előadás Idősorok elemzése

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "7-8-9. előadás Idősorok elemzése"

Átírás

1 Idősorok elemzése előadás október és november 2.

2 Idősor fogalma sokasági szemlélet: elméleti idősor - valószínűségi változók egy indexelt {Y t, t T } családja, avagy időtől függő véletlen mennyiség, azaz egy sztochasztikus folyamat. Pl.: napi záróárfolyamok a tőzsdén, éves gabonatermés, stb. T az időpontok halmaza, ami lehet diszkrét vagy folytonos. minta szemlélet: empírikus idősor egyváltozós idősor: skalárértékű valószínűségi változóból származik többváltozós idősor: vektorértékű valószínűségi változóból származik

3 Idősorelemzési megközelítések Két nagy csoport: időtartománybeli- és a frekvenciatartománybeli elemzések. Determinisztikus elemzés: az idősort alakító tényezők teljeskörűen számbavehetők, ezáltal az idősor alakulása időben tökéletes pontossággal felírható. A véletlen csak a gyakorlatban játszik szerepet. De a véletlen szerepe itt véget is ér, a későbbi időpontokra ennek már nincs hatása. = dekompozíciós modellek: különböző, eltérő tartalmú komponensekre bontott idősor, additív vagy multiplikatív formában felépítve. Pl.: additív esetben Y t = R t + C t + S t + u t, ahol R, C és S a trend, a ciklikus és a periodikus komponens, u pedig a véletlen folyamat. Sztochasztikus elemzés: a véletlen eltérés később is hatással van az idősor alakulására, azaz folyamatépítő szerepe van.

4 Példa 3 x 104 Time domain 160 Frequency domain Amplitude Magnitude (db) Samples Normalized Frequency ( π rad/sample) Figure : Időtartomány vs. frekvencia-tartomány, MOL adatok

5 Példa Példa: legyen α R tetszőleges, és Yt D Yt S ahol u N(0, σ). Ekkor = αt + u t = α + Y S t 1 + u t, Y S 0 = 0 E(Y D t ) =αt és E(Y S t ) = αt D 2 (Y D t ) =σ 2 és D 2 (Y S t ) = tσ 2 tehát a két idősor várható értékben ugyan azonos, de míg Yt D szórása állandó, addig Yt S szórása időben változó (azaz beépülnek a sokkok az idősorba).

6 Példa Y S Y D values time Figure : Determinisztikus és sztochasztikus trend

7 Példa 3 x Figure : MOL napi záróárfolyamok 2005 és 2008 között

8 Stacionaritás Az idősorelemzés legalapvetőbb fogalma - lényegében egy megkötést jelent az idősor valószínűségi struktúrájára nézve az idősor statisztikai kezelhetőségének érdekében. Cél: adott minta alapján az ismeretlen határeloszlás rekonstruálása, azaz az egyes időpontokhoz tartozó valószínűségi változók együttes eloszlását kellene megadnunk. Lehetetlen feladat a gyakorlatban, hiszen csak egyetlen mintánk van! Ezért megkötéseket teszünk az együttes eloszlásra a kezelhetőség érdekében. = STACIONARITÁS FOGALMA

9 Stacionaritás Definíció 1. Az (Y t ) idősor erős értelemben stacionárius, ha minden véges dimenziós vetületének együttes eloszlása eltolásinvariáns. Azaz k 1 esetén t 1,..., t k indexhalmazra (Y t1,..., Y tk ) és (Y t1 +h,..., Y tk +h) eloszlása megyezik bármely h R esetén. Túl sokat követel, a gyakorlatban ellenőrizhetetlen ez a feltétel, így gyengítünk rajta. Definíció 2. Az (Y t ) idősor gyenge értelemben stacionárius, ha első- és második momentuma eltolásinvariáns, azaz EY t = m minden t esetén, és γ(t, s) =Cov(Y t, Y s ) = γ(t s) bármely t, s pár esetén. Nyilvánvaló, hogy gyengén stacionárius idősor esetén D 2 (Y t ) = σ 2 konstans minden t esetén.

10 Példa Figure : Példa stacionárius idősorra az y t = 0, 5y t 1 + 0, 7y t 2 + u t, u t N(0, 3) stacionárius specifikációból

11 Példa Legyen Y t+1 = αy t + ε t, t N, ahol Y 0 = ξ valószínűségi változó, (ε t ) pedig i.i.d. sorozat 0 várható értékkel és konstans σ szórással. Milyen feltételek mellett lesz a folyamat stacionárius? Megoldás: Iterálva az egyenletet adódik, hogy Y t+1 = αy t +ε t = α(αy t 1 +ε t 1 )+ε t =... = Tehát EY t+1 = α t+1 EY 0, t α k ε t k +α t+1 Y 0. k=0 ami akkor lesz t-től független, ha vagy α = 1 vagy EY 0 = 0. Az α = 1 eset a véletlen bolyongás esete, ezzel most nem foglalkozunk. Tehát azt kell feltennünk, hogy EY 0 = 0, és ekkor EY t = 0 minden t esetén.

12 Példa Másrészt és t EYt+1 2 = σ 2 α 2k + α 2t+2 EY0 2 EY 2 t k=0 t 1 = σ 2 α 2k + α 2t EY0 2. k=0 Így az EYt+1 2 = EY t 2 egyenlőség minden t esetén akkor áll fenn, ha α 2t EY 2 0 = α 2t+2 EY σ 2 α 2t, azaz EY0 2 = σ2 1 α 2 feltéve, hogy α < 1. Azaz EY t = 0 és α < 1 szükséges a gyenge stacionaritáshoz, és ekkor EY 2 t = σ2 1 α 2 t T.

13 Példa Vajon elegendő is ez a feltétel a gyenge stacionaritáshoz? Ehhez a γ k = Cov(Y t, Y t+k ) autokovariancia függvény eltolásinvarianciáját kell vizsgálnunk. Mivel így k Y t+k Y t = (α k Y t + α i ε t+k i )Y t, i=1 E(Y t+k Y t ) =α k EY 2 t + E[Y t (ε t+k 1 + αε t+k α k+1 ε t )] = = α k σ 2 1 α 2, ami valóban csak k függvénye, tehát a feltétel elegendő is.

