SÍKBELI KERINGŐMOZGÁS SÍKBELI KERINGŐMOZGÁS

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "SÍKBELI KERINGŐMOZGÁS SÍKBELI KERINGŐMOZGÁS"

Átírás

1 SÍKBELI KERINGŐMOZGÁS Időtő függeten Schrödinger-egyenet két dimenziós körmozgásra: h V E 8π m x y R V x ha x y R ha x y R Poárkoordináták: SÍKBELI KERINGŐMOZGÁS x y rcos r sin r x x r x r y y r y r x y arctan y x 1

2 SÍKBELI KERINGŐMOZGÁS x rcos arctan y r x y y r sin x Poárkoordináták: r 1 x r cos x cos x x y x y r y 1 y r sin sin x x y x y r r 1 x r 1 y r sin y sin y x y x y r 1 1 x rcos cos y x y x y r r 1 x Poárkoordináták: SÍKBELI KERINGŐMOZGÁS x y rcos r sin r sin cos x x r x r r r cos sin y y r y r r

3 Poárkoordináták: SÍKBELI KERINGŐMOZGÁS x y rcos r sin h 1 1 V E 8π m r r r r SÍKBELI KERINGŐMOZGÁS h 1 1 V E 8π m r r r r Peremfetéteek: r ha r R R R π Tehát az egyenet vaójában egyvátozós: h 1 E 8π mr 3

4 SÍKBELI KERINGŐMOZGÁS Megodás: E h 1 E 8π mr 1 i e m m 1 3 πr m h 8π mr m h 8π Az m energiaszintek degenerátak. Az impuzusmomentum z irányú komponenséve (L z ): Impuzussa: E p z m L z E SÍKBELI KERINGŐMOZGÁS 1 i e m m 1 3 πr m h m h E 8πmR 8π 4

5 KERINGŐMOZGÁS GÖMBFELÜLETEN Időtő függeten Schrödinger-egyenet két dimenziós körmozgásra: h V E 8π m x y z V x ha x y z R ha x y z R KERINGŐMOZGÁS GÖMBFELÜLETEN Térbei poárkoordináták: x rcossin y r sinsin z rcos 5

6 Kvantummechanikai keringő mozgás Gömbfeüeten mozgó részecske Az időtő függeten Schrödinger-egyenet tejes háromdimenziós aakjábó ke kiinduni. Két kvantumszám ( = 1 és m = -(-+1) (-1)) szerepe a megodásban: ( 1) h m im E és m N (cos )e m P 8π z = m = m = 1 m = ± m = m = -1 m = - Minden energiaértékhez ( + 1) huámfüggvény tartozik. m = ±1 m = Kvantummechanikai keringő mozgás Gömbfeüeten mozgó részecske Az időtő függeten Schrödinger-egyenet tejes háromdimenziós aakjábó ke kiinduni. Két kvantumszám ( = 1 és m = -(-+1) (-1)) szerepe a megodásban: ( 1) h m im E és m N (cos )e m P 8π asszociát Legendre-poinom z = m = 1 m m m d P ( )! 1 1 m m = 1 d m = m = -1 m = - Ha a rendszer adott energiaértékéhez egyné több huámfüggvény (áapot) tartozik degenerációró beszéünk. z-irányú impuzusmomentum Az m szerinti energiaértékek mindegyike kétszeresen degenerát. Mind a kasszikus- mind a kvantummechanikában igaz hogy: L z E mh Lz π 6

7 Kvantummechanikai keringő mozgás Gömbfeüeten mozgó részecske Az időtő függeten Schrödinger-egyenet tejes háromdimenziós aakjábó ke kiinduni. Két kvantumszám ( = 1 és m = -(-+1) (-1)) szerepe a megodásban: ( 1) h m im E és m N (cos )e m P 8π z = normát gömbfüggvények m = m Ψ m m = 1 (1/4π) m ½ = 1 1 (3/8 π) ½ sin exp(i) m = -1 1 (3/4π) ½ cos m = (3/8 π) ½ sin exp(-i) (5/3π) ½ sin exp(i) 1 (5/8π) ½ cos sin exp(i) (5/16π) ½ (3 cos -1) -1 (5/8π) ½ cosθ sin exp(i) - (5/3π) ½ sin exp(-i) Kvantummechanikai keringő mozgás Gömbfeüeten mozgó részecske Az időtő függeten Schrödinger-egyenet tejes háromdimenziós aakjábó ke kiinduni. Két kvantumszám ( = 1 és m = -(-+1) (-1)) szerepe a megodásban: ( 1) h m im E és m N (cos )e m P 8π 7

8 Sokrészecske-rendszerek Atomok és moekuák tárgyaása: sok részecskét ke kezeni egyszerre Az N db. részecskét tartamazó rendszerekben a részecskéknek nincs önáó áapotuk a rendszer egyeten huámfüggvénnye jeemezhető: Ψ(x 1 y 1 z 1 m s1 x y z m s x N y N z N m sn t) spinkoordináták vagy Ψ(1 Nt) Annak a vaószínűsége hogy az egyes részecskék egyidejűeg a koordinátáik köré írt dv = dv 1 dv dv N tartózkodnak: Sokrészecske-rendszerek térfogatban Ψ * (1 Nt)Ψ(1 Nt)dV A mozgásegyenet (Schrödinger-egyenet) aakja: N h h j V πi t 8π m j1 j Lapace-operátor: a j-edik részecske térkoordinátái szerinti differenciáás j x y z j j j a részecskék összes köcsönhatási energiája 8

9 Sokrészecske-rendszerek Annak a vaószínűsége hogy az egyes részecskék egyidejűeg a koordinátáik köré írt dv = dv 1 dv dv N tartózkodnak: térfogatban Ψ * (1 Nt)Ψ(1 Nt)dV Az mozgásegyenet (Schrödinger-egyenet) aakja: N h h j V πi t 8π m Az időtő függeten Schrödinger-egyenet: N h j V E j1 8π m j j1 j Variációs módszer Az időtő függeten Schrödinger-egyenet közeítő megodása Akkor hasznájuk ha vaamey kvantummechanikai feadat egzakt megodása nem adható meg csak korátozott pontosságú információra van szükség. Az aapáapot meghatározására szogá. Időtő függeten Schrödinger-egyenet: Ĥ E aho ˆ h H V ( x y z) 8 m (Hamiton-operátor) H E Az aapáapotban: Ezt átrendezve és integráva: Ha az aapáapot pontos huámfüggvénye ismereten a pontos energia sem határozható meg ezze a képette viszont váaszthatunk egy Ψ próbafüggvényt: Ha Ψ Ψ akkor várhatóan E E. Hˆ dv * * Ugyanakkor igazoható hogy a Ψ próbafüggvénnye eőáított E nem kisebb mint E. E E * dv * Hˆ dv dv 9

