Teszt kérdések. Az R n vektortér

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Teszt kérdések. Az R n vektortér"

Átírás

1 Teszt kérdések Döntse el az alábbi állításokról, hogy igazak agy hamisak! Az R tér geometriája 1. Ha két térbeli egyenesnek nincs közös pontja, akkor párhuzamosak.. Egy térbeli egyenest egyértelműen meghatározza egy irányektora.. Egy térbeli egyenest egyértelműen meghatározza egy pontja és egy rá merőleges nem nulla ektor.. Ha az e 1 és e térbeli kitérő egyenesek, akkor léteznek olyan S 1 és S síkok, hogy e 1 S 1, e S és S 1 S. 5. Ha a térben egy sík normálektorának és egy egyenes irányektorának a ektoriális szorzata nullektor, akkor az egyenes merőleges a síkra. 6. Ha két sík párhuzamos, akkor a normálektoraiknak a skaláris szorzata negatí. 7. Ha egy sík és egy ele párhuzamos térbeli egyenes táolsága d, akkor bármely P S és Q e esetén a P és Q pontok táolsága d. 8. Egy térbeli síkot meghatározza egy pontja és egy ele párhuzamos nem nulla ektor. Az R n ektortér 9. R n ben. bármely ektorhalmaz rangja n. 10. Ha egy H ektorhalmaz rangja k, akkor H nem tartalmazhat k-1 darab lineárisan összefüggő ektort. 11. Ha egy ektorhalmaz rangja megegyezik az elemszámáal, akkor a ektorhalmaz lineárisan független. 1. Ha a H R n ektorhalmazra r(h) = r, akkor H-nak nem lehet r-nél keesebb ektorból álló lineárisan összefüggő részhalmaza. 1. Ha egy ektorhalmaz rangja r, akkor a ektorhalmazt egy ektorral bőíte a rang r+1-re nő. 1. Ha egy ektorhalmaz generátorrendszer, akkor az bázis is. 15. Ha L R n lineárisan független, G R n generátorrendszer, akkor G-ben legalább annyi ektor an, mint L-ben. 16. Egy lineárisan független ektorhalmazt toábbi ektorokkal bőíte a függetlenség megőrződik. 17. R n ben minden bázis generátorrendszer.

2 18. Ha a H R n ektorhalmaz generátorrendszer, akkor H nem lehet lineárisan összefüggő. 19. R n ben n darab lineárisan független ektor bázist alkot. 0. R n ben létezik n-nél keesebb ektorból álló lineárisan független ektorhalmaz. 1. R n ben létezik n-nél keesebb ektorból álló generátorrendszer.. R n ben létezik n-nél több ektorból álló generátorrendszer.. Ha a H R n ektorhalmaz generátorrendszer és H >n, akkor H lineárisan összefüggő.. Ha a H R n ektorhalmaz generátorrendszer és H = n, akkor H bázis. 5. Ha a H R n ektorhalmaz lineárisan független és H = n, akkor H generátorrendszer. 6. Lineárisan összefüggő ektorhalmaz részhalmaza is lineárisan összefüggő. 7. Ha egy R n beli generátorrendszer n ektorból áll, akkor az bázis. 8. Minden lineárisan összefüggő ektorhalmaz tartalmazza a nullektort. 9. R n ben minden bázis n ektorból áll. 0. Ha egy ektorhalmaz minimális generátorrendszer, akkor az lineárisan független. 1. Ha egy ektorhalmaz minimális generátorrendszer, akkor az lineárisan összefüggő.. R n ben minden bázis tartalmazza a nullektort.. R n ben. minden generátorrendszer legalább n ektorból áll.. R n ben létezik olyan B bázis, hogy alamely a R n ektorra a B és -a B. 5. Ha H R n lineárisan összefüggő, és a R n \ H, akkor H {a}is lineárisan összefüggő. 6. Legyen A={a 1, a k } R n lineárisan összefüggő. Ekkor r(a) < k. 7. Ha A={a 1, a k } R n lineárisan független, akkor k n. 8. Ha a H R n ektorhalmaz lineárisan összefüggő, akkor an H-nak olyan részhalmaza, amely bázis R n -ben. 9. Ha a H R n ektorhalmaz lineárisan összefüggő, akkor an olyan R n -beli ektor, amely két féle képpen áll elő H-beli ektorok lineáris kombinációjaként. 0. Van olyan R n -beli generátorrendszer, amely nem tartalmaz bázist. 1. R n -ben nincs 0-dimenziós altér.. Ha dim(v)=k, akkor a V altér ektorai közül maximálisan k darab lineárisan független ektor álasztható ki.. R n minden altere tartalmazza a nullektort.. Ha R n = V 1 V, akkor dim(v 1 )+ dim(v ) = n. 5. Ha dim(v 1 )+dim(v )=n, akkor. R n = V 1 V. 6. R és R altere R -nak. 7. Ha a V ektorhalmaz altér R n ben, akkor V lineárisan független. 8. Ha a V ektorhalmaz altér R n ben, akkor V lineárisan összefüggő. 9. Két R -beli ektor lineáris kombinációi mindig egy origón átmenő síkot határoznak meg.

3 50. Alterek metszete is altér. 51. Alterek úniója is altér. Mátrixok 5. Ha egy mátrix és a transzponáltja összeadható, akkor a mátrix négyzetes. 5. Ha az A és B mátrixok összeszorozhatóak, akkor a B és az A is összeszorozhatóak. 5. Ha az A és B mátrixok összeadhatóak, akkor az A és B T mátrixok összeszorozhatóak. 55. Az n n-es mátrixok körében a szorzás nem kommutatí. 56. Ha az A és B mátrixikra létezik az A B és a B A mátrix, akkor A és B négyzetes mátrix. 57. Ha az A mátrix speciálisan egy sorektor, akkor az A B szorzat eredménye (ha létezik), szintén sorektor. 58. Ha a B mátrix speciálisan egy oszlopektor, akkor az A B szorzat eredménye (ha létezik), szintén oszlopektor. 59. Ha az A B szorzat létezik, akkor A T B T is létezik és a két szorzat egyenlő. 60. Ha az A B szorzat létezik, akkor az A T B T szorzat is létezik. 61. Ha az A B szorzat létezik, akkor a B T A T szorzat is létezik. 6..Ha A egy 1xn-es mátrix, akkor A A T és A T A is létezik. 6. Ha A nx1-es mátrix, akkor A A T és A T A is létezik. 6. Vannak olyan A és B -es nem nulla mátrixok, hogy A B = Ha az A mátrix rangja 0, akkor minden eleme Ha A inertálható mátrix, akkor A négyzetes. 67. Minden négyzetes mátrix inertálható. 68. Ha egy mátrix inertálható, akkor a rangja megegyezik a sorainak a számáal. 69. Ha A=A T, akkor az A mátrix inertálható. 70. Ha az A mátrix inertálható, akkor az A -1 mátrix is inertálható. 71. (A -1 ) -1 = A. 7..Ha az A és B négyzetes mátrixok inertélhatóak, akkor A+B is inertálható. 7. Ha az A és B azonos méretű négyzetes mátrixok inertélhatóak, akkor A B is inertálható. 7. det(a+b)=det(a)+det(b) 75. det(λ A)=λ det(a) 76. det(a) = det(a T ). 77. det(a) = det(a -1 ). 78. A determináns értéke -1-szeresére áltozik, ha a mátrixban felcserélünk két sort.