14 Stacionaritási jellemzők becslése a mintából Csak sokasági szemléletben becsülhetők, a mintából történő becslésük reménytelen, ezért fontos a stacionaritás kérdése! várható érték becslése: a szokásos tapasztalati mintaátlag (ˆµ) szórásnégyzet becslése: a szokásos tapasztalati szórásnégyzet ( ˆσ 2 ) kovariancia becslése: az autokovariancia függvény tapasztalati úton való becslésével, azaz Korreláció becslése: a ˆγ k = 1 T k (y t ˆµ)(y t+k ˆµ) T k t=1 ˆρ k = ˆγ k ˆσ 2 tapasztalati autokorreláció (ACF) függvény segítségével.

15 ACF - Korrelogram 1 0,5 0, , Figure : Példa stacionárius idősor autokorreláció függvényére

16 Parciális autokorreláció függvény - PACF Parciális korreláció: két változó közötti kapcsolat erőssége akkor, ha közöttük a megadott változókon keresztül terjedő hatásokat kiszűrjük. A két változónk most két különböző időpont, a kiszűrt változók pedig a két időpont közötti időpontok (mint v.v-k) Figure : Példa stacionárius idősor parciális autokorreláció függvényére

17 ACF szignifikanciájának tesztelése A statisztikai próba hipotétisei: H 0 : ρ k = 0 és H 1 : ρ k 0 Könnyen ellenőrizhető, hogy a normális eloszlással való közelítés megfelelő lesz, így a próbastatisztika Elfogadási tartomány: ˆρ k 1/ T N(0, 1). [ z 1 α/2, z 1 α/2 ] A korrelogram ábrájáról könnyen leolvasható, hogy a kapott autokorrelációs értékek ebbe a sávba esnek-e, vagy sem.

18 ACF szignifikanciájának tesztelése Az előző módszer persze csak egyenkénti vizsgálatra jó! Ha egyszerre tekintjük az összes együttható szignifikanciáját, akkor az elsőfajú hibák kumulálódása miatt erejét veszti a teszt! Helyette tehát összetettebb tesztet kell alkalmaznunk. A statisztikai próba hipotézisei: H 0 : ρ 1 =... = ρ k = 0 és H 1 : i : ρ i 0 A legnépszerűbb statisztikai teszt a fenti nullhipotézis ellenőrzésére az ún. Ljung-Box teszt, melynek tesztstatisztikája és eloszlása: Q = T (T + 2) k i=1 ˆρ i 2 T i χ 2 k

19 MOL ACF Figure : A MOL idősor autokorreláció függvénye

20 Stacionaritás ellenőrzése az idősor grafikus vizsgálata (pl. trendet tartalmazó idősor nyilvánvalóan megsérti a gyenge stacionaritás várható értékének állandóságára vonatkozó feltételét) a korrelogram lecsengésének vizsgálata (stacioner idősorok esetén a korrelogram tipikusan lecsengő, míg nem-stacioner esetben ez nem teljesül) statisztikai tesztek a stacionaritás vizsgálatára (Dickey-Fuller és augmented Dickey-Fuller tesztek) - ezen tesztek tárgyalásával később fogunk foglalkozni

21 Két fő feladat Tehát két fő feladatunk van: 1 Nem-stacionárius idősort alkalmas transzformációval stacionáriussá tenni trend szűrés - determinisztikus és sztochasztikus eset szezonalitás szűrés periodicitás szűrés 2 Stacionárius idősorok modellezése, becslése és előrejelzése Lineáris modellek: AR, MA és ARMA Nemlineáris modellek: ARCH és GARCH

22 Determinisztikus trend szűrése - 1. módszer Mozgó átlagolás: a trendet az eredeti idősor dinamikus átlagaként állítjuk elő. Tegyük fel, hogy idősorunk T hosszú, és legyen k a mozgó ablak szélessége. Képezzük ekkor az Ȳ 1 = Y Y k k Ȳ 2 = Y Y k+1 k. Ȳ T k+1 = Y T k Y T k átlagokat. Az átlagolás hatására eltűnik mind a véletlen hatás, mind a szezonális ingadozás az adatsorból, a mozgó átlagok pedig a trend közelítő értékeit adják. Ezeket az értékeket kivonva az eredeti idősorból a trendhatás megszűnik.

23 Determinisztikus trend szűrése - 2. módszer Analitikus trendszámítás: az idősor grafikonja alapján választjuk a trendfüggvény alakját, majd ennek ismeretlen paramétereit a legkisebb négyzetek módszerével becsüljük. Néhány speciális eset: lineáris trend: ŷ t = b 0 + b 1 t alakban keresendő (egyenletes fejlődés) polinomiális trend: ŷ t = b 0 + b 1 t b n t n alakban keresendő (változó intenzitású fejlődés) exponenciális trend: ŷ t = b 0 b1 t alakban keresendő (relatív változás állandóságának feltételezése esetén) hiperbolikus trend: ŷ t = 1 b 0 +b 1 t alakban keresendő (halálozási arányszámok) logisztikus trend: ŷ t = 1+be alakban keresendő at (népesség-növekedés, gyártási adatsorok) k Összességében a determinisztikus trendet tartalmazó idősorokat trendstacioner folyamatoknak nevezzük.

24 Sztochasztikus trend szűrése Ebben az esetben az előző módszerek már nem működnek. Új trükk: differenciázás művelete, mely egy új, transzformált idősort képez az eredeti idősor t-edik és (t 1)-edik elemének különbségeként. Például, ha az idősorunk Y (S) t = α + Y (S) t 1 + X t, Y 0 = 0 alakú, ahol X t maga stacionárius folyamat, akkor Y t = Y (S) t Y (S) t 1 a differenciázott folyamat, mely már stacionárius lesz.