10 Sokrészecske-rendszerek Annak A sokrészecske-rendszerek a vaószínűsége hogy időtő az egyes függeten részecskék Schrödinger-egyenetének a megodása átaában bonyout egyidejűeg a koordinátáik köré írt dv = dv 1 dv dv N térfogatban * ˆ tartózkodnak: Közeítő megodások keenek Hd p. a variációs módszer Ψ * E (1 Nt)Ψ(1 Nt)dV * A megfeeő Hamiton-operátor: dv Az áapotegyenet (Schrödinger-egyenet) aakja: N N Hˆ j h j V j V 1 8π i t E j j1 Az időtő függeten Schrödinger-egyenet: N h j V E j1 8π m j j * dv V * Hˆ dv Az atomok szerkezete Az atomokat és ionokat feépítő eemi részecskék: proton neutron eektron tömeg (kg) tötés (C) (e) (-e) Atommag mérete: 1 15 m (magfizika magkémia) Eektronburok (kvantummechanika: az atommagot pontszerű pozitív tötésnek tekinti az atommag az atom tömegközéppontjához képest gyakoratiag mozduatan) 1

11 p.: H He + Li + Be 3+ U 91+ Ze tötésű mag egyeten eektron A mag és az eektron köcsönhatását a Couomb-potenciá írja e: 1 Ze V() r 4π r Az eektron áapotát eíró időtő függeten Schrödinger-egyenet: h Ze E 8π m 4π r a vákuum permittivitása ( J 1 C m 1 ) h Ze E 8π m x y z 4π r n = 13 = 1 (n 1) m = ( 1) ( 1) Az eektron áapotát eíró időtő függeten Schrödinger-egyenet: h Ze E 8π m 4π r Gömbi poárkoordinátákka közeítés nékü megodható: E mz e 4 és 8 nh n m Rn r m 11

12 n = 13 = 1 (n 1) m = ( 1) ( 1) Zr 1 Zr Rn r Nn r exp Ln radiáis huámfüggvény na na E mz e 4 és 8 nh n m Rn r m n = 13 = 1 (n 1) m = ( 1) ( 1) N 3 ( n 1)! Z n( n )! na Zr 1 Zr Rn r Nn r exp Ln radiáis huámfüggvény na na n 3 1 E mz e 4 és 8 nh n m Rn r m 1

13 n = 13 = 1 (n 1) m = ( 1) ( 1) asszociát Laguerre-poinom s q d d q ( ) e e d d s L q s q Zr 1 Zr Rn r Nn r exp Ln radiáis huámfüggvény na na E mz e 4 és 8 nh n m Rn r m n = 13 = 1 (n 1) m = ( 1) ( 1) Bohr-sugár: a h me Zr 1 Zr Rn r Nn r exp Ln radiáis huámfüggvény na na E mz e 4 és 8 nh n m Rn r m 13

14 n = 13 = 1 (n 1) m = ( 1) ( 1) ugyanaz mint a gömbfeüeten mozgó részecske huámfüggvénye 4 mz e E 8 nh és m m N m P (cos )e szögtő függő huámfüggvény R r n m n m im n = 13 = 1 (n 1) m = ( 1) ( 1) P m d ( )! 1 1 d 1 m m m asszociát Legendre-poinom ugyanaz mint a gömbfeüeten mozgó részecske huámfüggvénye 4 mz e E 8 nh és N P (cos )e m im m m szögtő függő huámfüggvény R r n m n m 14

15 n = 13 = 1 (n 1) m = ( 1) ( 1) N m ( m )!( 1) 4π( m )! normáási tényező 1 ugyanaz mint a gömbfeüeten mozgó részecske huámfüggvénye 4 mz e E 8 nh és N P (cos )e m im m m szögtő függő huámfüggvény R r n m n m Konvenció a Ψ nm huámfüggvények jeöésére: n = 134 = 13 m = ( 1) ( 1) marad a szám spdf asó indexbe (ha ke) 4 mz e E 8 nh és R r n m n m 15

16 Konvenció a Ψ nm huámfüggvények jeöésére: n = 134 = 13 m = ( 1) ( 1) marad a szám spdf asó indexbe (ha ke) Ψ 1 Ψ Ψ 11 Ψ 1-1 Ψ 1 1s s p +1 p -1 p Hidrogénszerű részecskék páyáinak radiáis fuámfüggvénye: páya radiáis huámfüggvény 1s s p 3s 3p 3d Zr 1 Zr Rn ( r) Nn r exp Ln radiáis huámfüggvény na na R ( Z / a ) exp( Zr / a ) 3 1 R ( Z / a ) ( Zr / a )exp( Zr / a ) / R1 ( Z / a ) ( Zr / a )exp( Zr / a) /(6 ) 3 1 R 3 ( Z / a ) (7 18 Zr / a ( Zr / a) )exp( Zr /3 a) /(81 3 ) 3 1 R 31 4( Z / a ) (6 Zr / a ( Zr / a) )exp( Zr /3 a) /(81 6 ) 3 1 R 3 4( Z / a ) ( Zr / a) exp( Zr /3 a) /(81 3 ) 16

17 páya s p z p x p y szögtő függő (anguáris) huámfüggvény (1/ 4 ) (3 / 4 ) cos 1 1cos (6 / 8 ) sin cos 1 1sin (6 / 8 ) sin sin Vaós atomi páyákhoz a kompex m függvények vaós kombinációit (azaz cosm és sinm -t) hasznájuk: d z d xz d yz d x y d xy 1 (5 /16 ) (3cos 1) 1 cos (3 / 8 ) cos sin cos 1 sin (3 / 8 ) cos sin sin 1 cos (3 / 3 ) sin cos 1 sin (3 / 3 ) sin sin páya szögtő függő (anguáris) huámfüggvény s p z (1/ 4 ) (3 / 4 ) cos p x p y d z d xz d yz d x y d xy 1 1cos (6 / 8 ) sin cos 1 1sin (6 / 8 ) sin sin 1 (5 /16 ) (3cos 1) 1 cos (3 / 8 ) cos sin cos 1 sin (3 / 8 ) cos sin sin 1 cos (3 / 3 ) sin cos 1 sin (3 / 3 ) sin sin 17

18 páya s p z p x p y szögtő függő (anguáris) huámfüggvény (1/ 4 ) (3 / 4 ) cos 1 1cos (6 / 8 ) sin cos 1 1sin (6 / 8 ) sin sin Egy energiaértékhez n1 (1) n huámfüggvény tartozik (iyen fokú a degeneráció) d z d xz d yz d x y d xy 1 (5 /16 ) (3cos 1) 1 cos (3 / 8 ) cos sin cos 1 sin (3 / 8 ) cos sin sin 1 cos (3 / 3 ) sin cos 1 sin (3 / 3 ) sin sin 18

Hidrogénszerű atomi részecskék. Hidrogénszerű atomi részecskék

Hidrogénszerű atomi részecskék. Hidrogénszerű atomi részecskék Hidrogénzerű rézeckék páyáinak radiái fuámfüggvénye: páya radiái uámfüggvény p 3 3p 3d Zr Zr Rn, ( r) Nn, r exp Ln radiái uámfüggvény na na R ( Z / a ) exp( Zr / a ) 3, R ( Z / a ) ( Zr / a )exp( Zr /

Részletesebben

Atomok és molekulák elektronszerkezete

Atomok és molekulák elektronszerkezete Atomok és molekulák elektronszerkezete Szabad atomok és molekulák Schrödinger egyenlete Tekintsünk egy kvantummechanikai rendszert amely N n magból és N e elektronból áll. Koordinátáikat jelölje rendre

Részletesebben

Kvantummechanikai alapok I.