4 79. Ha A inertálható, akkor det(a) det(a -1 )= Ha A inertálható, akkor det(a)+det(a -1 )= A determináns értéke nem áltozik, ha a mátrixban alamelyik oszlopot megszorozzuk egy skalárral, majd ehhez hozzáadjuk egy másik oszlopot. 8. A determináns értéke nem áltozik, ha alamelyik oszlophoz hozzáadjuk egy másik oszlop skalárszorosát. 8. A determináns értéke nem áltozik, ha a mátrixban felcserélünk két oszlopot. 8. Ha egy mátrix determinánsa egyenlő a főátlóbeli elemek szorzatáal, akkor a mátrix diagonális. 85. Ha egy mátrix felsőháromszögmátrix, akkor determinánsa egyenlő a főátlóbeli elemek szorzatáal. 86. Ha egy négyzetes mátrix nem teljes rangú, akkor a determinánsa negatí. 87. Ha egy négyzetes mátrix teljes rangú, akkor a determinánsa pozití. 88. Vannak olyan A és B n n-es mátrixok, hogy det(a) = 0 és det(a B) 0. Lineáris egyenletrendszerek 89. Ha az Ax=o lineáris egyenletrendszer megoldható, akkor az inhomogén párja is megoldható. 90. Ha az Ax=b lineáris egyenletrendszer megoldható, akkor a homogén párja is megoldható. 91. Egy homogén lineáris egyenletrendszer mindig megoldható. 9. Egy homogén lineáris egyenletrendszernek csak triiális megoldása an. 9. Egy homogén lineáris egyenletrendszernek égtelen sok megoldása an. 9. Ha egy homogén lineáris egyenletrendszer mátrixának a rangja megegyezik az ismeretlenek számáal, akkor létezik a triiálistól különböző megoldása. 95. Ha egy homogén lineáris egyenletrendszer mátrixának a rangja kisebb az ismeretlenek számánál, akkor létezik a triiálistól különböző megoldása. 96..Ha a homogén lineáris egyenletrendszer együtthatómátrixának rangja kisebb, mint az ismeretlenek száma, akkor az egyenletrendszer nem oldható meg. 97. Egy homogén lineáris egyenletrendszer bármely éges számú megoldásának a lineáris kombinációi is megoldások. 98. Minden lineáris egyenletrendszernek an triiális megoldása. 99. Ha az együtthatómátrix rangja kisebb, mint az ismeretlenek száma, akkor az egyenletrendszer nem oldható meg Van olyan egyenletből álló, ismeretlenes lineáris egyenletrendszer, amelynek pontosan egy megoldásektora an Ha az együtthatómátrix rangja kisebb, mint az ismeretlenek száma, akkor az Ax=o egyenletrendszernek égtelen sok megoldásektora an.

5 10. Ha egy inhomogén egyenletrendszer egyértelműen megoldható, akkor a homogén párjának csak triiális megoldása an. 10. Ha egy lineáris egyenletrendszernek pontosan 1 megoldásektora an, akkor a mátrixának a rangja megegyezik az ismeretlenek számáal. 10. Ha egy homogén lineáris egyenletrendszer egyértelműen megoldható, akkor az inhomogén párjának is mindig egy megoldásektora an Ha egy inhomogén egyenletrendszernek égtelen sok megoldásektora an, akkor a homogén párjának is égtelen sok megoldásektora an Ha az A mátrix nxn-es, akkor az Ax=b egyenletrendszernek n különböző megoldásektora an Ha A nxn-es mátrix, akkor az Ax=o egyenletrendszernek n db különböző megoldása an Homogén-inhomogén egyenletrendszerpár esetén a homogén egyenletrendszer egy megoldásektorához hozzáada az inhomogén egyenletrendszer egy megoldásektorát egy inhomogén megoldásektort kapunk A Cramer szabállyal bármely n.egyenletből álló n ismeretlenes homogén lineáris egyenletrendszer megoldható Ha det(a) = 0, akkor az Ax=o lineáris egyenletrendszer nem oldható meg Ha az Ax=o lineáris egyenletrendszer megoldható, akkor det(a) = Ha det(a) = 0, akkor az Ax=o lineáris egyenletrendszernek égtelen sok megoldásektora an. 11. Ha egy homogén lineáris egyenletrendszer együtthatómátrixának a determinánsa 0, akkor az egyenletrendszernek an triiálistól különböző megoldása. 11. Ha det(a) = 0, akkor az Ax=b lineáris egyenletrendszernek égtelen sok megoldásektora an Ha az Ax=o lineáris egyenletrendszer megoldható, akkor det(a) = Ha det(a) 0, akkor az Ax=o lineáris egyenletrendszernek csak triiális megoldása an. Lineáris leképezések 117. Ha A : R m R n lineáris leképezés, akkor im(a) = R n Ha A:R m R n típusú lineáris leképezés, akkor dim(im(a)) n Minden lineáris leképezés nullektorhoz nullektort rendel. 10. Minden lineáris leképezés magtere tartalmazza a nullektort Egy A lineáris leképezés mátrixának k-adik oszlopektora A(e k ). 1. Egy A lineáris leképezés mátrixának k-adik sorektora A(e k ).

6 1. Minden lineáris leképezés lineárisan összefüggő ektorokhoz lineárisan összefüggő képektorokat rendel. 1. Minden lineáris leképezés lineárisan független ektorokhoz lineárisan független képektorokat rendel. 15. Ha az A lineáris leképezés injektí, akkor a magtere üres halmaz. 16. Lineáris leképezések kompozíciója (ha létezik) lineáris. 17. Ha az A és B lineáris leképezésekre AoB létezik, akkor az M(A) M(B) szorzás elégezhető. 18. Ha A: R R és B: R R típusú lineáris leképezés, akkor AoB létezik. 19. Minden A: R n R n lineáris transzformációnak létezik sajátértéke. 10. Van olyan R n R n típusú lineáris transzformáció, amelynek nincs sajátektora. 11. Egy A: R n R n lineáris transzformációnak legfeljebb n különböző sajátektora lehet. 1. Egy lineáris transzformáció sajátalterének minden ektora sajátektor. 1. Egy A: R n R n lineáris transzformációnak létezhet olyan sajátértéke, amelyhez egyetlen sajátektor tartozik. 1. Egy A: R n R n lineáris transzformáció bármely sajátértékének az algebrai multiplicitása nem kisebb a sajátértékekhez tartozó sajátaltér dimenziójánál. 15. Egy A: R n R n lineáris transzformáció karakterisztikus polinomjának az A gyöke. 16. Legyen A : R R, (x 1, x ) a ( x 1 +x, x ), 1 =(,1), =(5,), =(,), =(,-). Melyik sajátektor? 17. Legyen A : R R, (x 1, x ) a ( x 1 +x, x ), 1 =(,0), =(5,1), =(,), =(,-). Melyik sajátektor? (egyszeres álasztás) 18. Legyen A : R R, (x 1, x ) a ( 5x 1 +x, x ), 1 =(1,1), =(1,-), =(,0), =(-,).Melyik sajátektor? 19. Legyen A : R R, (x 1, x ) a ( x 1 x, x 1 +6x ), 1 =(1,1), =(,-), =(,0), =(-,). Melyik sajátektor? Legyen A, = 0, Legyen A, = 1, Legyen A, =, Legyen A, = 0, 1 1 1,, ,, =,, = ,,. Melyik sajátektor? 0 Melyik sajátektor? 0 Melyik sajátektor? Melyik sajátektor? 0