25 Sztochasztikus trend szűrése Mire jó a differenciázás? Sztochasztikus lineáris trend szűrésére jó, de másfajta trendfüggvényt nem tud kiszűrni az adatokból. Magasabbrendű trendfüggvények kezelésére a többszöri differenciázás művelete lesz a megoldás. Definíció 3. Egy idősort d-ed rendben integrált idősornak nevezünk, ha d-ed rendű differenciázottja már stacionárius idősor. Jele: I(d). Természetesen mint mindent, úgy ezt is, a korábban már említett statisztikai tesztek (DF és ADF tesztek) segítségével igazolni kell. Ezekről majd később lesz szó.

26 Példa Figure : Villamosenergia adatok

27 Szezonális hullámzások szűrése Tegyük fel, hogy idősorunkban trendhatás már nem érvényesül. Ekkor a modellünk Y ij = Ȳ + d j + X ij alakú, ahol X ij stacionárius véletlen hatás, d j a szezonális komponens, és Ȳ = 1 n m Y ij, nm i=1 j=1 ahol n a periódusok száma (pl. évek), m pedig az ezen belüli szakaszok (pl. hónapok, negyedévek) száma. A véletlen hatás kiküszöbölése érdekében szezononként átlagolunk: Ȳ j = 1 n Y ij. n i=1 Ekkor Ȳ j = Ȳ + ˆd j, azaz a szezonális eltérés becslése nem más, mint az Ȳ j Ȳ különbség.

28 LINEÁRIS MODELLEK

29 Lineáris modellek - AR(p) Jelölje z az időeltolás operátorát, azaz zx t = x t 1 bármely t esetén. Ekkor z j x t = x t j, és bármely A(s) = p i=0 α is i polinomra p A(z)x t = α i x t i Tegyük fel mostantól, hogy a folyamat mindig 0 várható értékű. Definíció 4. Az (ε t ), t Z v.v-sorozatot fehérzajnak nevezzük, ha E(ε t ) = 0, D 2 (ε t ) = σ 2 t, és Cov(ε t, ε s ) = 0, ha t s. Definíció 5. i=0 Az (X t, t Z) folyamat AR(p) folyamat, ha előáll X t + α 1 X t α p X t p = ε t, t Z (1) alakban, ahol α 1,..., α p R paraméterek, (ε t ) pedig fehérzaj folyamat.

30 Lineáris modellek - AR(p) Könnyen látható, hogy az A(s) = 1 + α 1 s α p s p jelöléssel a folyamat az A(z)X t = ε t kompakt alakban is felírható, ahol z az időeltolás operátora. Tétel 1. Az (X t, t Z) AR(p) folyamat stacionárius, ha az A(s) polinom gyökei az egységkörön kívülre esnek. Mivel a folyamat 0 várható értékű, így az autokovarianciák kiszámításához csak a Cov(X t k, X t ) = E(X t k X t ) = γ k értékeket kell meghatároznunk k 0 esetén, hiszen γ szimmetrikus, azaz γ k = γ k.

31 Lineáris modellek - AR(p) A folyamatot meghatározó (1) egyenletet megszorozva X t k -val, majd várható értéket véve az alábbi, ún. Yule-Walker egyenletrendszer adódik: k = 0 : γ 0 + α 1 γ α p γ p = σ 2 k = 1 : γ 1 + α 1 γ α p γ p 1 = 0. k = p : γ p + α 1 γ p α p γ 0 = 0 k > p : γ k = α 1 γ k 1... α p γ k p Az egyenletrendszer pontosan akkor oldható meg, ha az A(s) polinomnak nincs 1 abszolútértékű gyöke.

32 Lineáris modellek - AR(p) Series values time ACF values lags Figure : AR(2) folyamat és autokorreláció függvénye

33 Lineáris modellek - MA(q) Fehérzajból egyszerűen kikeverhető folyamatok. Definíció 6. Az (X t, t Z) folyamat MA(q) folyamat, ha előáll X t = β 0 ε t + β 1 ε t β q ε t q, t Z (2) alakban, ahol β 0,..., β q R paraméterek, (ε t ) pedig fehérzaj folyamat. Erős és gyenge értelemben is stacionárius a folyamat, továbbá q k = 0 : γ 0 = 0 < k q : γ k = k > q : γ k = 0 βj 2 j=0 q k j=0 β j β j+k

34 Lineáris modellek - MA(q) Azt kaptuk tehát, hogy a (β 0,..., β q ) paraméterek egyértelműen meghatározzák a (γ 0,..., γ q ) sorozatot. Igaz-e ez fordítva is? Tekintsük ehhez a következő két folyamatot: X t = ε t + βε t 1, t Z, Y t = βε t + ε t 1, t Z. Ekkor nyilván β 1 esetén a két folyamat különbözik, viszont autokovariancia függvényükre ugyanaz a γ 0 = 1 + β 2, γ 1 = β, γ k = 0, k 2 előállítás adódik, tehát az állítás megfordítása már nem igaz.

35 Lineáris modellek - MA(q) Viszgáljuk még egy kicsit az előbbi két folyamatot. Visszafejtve a rekurziókat adódik, hogy egyrészt ε t = X t βε t 1 = X t β(x t 1 βε t 2 ) =... = másrészt ε t = 1 β (Y t ε t 1 ) = 1 β ( 1) k β k X t k, k=0 ( Y t 1 ) β (Y t 1 ε t 2 ) =... = = ( 1) k 1 β k+1 Y t k. k=0 Mindkét esetben akkor létezik az előállítás, ha a jobb oldali sor konvergens. Ez az első esetben a β < 1 feltételt, míg a második esetben a β > 1 feltételt jelenti.

36 Lineáris modellek - MA(q) Azaz β értékétől függ, hogy melyik folyamatból tudjuk a fehérzajt rekonstruálni. Ez a megfigyelés vezet el a mozgóátlag folyamatok egy fontos tulajdonságához. Definíció 7. Az (X t, t Z) MA(q) folyamat invertálható, ha a B(s) = β 0 + β 1 s β q s q polinom gyökei az egységkörön kívülre esnek. Tétel 2 (Wold). Ha valamely (γ 0,..., γ q ) sorozathoz létezik olyan (β 0,..., β q ) sorozat, melyre az autokovariancia egyenletek teljesülnek, akkor létezik olyan MA(q) folyamat, melynek éppen ez a (γ 0,..., γ q ) sorozat az autokovariancia függvénye. Továbbá ha valamely (X t ) folyamatra γ k = 0 k q esetén, akkor (X t ) MA(q) folyamat.

