SÍKBELI KERINGŐMOZGÁS SÍKBELI KERINGŐMOZGÁS
|
|
- Árpád Varga
- 5 évvel ezelőtt
- Látták:
Átírás
1 SÍKBELI KERINGŐMOZGÁS Időtő függeten Schrödinger-egyenet két dimenziós körmozgásra: h V E 8π m x y R V x ha x y R ha x y R Poárkoordináták: SÍKBELI KERINGŐMOZGÁS x y rcos r sin r x x r x r y y r y r x y arctan y x 1
2 SÍKBELI KERINGŐMOZGÁS x rcos arctan y r x y y r sin x Poárkoordináták: r 1 x r cos x cos x x y x y r y 1 y r sin sin x x y x y r r 1 x r 1 y r sin y sin y x y x y r 1 1 x rcos cos y x y x y r r 1 x Poárkoordináták: SÍKBELI KERINGŐMOZGÁS x y rcos r sin r sin cos x x r x r r r cos sin y y r y r r
3 Poárkoordináták: SÍKBELI KERINGŐMOZGÁS x y rcos r sin h 1 1 V E 8π m r r r r SÍKBELI KERINGŐMOZGÁS h 1 1 V E 8π m r r r r Peremfetéteek: r ha r R R R π Tehát az egyenet vaójában egyvátozós: h 1 E 8π mr 3
4 SÍKBELI KERINGŐMOZGÁS Megodás: E h 1 E 8π mr 1 i e m m 1 3 πr m h 8π mr m h 8π Az m energiaszintek degenerátak. Az impuzusmomentum z irányú komponenséve (L z ): Impuzussa: E p z m L z E SÍKBELI KERINGŐMOZGÁS 1 i e m m 1 3 πr m h m h E 8πmR 8π 4
5 KERINGŐMOZGÁS GÖMBFELÜLETEN Időtő függeten Schrödinger-egyenet két dimenziós körmozgásra: h V E 8π m x y z V x ha x y z R ha x y z R KERINGŐMOZGÁS GÖMBFELÜLETEN Térbei poárkoordináták: x rcossin y r sinsin z rcos 5
6 Kvantummechanikai keringő mozgás Gömbfeüeten mozgó részecske Az időtő függeten Schrödinger-egyenet tejes háromdimenziós aakjábó ke kiinduni. Két kvantumszám ( = 1 és m = -(-+1) (-1)) szerepe a megodásban: ( 1) h m im E és m N (cos )e m P 8π z = m = m = 1 m = ± m = m = -1 m = - Minden energiaértékhez ( + 1) huámfüggvény tartozik. m = ±1 m = Kvantummechanikai keringő mozgás Gömbfeüeten mozgó részecske Az időtő függeten Schrödinger-egyenet tejes háromdimenziós aakjábó ke kiinduni. Két kvantumszám ( = 1 és m = -(-+1) (-1)) szerepe a megodásban: ( 1) h m im E és m N (cos )e m P 8π asszociát Legendre-poinom z = m = 1 m m m d P ( )! 1 1 m m = 1 d m = m = -1 m = - Ha a rendszer adott energiaértékéhez egyné több huámfüggvény (áapot) tartozik degenerációró beszéünk. z-irányú impuzusmomentum Az m szerinti energiaértékek mindegyike kétszeresen degenerát. Mind a kasszikus- mind a kvantummechanikában igaz hogy: L z E mh Lz π 6
7 Kvantummechanikai keringő mozgás Gömbfeüeten mozgó részecske Az időtő függeten Schrödinger-egyenet tejes háromdimenziós aakjábó ke kiinduni. Két kvantumszám ( = 1 és m = -(-+1) (-1)) szerepe a megodásban: ( 1) h m im E és m N (cos )e m P 8π z = normát gömbfüggvények m = m Ψ m m = 1 (1/4π) m ½ = 1 1 (3/8 π) ½ sin exp(i) m = -1 1 (3/4π) ½ cos m = (3/8 π) ½ sin exp(-i) (5/3π) ½ sin exp(i) 1 (5/8π) ½ cos sin exp(i) (5/16π) ½ (3 cos -1) -1 (5/8π) ½ cosθ sin exp(i) - (5/3π) ½ sin exp(-i) Kvantummechanikai keringő mozgás Gömbfeüeten mozgó részecske Az időtő függeten Schrödinger-egyenet tejes háromdimenziós aakjábó ke kiinduni. Két kvantumszám ( = 1 és m = -(-+1) (-1)) szerepe a megodásban: ( 1) h m im E és m N (cos )e m P 8π 7
8 Sokrészecske-rendszerek Atomok és moekuák tárgyaása: sok részecskét ke kezeni egyszerre Az N db. részecskét tartamazó rendszerekben a részecskéknek nincs önáó áapotuk a rendszer egyeten huámfüggvénnye jeemezhető: Ψ(x 1 y 1 z 1 m s1 x y z m s x N y N z N m sn t) spinkoordináták vagy Ψ(1 Nt) Annak a vaószínűsége hogy az egyes részecskék egyidejűeg a koordinátáik köré írt dv = dv 1 dv dv N tartózkodnak: Sokrészecske-rendszerek térfogatban Ψ * (1 Nt)Ψ(1 Nt)dV A mozgásegyenet (Schrödinger-egyenet) aakja: N h h j V πi t 8π m j1 j Lapace-operátor: a j-edik részecske térkoordinátái szerinti differenciáás j x y z j j j a részecskék összes köcsönhatási energiája 8
