Alapfogalmak. Trendelemzés Szezonalitás Modellek. Matematikai statisztika Gazdaságinformatikus MSc október 29. 1/49
|
|
- Zsuzsanna Török
- 5 évvel ezelőtt
- Látták:
Átírás
1 Matematikai statisztika Gazdaságinformatikus MSc 8. előadás október 29. 1/49
2 alapfogalmak Elméleti idősor - valószínűségi változók egy indexelt {X t, t T } családja, avagy időtől függő véletlen mennyiség. T az időpontok halmaza, ami lehet diszkrét vagy folytonos. egyváltozós idősor: skalár értékű val. változóból származik többváltozós idősor: vektor értékű val. változóból származik (Gyakorlatban olyan jelenségeket akarunk vleírni, mint pl.: napi záróárfolyamok a tőzsdén, éves gabonatermés stb.) - mintában ezek jelennek meg mint empirikus idősor 2/49
3 alapfogalmak MOL részvények záróárfolyama ( ) 3/49
4 alapfogalmak eloszlásfüggvény: x R és t T esetén F (x, t) = P(X t < x) sűrűségfüggvény: f (x, t) = df (x,t) dx együttes eloszlásfüggvény hasonlóan definiálható a többváltozós eloszlásfüggvényhez, csak most időpontokkal lesznek indexelve a változók 4/49
5 alapfogalmak várható érték: m(t) = E(X t ) variancia: d 2 (t) = σ 2 (X t ) autokovariancia: cov(s, t) = E((X s m(s))(x t m(t))) autokorreláció: corr(s, t) = cov(s,t) d(s)d(t) 5/49
6 alapfogalmak autokovariancia függvény c(k) = cov(x t, X t+k ), (k = 0, 1,...) autokorrelációs függvény (ACF) r(k) = c( k ) c(0) parciális autokorrelációs függvény (PACF) ρ(1) = r(1), ρ(2) = r(1) r 2 (1) 1 r 2 (1),..., ρ(k): X t és X t+k közötti parciális korrelációs együttható = úgy mennyire korrelálnak, ha kiszűrjük a köztes változók hatását. egy idősort autokorrelálatlannak (emlékezet nélkülinek) hívunk, ha r(1) = r(2) =... = 0 6/49
7 alapfogalmak Determinisztikus modell: az idősort alakító tényezők teljeskörűen számbavehetők, ezáltal az idősor alakulása időben tökéletes pontossággal feĺırható. A véletlen csak a gyakorlatban játszik szerepet. De a véletlen szerepe itt véget is ér, a későbbi időpontokra ennek már nincs hatása. dekompozíciós modellek: különböző, eltérő tartalmú komponensekre bontott idősor, additív vagy multiplikatív formában felépítve. additív modell X t = T t + C t + S t + u t, multiplikatív modell X t = T t C t S t u t, ahol T, C és S a trend, a ciklikus és a periodikus komponens, u pedig a véletlen folyamat. Sztochasztikus elemzés: a véletlen eltérés később is hatással van az idősor alakulására, azaz folyamatépítő szerepe van. 7/49
8 alapfogalmak trend : a hosszútávú tendenciát kifejező, a teljes időtartományon megmutatkozó hatás szezonalitás : rövidebb ismétlődő periódusokban jelentkező hatás ciklikusság : hosszabb, szabálytalanul ismétlődő ciklikus hatás hiba : zaj, 0/1 várható értékű, kis szórású 8/49
9 alapfogalmak - Példa Példa: legyen α R tetszőleges, és Xt D = αt + u t Xt S = α + Xt 1 S + u t, X0 S = 0, ahol u t N(0, σ). Ekkor E(X D t ) = αt és E(X S t ) = αt σ 2 (X D t ) = σ 2 és σ 2 (X S t ) = tσ 2 tehát a két idősor várható értékben ugyan azonos, de míg Yt D szórása állandó, addig Yt S szórása időben változó (azaz beépülnek a sokkok az idősorba). 9/49
10 alapfogalmak - Példa 10/49
11 alkalmazásai Előrejelzés Célunk, hogy a múltbeli lefolyás alapján a folyamat jövőbeli lefolyását szabályozott pontossággal megbecsüljük. 11/49
12 alkalmazásai 12/49
13 alkalmazásai Adatpótlás Ilyenkor az a feladat, hogy az idősor adott időléptékű realizációja alapján köztes időpontokban becsüljük meg a lehetséges értékeket. Például egy hiányzó hőmérsékleti adatot egy idősorban, vagy napi adatsorban a délelőtti (félnapi) adatokat. 13/49
14 alkalmazásai 14/49
15 alkalmazásai Folyamatszabályozás Ilyenkor a vizsgált idősor egy most éppen zajló gyártási folyamat adatait tartalmazza. Célunk, hogy kontrolláljuk a folyamatot, ellenőrizzük, hogy minden szabályosan történik, vagy be kell-e avatkoznunk 15/49
16 alkalmazásai 16/49