Kvantummechanikai alapok I. Kvantummechanikai alapok I. Dr. Berta Miklós bertam@sze.hu 2017. szeptember 21. 1 / 41 Állapotfüggvény. Dinamikai egyenlet. Ψ(r, t) 2 / 41 Állapotfüggvény. Dinamikai egyenlet. Ψ(r, t) Ψ(r, t)-csak a hely

Részletesebben

A spin. November 28, 2006

A spin. November 28, 2006 A spin November 28, 2006 1 A spin a kvantummechanikában Az elektronnak és sok más kvantummechanikai részecskének is van egy saját impulzusnyomatéka amely független a mozgásállapottól. (Úgy is mondhatjuk,

Részletesebben

Elektronok, atomok. Általános Kémia - Elektronok, Atomok. Slide 1 of 60

Elektronok, atomok. Általános Kémia - Elektronok, Atomok. Slide 1 of 60 Elektronok, atomok 10-1 Elektromágneses sugárzás 10- Atomi Spektrum 10-3 Kvantumelmélet 10-4 A Bohr Atom 10-5 Az új Kvantummechanika 10-6 Hullámmechanika 10-7 Kvantumszámok Slide 1 of 60 Tartalom 10-8

Részletesebben

FIZIKA. Sugárzunk az elégedettségtől! (Atomfizika) Dr. Seres István

FIZIKA. Sugárzunk az elégedettségtől! (Atomfizika) Dr. Seres István Sugárzunk az elégedettségtől! () Dr. Seres István atommagfizika Atommodellek 440 IE Democritus, Leucippus, Epicurus 1803 1897 John Dalton J.J. Thomson 1911 Ernest Rutherford 19 Niels Bohr 3 Atommodellek

Részletesebben

Elektronok mozgása nanostruktúrákban 2-D elektrongáz, kvantumdrót és kvantumpötty

Elektronok mozgása nanostruktúrákban 2-D elektrongáz, kvantumdrót és kvantumpötty Elektronok mozgása nanostruktúrákban 2-D elektrongáz, kvantumdrót és kvantumpötty Dr. Berta Miklós bertam@sze.hu 2017. október 26. 1 / 11 Tekintsünk egy olyan kristályrácsot, amelynek minden mérete sokkal

Részletesebben

Thomson-modell (puding-modell)

Thomson-modell (puding-modell) Atommodellek Thomson-modell (puding-modell) A XX. század elejére világossá vált, hogy az atomban található elektronok ugyanazok, mint a katódsugárzás részecskéi. Magyarázatra várt azonban, hogy mi tartja

Részletesebben

2015/16/1 Kvantummechanika B 2.ZH

2015/16/1 Kvantummechanika B 2.ZH 2015/16/1 Kvantummechanika B 2.ZH 2015. december 10. Információk 0. A ZH ideje minimum 90 perc, maximum 180 perc. 1. Az összesen elérhet pontszám 270 pont. 2. A jeles érdemjegy eléréséhez nem szükséges

Részletesebben

Elektronok, atomok. Általános Kémia - Elektronok, Atomok. Slide 1 of 60

Elektronok, atomok. Általános Kémia - Elektronok, Atomok. Slide 1 of 60 Elektronok, atomok -1 Elektromágneses sugárzás - Atomi Spektrum -3 Kvantumelmélet -4 A Bohr Atom -5 Az új Kvantummechanika -6 Hullámmechanika -7 A hidrogénatom hullámfüggvényei Slide 1 of 60 Tartalom -8

Részletesebben

AZ ELEKTRON MÁGNESES MOMENTUMA. H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat.

AZ ELEKTRON MÁGNESES MOMENTUMA. H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat. AZ ELEKTRON MÁGNESES MOMENTUMA Mágneses dipólmomentum: m H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat. M = m H sinϕ (Elektromos töltés, q: monopólus

Részletesebben

Kvantummechanika gyakorlat Beadandó feladatsor Határid : 4. heti gyakorlatok eleje

Kvantummechanika gyakorlat Beadandó feladatsor Határid : 4. heti gyakorlatok eleje Kvantummechanika gyakorlat 015 1. Beadandó feladatsor Határid : 4. heti gyakorlatok eleje 1. Mutassuk meg, hogy A és B tetsz leges operátorokra igaz, hogy e B A e B = A + [B, A] + 1![ B, [B, A] ] +....

Részletesebben

+ magasabb rend½u tagok. x=x0

+ magasabb rend½u tagok. x=x0 Variációs módszer Ebben a fejezetben a kvantummechanikában már megismert variációs mószert eevenítjük fe. Ez az ejárás küönösen fnts szerepet töt be a mekua zikában, mive több aapvet½ közeítés ezen aapu

Részletesebben

Matematika A1. 8. feladatsor. Dierenciálás 2. Trigonometrikus függvények deriváltja. A láncszabály. 1. Határozzuk meg a dy/dx függvényt.

Matematika A1. 8. feladatsor. Dierenciálás 2. Trigonometrikus függvények deriváltja. A láncszabály. 1. Határozzuk meg a dy/dx függvényt. Matematika A 8. feladatsor Dierenciálás Trigonometrikus függvények deriváltja. Határozzuk meg a dy/d függvényt. a) y = 0 + 3 cos 0 3 sin b) y = sin 4 + 7 cos sin c) y = ctg +ctg sin )+ctg ) d) y = tg cos

Részletesebben

January 16, ψ( r, t) ψ( r, t) = 1 (1) ( ψ ( r,

January 16, ψ( r, t) ψ( r, t) = 1 (1) ( ψ ( r, Közelítő módszerek January 16, 27 1 A variációs módszer A variációs módszer szintén egy analitikus közelítő módszer. Olyan esetekben alkalmazzuk mikor ismert az analitikus alak amelyben keressük a sajátfüggvényt,

Részletesebben

Kvantummechanika. - dióhéjban - Kasza Gábor július 5. - Berze TÖK

Kvantummechanika. - dióhéjban - Kasza Gábor július 5. - Berze TÖK Kvantummechanika - dióhéjban - Kasza Gábor 2016. július 5. - Berze TÖK 1 / 27 Mire fogunk választ kapni az előadásból? Miért KVANTUMmechanika? Miért részecske? Miért hullám? Mit mond a Schrödinger-egyenlet?