37 Lineáris modellek - MA(q) series values time ACF values lags Figure : MA(3) folyamat és autokorreláció függvénye

38 Lineáris szűrők Definíció 8. Legyen adott egy ψ j, j Z sorozat, melyre j Z ψ j <. Az Y t = Y t (ψ, X) = j= ψ j X t j folyamatot az X t gyengén stacionárius folyamatból a ψ j -k által adott lineáris szűrővel definiált folyamatnak nevezzük. Ha ψ j = 0, j < 0, akkor a szűrő kauzális, avagy fizikailag megvalósítható. Pl.: az MA( ) folyamatok éppen azok, melyek előállnak fehérzajra alkalmazott szűrő kimeneteként.

39 Lineáris szűrők - Példa Tekintsük az alábbi X t+1 = αx t + ε t+1 AR(1) folyamatot, ahol (ε t ) fehérzaj, α < 1. Láthatóan azaz formálisan felírhatjuk, hogy X t = 1 1 αz ε t = (1 αz)x t = ε t, α i z i ε t = α i ε t i i=0 i=0 a geometriai sor összegképletét felhasználva, vagyis megkaptuk az MA( ) előállítást. Ezt a módszert általánosabb folyamatokra is kiterjesztjük, mellyel a mérnöki gyakorlat egyik legfontosabb stacionárius folyamatosztályához jutunk.

40 Lineáris modellek - ARMA(p, q) Definíció 9. Az (X t, t Z) folyamat ARMA(p, q) folyamat, ha előáll X t = α 1 X t α p X t p + β 0 ε t β q ε t q, t Z (3) alakban, ahol α 1,..., α p, β 0,..., β q R paraméterek, (ε t ) pedig fehérzaj folyamat. Könnyen látható, hogy az polinomok segítségével az A(s) = 1 α 1 s... α p s p B(s) = β 0 + β 1 s β q s q kompakt forma adódik. A(z)X t = B(z)ε t

41 Lineáris modellek - ARMA(p, q) A fenti előállítás persze ebben a formában nem egyértelmű, hiszen mindkét oldalra alkalmazva egy alkalmas polinomot, ugyanannak a folyamatnak egy másik előállítását kapjuk. Ennek elkerülése végett feltesszük, hogy A és B relatív prímek a valós együtthatós polinomok számtestje felett. Tétel 3. 1 Ha A(z) gyökei az egységkörön kívülre esnek, akkor létezik a (3) egyenletnek eleget tevő (X t ) folyamat olyan, melynek van kauzális MA( ) előállítása. Az ilyen ARMA folyamatokat stabil folyamatoknak nevezzük. 2 Ha B(z) gyökei az egységkörön kívülre esnek, akkor (X t ) invertálható és létezik AR( ) előállítása.

42 Lineáris modellek - ARMA(p, q) Az autokovarianciák előállításához legyenek c k = E(X t X t k ) és d k = E(X t ε t k ). Ekkor d k = 0, ha k < 0, hiszen X t nem függ a jövőtől, továbbá k = 0 : d 0 = β 0 k = 1 : d 1 = α 1 d 0 + β 1. k = p : d p = α 1 d p α p d 0 + β p és k = 0 : k = 1 : c 0 = α 1 c α p c p + β 0 d β q d q c 1 = α 1 c α p c p 1 + β 1 d β q d q 1. k = q : c q = α 1 c q α p c q p + β q d 0 k > q : c k = α 1 c k α p c k p

43 Lineáris modellek - ARMA(p, q) Series values time ACF values lags Figure : ARMA(2, 3) folyamat és autokorreláció függvénye

Alapfogalmak. Trendelemzés Szezonalitás Modellek. Matematikai statisztika Gazdaságinformatikus MSc október 29. 1/49

Alapfogalmak. Trendelemzés Szezonalitás Modellek. Matematikai statisztika Gazdaságinformatikus MSc október 29. 1/49 Matematikai statisztika Gazdaságinformatikus MSc 8. előadás 2018. október 29. 1/49 alapfogalmak Elméleti idősor - valószínűségi változók egy indexelt {X t, t T } családja, avagy időtől függő véletlen mennyiség.

Részletesebben

Idősorok elemzése november 14. Spektrálelemzés, DF és ADF tesztek. Idősorok elemzése

Idősorok elemzése november 14. Spektrálelemzés, DF és ADF tesztek. Idősorok elemzése Spektrálelemzés, DF és ADF tesztek 2017. november 14. SPEKTRÁL-ELEMZÉS Példa - BKV villamosenergia-terhelési görbéje Figure: BKV villamosenergia-terhelési görbéje, negyedóránkénti mérések (2 hét adatai,

Részletesebben

Autoregresszív és mozgóátlag folyamatok. Géczi-Papp Renáta

Autoregresszív és mozgóátlag folyamatok. Géczi-Papp Renáta Autoregresszív és mozgóátlag folyamatok Géczi-Papp Renáta Autoregresszív folyamat Az Y t diszkrét paraméterű sztochasztikus folyamatok k-ad rendű autoregresszív folyamatnak nevezzük, ha Y t = α 1 Y t 1

Részletesebben

Autoregresszív és mozgóátlag folyamatok

Autoregresszív és mozgóátlag folyamatok Géczi-Papp Renáta Autoregresszív és mozgóátlag folyamatok Autoregresszív folyamat Az Y t diszkrét paraméterű sztochasztikus folyamatok k-ad rendű autoregresszív folyamatnak nevezzük, ha Y t = α 1 Y t 1

Részletesebben

STATISZTIKA. Mit nevezünk idősornak? Az idősorok elemzésének módszertana. Az idősorelemzés célja. Determinisztikus idősorelemzés

STATISZTIKA. Mit nevezünk idősornak? Az idősorok elemzésének módszertana. Az idősorelemzés célja. Determinisztikus idősorelemzés Mit nevezünk idősornak? STATISZTIKA 10. Előadás Idősorok analízise Egyenlő időközökben végzett megfigyelések A sorrend kötött, y 1, y 2 y t y N N= időpontok száma Minden időponthoz egy adat, reprodukálhatatlanság