17 Az idősorelemzés legalapvetőbb fogalma - lényegében egy megkötést jelent az idősor valószínűségi struktúrájára nézve az idősor statisztikai kezelhetőségének érdekében. 17/49
18 Definíció Az (X t ) idősor erős értelemben stacionárius, ha minden véges dimenziós vetületének együttes eloszlása eltolásinvariáns. Azaz k 1 esetén t 1,..., t k indexhalmazra (X t1,..., X tk ) és (X t1+h,..., X tk +h) eloszlása megyezik bármely h R esetén. Túl sokat követel, a gyakorlatban túl kevés adat áll a rendelkezésre az ellenőrzéséhez. 18/49
19 Az (X t ) idősor gyenge értelemben stacionárius, ha első- és második momentuma eltolásinvariáns, azaz EX t = m minden t esetén, és Cov(X t, X s ) = γ(t s) bármely t, s pár esetén.nyilvánvaló, hogy gyengén stacionárius idősor esetén σ 2 (X t ) konstans minden t esetén. 19/49
20 20/49
21 Az idősor gra[u+fb01]kus vizsgálata (pl. trendet tartalmazó idősor nyilvánvalóan megsérti a gyenge stacionaritás várható értékének állandóságára vonatkozó feltételét) A korrelogram lecsengésének vizsgálata (stacioner idősorok esetén a korrelogram tipikusan lecsengő, míg nem-stacioner esetben ez nem teljesül) 21/49
22 Feladat. Legyen X t+1 = αx t + ε t, t N, ahol X 0 egy valószínűségi változó, ε t pedig i.i.d. sorozat 0 várható értékkel és konstans σ szórással. Milyen feltételek mellett lesz a folyamat stacionárius? Megoldás. Iterálva az egyenletet adódik, hogy X t+1 = αx t +ε t = α(αx t 1 +ε t 1 )+ε t =... = t α k ε t k +α k+1 X 0 k=0 Tehát EX t+1 = α t+1 EX 0, ami akkor lesz t-től független, ha vagy α = 1 vagy EX 0 = 0. Az α = 1 eset a véletlen bolyongás esete, ezzel most nem foglalkozunk. Tehát azt kell feltennünk, hogy EX 0 = 0, és ekkor EX t = 0 minden t esetén. Nem bizonyítjuk, de α < 1 is szükséges. Illetve ezen két feltétel elégséges is. 22/49
23 Feladatunk 1. Nem-stacionárius idősort alkalmas transzformációval stacionáriussá tenni: trendelemzés/szűrés - determinisztikus és sztochasztikus eset szezonalitás szűrés periodicitás szűrés 2. Stacionárius idősorok modellezése, becslése és előrejelzése Lineáris modellek: AR, MA, ARMA, ARIMA 23/49
24 Mozgó átlagolás: a trendet az eredeti idősor dinamikus átlagaként álĺıtjuk elő. Tegyük fel, hogy idősorunk T hosszú, és legyen k a mozgó ablak szélessége. Képezzük ekkor az X 1 = X X k k. X T k+1 = X T k X T k átlagokat. Az átlagolás hatására eltűnik mind a véletlen hatás, mind a szezonális ingadozás az adatsorból, a mozgó átlagok pedig a trend közeĺıtő értékeit adják. Ezeket az értékeket kivonva az eredeti idősorból a trendhatás megszűnik. 24/49
25 Analitikus trendszámítás: az idősor grafikonja alapján választjuk a trendfüggvény alakját, majd ennek ismeretlen paramétereit a legkisebb négyzetek módszerével becsüljük. Ezt már egyszer a regresszióanaĺızisnél vettük. 25/49
26 Modell - lineáris trend. X t = β 0 + β 1 t + u t, ahol u t a hibatag és szeretnénk úgy választani β 0, β 1 -et, hogy minimális legyen. Ekkor ˆβ 1 = ˆβ 0 = X ˆβ 1 t T (X t β 0 β 1 t) 2 t=1 T (Xt X )(t t) t=1 T t=1 (Xt X )2 T t=1 (t t)2 26/49
27 Ugyanúgy: be tudjuk vezetni a determinációs együtthatót lineárisra visszavezethető trendfüggvényeket vizsgálni magasabb rendű polinomokat, más függvényeket vizsgálni 27/49
28 Sztochasztikus trend szűrése: Ebben az esetben az előző módszerek már nem működnek. Új trükk: differenciázás művelete, mely egy új, transzformált idősort képez az eredeti idősor t-edik és (t 1)-edik elemének különbségeként. Például, ha az idősorunk Y S t = α + Y S t 1 + X t, Y 0 = 0 alakú, ahol X t maga stacionárius folyamat, akkor Y t = Yt S Yt 1 S a differenciázott folyamat, mely már stacionárius lesz. 28/49
29 Sztochasztikus lineáris trend szűrésére jó, de másfajta trendfüggvényt nem tud kiszűrni az adatokból. Magasabbrendű trendfüggvények kezelésére a többszöri differenciázás művelete lesz a megoldás. Definíció. Egy idősort d-ed rendben integrált idősornak nevezünk, ha d-ed rendű differenciázottja már stacionárius idősor. Jele: I(d). 29/49