Részletesebben

Optikai spektroszkópiai módszerek

Optikai spektroszkópiai módszerek Mi történhet, ha egy mintát énnye viágítunk meg? Optikai spektroszkópiai módszerek megviágító ény (enyet ény) minta átjutott ény Abszorpció UV-VIS, IR Smeer Lászó kibocsátott ény Lumineszcencia (Fuoreszcencia

Részletesebben

Molekulák világa 1. kémiai szeminárium

Molekulák világa 1. kémiai szeminárium GoBack Molekulák világa 1. kémiai szeminárium Szilágyi András 2008. október 6. Molekulák világa 1. kémiai szeminárium Molekuláris bionika szak I. év 1 Kvantummechanika Klasszikus fizika eszközei tömegpont

Részletesebben

A kvantumszámok jelentése: A szokásos tárgyalás a pályák alakját vizsgálja, ld. majd azt is; de a lényeg: fizikai mennyiségeket határoznak meg.

A kvantumszámok jelentése: A szokásos tárgyalás a pályák alakját vizsgálja, ld. majd azt is; de a lényeg: fizikai mennyiségeket határoznak meg. I.6. A H-atom kvantummechanikai leírása I.6.1. Schrödinger-egyenlet, kvantumszámok Szimbolikusan tehát: Ĥψ i = E iψ i A Schrödinger-egyenletben a rendszert specifikálja: a V = e /r a potenciális energia

Részletesebben

Elektronok, atomok. Általános Kémia - Elektronok, Atomok. Dia 1/61

Elektronok, atomok. Általános Kémia - Elektronok, Atomok. Dia 1/61 Elektronok, atomok 2-1 Elektromágneses sugárzás 2-2 Atomi Spektrum 2-3 Kvantumelmélet 2-4 A Bohr Atom 2-5 Az új Kvantummechanika 2-6 Hullámmechanika 2-7 Kvantumszámok Dia 1/61 Tartalom 2-8 Elektronsűrűség

Részletesebben

ELEMI RÉSZECSKÉK ATOMMODELLEK

ELEMI RÉSZECSKÉK ATOMMODELLEK ELEMI RÉSZECSKÉK ATOMMODELLEK Az atomok felépítése Készítette: Horváthné Vlasics Zsuzsanna Mi van az atomok belsejében? DÉMOKRITOSZ (Kr.e. 460-370) az anyag nem folytonos parányi, tovább nem bontható,

Részletesebben

SCHRÖDINGER-EGYENLET SCHRÖDINGER-EGYENLET

SCHRÖDINGER-EGYENLET SCHRÖDINGER-EGYENLET SCHRÖDINGER-EGYENLET A Scrödinger-egyenlet a kvantummecanika mozgásegyenlet, Newton II. törvényével analóg. Nem vezetető le korábbi elvekből, de intuitívan bevezetető. Egy atározott energiával és impulzussal

Részletesebben

Fizika M1, BME, gépészmérnök szak, szi félév (v6)

Fizika M1, BME, gépészmérnök szak, szi félév (v6) Fizika M, BME, gépészmérnök szak, 7. szi félév (v6 Pályi András Department of Physics, Budapest University of Technology and Economics, Hungary (Dated: 7. október. Ebben a fájlban az el adás menetrendjét

Részletesebben

Atomfizika. Fizika kurzus Dr. Seres István

Atomfizika. Fizika kurzus Dr. Seres István Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés J.J. Thomson (1897) Katódsugárcsővel végzett kísérleteket az elektron fajlagos töltésének (e/m) meghatározására. A katódsugarat alkotó részecskét

Részletesebben

Atomok, elektronok. Általános Kémia - Elektronok, Atomok. Dia 1/61

Atomok, elektronok. Általános Kémia - Elektronok, Atomok. Dia 1/61 , elektronok 2-1 Elektromágneses sugárzás 2-2 Atomi spektrum 2-3 Kvantumelmélet 2-4 Bohr-atom 2-5 Az új kvantummechanika 2-6 Hullámmechanika 2-7 A hidrogénatom hullámfüggvényei Dia 1/61 , elektronok 2-8

Részletesebben

2. Közelítő megoldások, energiaelvek:

2. Közelítő megoldások, energiaelvek: SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK 3. MECHANIKA-VÉGESELEM MÓDSZER ELŐADÁS (kidogozta: Szüe Veronika, egy. ts.) III. eőadás. Közeítő megodások, energiaevek:.. A tejes otenciáis energia

Részletesebben

Atomfizika. Az atommag szerkezete. Radioaktivitás Biofizika, Nyitrai Miklós

Atomfizika. Az atommag szerkezete. Radioaktivitás Biofizika, Nyitrai Miklós Atomfizika. Az atommag szerkezete. Radioaktivitás. 2010. 10. 13. Biofizika, Nyitrai Miklós Összefoglalás Atommag alkotói, szerkezete; Erős vagy magkölcsönhatás; Tömegdefektus. A kölcsönhatások világképe

Részletesebben

Hőtani tulajdonságok. Fogorvosi anyagtan fizikai alapjai 9. Tankönyv fej.: 19. Q x. hőmérséklet. hőfelvétel/leadás

Hőtani tulajdonságok. Fogorvosi anyagtan fizikai alapjai 9. Tankönyv fej.: 19. Q x. hőmérséklet. hőfelvétel/leadás Fogorvosi anyagtan fizikai aapjai 9. Tankönyv fej.: 9 Hőtani, eektromos, kémiai és optikai tuajdonságok Házi feadat: 5. fej.:,, 5, 6, 8, 9, 0, Hőtani tuajdonságok hőmérséket hőfevéte/eadás Q hőkapacitás

Részletesebben

http://www.nature.com 1) Magerő-sugár: a magközéppontból mért távolság, ameddig a magerők hatótávolsága terjed. Rutherford-szórásból határozható meg. R=1,4 x 10-13 A 1/3 cm Az atommag terének potenciálja

Részletesebben

ω mennyiségek nem túl gyorsan változnak

ω mennyiségek nem túl gyorsan változnak Licenszvizsga példakérdések Fizika szak KVANTUMMECHANIKA Egy részecskére felírt Schrödinger egyenlet szétválasztható a három koordinátatengely irányában levő egydimenziós egyenletre ha a potenciális energiára

Részletesebben

Általános Kémia, BMEVESAA101

Általános Kémia, BMEVESAA101 Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Óravázlatok:

Részletesebben

Elektromosság. Alapvető jelenségek és törvények. a.) Coulomb törvény. Sztatikus elektromosság

Elektromosság. Alapvető jelenségek és törvények. a.) Coulomb törvény. Sztatikus elektromosság Eektomos tötés: (enjamin Fankin) megmaadó fizikai mennyiség Eektomosság pozitív vagy negatív egysége: couomb [C] apvető jeenségek és tövények eemi tötés:.6x -9 [C] nyugvó eektomos tötés: mozgó eektomos

Részletesebben

Fizikai mennyiségek, állapotok

Fizikai mennyiségek, állapotok Fizikai mennyiségek, állapotok Atomok és molekulák zikai mennyiségeihez rendelt operátorok A kvantummechanika mint matematikai modell alapvet épít elemei a rendszer leírására szolgáló zikai mennyiségekhez

Részletesebben

Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár,

Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Facebook,

Részletesebben

VIK A3 Matematika, Gyakorlati anyag 2.