7 Skaláris szorzat 1. Az (1,, ), (0, 0, 0) és (, -, 0) ektorok ortogonális ektorhalmazt alkotnak. 15. Az (1, 0, ), (0, 0, 0) és (-, 5, 1) ektorok ortogonális ektorhalmazt alkotnak. 16. Az ( 1, 1, 1 ) ektor egységre normált. 17. A (-1, 0, 0 ) ektor egységre normált. 18. Az ( 1, 1, -1 ) ektor egységre normált. 19. Az ( 1, ) és (, 1 ) ektorok ortonormált bázist alkotnak R -ben Az ( 1, 1 ) és ( 1, 1 ) ektorok ortonormált bázist alkotnak R -ben Minden ortogonális ektorhalmaz lineárisan független. 15. Ha H altér R n -ben, akkor dim(h) = dim(h ). 15. Ha a H R n altérre dim(h) = k, akkor dim(h ) = n-k. 15. Ha H altér R n -ben, akkor dim(h) + dim(h ) = n.

Lineáris Algebra gyakorlatok

Lineáris Algebra gyakorlatok A V 2 és V 3 vektortér áttekintése Lineáris Algebra gyakorlatok Írta: Simon Ilona Lektorálta: DrBereczky Áron Áttekintjük néhány témakör legfontosabb definícióit és a feladatokban használt tételeket kimondjuk

Részletesebben

Miskolci Egyetem. Diszkrét matek I. Vizsga-jegyzet. Hegedűs Ádám Imre 2010.12.28.

Miskolci Egyetem. Diszkrét matek I. Vizsga-jegyzet. Hegedűs Ádám Imre 2010.12.28. Miskolci Egyetem Diszkrét matek I. Vizsga-jegyzet Hegedűs Ádám Imre 2010.12.28. KOMBINATORIKA Permutáció Ismétlés nélküli permutáció alatt néhány különböző dolognak a sorba rendezését értjük. Az "ismétlés

Részletesebben

A lineáris tér. Készítette: Dr. Ábrahám István

A lineáris tér. Készítette: Dr. Ábrahám István A lineáris tér Készítette: Dr. Ábrahám István A lineáris tér fogalma A fejezetben a gyakorlati alkalmazásokban használt legfontosabb fogalmakat, összefüggéseket tárgyaljuk. Adott egy L halmaz, amiben azonos

Részletesebben

MATEMATIKA FELADATGYŰJTEMÉNY

MATEMATIKA FELADATGYŰJTEMÉNY Pék Johanna MATEMATIKA FELADATGYŰJTEMÉNY Nem matematika alapszakos hallgatók számára Tartalomjegyzék Előszó iii. Lineáris algebra.. Mátrixok...................................... Lineáris egyenletrendszerek..........................

Részletesebben

Bevezetés a számításelméletbe I. feladatgyűjtemény. Szeszlér Dávid, Wiener Gábor

Bevezetés a számításelméletbe I. feladatgyűjtemény. Szeszlér Dávid, Wiener Gábor Bevezetés a számításelméletbe I. feladatgyűjtemény Szeszlér Dávid, Wiener Gábor Tartalomjegyzék Előszó 2 1. Feladatok 5 1.1. Térbeli koordinátageometria........................... 5 1.2. Vektortér, altér..................................

Részletesebben

Lineáris algebra és mátrixok alkalmazása a numerikus analízisben

Lineáris algebra és mátrixok alkalmazása a numerikus analízisben Eötvös Loránd Tudományegyetem Természettudományi kar Lineáris algebra és mátrixok alkalmazása a numerikus analízisben Szakdolgozat Készítette: Borostyán Dóra Matematika BSc matematikai elemző Témavezető:

Részletesebben

Gyakorló feladatok vektoralgebrából

Gyakorló feladatok vektoralgebrából Gyakorló feladatok ektoralgebrából Az alábbi feladatokban, hasak nem jelezzük másként, az i, j, k bázist használjk.. a.) Milyen messze annak egymástól az A(,,) és a B(4,-,6) pontok? b.) Számítsa ki az

Részletesebben

5. Előadás. Megyesi László: Lineáris algebra, 29. 36. oldal. 5. előadás Lineáris függetlenség

5. Előadás. Megyesi László: Lineáris algebra, 29. 36. oldal. 5. előadás Lineáris függetlenség 5. Előadás Megyesi László: Lineáris algebra, 29. 36. oldal. Gondolkodnivalók Vektortér 1. Gondolkodnivaló Alteret alkotnak-e az R n n (valós n n-es mátrixok) vektortérben az alábbi részhalmazok? U 1 =

Részletesebben

Sztojka Miroszláv LINEÁRIS ALGEBRA Egyetemi jegyzet Ungvár 2013

Sztojka Miroszláv LINEÁRIS ALGEBRA Egyetemi jegyzet Ungvár 2013 UKRAJNA OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUMA ÁLLAMI FELSŐOKTATÁSI INTÉZMÉNY UNGVÁRI NEMZETI EGYETEM MAGYAR TANNYELVŰ HUMÁN- ÉS TERMÉSZETTUDOMÁNYI KAR FIZIKA ÉS MATEMATIKA TANSZÉK Sztojka Miroszláv LINEÁRIS

Részletesebben

2) = 0 ahol x 1 és x 2 az ax 2 + bx + c = 0 ( a,b, c R és a 0 )

2) = 0 ahol x 1 és x 2 az ax 2 + bx + c = 0 ( a,b, c R és a 0 ) Fogalom gyűjtemény Abszcissza: az x tengely Abszolút értékes egyenletek: azok az egyenletek, amelyekben abszolút érték jel szerepel. Abszolútérték-függvény: egy elemi egyváltozós valós függvény, mely minden

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 11 XI LINEÁRIS EGYENLETRENDSZEREk 1 LINEÁRIS EGYENLETRENDSZER A lineáris egyenletrendszer általános alakja: (1) Ugyanez mátrix alakban: (2), ahol x az ismeretleneket tartalmazó

Részletesebben

2. Interpolációs görbetervezés

2. Interpolációs görbetervezés 2. Interpolációs görbetervezés Gondoljunk arra, hogy egy grafikus tervező húz egy vonalat (szabadformájú görbét), ezt a vonalat nekünk számítógép által feldolgozhatóvá kell tennünk. Ennek egyik módja,

Részletesebben

Lineáris algebra I. Kovács Zoltán. Előadásvázlat (2006. február 22.)