30 Tegyük fel, hogy idősorunkban trendhatás már nem érvényesül.ekkor a modellünk Y ij = Y + d j + X ij alakú, ahol X ij stacionárius véletlen hatás, d j a szezonális komponens,és Y = 1 n m Y ij nm i=1 j=1 ahol n a periódusok száma (pl. évek), m pedig az ezen belüli szakaszok (pl. hónapok, negyedévek) száma. A véletlen hatás kiküszöbölése érdekében szezononként átlagolunk: Y j = n i=1 Y ij Ekkor Y j = Y + d j, azaz a szezonális eltérés (szezonális index) becslése nem más, mint az Y j Y különbség. 30/49
31 vizsgálat 31/49
32 vizsgálat lineáris trendfüggvény: 174, t, azaz decemberében az értékesített sör mennyisége 174,256 hl volt, folyamatosan csökkent 556 hl-rel. pl: januári szezonalitás 63, 679 hl. 32/49
33 Ciklikusság Ciklikusság is kiszűrhető, de ennek a matematikai hátteréről bővebben nem beszélek. 33/49
34 Hipotézisvizsgálatok Amint megvagyunk a trend, szezonalitás és ciklikusság kiszűrésével, ellenőriznünk kell, hogy dekompozíciós modellünk jól magyaráz-e, azaz a maradéktag e t elemei azonos eloszlású, teljesen függetlenek-e. Erre több hasonló módszer létezik: Váltakozásmódszer Csúcsmódszer Előjelmódszer 34/49
35 Hipotézisvizsgálatok Váltakozásmódszer Definiáljuk δ t, mint 0 1 függvényt a t = 1, 2,..., T 1 értékekre a következőképp: δ t = 1 e t+1 > e t, és legyen u T = T t=1 δ t. Megmutatható, hogy ha e t -k azonos eloszlásúak és teljesen függetlenek, akkor E(u T ) = 1 2 (T 1) és σ 2 (u T ) = 1 12 (T + 1), valamint u T standardizáltja elég gyorsan tart a standard normálishoz. Ezzel tesztelünk. Legyen H 0 : u T = 1 2 (T 1). A szokásos módon adott szignifikanciaszinten tudunk dönteni H 0 -ról, melynek elfogadása esetén nem érdemes további trendet keresnünk. Csúcsmódszer és az előjelmódszer hasonló statisztikákkal működik. 35/49
36 - exponenciális szűrés A simító eljárások a sztochasztikus modellezésnél egyszerűbb, áttekinthetőbb modelleket álĺıtanak fel. A determinisztikus modellezésnél jobban figyelembe veszik az idősor véletlen jellegét, belső összefüggéseit. Egyfajta közbenső pontosságú és komplexitású modell-családot alkotnak. Ez a modell-család onnan kapta a nevét, hogy az idősor t-edik elemét a múltbeli elemek exponenciálisan csökkenő súlyokkal vett lineáris kombinációjával becsüli. Egyszeres simítás esetén (α (0, 1)): t ˆX t = α(1 α) i X t i + (1 α) t X 0 i=1 36/49
37 - AR(p) Definíció 1. Az (ε t ), t N v.v-sorozatot fehérzajnak nevezzük, ha Eε t = 0, σ 2 (ε t ) ugyanaz t-re, és Cov(ε t, ε s ) = 0, ha t s. Definíció 2. Az (X t ), t N v.v-sorozatot AR(p)-nek nevezzük, ha léteznek olyan α 1, α 2,..., α p számok, hogy minden t-re X t + α 1 X t α p X t p = ε t, ahol ε t fehérzaj. AR=autoregresszív 37/49
38 - AR(2) 38/49
39 - MA(q) Definíció 3. Az (X t ), t N v.v-sorozatot MA(q)-nek nevezzük, ha léteznek olyan β 0, β 1,..., β q számok, hogy minden t-re X t = β 0 ε t β q ε t q, ahol ε i fehérzaj. MA=moving averages 39/49
40 40/49
41 - ARIMA Definíció 4. Az (X t ), t N v.v-sorozatot ARMA(p, q)-nak nevezzük, ha létezik olyan Y t AR(p) és Z t MA(q), hogy X t = Y t + Z t. Definíció 5. Az (X t ), t N v.v-sorozatot ARIMA(p, s, q)-nak nevezzük, az s-edrendű differenciázottja ARMA(p, q). Raktárkészletet nem határozzák meg egyetlen időszak beszerzései és eladásai, ezek csupán a raktárkészlet változásait határozzák meg. 41/49
42 - ARIMA - Példák X t = e t + θe t 1 42/49
43 - ARIMA - Példák X t = e t + θe t 1 43/49
44 - ARIMA - Példák X t = e t φx t 1 44/49
45 - ARIMA - Példák X t = e t φx t 1 45/49
46 Hipotézisvizsgálatok A modellépítés után ún. Ljung - Box teszttel ellenőrizhetjük, hogy modellünk mennyire releváns. H 0 : a hibatagok teljesen független, azonos eloszlásúak (ρ(1) =... = ρ(k) = 0) Próbastatisztika. Q = n (n + 2) K k=1 ρ(k) ˆ 2 n k, ahol n = n s, ha ARIMA(p,s,q)-val közeĺıtettünk. H 0 teljesülése esetén χ 2 K eloszlást követ. 46/49