9 Sokrészecske-rendszerek Annak a vaószínűsége hogy az egyes részecskék egyidejűeg a koordinátáik köré írt dv = dv 1 dv dv N tartózkodnak: térfogatban Ψ * (1 Nt)Ψ(1 Nt)dV Az mozgásegyenet (Schrödinger-egyenet) aakja: N h h j V πi t 8π m Az időtő függeten Schrödinger-egyenet: N h j V E j1 8π m j j1 j Variációs módszer Az időtő függeten Schrödinger-egyenet közeítő megodása Akkor hasznájuk ha vaamey kvantummechanikai feadat egzakt megodása nem adható meg csak korátozott pontosságú információra van szükség. Az aapáapot meghatározására szogá. Időtő függeten Schrödinger-egyenet: Ĥ E aho ˆ h H V ( x y z) 8 m (Hamiton-operátor) H E Az aapáapotban: Ezt átrendezve és integráva: Ha az aapáapot pontos huámfüggvénye ismereten a pontos energia sem határozható meg ezze a képette viszont váaszthatunk egy Ψ próbafüggvényt: Ha Ψ Ψ akkor várhatóan E E. Hˆ dv * * Ugyanakkor igazoható hogy a Ψ próbafüggvénnye eőáított E nem kisebb mint E. E E * dv * Hˆ dv dv 9
10 Sokrészecske-rendszerek Annak A sokrészecske-rendszerek a vaószínűsége hogy időtő az egyes függeten részecskék Schrödinger-egyenetének a megodása átaában bonyout egyidejűeg a koordinátáik köré írt dv = dv 1 dv dv N térfogatban * ˆ tartózkodnak: Közeítő megodások keenek Hd p. a variációs módszer Ψ * E (1 Nt)Ψ(1 Nt)dV * A megfeeő Hamiton-operátor: dv Az áapotegyenet (Schrödinger-egyenet) aakja: N N Hˆ j h j V j V 1 8π i t E j j1 Az időtő függeten Schrödinger-egyenet: N h j V E j1 8π m j j * dv V * Hˆ dv Az atomok szerkezete Az atomokat és ionokat feépítő eemi részecskék: proton neutron eektron tömeg (kg) tötés (C) (e) (-e) Atommag mérete: 1 15 m (magfizika magkémia) Eektronburok (kvantummechanika: az atommagot pontszerű pozitív tötésnek tekinti az atommag az atom tömegközéppontjához képest gyakoratiag mozduatan) 1
11 p.: H He + Li + Be 3+ U 91+ Ze tötésű mag egyeten eektron A mag és az eektron köcsönhatását a Couomb-potenciá írja e: 1 Ze V() r 4π r Az eektron áapotát eíró időtő függeten Schrödinger-egyenet: h Ze E 8π m 4π r a vákuum permittivitása ( J 1 C m 1 ) h Ze E 8π m x y z 4π r n = 13 = 1 (n 1) m = ( 1) ( 1) Az eektron áapotát eíró időtő függeten Schrödinger-egyenet: h Ze E 8π m 4π r Gömbi poárkoordinátákka közeítés nékü megodható: E mz e 4 és 8 nh n m Rn r m 11
12 n = 13 = 1 (n 1) m = ( 1) ( 1) Zr 1 Zr Rn r Nn r exp Ln radiáis huámfüggvény na na E mz e 4 és 8 nh n m Rn r m n = 13 = 1 (n 1) m = ( 1) ( 1) N 3 ( n 1)! Z n( n )! na Zr 1 Zr Rn r Nn r exp Ln radiáis huámfüggvény na na n 3 1 E mz e 4 és 8 nh n m Rn r m 1
13 n = 13 = 1 (n 1) m = ( 1) ( 1) asszociát Laguerre-poinom s q d d q ( ) e e d d s L q s q Zr 1 Zr Rn r Nn r exp Ln radiáis huámfüggvény na na E mz e 4 és 8 nh n m Rn r m n = 13 = 1 (n 1) m = ( 1) ( 1) Bohr-sugár: a h me Zr 1 Zr Rn r Nn r exp Ln radiáis huámfüggvény na na E mz e 4 és 8 nh n m Rn r m 13
14 n = 13 = 1 (n 1) m = ( 1) ( 1) ugyanaz mint a gömbfeüeten mozgó részecske huámfüggvénye 4 mz e E 8 nh és m m N m P (cos )e szögtő függő huámfüggvény R r n m n m im n = 13 = 1 (n 1) m = ( 1) ( 1) P m d ( )! 1 1 d 1 m m m asszociát Legendre-poinom ugyanaz mint a gömbfeüeten mozgó részecske huámfüggvénye 4 mz e E 8 nh és N P (cos )e m im m m szögtő függő huámfüggvény R r n m n m 14
15 n = 13 = 1 (n 1) m = ( 1) ( 1) N m ( m )!( 1) 4π( m )! normáási tényező 1 ugyanaz mint a gömbfeüeten mozgó részecske huámfüggvénye 4 mz e E 8 nh és N P (cos )e m im m m szögtő függő huámfüggvény R r n m n m Konvenció a Ψ nm huámfüggvények jeöésére: n = 134 = 13 m = ( 1) ( 1) marad a szám spdf asó indexbe (ha ke) 4 mz e E 8 nh és R r n m n m 15
16 Konvenció a Ψ nm huámfüggvények jeöésére: n = 134 = 13 m = ( 1) ( 1) marad a szám spdf asó indexbe (ha ke) Ψ 1 Ψ Ψ 11 Ψ 1-1 Ψ 1 1s s p +1 p -1 p Hidrogénszerű részecskék páyáinak radiáis fuámfüggvénye: páya radiáis huámfüggvény 1s s p 3s 3p 3d Zr 1 Zr Rn ( r) Nn r exp Ln radiáis huámfüggvény na na R ( Z / a ) exp( Zr / a ) 3 1 R ( Z / a ) ( Zr / a )exp( Zr / a ) / R1 ( Z / a ) ( Zr / a )exp( Zr / a) /(6 ) 3 1 R 3 ( Z / a ) (7 18 Zr / a ( Zr / a) )exp( Zr /3 a) /(81 3 ) 3 1 R 31 4( Z / a ) (6 Zr / a ( Zr / a) )exp( Zr /3 a) /(81 6 ) 3 1 R 3 4( Z / a ) ( Zr / a) exp( Zr /3 a) /(81 3 ) 16
