kriptográfia 0 Számítás-komplexitási kérdések A biztonság alapja Komplexitás elméleti modellek független, egyenletes eloszlású véletlen változó értéke számítással nem hozható kapcsolatba más információval
Alapszintű formalizmusok
Alapszintű formalizmusok dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Mit szeretnénk elérni? Informális tervek Informális követelmények Formális modell Formalizált követelmények
PROGRAMOZÁS MÓDSZERTANI ALAPJAI I. TÉTELEK ÉS DEFINÍCIÓK
PROGRAMOZÁS MÓDSZERTANI ALAPJAI I. TÉTELEK ÉS DEFINÍCIÓK Szerkesztette: Bókay Csongor 2012 tavaszi félév Az esetleges hibákat kérlek a csongor@csongorbokay.com címen jelezd! Utolsó módosítás: 2012. június
Elérhetőségi analízis Petri hálók dinamikus tulajdonságai
Elérhetőségi analízis Petri hálók dinamikus tulajdonságai dr. Bartha Tamás Dr. Pataricza András BME Méréstechnika és Információs Rendszerek Tanszék Petri hálók vizsgálata Az elemzés mélysége szerint: Vizsgálati
Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t
Ellenőrző kérdések 2. Kis dolgozat kérdései 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t 37. Ha t szintű indexet használunk,
Modellellenőrzés. dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék
Modellellenőrzés dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Mit szeretnénk elérni? Informális vagy félformális tervek Informális követelmények Formális modell: KS, LTS, TA
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. estis képzés 017. ősz 1. Diszkrét matematika 1. estis képzés 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
Osztott jáva programok automatikus tesztelése. Matkó Imre BBTE, Kolozsvár Informatika szak, IV. Év 2007 január
Osztott jáva programok automatikus tesztelése Matkó Imre BBTE, Kolozsvár Informatika szak, IV. Év 2007 január Osztott alkalmazások Automatikus tesztelés Tesztelés heurisztikus zaj keltés Tesztelés genetikus
2. Rekurzió. = 2P2(n,n) 2 < 2P2(n,n) 1
2. Rekurzió Egy objektum definícióját rekurzívnak nevezünk, ha a definíció tartalmazza a definiálandó objektumot. Egy P eljárást (vagy függvényt) rekurzívnak nevezünk, ha P utasításrészében előfordul magának
Folyamatmodellezés. Budapesti Műszaki és Gazdaságtudományi Egyetem. Hibatűrő Rendszerek Kutatócsoport. Budapesti Műszaki és Gazdaságtudományi Egyetem
Folyamatmodellezés Budapesti Műszaki és Gazdaságtudományi Egyetem Hibatűrő Rendszerek Kutatócsoport Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika 1 és Információs Rendszerek Tanszék 1 Tartalom
Optimalizálási eljárások GYAKORLAT, MSc hallgatók számára. Analízis R d -ben
Optimalizálási eljárások GYAKORLAT, MSc hallgatók számára Analízis R d -ben Gyakorlatvezetõ: Hajnal Péter 2012. február 8 1. Konvex függvények Definíció. f : D R konvex, ha dom(f) := D R n konvex és tetszőleges