VIK A3 Matematika, Gyakorlati anyag 2. VIK A3 Matematika, Gyakorlati anyag 2. 208. november Sorok. Konvergensek-e az alábbi sorok? Ha igen, adjuk meg a határértéküket! n(n+3) n(n+)(n+2) 9n 2 3n 2 ( n + 2 2 n + + n) 2n+ n 2 (n+) 2 (f) ( 3) k+2

Részletesebben

FIZIKA II. Dr. Rácz Ervin. egyetemi docens

FIZIKA II. Dr. Rácz Ervin. egyetemi docens FIZIKA II. Dr. Rácz Ervin egyetemi docens Fontos tudnivalók e-mail: racz.ervin@kvk.uni-obuda.hu web: http://uni-obuda.hu/users/racz.ervin/index.htm Iroda: Bécsi út, C. épület, 124. szoba Fizika II. - ismertetés

Részletesebben

Atommodellek. Az atom szerkezete. Atommodellek. Atommodellek. Atommodellek, A Rutherford-kísérlet. Atommodellek

Atommodellek. Az atom szerkezete. Atommodellek. Atommodellek. Atommodellek, A Rutherford-kísérlet. Atommodellek Démokritosz: a világot homogén szubsztanciájú oszthatatlan részecskék, atomok és a közöttük lévı őr alkotja. Az atom szerkezete Egy atommodellt akkor fogadunk el érvényesnek, ha megmagyarázza a tapasztalati

Részletesebben

Magszerkezet modellek. Folyadékcsepp modell

Magszerkezet modellek. Folyadékcsepp modell Magszerkezet modellek Folyadékcsepp modell Az atommag összetevői (emlékeztető) atommag Z proton + (A-Z) neutron (nukleonok) szorosan kötve Állapot leírása: kvantummechanika + kölcsönhatások Nem relativisztikus

Részletesebben

Hadronok, atommagok, kvarkok

Hadronok, atommagok, kvarkok Zétényi Miklós Hadronok, atommagok, kvarkok Teleki Blanka Gimnázium Székesfehérvár, 2012. február 21. www.meetthescientist.hu 1 26 Atomok Démokritosz: atom = legkisebb, oszthatatlan részecske Rutherford

Részletesebben

Atomfizika. Fizika kurzus Dr. Seres István

Atomfizika. Fizika kurzus Dr. Seres István Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés 440 BC Democritus, Leucippus, Epicurus 1660 Pierre Gassendi 1803 1897 1904 1911 19 193 John Dalton Joseph John (J.J.) Thomson J.J. Thomson

Részletesebben

Hőtani tulajdonságok. Fogorvosi anyagtan fizikai alapjai 10. Hőtani, elektromos és kémiai tulajdonságok. Q x. hőmérséklet.

Hőtani tulajdonságok. Fogorvosi anyagtan fizikai alapjai 10. Hőtani, elektromos és kémiai tulajdonságok. Q x. hőmérséklet. Hőtani tuajdonságok Fogorvosi tan fizikai aapjai 0. Hőtani, eektromos és kémiai tuajdonságok Kiemet témák: Eektromosságtan aapfogamai Sziárdtestek energiasáv modejei Févezetők és akamazásaik Tankönyv fej.:

Részletesebben

Hőtani tulajdonságok. Fogorvosi anyagtan fizikai alapjai 9. Hőtani, elektromos és kémiai tulajdonságok. Q x. hőmérséklet.

Hőtani tulajdonságok. Fogorvosi anyagtan fizikai alapjai 9. Hőtani, elektromos és kémiai tulajdonságok. Q x. hőmérséklet. Hőtani tuajdonságok Fogorvosi tan fizikai aapjai 9. Hőtani, eektromos és kémiai tuajdonságok Kiemet témák: Eektromosságtan aapfogamai Sziárdtestek energiasáv modejei Févezetők és akamazásaik Tankönyv fej.:

Részletesebben

Atomfizika. A hidrogén lámpa színképei. Elektronok H atom. Fényképlemez. emisszió H 2. gáz

Atomfizika. A hidrogén lámpa színképei. Elektronok H atom. Fényképlemez. emisszió H 2. gáz Atomfizika A hidrogén lámpa színképei - Elektronok H atom emisszió Fényképlemez V + H 2 gáz Az atom és kvantumfizika fejlődésének fontos szakasza volt a hidrogén lámpa színképeinek leírása, és a vonalas

Részletesebben

ezzel ekvivalens, és 1969-ben felírt Alt-Grassberger-Sandhas egyenletek szolgálnak; négyrészecske szórás

ezzel ekvivalens, és 1969-ben felírt Alt-Grassberger-Sandhas egyenletek szolgálnak; négyrészecske szórás 6. SZÓRÁSI ÁLLAPOTOK Ebben a fejezetben a stacionáius Schödinge egyenet pozitív enegiákhoz tatozó megodásait, az ún. szóási áapotokat vizsgájuk. (Az enegiaskáa nua pontját átaában a nemköcsönható endsze

Részletesebben

ú Ü ĺ ü ü Ĺ Ö ü Ü ń ú Ü ö ö ö ü ń ö ö ö ĺ ü ö ü ü ö ö ö Ĺ ö ĺ ú ĺ ú ü Ü ü ö ú Ö ü Ü ö ü ĺĺ ö ö ü ú Ö ü Ü Ö ŕ Á Ü ý ł Ü Ą ĺĺ ź ĺ Á ú ú ü Ü ü ú ü Ü ö ů ö ú ű ö ö ď ö ź ł ú ü ö ĺź ű ú ü ö ö ź ö ü ú Ö ü Ü

Részletesebben

Kábel-membrán szerkezetek

Kábel-membrán szerkezetek Kábe-membrán szerkezetek Szereési aak meghatározása Definíció: Egy geometriai aak meghatározása adott peremfetéte és eőfeszítés esetén ameyné a beső erők egyensúyban vannak. Numerikus módszerek: Geometriai

Részletesebben

A testek részecskéinek szerkezete

A testek részecskéinek szerkezete A testek részecskéinek szerkezete Minden test részecskékből, atomokból vagy több atomból álló molekulákból épül fel. Az atomok is összetettek: elektronok, protonok és neutronok találhatók bennük. Az elektronok

Részletesebben

Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008.

Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Kiss István,Vértes Attila: Magkémia (Akadémiai Kiadó) Nagy Lajos György,

Részletesebben

+ 6 P( E l BAL)+ 6 P( E l K ZEJ>);

+ 6 P( E l BAL)+ 6 P( E l K ZEJ>); \ Lássátok be, hogy a következő két összefüggés is heyes! ~ 2 P(EIJOBB) = 6P(EIKEZDO)+ 6P(EIJOBB)+ 6 0 + ö, + 6 P( E BAL)+ 6 P( E K ZEJ>);.., P( E KOZEP) = 6 + 6 P( E BAL)+ 6 P( E JOBB) + 6 O+ + ~P( E

Részletesebben

A Schrödinger-egyenlet és egyszerű alkalmazásai

A Schrödinger-egyenlet és egyszerű alkalmazásai Jelen dokumentumra a Creative Commons Nevezd meg! Ne add el! Ne változtasd meg! 3. licenc feltételei érvényesek: a művet a felhasználó másolhatja, többszörözheti, továbbadhatja, amennyiben feltünteti a

Részletesebben

Modern fizika laboratórium

Modern fizika laboratórium Modern fizika laboratórium 11. Az I 2 molekula disszociációs energiája Készítette: Hagymási Imre A mérés dátuma: 2007. október 3. A beadás dátuma: 2007. október xx. 1. Bevezetés Ebben a mérésben egy kétatomos

Részletesebben

Az atomhéj (atommag körüli elektronok) fizikáját a kvantumfizika írja le teljes körűen.

Az atomhéj (atommag körüli elektronok) fizikáját a kvantumfizika írja le teljes körűen. MGFIZIK z atomhéj (atommag körüli elektronok) fizikáját a kvantumfizika írja le teljes körűen. Z TOMMG SZERKEZETE, RDIOKTIVITÁS PTE ÁOK Biofizikai Intézet Futó Kinga magfizika azonban még nem lezárt tudomány,

Részletesebben

Kémiai alapismeretek 2. hét

Kémiai alapismeretek 2. hét Kémiai alapismeretek 2. hét Horváth Attila Pécsi Tudományegyetem, Természettudományi Kar, Kémia Intézet, Szervetlen Kémiai Tanszék 2012. február 14. 1/15 2011/2012 II. félév, Horváth Attila c XIX sz. vége,

Részletesebben

Jegyzet. Kémia, BMEVEAAAMM1 Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens.

Jegyzet. Kémia, BMEVEAAAMM1 Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens. Kémia, BMEVEAAAMM Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens Jegyzet dr. Horváth Viola, KÉMIA I. http://oktatas.ch.bme.hu/oktatas/konyvek/anal/

Részletesebben

Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem

Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 2. Mit nevezünk az atom tömegszámának? a) a protonok számát b) a neutronok számát c) a protonok és neutronok

Részletesebben

1 A kvantummechanika posztulátumai

1 A kvantummechanika posztulátumai A kvantummechanika posztulátumai October 29, 2006 A kvantummechanika posztulátumai Célunk felépíteni a kvantummechanikát posztulátumok segítségével úgy ahogy az elemi hullámmechanika során eljártunk. Arra

Részletesebben

Matematika A3 1. ZH+megoldás

Matematika A3 1. ZH+megoldás Matematika A3 1. ZH+megoldás 2008. október 17. 1. Feladat Egy 10 literes kezdetben tiszta vizet tartalmazó tartályba 2 l/min sebesséeggel 0.3 kg/l sótartalmú víz Áramlik be, amely elkeveredik a benne lévő

Részletesebben

Kémiai alapismeretek 2. hét

Kémiai alapismeretek 2. hét Kémiai alapismeretek 2. hét Horváth Attila Pécsi Tudományegyetem, Természettudományi Kar, Kémia Intézet, Szervetlen Kémiai Tanszék 2014. szeptember 9.-12. 1/13 2014/2015 I. félév, Horváth Attila c Hullámtermészet:

Részletesebben

Néhány mozgás kvantummechanikai tárgyalása

Néhány mozgás kvantummechanikai tárgyalása Néhány ozgás kvantuechanikai tárgyalása Mozzanatok: A Schrödinger-egyenlet felírása ĤΨ EΨ Hailton-operátor egállapítása a kinetikus energiaoperátor felírása, vagy 3 dienziós ozgásra, Descartes-féle koordinátarendszerben

Részletesebben

A lecke célja: A tananyag felhasználója megismerje a forgó tömegek kiegyensúlyozásának elméleti alapjait.

A lecke célja: A tananyag felhasználója megismerje a forgó tömegek kiegyensúlyozásának elméleti alapjait. modu: Kinematika Kinetika 4 ecke: Forgó tömegek kiegensúoása ecke céja: tananag fehasnáója megismerje a forgó tömegek kiegensúoásának eméeti aapjait Követemének: Ön akkor sajátította e megfeeően a tananagot

Részletesebben

Fizikai kémia 2. ZH I. kérdések I. félévtől

Fizikai kémia 2. ZH I. kérdések I. félévtől Fizikai kémia 2. ZH I. kérdések 2018-19 I. félévtől Szükséges adatok, állandók és összefüggések: c= 2,99792458 10 8 m/s; e= 1,602177 10-19 C; h=6,62608 10-34 Js; N A= 6,02214 10 23 mol -1 ; me= 9,10939

Részletesebben

Matematikai segédlet

Matematikai segédlet Matematikai segéet Takács Gábor 5. ecember 5.. Legenre-poinomok A Legenre-fée ifferenciáegyenet x P.. Megoás hatványsor aakban + νν + P Mive az egyenet másorenű, két ineárisan függeten megoása étezik.

Részletesebben

PÓRA Katalin, NAGY László

PÓRA Katalin, NAGY László Az ionizációs differenciáis hatáskeresztmetszet tanumányozása H 2 moekua esetében Study of Ionization Differentia Cross Section in Case of H 2 Moecue PÓRA Katain, NAGY Lászó Fizika Kar, Babeş Boyai Tudományeyetem,

Részletesebben

T obbv altoz os f uggv enyek integr alja. 3. r esz aprilis 19.

T obbv altoz os f uggv enyek integr alja. 3. r esz aprilis 19. Többváltozós függvények integrálja. 3. rész. 2018. április 19. Kettős integrál Kettős integrál téglalap alakú tartományon. Ismétlés Ha = [a, b] [c, d] téglalap-tartomány, f : I integrálható függvény, akkor

Részletesebben

2. MECHANIKA-VÉGESELEM MÓDSZER ELŐADÁS (kidolgozta: Szüle Veronika, egy. ts.) II. előadás

2. MECHANIKA-VÉGESELEM MÓDSZER ELŐADÁS (kidolgozta: Szüle Veronika, egy. ts.) II. előadás SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK. MECHANIKA-VÉGESELEM MÓDSZER ELŐADÁS (kiogozta: Szüe Veronika egy. ts.) II. eőaás. Közeítő megoások energiaevek: Összetett rugamas peremérték feaat

Részletesebben

Diffrakció (elhajlás, akadályba ütközés miatt)

Diffrakció (elhajlás, akadályba ütközés miatt) Röntgensugárzás Röntgeniffrakció Röntgen krisztaográfia.5.. Röntgensugárzás étrejötte kiök!ött eektron M L becsapóó eektronok K Eektromágneses sugárzás (f=6 9Hz, E=eV kev (.9*-7-4J), λ

Részletesebben

Mágneses monopólusok?