17 páya s p z p x p y szögtő függő (anguáris) huámfüggvény (1/ 4 ) (3 / 4 ) cos 1 1cos (6 / 8 ) sin cos 1 1sin (6 / 8 ) sin sin Vaós atomi páyákhoz a kompex m függvények vaós kombinációit (azaz cosm és sinm -t) hasznájuk: d z d xz d yz d x y d xy 1 (5 /16 ) (3cos 1) 1 cos (3 / 8 ) cos sin cos 1 sin (3 / 8 ) cos sin sin 1 cos (3 / 3 ) sin cos 1 sin (3 / 3 ) sin sin páya szögtő függő (anguáris) huámfüggvény s p z (1/ 4 ) (3 / 4 ) cos p x p y d z d xz d yz d x y d xy 1 1cos (6 / 8 ) sin cos 1 1sin (6 / 8 ) sin sin 1 (5 /16 ) (3cos 1) 1 cos (3 / 8 ) cos sin cos 1 sin (3 / 8 ) cos sin sin 1 cos (3 / 3 ) sin cos 1 sin (3 / 3 ) sin sin 17
18 páya s p z p x p y szögtő függő (anguáris) huámfüggvény (1/ 4 ) (3 / 4 ) cos 1 1cos (6 / 8 ) sin cos 1 1sin (6 / 8 ) sin sin Egy energiaértékhez n1 (1) n huámfüggvény tartozik (iyen fokú a degeneráció) d z d xz d yz d x y d xy 1 (5 /16 ) (3cos 1) 1 cos (3 / 8 ) cos sin cos 1 sin (3 / 8 ) cos sin sin 1 cos (3 / 3 ) sin cos 1 sin (3 / 3 ) sin sin 18
Hidrogénszerű atomi részecskék. Hidrogénszerű atomi részecskék
Hidrogénzerű rézeckék páyáinak radiái fuámfüggvénye: páya radiái uámfüggvény p 3 3p 3d Zr Zr Rn, ( r) Nn, r exp Ln radiái uámfüggvény na na R ( Z / a ) exp( Zr / a ) 3, R ( Z / a ) ( Zr / a )exp( Zr /
Atomok és molekulák elektronszerkezete
Atomok és molekulák elektronszerkezete Szabad atomok és molekulák Schrödinger egyenlete Tekintsünk egy kvantummechanikai rendszert amely N n magból és N e elektronból áll. Koordinátáikat jelölje rendre
Kvantummechanikai alapok I.
Kvantummechanikai alapok I. Dr. Berta Miklós bertam@sze.hu 2017. szeptember 21. 1 / 41 Állapotfüggvény. Dinamikai egyenlet. Ψ(r, t) 2 / 41 Állapotfüggvény. Dinamikai egyenlet. Ψ(r, t) Ψ(r, t)-csak a hely
A spin. November 28, 2006
A spin November 28, 2006 1 A spin a kvantummechanikában Az elektronnak és sok más kvantummechanikai részecskének is van egy saját impulzusnyomatéka amely független a mozgásállapottól. (Úgy is mondhatjuk,
Elektronok, atomok. Általános Kémia - Elektronok, Atomok. Slide 1 of 60
Elektronok, atomok 10-1 Elektromágneses sugárzás 10- Atomi Spektrum 10-3 Kvantumelmélet 10-4 A Bohr Atom 10-5 Az új Kvantummechanika 10-6 Hullámmechanika 10-7 Kvantumszámok Slide 1 of 60 Tartalom 10-8
FIZIKA. Sugárzunk az elégedettségtől! (Atomfizika) Dr. Seres István
Sugárzunk az elégedettségtől! () Dr. Seres István atommagfizika Atommodellek 440 IE Democritus, Leucippus, Epicurus 1803 1897 John Dalton J.J. Thomson 1911 Ernest Rutherford 19 Niels Bohr 3 Atommodellek
Elektronok mozgása nanostruktúrákban 2-D elektrongáz, kvantumdrót és kvantumpötty
Elektronok mozgása nanostruktúrákban 2-D elektrongáz, kvantumdrót és kvantumpötty Dr. Berta Miklós bertam@sze.hu 2017. október 26. 1 / 11 Tekintsünk egy olyan kristályrácsot, amelynek minden mérete sokkal
Thomson-modell (puding-modell)
Atommodellek Thomson-modell (puding-modell) A XX. század elejére világossá vált, hogy az atomban található elektronok ugyanazok, mint a katódsugárzás részecskéi. Magyarázatra várt azonban, hogy mi tartja
2015/16/1 Kvantummechanika B 2.ZH
2015/16/1 Kvantummechanika B 2.ZH 2015. december 10. Információk 0. A ZH ideje minimum 90 perc, maximum 180 perc. 1. Az összesen elérhet pontszám 270 pont. 2. A jeles érdemjegy eléréséhez nem szükséges
Elektronok, atomok. Általános Kémia - Elektronok, Atomok. Slide 1 of 60
Elektronok, atomok -1 Elektromágneses sugárzás - Atomi Spektrum -3 Kvantumelmélet -4 A Bohr Atom -5 Az új Kvantummechanika -6 Hullámmechanika -7 A hidrogénatom hullámfüggvényei Slide 1 of 60 Tartalom -8
AZ ELEKTRON MÁGNESES MOMENTUMA. H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat.
AZ ELEKTRON MÁGNESES MOMENTUMA Mágneses dipólmomentum: m H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat. M = m H sinϕ (Elektromos töltés, q: monopólus
Kvantummechanika gyakorlat Beadandó feladatsor Határid : 4. heti gyakorlatok eleje
Kvantummechanika gyakorlat 015 1. Beadandó feladatsor Határid : 4. heti gyakorlatok eleje 1. Mutassuk meg, hogy A és B tetsz leges operátorokra igaz, hogy e B A e B = A + [B, A] + 1![ B, [B, A] ] +....