47 Példa 47/49
48 Példa 48/49
49 Folyt. köv. 49/49
7-8-9. előadás Idősorok elemzése
Idősorok elemzése 7-8-9. előadás 2015. október 19-26. és november 2. Idősor fogalma sokasági szemlélet: elméleti idősor - valószínűségi változók egy indexelt {Y t, t T } családja, avagy időtől függő véletlen
Autoregresszív és mozgóátlag folyamatok. Géczi-Papp Renáta
Autoregresszív és mozgóátlag folyamatok Géczi-Papp Renáta Autoregresszív folyamat Az Y t diszkrét paraméterű sztochasztikus folyamatok k-ad rendű autoregresszív folyamatnak nevezzük, ha Y t = α 1 Y t 1
Autoregresszív és mozgóátlag folyamatok
Géczi-Papp Renáta Autoregresszív és mozgóátlag folyamatok Autoregresszív folyamat Az Y t diszkrét paraméterű sztochasztikus folyamatok k-ad rendű autoregresszív folyamatnak nevezzük, ha Y t = α 1 Y t 1
Diagnosztika és előrejelzés
2018. november 28. A diagnosztika feladata A modelldiagnosztika alapfeladatai: A modellillesztés jóságának vizsgálata (idősoros adatok esetén, a regressziónál már tanultuk), a reziduumok fehérzaj voltának
STATISZTIKA. Mit nevezünk idősornak? Az idősorok elemzésének módszertana. Az idősorelemzés célja. Determinisztikus idősorelemzés
Mit nevezünk idősornak? STATISZTIKA 10. Előadás Idősorok analízise Egyenlő időközökben végzett megfigyelések A sorrend kötött, y 1, y 2 y t y N N= időpontok száma Minden időponthoz egy adat, reprodukálhatatlanság
Idősorok elemzése november 14. Spektrálelemzés, DF és ADF tesztek. Idősorok elemzése
Spektrálelemzés, DF és ADF tesztek 2017. november 14. SPEKTRÁL-ELEMZÉS Példa - BKV villamosenergia-terhelési görbéje Figure: BKV villamosenergia-terhelési görbéje, negyedóránkénti mérések (2 hét adatai,
Az idősorok összetevői Trendszámítás Szezonalitás Prognosztika ZH
Idősorok Idősor Statisztikai szempontból: az egyes időpontokhoz rendelt valószínűségi változók összessége. Speciális sztochasztikus kapcsolat; a magyarázóváltozó az idő Determinisztikus idősorelemzés esetén
2013 ŐSZ. 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét!
GAZDASÁGSTATISZTIKA KIDOLGOZOTT ELMÉLETI KÉRDÉSEK A 3. ZH-HOZ 2013 ŐSZ Elméleti kérdések összegzése 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét! 2. Mutassa be az
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,
Exponenciális kisimítás. Üzleti tervezés statisztikai alapjai
Exponenciális kisimítás Üzleti tervezés statisztikai alapjai Múlt-Jelen-Jövő kapcsolat Egyensúlyi helyzet Teljes konfliktus Részleges konfliktus: 0 < α < 1, folytatódik a múlt, de nem változatlanul módosítás:
Valószínűségi változók. Várható érték és szórás
Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:
Továbblépés. Általános, lineáris modell. Példák. Jellemzık. Matematikai statisztika 12. elıadás,
Matematikai statisztika. elıadás, 9.5.. Továbblépés Ha nem fogadható el a reziduálisok korrelálatlansága: Lehetnek fel nem tárt periódusok De más kapcsolat is fennmaradhat az egymáshoz közeli megfigyelések
Szezonális ingadozás. (Stacionárius idősoroknál, ahol nem beszélhetünk trendről, csak a véletlen hatást kell kiszűrni. Ezzel nem foglalkozunk)
Szezonalitás Szezonális ingadozás Rendszeresen ismétlődő, azonos hullámhosszú és szabályos amplitúdóú, többnyire rövid távú ingadozásokat tekintük. Vizsgálatukkor a dekompozíciós modellekből a trend és
Többváltozós lineáris regressziós modell feltételeinek
Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p
DIFFERENCIAEGYENLETEK
DIFFERENCIAEGYENLETEK Példa: elsőrendű állandó e.h. lineáris differenciaegyenlet Ennek megoldása: Kezdeti feltétellel: Kezdeti feltétel nélkül ha 1 és a végtelen összeg (abszolút) konvergens: / 1 Minden
x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:
Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Valószínűségi változó általános fogalma: A : R leképezést valószínűségi változónak nevezzük, ha : ( ) x, x R, x rögzített esetén esemény.