Mágneses monopólusok? 1 Mágneses monopólusok? (Atomcsill 2015 február) Palla László ELTE Elméleti Fizikai Tanszék 2 Maxwell egyenletek potenciálok, mértéktranszformáció legegyszerűbb e.m. mezők A klasszikus e g rendszer A monopólus

Részletesebben

Többváltozós függvények Feladatok

Többváltozós függvények Feladatok Többváltozós függvények Feladatok 2. szeptember 3. Határozzuk meg az alábbi sorozatok határértékét illetve torlódási pontjait!. ( n n2 + n n 3 2. ( n + n n5 n2 +2n+ 5 n n+ 3. ( sin(nπ/2 n n! Határozzuk

Részletesebben

Elektronok, atomok. Tartalom

Elektronok, atomok. Tartalom Elektronok, atomok 8-1 Elektromágneses sugárzás 8-2 Atomi Spektrum 8-3 Kvantumelmélet 8-4 ABohr Atom 8-5 Az új Kvantummechanika 8-6 Hullámmechanika 8-7 Kvantumszámok, elektronpályák Slide 1 of 60 Tartalom

Részletesebben

FELADATMEGOLDÁS. Tesztfeladat: Válaszd ki a helyes megoldást!

FELADATMEGOLDÁS. Tesztfeladat: Válaszd ki a helyes megoldást! FELADATMEGOLDÁS Tesztfeladat: Válaszd ki a helyes megoldást! 1. Melyik sorozatban található jelölések fejeznek ki 4-4 g anyagot? a) 2 H 2 ; 0,25 C b) O; 4 H; 4 H 2 c) 0,25 O; 4 H; 2 H 2 ; 1/3 C d) 2 H;

Részletesebben

Bevezetés a modern fizika fejezeteibe. 4. (b) Kvantummechanika. Utolsó módosítás: 2013. november 9. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 4. (b) Kvantummechanika. Utolsó módosítás: 2013. november 9. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 4. (b) Kvantummechanika Utolsó módosítás: 2013. november 9. 1 A legkisebb hatás elve (1) A legkisebb hatás elve (Hamilton-elv): S: a hatás L: Lagrange-függvény 2 A

Részletesebben

Kifejtendő kérdések június 13. Gyakorló feladatok

Kifejtendő kérdések június 13. Gyakorló feladatok Kifejtendő kérdések 2016. június 13. Gyakorló feladatok 1. Adott egy egyenletes térfogati töltéssel rendelkező, R sugarú gömb, melynek felületén a potenciál U 0. Az elektromos potenciál definíciója (1p)

Részletesebben

Fermi Dirac statisztika elemei

Fermi Dirac statisztika elemei Fermi Dirac statisztika elemei A Fermi Dirac statisztika alapjai Nagy részecskeszámú rendszerek fizikai jellemzéséhez statisztikai leírást kell alkalmazni. (Pl. gázokra érvényes klasszikus statisztika

Részletesebben

a Bohr-féle atommodell (1913) Niels Hendrik David Bohr ( )

a Bohr-féle atommodell (1913) Niels Hendrik David Bohr ( ) a Bohr-féle atommodell (1913) Niels Hendrik David Bohr (1885-1962) atomok gerjesztése és ionizációja elektronnal való bombázással (1913-1914) James Franck (1882-1964) Gustav Ludwig Hertz (1887-1975) Nobel-díj

Részletesebben

Az elemeket 3 csoportba osztjuk: Félfémek vagy átmeneti fémek nemfémek. fémek

Az elemeket 3 csoportba osztjuk: Félfémek vagy átmeneti fémek nemfémek. fémek Kémiai kötések Az elemeket 3 csoportba osztjuk: Félfémek vagy átmeneti fémek nemfémek fémek Fémek Szürke színűek, kivétel a színesfémek: arany,réz. Szilárd halmazállapotúak, kivétel a higany. Vezetik az

Részletesebben

FIZIKA. Atommag fizika

FIZIKA. Atommag fizika Atommag összetétele Fajlagos kötési energia Fúzió, bomlás, hasadás Atomerőmű működése Radioaktív bomlástörvény Dozimetria 2 Atommag összetétele: Hélium atommag : 2 proton + 2 neutron 4 He 2 He Z A 4 2

Részletesebben

Szilárd testek sugárzása

Szilárd testek sugárzása A fény keletkezése Szilárd testek sugárzása A szilárd test melegítés hatására fényt bocsát ki A sugárzás forrása a közelítőleg termikus egyensúlyban lévő kibocsátó test atomi részecskéinek véletlenszerű

Részletesebben

ANALÍZIS II. Példatár

ANALÍZIS II. Példatár ANALÍZIS II. Példatár Többszörös integrálok 3. április 8. . fejezet Feladatok 3 4.. Kett s integrálok Számítsa ki az alábbi integrálokat:...3. π 4 sinx.. (x + y) dx dy (x + y) dy dx.4. 5 3 y (5x y y 3

Részletesebben

Infravörös és CD spektroszkópia a fehérjeszerkezet vizsgálatában

Infravörös és CD spektroszkópia a fehérjeszerkezet vizsgálatában Infravörös és C spektroszkópia a fehérjeszerkezet vizsgáatában Mi történhet, ha egy mintát fénnye viágítunk meg? megviágító fény (enyet fény) minta átjutott fény Abszorpció UV-VIS, IR, C spektr. Smeer

Részletesebben

Fizikai kémia (4): Elméleti kémia (emelt szint) kv1c1lm1e/1 vázlat

Fizikai kémia (4): Elméleti kémia (emelt szint) kv1c1lm1e/1 vázlat Fizikai kémia (4): Elméleti kémia (emelt szint) kv1c1lm1e/1 vázlat Szalay Péter Eötvös Loránd Tudományegyetem, Kémiai Intézet 2014. május 19. 1 Elméleti Kémia (kv1c1lm1e/1) Ajánlott irodalom 1. Az előadás

Részletesebben

1. Az ezekhez tartozó. egyenlet megoldásai: k 360. forgásszögek a. Két különböz egységvektor van, amelyek els koordinátája

1. Az ezekhez tartozó. egyenlet megoldásai: k 360. forgásszögek a. Két különböz egységvektor van, amelyek els koordinátája 8. modu: EGYSERBB TRIGONOMETRIKUS EGYENLETEK, EGYENLTLENSÉGEK 5 III. Trigonometrius egyenete Azoat az egyeneteet és egyentenségeet, ameyeben az ismereten vaamiyen szögfüggvénye szerepe, trigonometrius

Részletesebben

Fizikai kémia (4): Elméleti kémia (emelt szint) kv1c1lm1e/1 vázlat

Fizikai kémia (4): Elméleti kémia (emelt szint) kv1c1lm1e/1 vázlat Fizikai kémia (4): Elméleti kémia (emelt szint) kv1c1lm1e/1 vázlat Szalay Péter Eötvös Loránd Tudományegyetem, Kémiai Intézet 2012. május 21. 1 Elméleti Kémia (kv1c1lm1e/1) Ajánlott irodalom 1. Az előadás

Részletesebben

3. A kvantummechanikai szemlélet kialakulása

3. A kvantummechanikai szemlélet kialakulása 3. A kvantummechanikai szemlélet kialakulása A korábbi fejezetben tárgyalt atomelmélet megteremtette a modern kémiai alapjait, azonban rengeteg kérdés mégis megválaszolatlan maradt, különösen a miért nincs

Részletesebben

Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet), A Laplace operátor derékszögű koordinátarendszerben

Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet), A Laplace operátor derékszögű koordinátarendszerben Atomfizika ψ ψ ψ ψ ψ E z y x U z y x m = + + + ),, ( h ) ( ) ( ) ( ) ( r r r r ψ ψ ψ E U m = + Δ h z y x + + = Δ ),, ( ) ( z y x ψ =ψ r Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet),

Részletesebben

Atomenergetikai alapismeretek

Atomenergetikai alapismeretek Atomenergetikai alapismeretek 2. előadás Dr. Szieberth Máté Dr. Sükösd Csaba előadásanyagának felhasználásával Négyfaktor formula (végtelen kiterjedésű n-sokszorozó közeg) n Maghasadás (gyors neutronok)

Részletesebben

Megjegyzés: jelenti. akkor létezik az. ekkor

Megjegyzés: jelenti. akkor létezik az. ekkor . Hármas Integrál. Bevezetés és definíciók A bevezetés első részében egy feladaton keresztül jutunk el a hármasintegrál definíciójához. Feladat: Legyen R korlátos test, és a testnek legyen az f(x, y, z

Részletesebben

FIZIKA FELADATLAP Megoldási útmutató

FIZIKA FELADATLAP Megoldási útmutató 1. C 2. A 3. X 4. B 5. C 6. D 7. D 8. C 9. D 10. B 11. D 12. C 13. A 14. C 15. C 16. D 17. C 18. C 19. C 20. B FIZIKA FELADATLAP Megoldási útmutató I. RÉSZ Összesen 1 1. téma II. RÉSZ Atommodellek: Thomson

Részletesebben

Atomszerkezet, kötések

Atomszerkezet, kötések Anyagszerkezettan és anyagvizsgálat 016/17 Atomszerkezet, kötések Dr. Szabó Péter János szpj@eik.bme.hu Az előadás során megismerjük: a két alapvető atommodell alapjait, és a modellek közötti különbségeket;

Részletesebben

Fizika 1 Mechanika órai feladatok megoldása 7. hét

Fizika 1 Mechanika órai feladatok megoldása 7. hét Fizika 1 Mechanika órai feladatok megoldása 7. hét Az F erő által végzett munka, ha a test adott pályán mozog az r 1 helyvektorú P 1 pontból az r helyvektorú P pontba, az alábbi vonalintegrállal számolható:

Részletesebben

3. A kvantummechanikai szemlélet kialakulása

3. A kvantummechanikai szemlélet kialakulása 3. A kvantummechanikai szemlélet kialakulása A korábbi fejezetben tárgyalt atomelmélet megteremtette a modern kémiai alapjait, azonban rengeteg kérdés mégis megválaszolatlan maradt, különösen a miért nincs

Részletesebben

http://www.nucleonica.net Az atommag tömege A hidrogénre vonatkoztatott relatív atomtömeg (=atommag tömegével, ha az e - tömegét elhanyagoljuk) a hidrogénnek nem egész számú többszöröse. Az elemek különböző

Részletesebben

Sugárzások és anyag kölcsönhatása

Sugárzások és anyag kölcsönhatása Sugárzások és anyag kölcsönhatása Az anyaggal kölcsönhatásba lépő részecskék Töltött részecskék Semleges részecskék Nehéz Könnyű Nehéz Könnyű T D p - + n Radioaktív sugárzás + anyag energia- szóródás abszorpció

Részletesebben

REZGÉSTAN GYAKORLAT Kidolgozta: Dr. Nagy Zoltán egyetemi adjunktus. 17. feladat: Kéttámaszú tartó (rúd) hajlító rezgései (kontinuum modell)

REZGÉSTAN GYAKORLAT Kidolgozta: Dr. Nagy Zoltán egyetemi adjunktus. 17. feladat: Kéttámaszú tartó (rúd) hajlító rezgései (kontinuum modell) SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK REZGÉSTAN GYAKORLAT Kidogota: Dr. Nagy Zotán egyetemi adjunktu 7. feadat: Kéttámaú tartó (rúd) hajító regéei (kontinuum mode) y v( t ) K = 8m E ρai

Részletesebben

Pósfay Péter. ELTE, Wigner FK Témavezetők: Jakovác Antal, Barnaföldi Gergely G.

Pósfay Péter. ELTE, Wigner FK Témavezetők: Jakovác Antal, Barnaföldi Gergely G. Pósfay Péter ELTE, Wigner FK Témavezetők: Jakovác Antal, Barnaföldi Gergely G. A Naphoz hasonló tömegű csillagok A Napnál 4-8-szor nagyobb tömegű csillagok 8 naptömegnél nagyobb csillagok Vörös óriás Szupernóva

Részletesebben

A Relativisztikus kvantummechanika alapjai

A Relativisztikus kvantummechanika alapjai A Relativisztikus kvantummechanika alapjai January 25, 2005 A kvantummechanika Schrödinger egyenletének a felírása után azonnal kiderül, hogy ez az egyenlet nem relativisztikusan kovariáns. (Aránylag könnyen

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

A kvantummechanikai atommodell

A kvantummechanikai atommodell A kvantummechanikai atommodell A kvantummechanika alapjai A Heinsenberg-féle határozatlansági reláció A kvantummechanikai atommodell A kvantumszámok értelmezése A Stern-Gerlach kísérlet Az Einstein-de

Részletesebben

Kémiai anyagszerkezettan

Kémiai anyagszerkezettan Kémiai anyagszerkezettan Előadó: Kubinyi Miklós tel: 21-37 kubinyi@mail.bme.hu Grofcsik András tel: 14-84 agrofcsik@mail.bme.hu Tananyag az intraneten (tavalyi): http://oktatas.ch.bme.hu/oktatas/ konyvek/fizkem/kasz/

Részletesebben

F1404 ATOMMAG- és RÉSZECSKEFIZIKA

F1404 ATOMMAG- és RÉSZECSKEFIZIKA F1404 ATOMMAG- és RÉSZECSKEFIZIKA Dr. Raics Péter DE TTK Kísérleti Fizikai Tanszék, Debrecen, Bem tér 18/A RAICS@TIGRIS.KLTE.HU Ajánlott irodalom Raics P.: Atommag- és részecskefizika. Jegyzet. DE Kísérleti

Részletesebben

Mag- és neutronfizika

Mag- és neutronfizika Mag- és neutronfizika z elıadás célja: : megalapozni az atomenergetikai ismereteket félév során a következı témaköröket ismertetjük: Magfizikai alapfogalmak (atommagok, radioaktivitás) Sugárzás és anyag

Részletesebben