+ magasabb rend½u tagok. x=x0
Variációs módszer Ebben a fejezetben a kvantummechanikában már megismert variációs mószert eevenítjük fe. Ez az ejárás küönösen fnts szerepet töt be a mekua zikában, mive több aapvet½ közeítés ezen aapu
Matematika A1. 8. feladatsor. Dierenciálás 2. Trigonometrikus függvények deriváltja. A láncszabály. 1. Határozzuk meg a dy/dx függvényt.
Matematika A 8. feladatsor Dierenciálás Trigonometrikus függvények deriváltja. Határozzuk meg a dy/d függvényt. a) y = 0 + 3 cos 0 3 sin b) y = sin 4 + 7 cos sin c) y = ctg +ctg sin )+ctg ) d) y = tg cos
January 16, ψ( r, t) ψ( r, t) = 1 (1) ( ψ ( r,
Közelítő módszerek January 16, 27 1 A variációs módszer A variációs módszer szintén egy analitikus közelítő módszer. Olyan esetekben alkalmazzuk mikor ismert az analitikus alak amelyben keressük a sajátfüggvényt,
Kvantummechanika. - dióhéjban - Kasza Gábor július 5. - Berze TÖK
Kvantummechanika - dióhéjban - Kasza Gábor 2016. július 5. - Berze TÖK 1 / 27 Mire fogunk választ kapni az előadásból? Miért KVANTUMmechanika? Miért részecske? Miért hullám? Mit mond a Schrödinger-egyenlet?
Optikai spektroszkópiai módszerek
Mi történhet, ha egy mintát énnye viágítunk meg? Optikai spektroszkópiai módszerek megviágító ény (enyet ény) minta átjutott ény Abszorpció UV-VIS, IR Smeer Lászó kibocsátott ény Lumineszcencia (Fuoreszcencia
Molekulák világa 1. kémiai szeminárium
GoBack Molekulák világa 1. kémiai szeminárium Szilágyi András 2008. október 6. Molekulák világa 1. kémiai szeminárium Molekuláris bionika szak I. év 1 Kvantummechanika Klasszikus fizika eszközei tömegpont
A kvantumszámok jelentése: A szokásos tárgyalás a pályák alakját vizsgálja, ld. majd azt is; de a lényeg: fizikai mennyiségeket határoznak meg.
I.6. A H-atom kvantummechanikai leírása I.6.1. Schrödinger-egyenlet, kvantumszámok Szimbolikusan tehát: Ĥψ i = E iψ i A Schrödinger-egyenletben a rendszert specifikálja: a V = e /r a potenciális energia
Elektronok, atomok. Általános Kémia - Elektronok, Atomok. Dia 1/61
Elektronok, atomok 2-1 Elektromágneses sugárzás 2-2 Atomi Spektrum 2-3 Kvantumelmélet 2-4 A Bohr Atom 2-5 Az új Kvantummechanika 2-6 Hullámmechanika 2-7 Kvantumszámok Dia 1/61 Tartalom 2-8 Elektronsűrűség
ELEMI RÉSZECSKÉK ATOMMODELLEK
ELEMI RÉSZECSKÉK ATOMMODELLEK Az atomok felépítése Készítette: Horváthné Vlasics Zsuzsanna Mi van az atomok belsejében? DÉMOKRITOSZ (Kr.e. 460-370) az anyag nem folytonos parányi, tovább nem bontható,
SCHRÖDINGER-EGYENLET SCHRÖDINGER-EGYENLET
SCHRÖDINGER-EGYENLET A Scrödinger-egyenlet a kvantummecanika mozgásegyenlet, Newton II. törvényével analóg. Nem vezetető le korábbi elvekből, de intuitívan bevezetető. Egy atározott energiával és impulzussal
Fizika M1, BME, gépészmérnök szak, szi félév (v6)
Fizika M, BME, gépészmérnök szak, 7. szi félév (v6 Pályi András Department of Physics, Budapest University of Technology and Economics, Hungary (Dated: 7. október. Ebben a fájlban az el adás menetrendjét
Atomfizika. Fizika kurzus Dr. Seres István
Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés J.J. Thomson (1897) Katódsugárcsővel végzett kísérleteket az elektron fajlagos töltésének (e/m) meghatározására. A katódsugarat alkotó részecskét
Atomok, elektronok. Általános Kémia - Elektronok, Atomok. Dia 1/61
, elektronok 2-1 Elektromágneses sugárzás 2-2 Atomi spektrum 2-3 Kvantumelmélet 2-4 Bohr-atom 2-5 Az új kvantummechanika 2-6 Hullámmechanika 2-7 A hidrogénatom hullámfüggvényei Dia 1/61 , elektronok 2-8
2. Közelítő megoldások, energiaelvek:
SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK 3. MECHANIKA-VÉGESELEM MÓDSZER ELŐADÁS (kidogozta: Szüe Veronika, egy. ts.) III. eőadás. Közeítő megodások, energiaevek:.. A tejes otenciáis energia
Atomfizika. Az atommag szerkezete. Radioaktivitás Biofizika, Nyitrai Miklós
Atomfizika. Az atommag szerkezete. Radioaktivitás. 2010. 10. 13. Biofizika, Nyitrai Miklós Összefoglalás Atommag alkotói, szerkezete; Erős vagy magkölcsönhatás; Tömegdefektus. A kölcsönhatások világképe
Hőtani tulajdonságok. Fogorvosi anyagtan fizikai alapjai 9. Tankönyv fej.: 19. Q x. hőmérséklet. hőfelvétel/leadás
Fogorvosi anyagtan fizikai aapjai 9. Tankönyv fej.: 9 Hőtani, eektromos, kémiai és optikai tuajdonságok Házi feadat: 5. fej.:,, 5, 6, 8, 9, 0, Hőtani tuajdonságok hőmérséket hőfevéte/eadás Q hőkapacitás
http://www.nature.com 1) Magerő-sugár: a magközéppontból mért távolság, ameddig a magerők hatótávolsága terjed. Rutherford-szórásból határozható meg. R=1,4 x 10-13 A 1/3 cm Az atommag terének potenciálja
ω mennyiségek nem túl gyorsan változnak
Licenszvizsga példakérdések Fizika szak KVANTUMMECHANIKA Egy részecskére felírt Schrödinger egyenlet szétválasztható a három koordinátatengely irányában levő egydimenziós egyenletre ha a potenciális energiára
Általános Kémia, BMEVESAA101
Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Óravázlatok:
Elektromosság. Alapvető jelenségek és törvények. a.) Coulomb törvény. Sztatikus elektromosság
Eektomos tötés: (enjamin Fankin) megmaadó fizikai mennyiség Eektomosság pozitív vagy negatív egysége: couomb [C] apvető jeenségek és tövények eemi tötés:.6x -9 [C] nyugvó eektomos tötés: mozgó eektomos
Fizikai mennyiségek, állapotok
Fizikai mennyiségek, állapotok Atomok és molekulák zikai mennyiségeihez rendelt operátorok A kvantummechanika mint matematikai modell alapvet épít elemei a rendszer leírására szolgáló zikai mennyiségekhez
Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár,
Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Facebook,
VIK A3 Matematika, Gyakorlati anyag 2.
VIK A3 Matematika, Gyakorlati anyag 2. 208. november Sorok. Konvergensek-e az alábbi sorok? Ha igen, adjuk meg a határértéküket! n(n+3) n(n+)(n+2) 9n 2 3n 2 ( n + 2 2 n + + n) 2n+ n 2 (n+) 2 (f) ( 3) k+2
FIZIKA II. Dr. Rácz Ervin. egyetemi docens
FIZIKA II. Dr. Rácz Ervin egyetemi docens Fontos tudnivalók e-mail: racz.ervin@kvk.uni-obuda.hu web: http://uni-obuda.hu/users/racz.ervin/index.htm Iroda: Bécsi út, C. épület, 124. szoba Fizika II. - ismertetés
Atommodellek. Az atom szerkezete. Atommodellek. Atommodellek. Atommodellek, A Rutherford-kísérlet. Atommodellek
Démokritosz: a világot homogén szubsztanciájú oszthatatlan részecskék, atomok és a közöttük lévı őr alkotja. Az atom szerkezete Egy atommodellt akkor fogadunk el érvényesnek, ha megmagyarázza a tapasztalati
Magszerkezet modellek. Folyadékcsepp modell
Magszerkezet modellek Folyadékcsepp modell Az atommag összetevői (emlékeztető) atommag Z proton + (A-Z) neutron (nukleonok) szorosan kötve Állapot leírása: kvantummechanika + kölcsönhatások Nem relativisztikus
Hadronok, atommagok, kvarkok
Zétényi Miklós Hadronok, atommagok, kvarkok Teleki Blanka Gimnázium Székesfehérvár, 2012. február 21. www.meetthescientist.hu 1 26 Atomok Démokritosz: atom = legkisebb, oszthatatlan részecske Rutherford
Atomfizika. Fizika kurzus Dr. Seres István
Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés 440 BC Democritus, Leucippus, Epicurus 1660 Pierre Gassendi 1803 1897 1904 1911 19 193 John Dalton Joseph John (J.J.) Thomson J.J. Thomson
Hőtani tulajdonságok. Fogorvosi anyagtan fizikai alapjai 10. Hőtani, elektromos és kémiai tulajdonságok. Q x. hőmérséklet.
Hőtani tuajdonságok Fogorvosi tan fizikai aapjai 0. Hőtani, eektromos és kémiai tuajdonságok Kiemet témák: Eektromosságtan aapfogamai Sziárdtestek energiasáv modejei Févezetők és akamazásaik Tankönyv fej.:
Hőtani tulajdonságok. Fogorvosi anyagtan fizikai alapjai 9. Hőtani, elektromos és kémiai tulajdonságok. Q x. hőmérséklet.
Hőtani tuajdonságok Fogorvosi tan fizikai aapjai 9. Hőtani, eektromos és kémiai tuajdonságok Kiemet témák: Eektromosságtan aapfogamai Sziárdtestek energiasáv modejei Févezetők és akamazásaik Tankönyv fej.:
Atomfizika. A hidrogén lámpa színképei. Elektronok H atom. Fényképlemez. emisszió H 2. gáz
Atomfizika A hidrogén lámpa színképei - Elektronok H atom emisszió Fényképlemez V + H 2 gáz Az atom és kvantumfizika fejlődésének fontos szakasza volt a hidrogén lámpa színképeinek leírása, és a vonalas
ezzel ekvivalens, és 1969-ben felírt Alt-Grassberger-Sandhas egyenletek szolgálnak; négyrészecske szórás
6. SZÓRÁSI ÁLLAPOTOK Ebben a fejezetben a stacionáius Schödinge egyenet pozitív enegiákhoz tatozó megodásait, az ún. szóási áapotokat vizsgájuk. (Az enegiaskáa nua pontját átaában a nemköcsönható endsze
ú Ü ĺ ü ü Ĺ Ö ü Ü ń ú Ü ö ö ö ü ń ö ö ö ĺ ü ö ü ü ö ö ö Ĺ ö ĺ ú ĺ ú ü Ü ü ö ú Ö ü Ü ö ü ĺĺ ö ö ü ú Ö ü Ü Ö ŕ Á Ü ý ł Ü Ą ĺĺ ź ĺ Á ú ú ü Ü ü ú ü Ü ö ů ö ú ű ö ö ď ö ź ł ú ü ö ĺź ű ú ü ö ö ź ö ü ú Ö ü Ü
Kábel-membrán szerkezetek
Kábe-membrán szerkezetek Szereési aak meghatározása Definíció: Egy geometriai aak meghatározása adott peremfetéte és eőfeszítés esetén ameyné a beső erők egyensúyban vannak. Numerikus módszerek: Geometriai
A testek részecskéinek szerkezete
A testek részecskéinek szerkezete Minden test részecskékből, atomokból vagy több atomból álló molekulákból épül fel. Az atomok is összetettek: elektronok, protonok és neutronok találhatók bennük. Az elektronok
Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008.
Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Kiss István,Vértes Attila: Magkémia (Akadémiai Kiadó) Nagy Lajos György,
+ 6 P( E l BAL)+ 6 P( E l K ZEJ>);
\ Lássátok be, hogy a következő két összefüggés is heyes! ~ 2 P(EIJOBB) = 6P(EIKEZDO)+ 6P(EIJOBB)+ 6 0 + ö, + 6 P( E BAL)+ 6 P( E K ZEJ>);.., P( E KOZEP) = 6 + 6 P( E BAL)+ 6 P( E JOBB) + 6 O+ + ~P( E
A Schrödinger-egyenlet és egyszerű alkalmazásai
Jelen dokumentumra a Creative Commons Nevezd meg! Ne add el! Ne változtasd meg! 3. licenc feltételei érvényesek: a művet a felhasználó másolhatja, többszörözheti, továbbadhatja, amennyiben feltünteti a
Modern fizika laboratórium
Modern fizika laboratórium 11. Az I 2 molekula disszociációs energiája Készítette: Hagymási Imre A mérés dátuma: 2007. október 3. A beadás dátuma: 2007. október xx. 1. Bevezetés Ebben a mérésben egy kétatomos
Az atomhéj (atommag körüli elektronok) fizikáját a kvantumfizika írja le teljes körűen.
MGFIZIK z atomhéj (atommag körüli elektronok) fizikáját a kvantumfizika írja le teljes körűen. Z TOMMG SZERKEZETE, RDIOKTIVITÁS PTE ÁOK Biofizikai Intézet Futó Kinga magfizika azonban még nem lezárt tudomány,
Kémiai alapismeretek 2. hét
Kémiai alapismeretek 2. hét Horváth Attila Pécsi Tudományegyetem, Természettudományi Kar, Kémia Intézet, Szervetlen Kémiai Tanszék 2012. február 14. 1/15 2011/2012 II. félév, Horváth Attila c XIX sz. vége,
Jegyzet. Kémia, BMEVEAAAMM1 Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens.
Kémia, BMEVEAAAMM Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens Jegyzet dr. Horváth Viola, KÉMIA I. http://oktatas.ch.bme.hu/oktatas/konyvek/anal/
Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem
1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 2. Mit nevezünk az atom tömegszámának? a) a protonok számát b) a neutronok számát c) a protonok és neutronok
1 A kvantummechanika posztulátumai
A kvantummechanika posztulátumai October 29, 2006 A kvantummechanika posztulátumai Célunk felépíteni a kvantummechanikát posztulátumok segítségével úgy ahogy az elemi hullámmechanika során eljártunk. Arra
Matematika A3 1. ZH+megoldás
Matematika A3 1. ZH+megoldás 2008. október 17. 1. Feladat Egy 10 literes kezdetben tiszta vizet tartalmazó tartályba 2 l/min sebesséeggel 0.3 kg/l sótartalmú víz Áramlik be, amely elkeveredik a benne lévő
Kémiai alapismeretek 2. hét
Kémiai alapismeretek 2. hét Horváth Attila Pécsi Tudományegyetem, Természettudományi Kar, Kémia Intézet, Szervetlen Kémiai Tanszék 2014. szeptember 9.-12. 1/13 2014/2015 I. félév, Horváth Attila c Hullámtermészet:
Néhány mozgás kvantummechanikai tárgyalása
Néhány ozgás kvantuechanikai tárgyalása Mozzanatok: A Schrödinger-egyenlet felírása ĤΨ EΨ Hailton-operátor egállapítása a kinetikus energiaoperátor felírása, vagy 3 dienziós ozgásra, Descartes-féle koordinátarendszerben
A lecke célja: A tananyag felhasználója megismerje a forgó tömegek kiegyensúlyozásának elméleti alapjait.
modu: Kinematika Kinetika 4 ecke: Forgó tömegek kiegensúoása ecke céja: tananag fehasnáója megismerje a forgó tömegek kiegensúoásának eméeti aapjait Követemének: Ön akkor sajátította e megfeeően a tananagot
Fizikai kémia 2. ZH I. kérdések I. félévtől
Fizikai kémia 2. ZH I. kérdések 2018-19 I. félévtől Szükséges adatok, állandók és összefüggések: c= 2,99792458 10 8 m/s; e= 1,602177 10-19 C; h=6,62608 10-34 Js; N A= 6,02214 10 23 mol -1 ; me= 9,10939
Matematikai segédlet
Matematikai segéet Takács Gábor 5. ecember 5.. Legenre-poinomok A Legenre-fée ifferenciáegyenet x P.. Megoás hatványsor aakban + νν + P Mive az egyenet másorenű, két ineárisan függeten megoása étezik.
PÓRA Katalin, NAGY László
Az ionizációs differenciáis hatáskeresztmetszet tanumányozása H 2 moekua esetében Study of Ionization Differentia Cross Section in Case of H 2 Moecue PÓRA Katain, NAGY Lászó Fizika Kar, Babeş Boyai Tudományeyetem,
T obbv altoz os f uggv enyek integr alja. 3. r esz aprilis 19.
Többváltozós függvények integrálja. 3. rész. 2018. április 19. Kettős integrál Kettős integrál téglalap alakú tartományon. Ismétlés Ha = [a, b] [c, d] téglalap-tartomány, f : I integrálható függvény, akkor
2. MECHANIKA-VÉGESELEM MÓDSZER ELŐADÁS (kidolgozta: Szüle Veronika, egy. ts.) II. előadás
SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK. MECHANIKA-VÉGESELEM MÓDSZER ELŐADÁS (kiogozta: Szüe Veronika egy. ts.) II. eőaás. Közeítő megoások energiaevek: Összetett rugamas peremérték feaat
Diffrakció (elhajlás, akadályba ütközés miatt)
Röntgensugárzás Röntgeniffrakció Röntgen krisztaográfia.5.. Röntgensugárzás étrejötte kiök!ött eektron M L becsapóó eektronok K Eektromágneses sugárzás (f=6 9Hz, E=eV kev (.9*-7-4J), λ
Mágneses monopólusok?
1 Mágneses monopólusok? (Atomcsill 2015 február) Palla László ELTE Elméleti Fizikai Tanszék 2 Maxwell egyenletek potenciálok, mértéktranszformáció legegyszerűbb e.m. mezők A klasszikus e g rendszer A monopólus
Többváltozós függvények Feladatok
Többváltozós függvények Feladatok 2. szeptember 3. Határozzuk meg az alábbi sorozatok határértékét illetve torlódási pontjait!. ( n n2 + n n 3 2. ( n + n n5 n2 +2n+ 5 n n+ 3. ( sin(nπ/2 n n! Határozzuk
Elektronok, atomok. Tartalom
Elektronok, atomok 8-1 Elektromágneses sugárzás 8-2 Atomi Spektrum 8-3 Kvantumelmélet 8-4 ABohr Atom 8-5 Az új Kvantummechanika 8-6 Hullámmechanika 8-7 Kvantumszámok, elektronpályák Slide 1 of 60 Tartalom
FELADATMEGOLDÁS. Tesztfeladat: Válaszd ki a helyes megoldást!
FELADATMEGOLDÁS Tesztfeladat: Válaszd ki a helyes megoldást! 1. Melyik sorozatban található jelölések fejeznek ki 4-4 g anyagot? a) 2 H 2 ; 0,25 C b) O; 4 H; 4 H 2 c) 0,25 O; 4 H; 2 H 2 ; 1/3 C d) 2 H;
Bevezetés a modern fizika fejezeteibe. 4. (b) Kvantummechanika. Utolsó módosítás: 2013. november 9. Dr. Márkus Ferenc BME Fizika Tanszék
Bevezetés a modern fizika fejezeteibe 4. (b) Kvantummechanika Utolsó módosítás: 2013. november 9. 1 A legkisebb hatás elve (1) A legkisebb hatás elve (Hamilton-elv): S: a hatás L: Lagrange-függvény 2 A
Kifejtendő kérdések június 13. Gyakorló feladatok
Kifejtendő kérdések 2016. június 13. Gyakorló feladatok 1. Adott egy egyenletes térfogati töltéssel rendelkező, R sugarú gömb, melynek felületén a potenciál U 0. Az elektromos potenciál definíciója (1p)
Fermi Dirac statisztika elemei
Fermi Dirac statisztika elemei A Fermi Dirac statisztika alapjai Nagy részecskeszámú rendszerek fizikai jellemzéséhez statisztikai leírást kell alkalmazni. (Pl. gázokra érvényes klasszikus statisztika
a Bohr-féle atommodell (1913) Niels Hendrik David Bohr ( )
a Bohr-féle atommodell (1913) Niels Hendrik David Bohr (1885-1962) atomok gerjesztése és ionizációja elektronnal való bombázással (1913-1914) James Franck (1882-1964) Gustav Ludwig Hertz (1887-1975) Nobel-díj
Az elemeket 3 csoportba osztjuk: Félfémek vagy átmeneti fémek nemfémek. fémek
Kémiai kötések Az elemeket 3 csoportba osztjuk: Félfémek vagy átmeneti fémek nemfémek fémek Fémek Szürke színűek, kivétel a színesfémek: arany,réz. Szilárd halmazállapotúak, kivétel a higany. Vezetik az
FIZIKA. Atommag fizika
Atommag összetétele Fajlagos kötési energia Fúzió, bomlás, hasadás Atomerőmű működése Radioaktív bomlástörvény Dozimetria 2 Atommag összetétele: Hélium atommag : 2 proton + 2 neutron 4 He 2 He Z A 4 2
Szilárd testek sugárzása
A fény keletkezése Szilárd testek sugárzása A szilárd test melegítés hatására fényt bocsát ki A sugárzás forrása a közelítőleg termikus egyensúlyban lévő kibocsátó test atomi részecskéinek véletlenszerű
ANALÍZIS II. Példatár
ANALÍZIS II. Példatár Többszörös integrálok 3. április 8. . fejezet Feladatok 3 4.. Kett s integrálok Számítsa ki az alábbi integrálokat:...3. π 4 sinx.. (x + y) dx dy (x + y) dy dx.4. 5 3 y (5x y y 3
Infravörös és CD spektroszkópia a fehérjeszerkezet vizsgálatában
Infravörös és C spektroszkópia a fehérjeszerkezet vizsgáatában Mi történhet, ha egy mintát fénnye viágítunk meg? megviágító fény (enyet fény) minta átjutott fény Abszorpció UV-VIS, IR, C spektr. Smeer
Fizikai kémia (4): Elméleti kémia (emelt szint) kv1c1lm1e/1 vázlat
Fizikai kémia (4): Elméleti kémia (emelt szint) kv1c1lm1e/1 vázlat Szalay Péter Eötvös Loránd Tudományegyetem, Kémiai Intézet 2014. május 19. 1 Elméleti Kémia (kv1c1lm1e/1) Ajánlott irodalom 1. Az előadás
1. Az ezekhez tartozó. egyenlet megoldásai: k 360. forgásszögek a. Két különböz egységvektor van, amelyek els koordinátája
8. modu: EGYSERBB TRIGONOMETRIKUS EGYENLETEK, EGYENLTLENSÉGEK 5 III. Trigonometrius egyenete Azoat az egyeneteet és egyentenségeet, ameyeben az ismereten vaamiyen szögfüggvénye szerepe, trigonometrius
Fizikai kémia (4): Elméleti kémia (emelt szint) kv1c1lm1e/1 vázlat
Fizikai kémia (4): Elméleti kémia (emelt szint) kv1c1lm1e/1 vázlat Szalay Péter Eötvös Loránd Tudományegyetem, Kémiai Intézet 2012. május 21. 1 Elméleti Kémia (kv1c1lm1e/1) Ajánlott irodalom 1. Az előadás
3. A kvantummechanikai szemlélet kialakulása
3. A kvantummechanikai szemlélet kialakulása A korábbi fejezetben tárgyalt atomelmélet megteremtette a modern kémiai alapjait, azonban rengeteg kérdés mégis megválaszolatlan maradt, különösen a miért nincs
Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet), A Laplace operátor derékszögű koordinátarendszerben
Atomfizika ψ ψ ψ ψ ψ E z y x U z y x m = + + + ),, ( h ) ( ) ( ) ( ) ( r r r r ψ ψ ψ E U m = + Δ h z y x + + = Δ ),, ( ) ( z y x ψ =ψ r Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet),
Atomenergetikai alapismeretek
Atomenergetikai alapismeretek 2. előadás Dr. Szieberth Máté Dr. Sükösd Csaba előadásanyagának felhasználásával Négyfaktor formula (végtelen kiterjedésű n-sokszorozó közeg) n Maghasadás (gyors neutronok)
Megjegyzés: jelenti. akkor létezik az. ekkor
. Hármas Integrál. Bevezetés és definíciók A bevezetés első részében egy feladaton keresztül jutunk el a hármasintegrál definíciójához. Feladat: Legyen R korlátos test, és a testnek legyen az f(x, y, z
FIZIKA FELADATLAP Megoldási útmutató
1. C 2. A 3. X 4. B 5. C 6. D 7. D 8. C 9. D 10. B 11. D 12. C 13. A 14. C 15. C 16. D 17. C 18. C 19. C 20. B FIZIKA FELADATLAP Megoldási útmutató I. RÉSZ Összesen 1 1. téma II. RÉSZ Atommodellek: Thomson
Atomszerkezet, kötések
Anyagszerkezettan és anyagvizsgálat 016/17 Atomszerkezet, kötések Dr. Szabó Péter János szpj@eik.bme.hu Az előadás során megismerjük: a két alapvető atommodell alapjait, és a modellek közötti különbségeket;
Fizika 1 Mechanika órai feladatok megoldása 7. hét
Fizika 1 Mechanika órai feladatok megoldása 7. hét Az F erő által végzett munka, ha a test adott pályán mozog az r 1 helyvektorú P 1 pontból az r helyvektorú P pontba, az alábbi vonalintegrállal számolható:
3. A kvantummechanikai szemlélet kialakulása
3. A kvantummechanikai szemlélet kialakulása A korábbi fejezetben tárgyalt atomelmélet megteremtette a modern kémiai alapjait, azonban rengeteg kérdés mégis megválaszolatlan maradt, különösen a miért nincs
http://www.nucleonica.net Az atommag tömege A hidrogénre vonatkoztatott relatív atomtömeg (=atommag tömegével, ha az e - tömegét elhanyagoljuk) a hidrogénnek nem egész számú többszöröse. Az elemek különböző
Sugárzások és anyag kölcsönhatása
Sugárzások és anyag kölcsönhatása Az anyaggal kölcsönhatásba lépő részecskék Töltött részecskék Semleges részecskék Nehéz Könnyű Nehéz Könnyű T D p - + n Radioaktív sugárzás + anyag energia- szóródás abszorpció
REZGÉSTAN GYAKORLAT Kidolgozta: Dr. Nagy Zoltán egyetemi adjunktus. 17. feladat: Kéttámaszú tartó (rúd) hajlító rezgései (kontinuum modell)
SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK REZGÉSTAN GYAKORLAT Kidogota: Dr. Nagy Zotán egyetemi adjunktu 7. feadat: Kéttámaú tartó (rúd) hajító regéei (kontinuum mode) y v( t ) K = 8m E ρai
Pósfay Péter. ELTE, Wigner FK Témavezetők: Jakovác Antal, Barnaföldi Gergely G.
Pósfay Péter ELTE, Wigner FK Témavezetők: Jakovác Antal, Barnaföldi Gergely G. A Naphoz hasonló tömegű csillagok A Napnál 4-8-szor nagyobb tömegű csillagok 8 naptömegnél nagyobb csillagok Vörös óriás Szupernóva
A Relativisztikus kvantummechanika alapjai
A Relativisztikus kvantummechanika alapjai January 25, 2005 A kvantummechanika Schrödinger egyenletének a felírása után azonnal kiderül, hogy ez az egyenlet nem relativisztikusan kovariáns. (Aránylag könnyen
Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei
GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési
A kvantummechanikai atommodell
A kvantummechanikai atommodell A kvantummechanika alapjai A Heinsenberg-féle határozatlansági reláció A kvantummechanikai atommodell A kvantumszámok értelmezése A Stern-Gerlach kísérlet Az Einstein-de
Kémiai anyagszerkezettan
Kémiai anyagszerkezettan Előadó: Kubinyi Miklós tel: 21-37 kubinyi@mail.bme.hu Grofcsik András tel: 14-84 agrofcsik@mail.bme.hu Tananyag az intraneten (tavalyi): http://oktatas.ch.bme.hu/oktatas/ konyvek/fizkem/kasz/
F1404 ATOMMAG- és RÉSZECSKEFIZIKA
F1404 ATOMMAG- és RÉSZECSKEFIZIKA Dr. Raics Péter DE TTK Kísérleti Fizikai Tanszék, Debrecen, Bem tér 18/A RAICS@TIGRIS.KLTE.HU Ajánlott irodalom Raics P.: Atommag- és részecskefizika. Jegyzet. DE Kísérleti
Mag- és neutronfizika
Mag- és neutronfizika z elıadás célja: : megalapozni az atomenergetikai ismereteket félév során a következı témaköröket ismertetjük: Magfizikai alapfogalmak (atommagok, radioaktivitás) Sugárzás és anyag