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus
e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma:
Normális eloszlás ξ valószínűségi változó normális eloszlású. ξ N ( µ, σ 2) Paraméterei: µ: várható érték, σ 2 : szórásnégyzet (µ tetszőleges, σ 2 tetszőleges pozitív valós szám) Normális eloszlás sűrűségfüggvénye:
Statisztikai következtetések Nemlineáris regresszió Feladatok Vége
[GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell
Statisztika 3. Dr Gősi Zsuzsanna Egyetemi adjunktus Koncentráció mérése Koncentráció általában a jelenségek tömörülését, összpontosulását értjük. Koncentráció meglétéről gyorsan tájékozódhatunk, ha sokaságot
Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1
Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában
Többváltozós lineáris regressziós modell feltételeinek tesztelése I.
Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Kvantitatív statisztikai módszerek Petrovics Petra Többváltozós lineáris regressziós
Idősorok elemzése előadás. Előadó: Dr. Balogh Péter
Idősorok elemzése előadás Előadó: Dr. Balogh Péter Idősorok elemzése A társadalmi - gazdasági jelenségek időbeli alakulásának törvénszerűségeit kell vizsgálni a változás, a fejlődés tendenciáját. Az idősorokban
Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió
SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás
5. előadás - Regressziószámítás
5. előadás - Regressziószámítás 2016. október 3. 5. előadás 1 / 18 Kétváltozós eset A modell: Y i = α + βx i + u i, i = 1,..., T, ahol X i független u i -től minden i esetén, (u i ) pedig i.i.d. sorozat
Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision
Valószínűségszámítás összefoglaló
Statisztikai módszerek BMEGEVGAT Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk
Valószínűségszámítás 8. feladatsor 2015. november 26. 1. Bizonyítsuk be, hogy az alábbi folyamatok mindegyike martingál. a S n, Sn 2 n, Y n = t n 1+ 1 t 2 Sn, t Fn = σ S 1,..., S n, 0 < t < 1 rögzített,
Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem
agy számok törvényei Statisztikai mintavétel Várható érték becslése Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem A mérés mint statisztikai mintavétel A méréssel az eloszlásfüggvénnyel
Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.
Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza
A sztochasztikus idősorelemzés alapjai
A sztochasztikus idősorelemzés alapjai Ferenci Tamás BCE, Statisztika Tanszék tamas.ferenci@medstat.hu 2013. november 29. 2 Tartalomjegyzék 1. Az idősorelemzés fogalma, megközelítései 5 1.1. Az idősor
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,
Termelés- és szolgáltatásmenedzsment
Termelés- és szolgáltatásmenedzsment egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Termelés- és szolgáltatásmenedzsment 13. Előrejelzési módszerek 14. Az előrejelzési modellek felépítése
GVMST22GNC Statisztika II.