Lineáris algebra I. Kovács Zoltán. Előadásvázlat (2006. február 22.) Lineáris algebra I. Kovács Zoltán Előadásvázlat (2006. február 22.) 2 3 Erdős Jenő emlékének. 4 Tartalomjegyzék 1. A szabadvektorok vektortere 7 1. Szabadvektorok összeadása és skalárral való szorzása...............

Részletesebben

Color profile: Generic CMYK printer profile Composite 150 lpi at 45 degrees

Color profile: Generic CMYK printer profile Composite 150 lpi at 45 degrees Color profile: Generic CMYK printer profile Composite 150 lpi at 45 degrees Matematikai Lapo / Borító 2013. december 13. 19:28:39 13-1-borito 2014/5/20 11:55 page 0 #1 MATEMATIKAI LAPOK A Bolyai János

Részletesebben

Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály, középszint

Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály, középszint TÁMOP-.1.4-08/2-2009-0011 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály, középszint Vasvár,

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 9 IX MÁTRIxOk 1 MÁTRIx FOGALmA, TULAJDONSÁGAI A mátrix egy téglalap alakú táblázat, melyben az adatok, a mátrix elemei, sorokban és oszlopokban vannak elhelyezve Az (1) mátrixnak

Részletesebben

Lineáris programozás. Modellalkotás Grafikus megoldás Feladattípusok Szimplex módszer

Lineáris programozás. Modellalkotás Grafikus megoldás Feladattípusok Szimplex módszer Lineáris programozás Modellalkotás Grafikus megoldás Feladattípusok Szimplex módszer Feladat: Egy gyár kétféle terméket gyárt (A, B): /db Eladási ár 1000 800 Technológiai önköltség 400 300 Normaóraigény

Részletesebben

15. LINEÁRIS EGYENLETRENDSZEREK

15. LINEÁRIS EGYENLETRENDSZEREK 15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

Lineáris algebra bevezető

Lineáris algebra bevezető Lineáris algebra bevezető 1 Egyismeretlenes egyenletek bemelegítés Az ilyen egyenletek rendezés után ax = b alakba írhatók Ha a 0, akkor a(z egyértelmű megoldás x = b/a Ha a = 0, akkor b 0 esetben nincs

Részletesebben

NUMERIKUS MÓDSZEREK FARAGÓ ISTVÁN HORVÁTH RÓBERT. Ismertető Tartalomjegyzék Pályázati támogatás Gondozó

NUMERIKUS MÓDSZEREK FARAGÓ ISTVÁN HORVÁTH RÓBERT. Ismertető Tartalomjegyzék Pályázati támogatás Gondozó FARAGÓ ISTVÁN HORVÁTH RÓBERT NUMERIKUS MÓDSZEREK 2011 Ismertető Tartalomjegyzék Pályázati támogatás Gondozó Szakmai vezető Lektor Technikai szerkesztő Copyright Az Olvasó most egy egyetemi jegyzetet tart

Részletesebben

Lineáris Algebra GEMAN 203-B. A három dimenziós tér vektorai, egyenesei, síkjai

Lineáris Algebra GEMAN 203-B. A három dimenziós tér vektorai, egyenesei, síkjai Matematika előadás elméleti kérdéseinél kérdezhető képletek Lineáris Algebra GEMAN 203-B A három dimenziós tér vektorai, egyenesei, síkjai a) Hogyan számítjuk ki az a = (a 1, a 2, a 3 ) és b = (b 1, b

Részletesebben

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek Lineáris algebra 2 Filip Ferdinánd filipferdinand@bgkuni-obudahu sivabankihu/jegyzetek 2015 december 7 Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 1 / 37 Az el adás vázlata Determináns Determináns

Részletesebben

Soukup Dániel, Matematikus Bsc III. év Email cím: dsoukup123@gmail.com Témavezető: Szentmiklóssy Zoltán, egyetemi adjunktus

Soukup Dániel, Matematikus Bsc III. év Email cím: dsoukup123@gmail.com Témavezető: Szentmiklóssy Zoltán, egyetemi adjunktus Síktopológiák a Sorgenfrey-egyenes ötletével Soukup Dániel, Matematikus Bsc III. év Email cím: dsoukup123@gmail.com Témavezető: Szentmiklóssy Zoltán, egyetemi adjunktus 1. Bevezetés A Sorgenfrey-egyenes

Részletesebben

Lineáris algebra I. Vektorok és szorzataik

Lineáris algebra I. Vektorok és szorzataik Lineáris algebra I. Vektorok és szorzataik Ismert fogalmak Témák Vektortér Lineáris kombináció Lineáris függőség, függetlenség Generátorrendszer, bázis, dimenzió Lineáris leképezések Szabadvektorok vektortere

Részletesebben

Az áprilisi vizsga anyaga a fekete betűkkel írott szöveg! A zölddel írott rész az érettségi vizsgáig még megtanulandó anyag!

Az áprilisi vizsga anyaga a fekete betűkkel írott szöveg! A zölddel írott rész az érettségi vizsgáig még megtanulandó anyag! Részletes követelmények Matematika házivizsga Az áprilisi vizsga anyaga a fekete betűkkel írott szöveg! A zölddel írott rész az érettségi vizsgáig még megtanulandó anyag! A vizsga időpontja: 2015. április

Részletesebben

Fejezetek a lineáris algebrából PTE-PMMK, Műszaki Informatika Bsc. Dr. Kersner Róbert

Fejezetek a lineáris algebrából PTE-PMMK, Műszaki Informatika Bsc. Dr. Kersner Róbert Fejezetek a lineáris algebrából PTE-PMMK, Műszaki Informatika Bsc Dr. Kersner Róbert 007 Tartalomjegyzék Előszó ii. Determináns. Mátrixok 6 3. Az inverz mátrix 9 4. Lineáris egyenletrendszerek 5. Lineáris

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 7 VII. Gyűrűk 1. Gyűrű Definíció Egy a következő axiómákat: gyűrű alatt olyan halmazt értünk, amelyben definiálva van egy összeadás és egy szorzás, amelyek teljesítik (1) egy

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 0613 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Formai előírások: Fontos tudnivalók

Részletesebben

Intergrált Intenzív Matematika Érettségi

Intergrált Intenzív Matematika Érettségi . Adott a mátri, determináns determináns, ahol,, d Számítsd ki:. b) Igazold, hogy a b c. Adott a az 6 0 egyenlet megoldásai. a). c) Számítsd ki a d determináns értékét. d c a b determináns, ahol abc,,.