Részletesebben

DIFFERENCIAEGYENLETEK

DIFFERENCIAEGYENLETEK DIFFERENCIAEGYENLETEK Példa: elsőrendű állandó e.h. lineáris differenciaegyenlet Ennek megoldása: Kezdeti feltétellel: Kezdeti feltétel nélkül ha 1 és a végtelen összeg (abszolút) konvergens: / 1 Minden

Részletesebben

Az idősorok összetevői Trendszámítás Szezonalitás Prognosztika ZH

Az idősorok összetevői Trendszámítás Szezonalitás Prognosztika ZH Idősorok Idősor Statisztikai szempontból: az egyes időpontokhoz rendelt valószínűségi változók összessége. Speciális sztochasztikus kapcsolat; a magyarázóváltozó az idő Determinisztikus idősorelemzés esetén

Részletesebben

Diagnosztika és előrejelzés

Diagnosztika és előrejelzés 2018. november 28. A diagnosztika feladata A modelldiagnosztika alapfeladatai: A modellillesztés jóságának vizsgálata (idősoros adatok esetén, a regressziónál már tanultuk), a reziduumok fehérzaj voltának

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

A sztochasztikus idősorelemzés alapjai

A sztochasztikus idősorelemzés alapjai A sztochasztikus idősorelemzés alapjai Ferenci Tamás BCE, Statisztika Tanszék tamas.ferenci@medstat.hu 2013. november 29. 2 Tartalomjegyzék 1. Az idősorelemzés fogalma, megközelítései 5 1.1. Az idősor

Részletesebben

Bevezetés az ökonometriába

Bevezetés az ökonometriába Az idősorelemzés alapjai Gánics Gergely 1 gergely.ganics@freemail.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Tizenegyedik előadas Tartalom Stacionaritás kérdései 1 Stacionaritás kérdései 2 3 (Nem)stacionaritás

Részletesebben

Exponenciális kisimítás. Üzleti tervezés statisztikai alapjai

Exponenciális kisimítás. Üzleti tervezés statisztikai alapjai Exponenciális kisimítás Üzleti tervezés statisztikai alapjai Múlt-Jelen-Jövő kapcsolat Egyensúlyi helyzet Teljes konfliktus Részleges konfliktus: 0 < α < 1, folytatódik a múlt, de nem változatlanul módosítás:

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus

Részletesebben

2013 ŐSZ. 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét!

2013 ŐSZ. 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét! GAZDASÁGSTATISZTIKA KIDOLGOZOTT ELMÉLETI KÉRDÉSEK A 3. ZH-HOZ 2013 ŐSZ Elméleti kérdések összegzése 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét! 2. Mutassa be az

Részletesebben

Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok

Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok STATISZTIKA 1. Előadás Hipotézisvizsgálatok Tematika 1. Hipotézis vizsgálatok 2. t-próbák 3. Variancia-analízis 4. A variancia-analízis validálása, erőfüggvény 5. Korreláció számítás 6. Kétváltozós lineáris

Részletesebben

Továbblépés. Általános, lineáris modell. Példák. Jellemzık. Matematikai statisztika 12. elıadás,

Továbblépés. Általános, lineáris modell. Példák. Jellemzık. Matematikai statisztika 12. elıadás, Matematikai statisztika. elıadás, 9.5.. Továbblépés Ha nem fogadható el a reziduálisok korrelálatlansága: Lehetnek fel nem tárt periódusok De más kapcsolat is fennmaradhat az egymáshoz közeli megfigyelések

Részletesebben

GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június

GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június GAZDASÁGSTATISZTIKA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén, az ELTE Közgazdaságtudományi Tanszék, az MTA Közgazdaságtudományi

Részletesebben

Idősoros elemzés minta

Idősoros elemzés minta Idősoros elemzés minta Ferenci Tamás, tamas.ferenci@medstat.hu A felhasznált adatbázisról Elemzésemhez a francia frank árfolyamának 1986.01.03. és 1993.12.31. közötti értékeit használtam fel, mely idősorban

Részletesebben

Statisztika 3. Dr Gősi Zsuzsanna Egyetemi adjunktus Koncentráció mérése Koncentráció általában a jelenségek tömörülését, összpontosulását értjük. Koncentráció meglétéről gyorsan tájékozódhatunk, ha sokaságot

Részletesebben

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége [GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell

Részletesebben

x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:

x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Valószínűségi változó általános fogalma: A : R leképezést valószínűségi változónak nevezzük, ha : ( ) x, x R, x rögzített esetén esemény.

Részletesebben

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus. Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza

Részletesebben

Többváltozós lineáris regressziós modell feltételeinek tesztelése I.

Többváltozós lineáris regressziós modell feltételeinek tesztelése I. Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Kvantitatív statisztikai módszerek Petrovics Petra Többváltozós lineáris regressziós

Részletesebben

Gauss-Seidel iteráció

Gauss-Seidel iteráció Közelítő és szimbolikus számítások 5. gyakorlat Iterációs módszerek: Jacobi és Gauss-Seidel iteráció Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 ITERÁCIÓS

Részletesebben

Matematikai statisztikai elemzések 7.

Matematikai statisztikai elemzések 7. Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematikai statisztikai elemzések 7. MSTE7 modul Bevezetés az idősorelemzésbe SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői

Részletesebben

Normák, kondíciószám

Normák, kondíciószám Normák, kondíciószám A fizika numerikus módszerei I. mf1n1a06- mf1n2a06 Csabai István Lineáris egyenletrendszerek Nagyon sok probléma közvetlenül lineáris egyenletrendszer megoldásával kezelhetı Sok numerikus

Részletesebben

Többváltozós lineáris regressziós modell feltételeinek

Többváltozós lineáris regressziós modell feltételeinek Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p

Részletesebben

Idősoros elemzés. Ferenci Tamás, ft604@hszk.bme.hu 2009. január 7.