GVMST22GNC Statisztika II. 4. előadás: 9. Kétváltozós korreláció- és regressziószámítás Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Korrelációszámítás
Statisztika elméleti összefoglaló
1 Statisztika elméleti összefoglaló Tel.: 0/453-91-78 1. Tartalomjegyzék 1. Tartalomjegyzék.... Becsléselmélet... 3 3. Intervallumbecslések... 5 4. Hipotézisvizsgálat... 8 5. Regresszió-számítás... 11
GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június
GAZDASÁGSTATISZTIKA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén, az ELTE Közgazdaságtudományi Tanszék, az MTA Közgazdaságtudományi
biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás
Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani
Abszolút folytonos valószín ségi változó (4. el adás)
Abszolút folytonos valószín ségi változó (4. el adás) Deníció (Abszolút folytonosság és s r ségfüggvény) Az X valószín ségi változó abszolút folytonos, ha van olyan f : R R függvény, melyre P(X t) = t
Diverzifikáció Markowitz-modell MAD modell CAPM modell 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 11. Előadás Portfólió probléma Portfólió probléma Portfólió probléma Adott részvények (kötvények,tevékenységek,
Készítette: Fegyverneki Sándor
VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y
Statisztika II előadáslapok. 2003/4. tanév, II. félév
Statisztika II előadáslapok 3/4 tanév, II félév BECSLÉS ÉS HIPOTÉZISVIZSGÁLAT Egyik konzervgyár vágott zöldbabot exportál A szabvány szerint az üvegek nettó töltősúlyának az átlaga 3 g, a szórása 5 g Az
(Independence, dependence, random variables)
Két valószínűségi változó együttes vizsgálata Feltételes eloszlások Két diszkrét változó együttes eloszlása a lehetséges értékpárok és a hozzájuk tartozó valószínűségek (táblázat) Példa: Egy urna 3 fehér,
VIZSGADOLGOZAT. I. PÉLDÁK (60 pont)
VIZSGADOLGOZAT (100 pont) A megoldások csak szöveges válaszokkal teljes értékűek! I. PÉLDÁK (60 pont) 1. példa (13 pont) Az egyik budapesti könyvtárban az olvasókból vett 400 elemű minta alapján a következőket
Dr. Kalló Noémi. Termelés- és szolgáltatásmenedzsment. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék. Dr.
Termelés- és szolgáltatásmenedzsment egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Termelés- és szolgáltatásmenedzsment 13. Ismertesse a legfontosabb előrejelzési módszereket és azok gyakorlati
1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása
HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat
Matematikai statisztikai elemzések 7.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematikai statisztikai elemzések 7. MSTE7 modul Bevezetés az idősorelemzésbe SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői
GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet
GVMST22GNC Statisztika II. 3. előadás: 8. Hipotézisvizsgálat Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Hipotézisvizsgálat v becslés Becslés Ismeretlen paraméter Közeĺıtő
c adatpontok és az ismeretlen pont közötti kovariancia vektora
1. MELLÉKLET: Alkalmazott jelölések A mintaterület kiterjedése, területe c adatpontok és az ismeretlen pont közötti kovariancia vektora C(0) reziduális komponens varianciája C R (h) C R Cov{} d( u, X )
Markov-láncok stacionárius eloszlása
Markov-láncok stacionárius eloszlása Adatbányászat és Keresés Csoport, MTA SZTAKI dms.sztaki.hu Kiss Tamás 2013. április 11. Tartalom Markov láncok definíciója, jellemzése Visszatérési idők Stacionárius
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen
A maximum likelihood becslésről
A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának
Idősorok elemzése. Salánki Ágnes
Idősorok elemzése Salánki Ágnes salanki.agnes@gmail.com 2012.04.13. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék 1 Idősorok analízise Alapfogalmak Komponenselemzés
Hipotéziselmélet - paraméteres próbák. eloszlások. Matematikai statisztika Gazdaságinformatikus MSc szeptember 10. 1/58
u- t- Matematikai statisztika Gazdaságinformatikus MSc 2. előadás 2018. szeptember 10. 1/58 u- t- 2/58 eloszlás eloszlás m várható értékkel, σ szórással N(m, σ) Sűrűségfüggvénye: f (x) = 1 e (x m)2 2σ
Adatok statisztikai értékelésének főbb lehetőségei
Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció
3. fejezet. Lineáris folyamatok Zaj folyamatok. 1. Az ε(t) folyamat független érték zaj, ha a várható értéke 0 és
18 3. fejezet Lineáris folyamatok 3.1. Zaj folyamatok 1. Az ε(t) folyamat független érték zaj, ha a várható értéke 0 és ε(t)-k független, azonos eloszlású valószín ségi változók. 2. Az ε(t) folyamat fehér
4/24/12. Regresszióanalízis. Legkisebb négyzetek elve. Regresszióanalízis
1. feladat Regresszióanalízis. Legkisebb négyzetek elve 2. feladat Az iskola egy évfolyamába tartozó diákok átlagéletkora 15,8 év, standard deviációja 0,6 év. A 625 fős évfolyamból hány diák fiatalabb
A mérési eredmény megadása
A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a véletlenszerű
Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév
Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév A pirossal írt anyagrészeket nem fogom közvetlenül számon kérni a vizsgán, azok háttérismeretként,
4. Az A és B események egymást kizáró eseményeknek vagy idegen (diszjunkt)eseményeknek nevezzük, ha AB=O
1. Mit nevezünk elemi eseménynek és eseménytérnek? A kísérlet lehetséges kimeneteleit elemi eseményeknek nevezzük. Az adott kísélethez tartozó elemi események halmazát eseménytérnek nevezzük, jele: X 2.