Részletesebben

ÉS TESZTEK A DEFINITSÉG

ÉS TESZTEK A DEFINITSÉG MÁTRIX DEFINITSÉGÉNEK FOGALMA ÉS TESZTEK A DEFINITSÉG ELDÖNTÉSÉRE DR. NAGY TAMÁS egyetemi docens Miskolci Egyetem Alkalmazott Matematikai Tanszék A bemutatott kutató munka a TÁMOP-..1.B-10//KONV-010-0001

Részletesebben

LINEÁRIS ALGEBRA PÉLDATÁR MÉRNÖK INFORMATIKUSOKNAK

LINEÁRIS ALGEBRA PÉLDATÁR MÉRNÖK INFORMATIKUSOKNAK Írta: LEITOLD ADRIEN LINEÁRIS ALGEBRA PÉLDATÁR MÉRNÖK INFORMATIKUSOKNAK Egyetemi tananyag COPYRIGHT: Dr. Leitold Adrien Pannon Egyetem Műszaki Informatika Kar Matematika Tanszék LEKTORÁLTA: Dr. Buzáné

Részletesebben

BUDAPESTI KÖZGAZDASÁGTUDOMÁNYI EGYETEM. Puskás Csaba, Szabó Imre, Tallos Péter LINEÁRIS ALGEBRA JEGYZET

BUDAPESTI KÖZGAZDASÁGTUDOMÁNYI EGYETEM. Puskás Csaba, Szabó Imre, Tallos Péter LINEÁRIS ALGEBRA JEGYZET BUDAPESTI KÖZGAZDASÁGTUDOMÁNYI EGYETEM Puskás Csaba, Szabó Imre, Tallos Péter LINEÁRIS ALGEBRA JEGYZET BUDAPEST, 1997 A szerzők Lineáris Algebra, illetve Lineáris Algebra II c jegyzeteinek átdolgozott

Részletesebben

Mátrixok. 3. fejezet. 3.1. Bevezetés: műveletek táblázatokkal

Mátrixok. 3. fejezet. 3.1. Bevezetés: műveletek táblázatokkal fejezet Mátrixok Az előző fejezetben a mátrixokat csak egyszerű jelölésnek tekintettük, mely az egyenletrendszer együtthatóinak tárolására, és az egyenletrendszer megoldása közbeni számítások egyszerüsítésére

Részletesebben

Középszintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: 2005. november. I. rész

Középszintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: 2005. november. I. rész Pataki János, 005. november Középszintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: 005. november I. rész. feladat Egy liter 0%-os alkoholhoz / liter 40%-os alkoholt keverünk.

Részletesebben

Juhász Tibor. Lineáris algebra

Juhász Tibor. Lineáris algebra Juhász Tibor Lineáris algebra Eszterházy Károly Főiskola Matematikai és Informatikai Intézet Juhász Tibor Lineáris algebra Eger, 2013 Készült a TÁMOP-425B-11/1-2011-0001 támogatásával Tartalomjegyzék

Részletesebben

Lineáris egyenletrendszerek

Lineáris egyenletrendszerek Lineáris egyenletrendszerek Lineáris egyenletrendszernek nevezzük az a 11 x 1 + a 12 x 2 +... +a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... +a 2n x n = b 2.. a k1 x 1 + a k2 x 2 +... +a kn x n = b k n ismeretlenes,

Részletesebben

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, mátrixegyenlet

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, mátrixegyenlet 9. Előadás Megyesi László: Lineáris algebra, 75. 84. oldal. Gondolkodnivalók Mátrix rangja 1. Gondolkodnivaló Határozzuk meg a p valós paraméter értékétől függően a következő mátrix rangját: p 3 1 2 2

Részletesebben

Lineáris algebra - jegyzet. Kupán Pál

Lineáris algebra - jegyzet. Kupán Pál Lineáris algebra - jegyzet Kupán Pál Tartalomjegyzék fejezet Vektorgeometria 5 Vektorok normája Vektorok skaláris szorzata 4 3 Vektorok vektoriális szorzata 5 fejezet Vektorterek, alterek, bázis Vektorterek

Részletesebben

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé.

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. HA 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) HA 2 Halmazok HA 3 Megjegyzések A halmaz, az elem és az eleme fogalmakat nem definiáljuk, hanem alapfogalmaknak

Részletesebben

Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony.

Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony. Determinánsok A determináns fogalma olyan algebrai segédeszköz, amellyel jól jellemezhető a mátrixok invertálhatósága, a mátrix rangja. Segítségével lineáris egyenletrendszerek megoldhatósága dönthető

Részletesebben

1. Mátrixösszeadás és skalárral szorzás

1. Mátrixösszeadás és skalárral szorzás 1 Mátrixösszeadás és skalárral szorzás Mátrixok tömör jelölése T test Az M = a i j T n m azt az n sorból és m oszlopból álló mátrixot jelöli, amelyben az i-edik sor j-edik eleme a i j T Példák [ ] Ha M

Részletesebben

10. Feladat. Döntse el, hogy igaz vagy hamis. Név:...

10. Feladat. Döntse el, hogy igaz vagy hamis. Név:... 1. Feladat. Döntse el, hogy igaz vagy hamis. Név:........................................... (1) (1 3) = (3 1). (hamis) () (1 ) = ( 1). (igaz). Feladat. Döntse el, hogy igaz vagy hamis. Név:...........................................

Részletesebben

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1 Halmazok 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 2 A fejezet legfontosabb elemei Halmaz megadási módjai Halmazok közti műveletek (metszet,

Részletesebben

Gráfelmélet/Diszkrét Matematika MSc hallgatók számára. Párosítások

Gráfelmélet/Diszkrét Matematika MSc hallgatók számára. Párosítások Gráfelmélet/Diszkrét Matematika MSc hallgatók számára Párosítások 2012. november 19. Előadó: Hajnal Péter 1. Alapfogalmak Emlékeztető. Legyen G egy gráf, E(G) a G élhalmaza, V (G) gráfunk csúcshalmaza.

Részletesebben

- hányadost és az osztót összeszorozzuk, majd a maradékot hozzáadjuk a kapott értékhez

- hányadost és az osztót összeszorozzuk, majd a maradékot hozzáadjuk a kapott értékhez 1. Számtani műveletek 1. Összeadás 73 + 19 = 92 összeadandók (tagok) összeg Összeadáskor a tagok felcserélhetőek, az összeg nem változik. a+b = b+a Összeadáskor a tagok tetszőlegesen csoportosíthatóak

Részletesebben

Í ÍÍÍ Í Í Í Ö Ö Ö Ö Ö Ö Ö Ö Ú É Í Ö Á Á É Ö É Ö É É Á Á Ö Ú Ö Ö Í Á É É Í Á É Í Ö Ö Á Á É Í Ö Ö Ö Ö Ö Ö Á É Ö É É Ö É Ö Í Á É É Ö Ö É Ö Í Í Í Í Ö Ö Ö Í Ö É Ö É É Ö Ö Í É Ö Í É É Ö Í É Á É É Ű Ö Í É É Ö

Részletesebben

6. modul Egyenesen előre!

6. modul Egyenesen előre! MATEMATIKA C 11 évfolyam 6 modul Egyenesen előre! Készítette: Kovács Károlyné Matematika C 11 évfolyam 6 modul: Egyenesen előre! Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

Bevezetés 3. Vizsga tételsor 5. 1 Komplex számok 6. 2 Lineáris algebra 10. 2.2Vektorterek 11

Bevezetés 3. Vizsga tételsor 5. 1 Komplex számok 6. 2 Lineáris algebra 10. 2.2Vektorterek 11 Bevezetés a számításelméletbe 1. A BME I. éves mérnök-informatikus hallgatói számára segédlet a 2007. őszi előadáshoz Összeállította: Fleiner Tamás Utolsó frissítés: 2010. január 13. Tartalomjegyzék Bevezetés

Részletesebben

Áttekintés a felhasznált lineáris algebrai ismeretekről.

Áttekintés a felhasznált lineáris algebrai ismeretekről. Kiegészítés az előadássorozathoz. Áttekintés a felhasznált lineáris algebrai ismeretekről. A valószínűségszámítás (és a matematika) bizonyos kérdéseiben fontos szerepet játszik a lineáris algebra néhány

Részletesebben

9. ÉVFOLYAM. Tájékozottság a racionális számkörben. Az azonosságok ismerete és alkalmazásuk. Számok abszolútértéke, normál alakja.

9. ÉVFOLYAM. Tájékozottság a racionális számkörben. Az azonosságok ismerete és alkalmazásuk. Számok abszolútértéke, normál alakja. 9. ÉVFOLYAM Gondolkodási módszerek A szemléletes fogalmak definiálása, tudatosítása. Módszer keresése az összes eset áttekintéséhez. A szükséges és elégséges feltétel megkülönböztetése. A megismert számhalmazok

Részletesebben

I. rész. x 100. Melyik a legkisebb egész szám,

I. rész. x 100. Melyik a legkisebb egész szám, Dobos Sándor, 005. november Középszintű érettségi feladatsorok és megoldásaik Összeállította: Dobos Sándor; dátum: 005. november 1. feladat A 70-nek 80%-a mely számnak a 70%-a? I. rész. feladat Egy szabályos

Részletesebben

Témakörök az osztályozó vizsgához. Matematika

Témakörök az osztályozó vizsgához. Matematika Témakörök az osztályozó vizsgához Idegenforgalmi és Informatikus osztályok (9.A/9.B) 1. A halmazok, számhalmazok, ponthalmazok 2. Függvények 3. A számelmélet elemei. Hatványozás. 0 és negatív kitevőjű

Részletesebben

Ö Á Í Í ű ű ú ű ű ű ű ú ú ú ú ű ű ű ű ű ű ű ű ű ú ű ú ú ú ű ú Á ú ű ű Ó ú ű ű ű ú Ó ú ű ú É ú ú ú ű ű ú ű ú Ú Á ú É ú Ó ú ú ú ú ű ű ű ú É Á É É ű ű Í ú ú Ó Í ű Í ű ű ú ű ű ű É ű ú Á ű ű ú Í ű Á ű ú ú É

Részletesebben

ö ö ö ö ö ö ö ű ű ö ö ö ö ö Ő ö Ó Ú ö Ö ö ö ö ö Ö Ő ö ö Í Ó Ó Ő ö ö ö ö ö Ő Ő Ó Ő É ö Ú ö ö Ő ö ö ö ö ö ö ö Ő ö Ő É ö Ő ö ö Ő ö ö ö Ó ű ö ö ö Ő ö ö ö Í Ő Ó Í ö ö ö ö Ő Ő Ő Ő Í Ó Ő Ő Í Ő ö ö ö ö ö Ő Ő ö

Részletesebben

Ú ű ü ü Ü ű É É Ö Ö Á ü ü ü ű É ú Á Ö Ü ü ü ű É Á É Ű ű Ü Ü ű ü ű ü ű ü Ü ü ü Ű Á Á Á ű ú ű Á Ó Ó É Á Ó Á Ó ű ü ü ű ű ü ú ú ü ü ü ű ü ű Ü ű ü ü ú ü Ö ü ú ú ü ü ü ü ű ú ü Ó ü Ó Ó ü ü Ó ü ü Ó ű ű ú ű ű ü

Részletesebben

1. Lineáris leképezések

1. Lineáris leképezések Lineáris leképezések A lineáris leképezés fogalma Definíció (F5 Definíció) Legenek V és W vektorterek UGYANAZON T test fölött Az A : V W lineáris leképezés, ha összegtartó, azaz v,v 2 V esetén A(v +v 2

Részletesebben

Másodfokú egyenletek, egyenlőtlenségek

Másodfokú egyenletek, egyenlőtlenségek Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x + 1x + 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x + 1x + 16 = 0.

Részletesebben

Széchenyi István Egyetem, 2005

Széchenyi István Egyetem, 2005 Gáspár Csaba, Molnárka Győző Lineáris algebra és többváltozós függvények Széchenyi István Egyetem, 25 Vektorterek Ebben a fejezetben a geometriai vektorfogalom ( irányított szakasz ) erős általánosítását

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2007/2008-as tanév 2. forduló haladók I. kategória

Arany Dániel Matematikai Tanulóverseny 2007/2008-as tanév 2. forduló haladók I. kategória Bolyai János Matematikai Társulat Oktatási és Kulturális Minisztérium Támogatáskezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 007/008-as tanév. forduló haladók I. kategória Megoldások

Részletesebben

Lineáris algebra gyakorlat

Lineáris algebra gyakorlat Lineáris algebra gyakorlat 9. gyakorlat Gyakorlatvezet : Bogya Norbert 202. április 6. Bogya Norbert Lineáris algebra gyakorlat (9. gyakorlat Bázistranszformáció és alkalmazásai (folytatás Tartalom Bázistranszformáció

Részletesebben

Másodfokú egyenletek, egyenlőtlenségek

Másodfokú egyenletek, egyenlőtlenségek Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x 1x 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x 1x 16 =. 1. lépés:

Részletesebben

összeadjuk 0-t kapunk. Képletben:

összeadjuk 0-t kapunk. Képletben: 814 A ferde kifejtés tétele Ha egy determináns valamely sorának elemeit egy másik sor elemeihez tartozó adjungáltakkal szorozzuk meg és a szorzatokat összeadjuk 0-t kapunk Képletben: n a ij A kj = 0, ha

Részletesebben

NT-17102 Matematika 9. (Heuréka) Tanmenetjavaslat

NT-17102 Matematika 9. (Heuréka) Tanmenetjavaslat NT-17102 Matematika 9. (Heuréka) Tanmenetjavaslat Ezzel a segédanyaggal szeretnék segítséget nyújtani a középiskolák azon matematikatanárainak, akik a matematikai oktatáshoz és neveléshez Dr. Fried Katalin

Részletesebben

Elsôfokú egyenletek, egyenletrendszerek, egyenlôtlenségek

Elsôfokú egyenletek, egyenletrendszerek, egyenlôtlenségek Elsôfokú egyváltozós egyenletek 6 Elsôfokú egyenletek, egyenletrendszerek, egyenlôtlenségek. Elsôfokú egyváltozós egyenletek 000. Érdemes egyes tagokat, illetve tényezôket alkalmasan csoportosítani, valamint

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 5 V ELEmI ALGEbRA 1 BINÁRIS műveletek Definíció Az halmazon definiált bináris művelet egy olyan függvény, amely -ből képez -be Ha akkor az elempár képét jelöljük -vel, a művelet

Részletesebben

7. gyakorlat. Lineáris algebrai egyenletrendszerek megoldhatósága

7. gyakorlat. Lineáris algebrai egyenletrendszerek megoldhatósága 7. gyakorlat Lineáris algebrai egyenletrendszerek megoldhatósága Egy lineáris algebrai egyenletrendszerrel kapcsolatban a következ kérdések merülnek fel: 1. Létezik-e megoldása? 2. Ha igen, hány megoldása

Részletesebben

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, Leontyev-modell

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, Leontyev-modell 9. Előadás Megyesi László: Lineáris algebra, 75. 84. oldal. Gondolkodnivalók Mátrix rangja 1. Gondolkodnivaló Tegyük fel, hogy egy elemi bázistranszformáció kezdetekor a sor- és oszlopindexek sorban helyezkednek

Részletesebben

Valasek Gábor valasek@inf.elte.hu

Valasek Gábor valasek@inf.elte.hu Számítógépes Grafika Valasek Gábor valasek@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2013/2014. őszi félév ( Eötvös LorándSzámítógépes TudományegyetemInformatikai Grafika Kar) 2013/2014.

Részletesebben

1. Algebrai alapok: Melyek műveletek az alábbiak közül?

1. Algebrai alapok: Melyek műveletek az alábbiak közül? 1. Algebrai alapok: Művelet: Egy H nemüres halmazon értelmezett (kétváltozós) műveleten egy H H H függvényt értünk, azaz egy olyan leképezést, amely bármely a,b H elempárhoz egyértelműen hozzárendel egy

Részletesebben

Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István. tankönyv. Mozaik Kiadó Szeged, 2013

Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István. tankönyv. Mozaik Kiadó Szeged, 2013 Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István tankönyv 0 Mozaik Kiadó Szeged, 03 TARTALOMJEGYZÉK Gondolkodási módszerek. Mi következik ebbõl?... 0. A skatulyaelv... 3. Sorba rendezési

Részletesebben

Lineáris algebra jegyzet

Lineáris algebra jegyzet Lineáris algebra jegyzet Készítette: Jezsoviczki Ádám Forrás: Az előadások és a gyakorlatok anyaga Legutóbbi módosítás dátuma: 2011-12-04 A jegyzet nyomokban hibát tartalmazhat, így fentartásokkal olvasandó!

Részletesebben

86 MAM112M előadásjegyzet, 2008/2009

86 MAM112M előadásjegyzet, 2008/2009 86 MAM11M előadásjegyzet, 8/9 5. Fourier-elmélet 5.1. Komplex trigonometrikus Fourier-sorok Tekintsük az [,], C Hilbert-teret, azaz azoknak a komplex értékű f : [,] C függvényeknek a halmazát, amelyek

Részletesebben

Differenciaegyenletek

Differenciaegyenletek Differenciaegyenletek Losonczi László Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Losonczi László (DE) Differenciaegyenletek 1 / 24 3.1 Differenciaegyenlet fogalma, egzisztencia- és unicitástétel

Részletesebben

JANUS PANNONIUS TUDOMÁNYEGYETEM. Schipp Ferenc ANALÍZIS II. ***************

JANUS PANNONIUS TUDOMÁNYEGYETEM. Schipp Ferenc ANALÍZIS II. *************** JANUS PANNONIUS TUDOMÁNYEGYETEM Schipp Ferenc ANALÍZIS II. Folytonosság, differenciálhatóság *************** Pécs, 1996 Lektorok: DR. SZÉKELYHIDI LÁSZLÓ egyetemi tanár, a mat. tud. doktora DR. SZILI LÁSZLÓ

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 10 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

Számsorozatok Sorozat fogalma, példák sorozatokra, rekurzív sorozatokra, sorozat megadása Számtani sorozat Mértani sorozat Kamatszámítás

Számsorozatok Sorozat fogalma, példák sorozatokra, rekurzív sorozatokra, sorozat megadása Számtani sorozat Mértani sorozat Kamatszámítás 12. évfolyam Osztályozó vizsga 2013. augusztus Számsorozatok Sorozat fogalma, példák sorozatokra, rekurzív sorozatokra, sorozat megadása Számtani sorozat Mértani sorozat Kamatszámítás Ismerje a számsorozat

Részletesebben

Első zárthelyi dolgozat megoldásai biomatematikából * A verzió

Első zárthelyi dolgozat megoldásai biomatematikából * A verzió Első zárthelyi dolgozat megoldásai biomatematikából * A verzió Elméleti kérdések: E. Mikor nevezünk egy gráfot gyengén és mikor erősen összefüggőnek? Adjon példát gyengén összefüggő de erősen nem összefüggő

Részletesebben

MAGISTER GIMNÁZIUM TANMENET 2012-2013 9. OSZTÁLY

MAGISTER GIMNÁZIUM TANMENET 2012-2013 9. OSZTÁLY MAGISTER GIMNÁZIUM TANMENET 2012-2013 9. OSZTÁLY Heti 4 óra Évi 148 óra Készítette: Ellenőrizte: Literáti Márta matematika tanár.. igazgató 1 / 5 I. Az általános iskolai ismeretek ismétlése 1. óra: Műveletek

Részletesebben

Halmazelmélet. Halmazok megadása

Halmazelmélet. Halmazok megadása Halmazok megadása Halmazelmélet 145. Amikor a halmazt körülírással vagy valamilyen tulajdonságával adjuk meg, bármilyen elemrôl egyértelmûen el kell tudnunk dönteni, hogy beletartozik a halmazba vagy sem.

Részletesebben

Elektrotechnika. 4. előadás. Budapest Műszaki Főiskola Bánki Donát Gépész és Biztonságtechnikai Kar Mechatronikai és Autechnikai Intézet

Elektrotechnika. 4. előadás. Budapest Műszaki Főiskola Bánki Donát Gépész és Biztonságtechnikai Kar Mechatronikai és Autechnikai Intézet udapest Műszaki Főiskola ánki Donát Gépész és iztonságtechnikai Kar Mechatronikai és utechnikai ntézet Elektrotechnika 4. előadás Összeállította: Langer ngrid őisk. adjunktus Háromázisú hálózatok gyakorlatban

Részletesebben

LINEÁRIS EGYENLETRENDSZEREK október 12. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak

LINEÁRIS EGYENLETRENDSZEREK október 12. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak LINEÁRIS EGYENLETRENDSZEREK 004. október. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják a jegyzetben: Szabó László:

Részletesebben

Egyenletek, egyenlőtlenségek VII.

Egyenletek, egyenlőtlenségek VII. Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós

Részletesebben

MATEMATIKA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ

MATEMATIKA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ MATEMATIKA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY Az érettségi követelményeit két szinten határozzuk meg: középszinten a

Részletesebben

Mátrixok. 2015. február 23. 1. Feladat: Legyen ( 3 0 1 4 1 1 ( 1 0 3 2 1 0 B = A =

Mátrixok. 2015. február 23. 1. Feladat: Legyen ( 3 0 1 4 1 1 ( 1 0 3 2 1 0 B = A = Mátrixok 25. február 23.. Feladat: Legyen A ( 3 2 B ( 3 4 Határozzuk meg A + B, A B, 2A, 3B, 2A 3B,A T és (B T T mátrixokat. A deníciók alapján ( + 3 + 3 + A + B 2 + 4 + + ( 4 2 6 2 ( ( 3 3 2 4 A B 2 4

Részletesebben

11. DETERMINÁNSOK. 11.1 Mátrix fogalma, műveletek mátrixokkal

11. DETERMINÁNSOK. 11.1 Mátrix fogalma, műveletek mátrixokkal 11 DETERMINÁNSOK 111 Mátrix fogalma, műveletek mátrixokkal Bevezetés A közgazdaságtanban gyakoriak az olyan rendszerek melyek jellemzéséhez több adat szükséges Például egy k vállalatból álló csoport minden

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 05 ÉRETTSÉGI VIZSGA 006. május 9. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Formai előírások: Fontos tudnivalók A dolgozatot

Részletesebben

3. Lineáris differenciálegyenletek

3. Lineáris differenciálegyenletek 3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra

Részletesebben

MATEMATIKA 9. osztály Segédanyag 4 óra/hét

MATEMATIKA 9. osztály Segédanyag 4 óra/hét MATEMATIKA 9. osztály Segédanyag 4 óra/hét - 1 - Az óraszámok az AROMOBAN követhetőek nyomon! A tananyag feldolgozása a SOKSZÍNŰ MATEMATIKA (Mozaik, 013) tankönyv és a SOKSZÍNŰ MATEMATIKA FELADATGYŰJTEMÉNY

Részletesebben

Mátrixaritmetika. Tartalom:

Mátrixaritmetika. Tartalom: Mátrixaritmetika Tartalom: A vektor és mátrix fogalma Speciális mátrixok Relációk és műveletek mátrixokkal A mátrixok szorzása A diadikus szorzat. Hatványozás Gyakorlati alkalmazások Készítette: Dr. Ábrahám

Részletesebben

Matematikai alapismeretek. Huszti Andrea

Matematikai alapismeretek. Huszti Andrea Tartalom 1 Matematikai alapismeretek Algebrai struktúrák Oszthatóság Kongruenciák Algebrai struktúrák Az S = {x, y, z,... } halmazban definiálva van egy művelet, ha az S-nek minden x, y elempárjához hozzá

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria V.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria V. Geometria V. DEFINÍCIÓ: (Középponti szög) Ha egy szög csúcsa egy adott kör középpontja, akkor a kör középponti szögének nevezzük. DEFINÍCIÓ: (Kerületi szög) Ha egy szög csúcsa egy adott körvonal pontja,

Részletesebben

Ismerkedés az Abel-csoportokkal

Ismerkedés az Abel-csoportokkal Ismerkedés az Abel-csoportokkal - Szakdolgozat - Készítette: Takács Mária (Matematika BSc, Tanári szakirány) Témavezető: Kiss Emil (Algebra és Számelmélet Tanszék, Matematikai Intézet) Eötvös Loránd Tudományegyetem

Részletesebben

Lineáris algebrai módszerek a kombinatorikában

Lineáris algebrai módszerek a kombinatorikában Lineáris algebrai módszerek a kombinatorikában Nagy V. Gábor SZTE Bolyai Intézet Eötvös Loránd Kollégium, Matematika Műhely Szeged, 2013. október 25. ELK 13 A Gyárfás Lehel-sejtés 1/21 Definíció. A G 1,...,

Részletesebben

A kvantummechanika általános formalizmusa

A kvantummechanika általános formalizmusa A kvantummechanika általános formalizmusa October 4, 2006 Jelen fejezetünk célja bevezetni egy általános matematikai formalizmust amelynek segítségével a végtelen dimenziós vektorterek elegánsan tárgyalhatók.

Részletesebben

7. gyakorlat. Lineáris algebrai egyenletrendszerek megoldhatósága

7. gyakorlat. Lineáris algebrai egyenletrendszerek megoldhatósága 7. gyakorlat Lineáris algebrai egyenletrendszerek megoldhatósága Egy lineáris algebrai egyenletrendszerrel kapcsolatban a következ kérdések merülnek fel: 1. Létezik-e megoldása? 2. Ha igen, hány megoldása

Részletesebben

Matematika 11 Koordináta geometria. matematika és fizika szakos középiskolai tanár. > o < szeptember 27.

Matematika 11 Koordináta geometria. matematika és fizika szakos középiskolai tanár. > o < szeptember 27. Matematika 11 Koordináta geometria Juhász László matematika és fizika szakos középiskolai tanár > o < 2015. szeptember 27. copyright: c Juhász László Ennek a könyvnek a használatát szerzői jog védi. A

Részletesebben

MEGOLDÓKULCS AZ EMELT SZINTŰ FIZIKA HELYSZÍNI PRÓBAÉRETTSÉGI FELADATSORHOZ 11. ÉVFOLYAM

MEGOLDÓKULCS AZ EMELT SZINTŰ FIZIKA HELYSZÍNI PRÓBAÉRETTSÉGI FELADATSORHOZ 11. ÉVFOLYAM AZ OSZÁG VEZETŐ EGYETEMI-FŐISKOLAI ELŐKÉSZÍTŐ SZEVEZETE MEGOLDÓKULCS AZ EMELT SZINTŰ FIZIKA HELYSZÍNI PÓBAÉETTSÉGI FELADATSOHOZ. ÉVFOLYAM I. ÉSZ (ÖSSZESEN 3 PONT) 3 4 5 6 7 8 9 3 4 5 D D C D C D D D B

Részletesebben

Lineáris leképezések. 2. Lineáris-e az f : R 2 R 2 f(x, y) = (x + y, x 2 )

Lineáris leképezések. 2. Lineáris-e az f : R 2 R 2 f(x, y) = (x + y, x 2 ) Lineáris leképezések 1 Lineáris-e az f : R 2 R 2 f(x, y = (3x + 2y, x y leképezés? A linearitáshoz ellen riznünk kell, hogy a leképzés additív és homogén Legyen x = (x 1, R 2, y = (y 1, y 2 R 2, c R Ekkor

Részletesebben

1. A kétszer kettes determináns

1. A kétszer kettes determináns 1. A kétszer kettes determináns 2 2-es mátrix inverze Tétel [ ] [ ] a c 1 d c Ha ad bc 0, akkor M= inverze. b d ad bc b a Ha ad bc = 0, akkor M-nek nincs inverze. A főátló két elemét megcseréljük, a mellékátló

Részletesebben

Matematika 10 Másodfokú egyenletek. matematika és fizika szakos középiskolai tanár. > o < 2015. szeptember 27.

Matematika 10 Másodfokú egyenletek. matematika és fizika szakos középiskolai tanár. > o < 2015. szeptember 27. Matematika 10 Másodfokú egyenletek Juhász László matematika és fizika szakos középiskolai tanár > o < 2015. szeptember 27. copyright: c Juhász László Ennek a könyvnek a használatát szerzői jog védi. A

Részletesebben