Idősoros elemzés. Ferenci Tamás, ft604@hszk.bme.hu 2009. január 7. Idősoros elemzés Ferenci Tamás, ft604@hszk.bme.hu 2009. január 7. A felhasznált adatbázisról Elemzésemhez a tanszéki honlapon rendelkezésre bocsátott TimeSeries.xls idősoros adatgyűjtemény egyik idősorát,

Részletesebben

Szezonális ingadozás. (Stacionárius idősoroknál, ahol nem beszélhetünk trendről, csak a véletlen hatást kell kiszűrni. Ezzel nem foglalkozunk)

Szezonális ingadozás. (Stacionárius idősoroknál, ahol nem beszélhetünk trendről, csak a véletlen hatást kell kiszűrni. Ezzel nem foglalkozunk) Szezonalitás Szezonális ingadozás Rendszeresen ismétlődő, azonos hullámhosszú és szabályos amplitúdóú, többnyire rövid távú ingadozásokat tekintük. Vizsgálatukkor a dekompozíciós modellekből a trend és

Részletesebben

Valószínűségi változók. Várható érték és szórás

Valószínűségi változók. Várható érték és szórás Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :

Részletesebben

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja Folytonos rendszeregyenletek megoldása 1. Folytonos idejű (FI) rendszeregyenlet általános alakja A folytonos rendszeregyenletek megoldásakor olyan rendszerekkel foglalkozunk, amelyeknek egyetlen u = u(t)

Részletesebben

y ij = µ + α i + e ij

y ij = µ + α i + e ij Elmélet STATISZTIKA 3. Előadás Variancia-analízis Lineáris modellek A magyarázat a függő változó teljes heterogenitásának két részre bontását jelenti. A teljes heterogenitás egyik része az, amelynek okai

Részletesebben

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( ) Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:

Részletesebben

(Independence, dependence, random variables)

(Independence, dependence, random variables) Két valószínűségi változó együttes vizsgálata Feltételes eloszlások Két diszkrét változó együttes eloszlása a lehetséges értékpárok és a hozzájuk tartozó valószínűségek (táblázat) Példa: Egy urna 3 fehér,

Részletesebben

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás

Részletesebben

Idősorok elemzése előadás. Előadó: Dr. Balogh Péter

Idősorok elemzése előadás. Előadó: Dr. Balogh Péter Idősorok elemzése előadás Előadó: Dr. Balogh Péter Idősorok elemzése A társadalmi - gazdasági jelenségek időbeli alakulásának törvénszerűségeit kell vizsgálni a változás, a fejlődés tendenciáját. Az idősorokban

Részletesebben

előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás

előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás 13-14. előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás 2016. november 28. és december 5. 13-14. előadás 1 / 35 Bevezetés A diszkrét

Részletesebben

Dr. Kalló Noémi. Termelés- és szolgáltatásmenedzsment. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék. Dr.

Dr. Kalló Noémi. Termelés- és szolgáltatásmenedzsment. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék. Dr. Termelés- és szolgáltatásmenedzsment egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Termelés- és szolgáltatásmenedzsment 13. Ismertesse a legfontosabb előrejelzési módszereket és azok gyakorlati

Részletesebben

Hatványsorok, Fourier sorok

Hatványsorok, Fourier sorok a Matematika mérnököknek II. című tárgyhoz Hatványsorok, Fourier sorok Hatványsorok, Taylor sorok Közismert, hogy ha 1 < x < 1 akkor 1 + x + x 2 + x 3 + = n=0 x n = 1 1 x. Az egyenlet baloldalán álló kifejezés

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.

Részletesebben

Funkcionálanalízis. n=1. n=1. x n y n. n=1

Funkcionálanalízis. n=1. n=1. x n y n. n=1 Funkcionálanalízis 2011/12 tavaszi félév - 2. előadás 1.4. Lényeges alap-terek, példák Sorozat terek (Folytatás.) C: konvergens sorozatok tere. A tér pontjai sorozatok: x = (x n ). Ezen belül C 0 a nullsorozatok

Részletesebben

Biomatematika 2 Orvosi biometria

Biomatematika 2 Orvosi biometria Biomatematika 2 Orvosi biometria 2017.02.13. Populáció és minta jellemző adatai Hibaszámítás Valószínűség 1 Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza)

Részletesebben

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision

Részletesebben

Matematikai statisztika c. tárgy oktatásának célja és tematikája

Matematikai statisztika c. tárgy oktatásának célja és tematikája Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

15. LINEÁRIS EGYENLETRENDSZEREK

15. LINEÁRIS EGYENLETRENDSZEREK 15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

A maximum likelihood becslésről

A maximum likelihood becslésről A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának

Részletesebben

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma:

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma: Normális eloszlás ξ valószínűségi változó normális eloszlású. ξ N ( µ, σ 2) Paraméterei: µ: várható érték, σ 2 : szórásnégyzet (µ tetszőleges, σ 2 tetszőleges pozitív valós szám) Normális eloszlás sűrűségfüggvénye:

Részletesebben

5. előadás - Regressziószámítás

5. előadás - Regressziószámítás 5. előadás - Regressziószámítás 2016. október 3. 5. előadás 1 / 18 Kétváltozós eset A modell: Y i = α + βx i + u i, i = 1,..., T, ahol X i független u i -től minden i esetén, (u i ) pedig i.i.d. sorozat

Részletesebben

Hipotézis vizsgálatok

Hipotézis vizsgálatok Hipotézis vizsgálatok Hipotézisvizsgálat Hipotézis: az alapsokaság paramétereire vagy az alapsokaság eloszlására vonatkozó feltevés. Hipotézis ellenőrzés: az a statisztikai módszer, amelynek segítségével

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat

Részletesebben

12. előadás - Markov-láncok I.

12. előadás - Markov-láncok I. 12. előadás - Markov-láncok I. 2016. november 21. 12. előadás 1 / 15 Markov-lánc - definíció Az X n, n N valószínűségi változók sorozatát diszkrét idejű sztochasztikus folyamatnak nevezzük. Legyen S R

Részletesebben

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet GVMST22GNC Statisztika II. 3. előadás: 8. Hipotézisvizsgálat Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Hipotézisvizsgálat v becslés Becslés Ismeretlen paraméter Közeĺıtő

Részletesebben

Idősorok elemzése. Salánki Ágnes

Idősorok elemzése. Salánki Ágnes Idősorok elemzése Salánki Ágnes salanki.agnes@gmail.com 2012.04.13. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék 1 Idősorok analízise Alapfogalmak Komponenselemzés

Részletesebben

Adatok statisztikai értékelésének főbb lehetőségei

Adatok statisztikai értékelésének főbb lehetőségei Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció

Részletesebben

Differenciálegyenlet rendszerek

Differenciálegyenlet rendszerek Differenciálegyenlet rendszerek (A kezdeti érték probléma. Lineáris differenciálegyenlet rendszerek, magasabb rendű lineáris egyenletek.) Szili László: Modellek és algoritmusok ea+gyak jegyzet alapján

Részletesebben

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani

Részletesebben

Markov-láncok stacionárius eloszlása

Markov-láncok stacionárius eloszlása Markov-láncok stacionárius eloszlása Adatbányászat és Keresés Csoport, MTA SZTAKI dms.sztaki.hu Kiss Tamás 2013. április 11. Tartalom Markov láncok definíciója, jellemzése Visszatérési idők Stacionárius

Részletesebben

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER 2004. október 15. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják

Részletesebben

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,

Részletesebben

1.9. B - SPLINEOK B - SPLINEOK EGZISZTENCIÁJA. numerikus analízis ii. 34. [ a, b] - n legfeljebb n darab gyöke lehet. = r (m 1) n = r m + n 1

1.9. B - SPLINEOK B - SPLINEOK EGZISZTENCIÁJA. numerikus analízis ii. 34. [ a, b] - n legfeljebb n darab gyöke lehet. = r (m 1) n = r m + n 1 numerikus analízis ii 34 Ezért [ a, b] - n legfeljebb n darab gyöke lehet = r (m 1) n = r m + n 1 19 B - SPLINEOK VOLT: Ω n véges felosztás S n (Ω n ) véges dimenziós altér A bázis az úgynevezett egyoldalú

Részletesebben

Numerikus módszerek beugró kérdések

Numerikus módszerek beugró kérdések 1. Definiálja a gépi számok halmazát (a tanult modellnek megfelelően)! Adja meg a normalizált lebegőpontos szám alakját. (4 pont) Az alakú számot normalizált lebegőpontos számnak nevezik, ha Ahol,,,. Jelöl:

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.

Részletesebben

lineáris folyamatokkal

lineáris folyamatokkal Eötvös Loránd Tudományegyetem Természettudományi Kar Modellezés egy- és többdimenziós lineáris folyamatokkal Szakdolgozat Készítette: Zámbó Anita Matematika BSc, Matematikai elemző szakirány Témavezető:

Részletesebben

Elméleti összefoglaló a Valószín ségszámítás kurzushoz

Elméleti összefoglaló a Valószín ségszámítás kurzushoz Elméleti összefoglaló a Valószín ségszámítás kurzushoz Véletlen kísérletek, események valószín sége Deníció. Egy véletlen kísérlet lehetséges eredményeit kimeneteleknek nevezzük. A kísérlet kimeneteleinek

Részletesebben

Diverzifikáció Markowitz-modell MAD modell CAPM modell 2017/ Szegedi Tudományegyetem Informatikai Intézet

Diverzifikáció Markowitz-modell MAD modell CAPM modell 2017/ Szegedi Tudományegyetem Informatikai Intézet Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 11. Előadás Portfólió probléma Portfólió probléma Portfólió probléma Adott részvények (kötvények,tevékenységek,

Részletesebben

VIZSGADOLGOZAT. I. PÉLDÁK (60 pont)

VIZSGADOLGOZAT. I. PÉLDÁK (60 pont) VIZSGADOLGOZAT (100 pont) A megoldások csak szöveges válaszokkal teljes értékűek! I. PÉLDÁK (60 pont) 1. példa (13 pont) Az egyik budapesti könyvtárban az olvasókból vett 400 elemű minta alapján a következőket

Részletesebben

(Diszkrét idejű Markov-láncok állapotainak

(Diszkrét idejű Markov-láncok állapotainak (Diszkrét idejű Markov-láncok állapotainak osztályozása) March 21, 2019 Markov-láncok A Markov-láncok anaĺızise főként a folyamat lehetséges realizációi valószínűségeinek kiszámolásával foglalkozik. Ezekben

Részletesebben

GVMST22GNC Statisztika II.

GVMST22GNC Statisztika II. GVMST22GNC Statisztika II. 4. előadás: 9. Kétváltozós korreláció- és regressziószámítás Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Korrelációszámítás

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha

Részletesebben

Normális eloszlás tesztje

Normális eloszlás tesztje Valószínűség, pontbecslés, konfidenciaintervallum Normális eloszlás tesztje Kolmogorov-Szmirnov vagy Wilk-Shapiro próba. R-funkció: shapiro.test(vektor) balra ferde eloszlás jobbra ferde eloszlás balra

Részletesebben

Vektorterek. =a gyakorlatokon megoldásra ajánlott

Vektorterek. =a gyakorlatokon megoldásra ajánlott Vektorterek =a gyakorlatokon megoldásra ajánlott 40. Alteret alkotnak-e a valós R 5 vektortérben a megadott részhalmazok? Ha igen, akkor hány dimenziósak? (a) L = { (x 1, x 2, x 3, x 4, x 5 ) x 1 = x 5,

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA, MATEmATIkA II 3 III NUmERIkUS SOROk 1 Alapvető DEFInÍCIÓ ÉS TÉTELEk Végtelen sor Az (1) kifejezést végtelen sornak nevezzük Az számok a végtelen sor tagjai Az, sorozat az (1) végtelen sor

Részletesebben

Hipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás

Hipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás STATISZTIKA Hipotézis, sejtés 11. Előadás Hipotézisvizsgálatok, nem paraméteres próbák Tudományos hipotézis Nullhipotézis felállítása (H 0 ): Kétmintás hipotézisek Munkahipotézis (H a ) Nullhipotézis (H

Részletesebben

Differenciálegyenletek numerikus megoldása

Differenciálegyenletek numerikus megoldása a Matematika mérnököknek II. című tárgyhoz Differenciálegyenletek numerikus megoldása Fokozatos közeĺıtés módszere (1) (2) x (t) = f (t, x(t)), x I, x(ξ) = η. Az (1)-(2) kezdeti érték probléma ekvivalens

Részletesebben

Valószínűségszámítás összefoglaló

Valószínűségszámítás összefoglaló Statisztikai módszerek BMEGEVGAT Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,

Részletesebben

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem agy számok törvényei Statisztikai mintavétel Várható érték becslése Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem A mérés mint statisztikai mintavétel A méréssel az eloszlásfüggvénnyel

Részletesebben

6. Előadás. Megyesi László: Lineáris algebra, oldal. 6. előadás Bázis, dimenzió

6. Előadás. Megyesi László: Lineáris algebra, oldal. 6. előadás Bázis, dimenzió 6. Előadás Megyesi László: Lineáris algebra, 37. 41. oldal. Gondolkodnivalók Lineáris függetlenség 1. Gondolkodnivaló Legyen V valós számtest feletti vektortér. Igazolja, hogy ha a v 1, v 2,..., v n V

Részletesebben

3. Lineáris differenciálegyenletek

3. Lineáris differenciálegyenletek 3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra

Részletesebben

Több valószínűségi változó együttes eloszlása, korreláció

Több valószínűségi változó együttes eloszlása, korreláció Tartalomjegzék Előszó... 6 I. Valószínűségelméleti és matematikai statisztikai alapok... 8 1. A szükséges valószínűségelméleti és matematikai statisztikai alapismeretek összefoglalása... 8 1.1. Alapfogalmak...

Részletesebben

Statisztika elméleti összefoglaló

Statisztika elméleti összefoglaló 1 Statisztika elméleti összefoglaló Tel.: 0/453-91-78 1. Tartalomjegyzék 1. Tartalomjegyzék.... Becsléselmélet... 3 3. Intervallumbecslések... 5 4. Hipotézisvizsgálat... 8 5. Regresszió-számítás... 11

Részletesebben

A Statisztika alapjai

A Statisztika alapjai A Statisztika alapjai BME A3c Magyar Róbert 2016.05.12. Mi az a Statisztika? A statisztika a valóság számszerű információinak megfigyelésére, összegzésére, elemzésére és modellezésére irányuló gyakorlati

Részletesebben

Korreláció és lineáris regresszió

Korreláció és lineáris regresszió Korreláció és lineáris regresszió Két folytonos változó közötti összefüggés vizsgálata Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi Fizika és Statisztika I. előadás 2016.11.02.

Részletesebben

3. fejezet. Lineáris folyamatok Zaj folyamatok. 1. Az ε(t) folyamat független érték zaj, ha a várható értéke 0 és

3. fejezet. Lineáris folyamatok Zaj folyamatok. 1. Az ε(t) folyamat független érték zaj, ha a várható értéke 0 és 18 3. fejezet Lineáris folyamatok 3.1. Zaj folyamatok 1. Az ε(t) folyamat független érték zaj, ha a várható értéke 0 és ε(t)-k független, azonos eloszlású valószín ségi változók. 2. Az ε(t) folyamat fehér

Részletesebben

Vizsgafeladatok. 1. feladat (3+8+6=17 pont) (2014. január 7.)

Vizsgafeladatok. 1. feladat (3+8+6=17 pont) (2014. január 7.) Vizsgafeladatok 1. feladat (3+8+6=17 pont) (2014. január 7.) Az elmúlt négy év a 2010. I. és a 2013. IV. negyedéve között csapadék mennyiségének alakulásáról az alábbiakat ismerjük: Időszak Csapadék mennyiéség

Részletesebben

Fraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk

Fraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk Fraktálok Kontrakciók Affin leképezések Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék TARTALOMJEGYZÉK 1 of 71 A Lipschitz tulajdonság ÁTMÉRŐ, PONT ÉS HALMAZ TÁVOLSÁGA Definíció Az (S, ρ) metrikus tér

Részletesebben

Statisztika I. 13. előadás Idősorok elemzése. Előadó: Dr. Ertsey Imre

Statisztika I. 13. előadás Idősorok elemzése. Előadó: Dr. Ertsey Imre Statisztika I. 13. előadás Idősorok elemzése Előadó: Dr. Ertse Imre A társadalmi - gazdasági jelenségek időbeli alakulásának törvénszerűségeit kell vizsgálni a változás, a fejlődés tendenciáját. Ezek a

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. 2018. november 23. 1. Diszkrét matematika 2. 9. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. november 23. Diszkrét matematika

Részletesebben

Elméleti összefoglaló a Sztochasztika alapjai kurzushoz

Elméleti összefoglaló a Sztochasztika alapjai kurzushoz Elméleti összefoglaló a Sztochasztika alapjai kurzushoz 1. dolgozat Véletlen kísérletek, események valószín sége Deníció. Egy véletlen kísérlet lehetséges eredményeit kimeneteleknek nevezzük. A kísérlet

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27

Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27 Vektorterek Wettl Ferenc 2015. február 17. Wettl Ferenc Vektorterek 2015. február 17. 1 / 27 Tartalom 1 Egyenletrendszerek 2 Algebrai struktúrák 3 Vektortér 4 Bázis, dimenzió 5 Valós mátrixok és egyenletrendszerek

Részletesebben

Jelek és rendszerek MEMO_03. Pletl. Belépő jelek. Jelek deriváltja MEMO_03

Jelek és rendszerek MEMO_03. Pletl. Belépő jelek. Jelek deriváltja MEMO_03 Jelek és rendszerek MEMO_03 Belépő jelek Jelek deriváltja MEMO_03 1 Jelek és rendszerek MEMO_03 8.ábra. MEMO_03 2 Jelek és rendszerek MEMO_03 9.ábra. MEMO_03 3 Ha a jelet méréssel kapjuk, akkor a jel következő

Részletesebben