Elméleti összefoglaló a Valószín ségszámítás kurzushoz
Elméleti összefoglaló a Valószín ségszámítás kurzushoz Véletlen kísérletek, események valószín sége Deníció. Egy véletlen kísérlet lehetséges eredményeit kimeneteleknek nevezzük. A kísérlet kimeneteleinek
BIOMATEMATIKA ELŐADÁS
BIOMATEMATIKA ELŐADÁS 9. Együttes eloszlás, kovarianca, nevezetes eloszlások Debreceni Egyetem, 2015 Dr. Bérczes Attila, Bertók Csanád A diasor tartalma 1 Bevezetés, definíciók Együttes eloszlás Függetlenség
Matematikai geodéziai számítások 6.
Matematikai geodéziai számítások 6. Lineáris regresszió számítás elektronikus távmérőkre Dr. Bácsatyai, László Matematikai geodéziai számítások 6.: Lineáris regresszió számítás elektronikus távmérőkre
Gazdasági matematika II. vizsgadolgozat megoldása, június 10
Gazdasági matematika II. vizsgadolgozat megoldása, 204. június 0 A dolgozatírásnál íróeszközön kívül más segédeszköz nem használható. A dolgozat időtartama: 90 perc. Ha a dolgozat első részéből szerzett
Korreláció és lineáris regresszió
Korreláció és lineáris regresszió Két folytonos változó közötti összefüggés vizsgálata Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi Fizika és Statisztika I. előadás 2016.11.02.
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.22. Valószínűségi változó Véletlentől függő számértékeket (értékek sokasága) felvevő változókat valószínűségi változóknak nevezzük(jelölés: ξ, η, x). (pl. x =
Elméleti összefoglaló a Sztochasztika alapjai kurzushoz
Elméleti összefoglaló a Sztochasztika alapjai kurzushoz 1. dolgozat Véletlen kísérletek, események valószín sége Deníció. Egy véletlen kísérlet lehetséges eredményeit kimeneteleknek nevezzük. A kísérlet
Matematikai geodéziai számítások 6.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr. Bácsatyai László Matematikai geodéziai számítások 6. MGS6 modul Lineáris regresszió számítás elektronikus távmérőkre SZÉKESFEHÉRVÁR 2010 Jelen szellemi
Nemparaméteres próbák
Nemparaméteres próbák Budapesti Mőszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Mőegyetem rkp. 3. D ép. 334. Tel: 463-16-80 Fax: 463-30-91 http://www.vizgep.bme.hu
A többváltozós lineáris regresszió 1.
2018. szeptember 17. Lakásár adatbázis - részlet eredmény- és magyarázó jellegű változók Cél: egy eredményváltozó alakulásának jellemzése a magyarázó változók segítségével Legegyszerűbb eset - kétváltozós
Statisztika I. 12. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 1. előadás Előadó: Dr. Ertsey Imre Regresszió analízis A korrelációs együttható megmutatja a kapcsolat irányát és szorosságát. A kapcsolat vizsgálata során a gyakorlatban ennél messzebb
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.
A Statisztika alapjai
A Statisztika alapjai BME A3c Magyar Róbert 2016.05.12. Mi az a Statisztika? A statisztika a valóság számszerű információinak megfigyelésére, összegzésére, elemzésére és modellezésére irányuló gyakorlati
VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok
VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER 2004. október 15. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják
y ij = µ + α i + e ij
Elmélet STATISZTIKA 3. Előadás Variancia-analízis Lineáris modellek A magyarázat a függő változó teljes heterogenitásának két részre bontását jelenti. A teljes heterogenitás egyik része az, amelynek okai
Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )
Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:
Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok
STATISZTIKA 1. Előadás Hipotézisvizsgálatok Tematika 1. Hipotézis vizsgálatok 2. t-próbák 3. Variancia-analízis 4. A variancia-analízis validálása, erőfüggvény 5. Korreláció számítás 6. Kétváltozós lineáris
Biomatematika 2 Orvosi biometria
Biomatematika 2 Orvosi biometria 2017.02.13. Populáció és minta jellemző adatai Hibaszámítás Valószínűség 1 Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza)
Idősoros elemzés minta
Idősoros elemzés minta Ferenci Tamás, tamas.ferenci@medstat.hu A felhasznált adatbázisról Elemzésemhez a francia frank árfolyamának 1986.01.03. és 1993.12.31. közötti értékeit használtam fel, mely idősorban
Bevezetés a hipotézisvizsgálatokba
Bevezetés a hipotézisvizsgálatokba Nullhipotézis: pl. az átlag egy adott µ becslése : M ( x -µ ) = 0 Alternatív hipotézis: : M ( x -µ ) 0 Szignifikancia: - teljes bizonyosság csak teljes enumerációra -
Least Squares becslés
Least Squares becslés A négyzetes hibafüggvény: i d i ( ) φx i A négyzetes hibafüggvény mellett a minimumot biztosító megoldás W=( d LS becslés A gradiens számítása és nullává tétele eredményeképp A megoldás
Fraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk
Fraktálok Kontrakciók Affin leképezések Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék TARTALOMJEGYZÉK 1 of 71 A Lipschitz tulajdonság ÁTMÉRŐ, PONT ÉS HALMAZ TÁVOLSÁGA Definíció Az (S, ρ) metrikus tér
Matematikai statisztika c. tárgy oktatásának célja és tematikája
Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:
Gyakorlat: Sztochasztikus idősor-elemzés alapfogalmai II. Egységgyök-folyamatok és tesztek. Dr. Dombi Ákos
Gyakorlat: Sztochasztikus idősor-elemzés alapfogalmai II. Egységgyök-folyamatok és tesztek Dr. Dombi Ákos (dombi@finance.bme.hu) ESETTANULMÁNY 1. Feladat: OTP részvény átlagárfolyamának (Y=AtlAr) stacionaritás
Normák, kondíciószám
Normák, kondíciószám A fizika numerikus módszerei I. mf1n1a06- mf1n2a06 Csabai István Lineáris egyenletrendszerek Nagyon sok probléma közvetlenül lineáris egyenletrendszer megoldásával kezelhetı Sok numerikus
Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.
Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,
Több valószínűségi változó együttes eloszlása, korreláció
Tartalomjegzék Előszó... 6 I. Valószínűségelméleti és matematikai statisztikai alapok... 8 1. A szükséges valószínűségelméleti és matematikai statisztikai alapismeretek összefoglalása... 8 1.1. Alapfogalmak...
Funkcionálanalízis. n=1. n=1. x n y n. n=1
Funkcionálanalízis 2011/12 tavaszi félév - 2. előadás 1.4. Lényeges alap-terek, példák Sorozat terek (Folytatás.) C: konvergens sorozatok tere. A tér pontjai sorozatok: x = (x n ). Ezen belül C 0 a nullsorozatok
STATISZTIKA. Egymintás u-próba. H 0 : Kefir zsírtartalma 3% Próbafüggvény, alfa=0,05. Egymintás u-próba vagy z-próba
Egymintás u-próba STATISZTIKA 2. Előadás Középérték-összehasonlító tesztek Tesztelhetjük, hogy a valószínűségi változónk értéke megegyezik-e egy konkrét értékkel. Megválaszthatjuk a konfidencia intervallum
Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.
Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,
Differenciálegyenletek. Vajda István március 4.
Analízis előadások Vajda István 2009. március 4. Függvényegyenletek Definíció: Az olyan egyenleteket, amelyekben a meghatározandó ismeretlen függvény, függvényegyenletnek nevezzük. Függvényegyenletek Definíció:
Vizsgafeladatok. 1. feladat (3+8+6=17 pont) (2014. január 7.)
Vizsgafeladatok 1. feladat (3+8+6=17 pont) (2014. január 7.) Az elmúlt négy év a 2010. I. és a 2013. IV. negyedéve között csapadék mennyiségének alakulásáról az alábbiakat ismerjük: Időszak Csapadék mennyiéség
Bevezetés az ökonometriába
Az idősorelemzés alapjai Gánics Gergely 1 gergely.ganics@freemail.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Tizenegyedik előadas Tartalom Stacionaritás kérdései 1 Stacionaritás kérdései 2 3 (Nem)stacionaritás
Statisztikai módszerek a skálafüggetlen hálózatok
Statisztikai módszerek a skálafüggetlen hálózatok vizsgálatára Gyenge Ádám1 1 Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Számítástudományi és Információelméleti
Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27
Vektorterek Wettl Ferenc 2015. február 17. Wettl Ferenc Vektorterek 2015. február 17. 1 / 27 Tartalom 1 Egyenletrendszerek 2 Algebrai struktúrák 3 Vektortér 4 Bázis, dimenzió 5 Valós mátrixok és egyenletrendszerek
Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév
Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév 1. A várható érték és a szórás transzformációja 1. Ha egy valószínűségi változóhoz hozzáadunk ötöt, mínusz ötöt, egy b konstanst,
Diszkrét matematika II., 8. előadás. Vektorterek
1 Diszkrét matematika II., 8. előadás Vektorterek Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2007.??? Vektorterek Legyen T egy test (pl. R, Q, F p ). Definíció.
ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 3. MÉRÉSFELDOLGOZÁS
ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 3. MÉRÉSFELDOLGOZÁS Dr. Soumelidis Alexandros 2018.10.04. BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT TANANYAG Mérés-feldolgozás
Gyakorló feladatok I.
Gyakorló feladatok I. a Matematika Aa Vektorüggvények tárgyhoz (D D5 kurzusok) Összeállította: Szili László Ajánlott irodalmak:. G.B. Thomas, M.D. Weir, J. Hass, F.R. Giordano: Thomas-féle KALKULUS I.,
Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása
Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból