Autoregresszív és mozgóátlag folyamatok. Géczi-Papp Renáta

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Autoregresszív és mozgóátlag folyamatok. Géczi-Papp Renáta"

Átírás

1 Autoregresszív és mozgóátlag folyamatok Géczi-Papp Renáta

2 Autoregresszív folyamat Az Y t diszkrét paraméterű sztochasztikus folyamatok k-ad rendű autoregresszív folyamatnak nevezzük, ha Y t = α 1 Y t α k Y t k + ε t Ahol: α i konstansok Y t fehér zaj (várható értéke 0, szórása σ y ) 2

3 Autoregresszív folyamat Alapkifejezés nagyon hasonló a többváltozós regresszióhoz regresszív Saját késleltetett értékeivel magyarázzuk az Y változásait auto Az AR folyamatokkal általában azokat az idősorokat modellezhetjük, amelyekről feltehetjük, hogy jelen idejű értékeik alakulásában a közvetlen múlton kívül a véletlen hiba is beleszól (Prof. Dr. Besenyei Lajos, Domán Csaba (2011)) 3

4 Forrás: 4

5 Mozgóátlag-folyamat Az Y t diszkrét paraméterű sztochasztikus folyamatot k-ad rendű mozgóátlag folyamatnak nevezzük, ha Y t = β 0 U t + β 1 U t β k U t k Ahol β k konstansok U t diszkrét fehér zaj (várható érték 0, szórás σ u ) 5

6 Mozgóátlag-folyamat MA folyamat várható értéke és autokovarianciája t -től független konstansok Gyenge stacionárius folyamat 6

7 Forrás: 7

8 AR és MA folyamatok A két típusú folyamatok ki lehet egymásból fejezni Mindkét esetben különböző rendeket különböztethetünk meg AR(p) MA(q) Ahol p és q a folyamat rendjét jelenti 8

9 ARMA modellek Autoregresszív és Mozgóátlag modellek (autoregressive and moving-average) Sztochasztikus idősorelemzés legegyszerűbb és leginkább elterjedt módszere AR és MA folyamatokat egyesít Paraméterek megállapítása általában empirikus idősor alapján 9

10 ARMA (p,q) Y t = α 1 Y t 1 + α 2 Y t α p Y t p + ε t + β 1 ε t β q ε t q, Ahol ε t fehér zaj p és q az autoregresszív és mozgóátlag folyamat rendje 10

11 ARMA(p,q) Az AR tag arra utal, hogy Y t részben saját, véges múltjának lineáris regressziójaként írható fel A MA tag arra utal, hogy a lineáris regresszió hibatagja az εt fehérzaj mozgó átlaga, vagyis a jelen és a véges múlt lineáris kombinációja (Prof. Dr. Besenyei Lajos, Domán Csaba (2011)) 11

12 ARMA (p,q) modellezés Forrás: Kehl, Sipos: Excel 12 parancsfájlok felhasználása a statisztikai elemzésekben (2011)

13 13 Forrás: Kehl, Sipos: Excel parancsfájlok felhasználása a statisztikai elemzésekben (2011)

14 14 Forrás: Kehl, Sipos: Excel parancsfájlok felhasználása a statisztikai elemzésekben (2011)

15 Forrás: 15

16 Identifikáció Paraméterek becslésére több lehetőség is, a feltételektől függően (pl. momentumok módszere, OLS, stb.) Autokorrelációs és parciális autokorrelációs fv. árulkodó Folyamat ACF PACF AR(p) 0 ha τ>p akkor =0 MA(q) ha τ>q akkor =0 0 16

17 Takarékosság elve Principle of parsimony Mindig a legegyszerűbb modell kialakítására kell törekedni, vagyis azt a reprezentációt kell keresni, amely a legkevesebb paramétert tartalmazza 17

18 Modellválasztás p max és q max meghatározása (ökölszabály: ne legyen 3-nál nagyobb) Minden ARMA modell becslése Egy információs kritérium minimalizálása (takarékosság elve) Kiválasztott modell helyességének ellenőrzése Forrás: Rappai Gábor 18

19 Információs kritériumok 1. Előrejelzés végső hibája (final prediction error) 2. Akaike 3. Schwarz 4. Hannan - Quinn 19

20 ARIMA (p,d,q) Autoregresszív Integrált Mozgóátlag modell Legáltalánosabb, megengedi a stacionárius transzformációkat (differenciálás, logaritmizálás) p= autoregresszió rendje d= differenciák száma (nem szezonális különbségek) q= mozgóátlag rendje 20

21 Ismert ARIMA modellek ARIMA (p, d, q) ARIMA (0,1,0)=véletlen bolyongás ARIMA (1,1,0)=módosított elsőrendű autoregresszív modell ARIMA (0,1,1) nem állandó=egyszerű exponenciális simítás ARIMA (0,1,1)=állandó egyszerű exponenciális simítás a növekedés ARIMA (0,2,1) és (0,2,2) nem állandó=lineáris exponenciális simítás A vegyes modell - ARIMA (1,1,1) Forrás: (Prof. Dr. Besenyei Lajos, Domán Csaba (2011)) 21

22 Autokorreláció tesztelése 22 Forrás: Kehl, Sipos: Excel parancsfájlok felhasználása a statisztikai elemzésekben (2011)

23 Forrás: saját számítás, EViews programmal AR és MA rendjének meghatározása információs kritériumok segítségével 23

24 ARMA modell becslése Forrás: saját számítás, EViews programmal 24

25 Előrejelzés ARMA modellel 25 Forrás: saját számítás, EViews programmal

26 Köszönöm a figyelmet! 26

GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június

GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június GAZDASÁGSTATISZTIKA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén, az ELTE Közgazdaságtudományi Tanszék, az MTA Közgazdaságtudományi

Részletesebben

7-8-9. előadás Idősorok elemzése

7-8-9. előadás Idősorok elemzése Idősorok elemzése 7-8-9. előadás 2015. október 19-26. és november 2. Idősor fogalma sokasági szemlélet: elméleti idősor - valószínűségi változók egy indexelt {Y t, t T } családja, avagy időtől függő véletlen

Részletesebben

Többváltozós lineáris regressziós modell feltételeinek

Többváltozós lineáris regressziós modell feltételeinek Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p

Részletesebben

Idősoros elemzés minta

Idősoros elemzés minta Idősoros elemzés minta Ferenci Tamás, tamas.ferenci@medstat.hu A felhasznált adatbázisról Elemzésemhez a francia frank árfolyamának 1986.01.03. és 1993.12.31. közötti értékeit használtam fel, mely idősorban

Részletesebben

Idősoros elemzés. Ferenci Tamás, ft604@hszk.bme.hu 2009. január 7.

Idősoros elemzés. Ferenci Tamás, ft604@hszk.bme.hu 2009. január 7. Idősoros elemzés Ferenci Tamás, ft604@hszk.bme.hu 2009. január 7. A felhasznált adatbázisról Elemzésemhez a tanszéki honlapon rendelkezésre bocsátott TimeSeries.xls idősoros adatgyűjtemény egyik idősorát,

Részletesebben

A Lee-Carter módszer magyarországi

A Lee-Carter módszer magyarországi A Lee-Carter módszer magyarországi alkalmazása Baran Sándor, Gáll József, Ispány Márton, Pap Gyula Alkalmazott Matematika és Valószínűségszámítás Tanszék, Debreceni Egyetem, Informatikai Kar 1 Feladatok:

Részletesebben

Termelés- és szolgáltatásmenedzsment

Termelés- és szolgáltatásmenedzsment Termelés- és szolgáltatásmenedzsment egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Termelés- és szolgáltatásmenedzsment 13. Előrejelzési módszerek 14. Az előrejelzési modellek felépítése

Részletesebben

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás

Részletesebben

Szezonális kiigazítás az NFSZ regisztrált álláskeresők idősorain. Készítette: Multiráció Kft.

Szezonális kiigazítás az NFSZ regisztrált álláskeresők idősorain. Készítette: Multiráció Kft. az NFSZ regisztrált álláskeresők idősorain Készítette: Multiráció Kft. SZEZONÁLITÁS Többé kevésbe szabályos hullámzás figyelhető meg a regisztrált álláskeresők adatsoraiban. Oka: az időjárás hatásainak

Részletesebben

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége [GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell

Részletesebben

Idősorok elemzése előadás. Előadó: Dr. Balogh Péter

Idősorok elemzése előadás. Előadó: Dr. Balogh Péter Idősorok elemzése előadás Előadó: Dr. Balogh Péter Idősorok elemzése A társadalmi - gazdasági jelenségek időbeli alakulásának törvénszerűségeit kell vizsgálni a változás, a fejlődés tendenciáját. Az idősorokban

Részletesebben

Idősorok. Nagyméretű adathalmazok kezelése. Bartók Ferenc

Idősorok. Nagyméretű adathalmazok kezelése. Bartók Ferenc Idősorok Nagyméretű adathalmazok kezelése Bartók Ferenc 2014.03.31. Tartalom Bevezetés Modellezés Szegmentálás Anomáliák 2 Idősor Megfigyelések egy sorozata Tipikusan adott időközönkénti mérések Pl. naponta,

Részletesebben

Gyakorlat: Sztochasztikus idősor-elemzés alapfogalmai II. Egységgyök-folyamatok és tesztek. Dr. Dombi Ákos

Gyakorlat: Sztochasztikus idősor-elemzés alapfogalmai II. Egységgyök-folyamatok és tesztek. Dr. Dombi Ákos Gyakorlat: Sztochasztikus idősor-elemzés alapfogalmai II. Egységgyök-folyamatok és tesztek Dr. Dombi Ákos (dombi@finance.bme.hu) ESETTANULMÁNY 1. Feladat: OTP részvény átlagárfolyamának (Y=AtlAr) stacionaritás

Részletesebben

Egy fertőző gyermekbetegség alakulásának modellezése és elemzése

Egy fertőző gyermekbetegség alakulásának modellezése és elemzése Egy fertőző gyermekbetegség alakulásának modellezése és elemzése Tudományos Diákköri Konferencia Dolgozat Írta: Rózemberczki Benedek András Alkalmazott közgazdaságtan alapszak, 3. évfolyam Konzulens: Dr.

Részletesebben

Bevezetés az ökonometriába

Bevezetés az ökonometriába Az idősorelemzés alapjai Gánics Gergely 1 gergely.ganics@freemail.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Tizenegyedik előadas Tartalom Stacionaritás kérdései 1 Stacionaritás kérdései 2 3 (Nem)stacionaritás

Részletesebben

Dr. Kalló Noémi. Termelés- és szolgáltatásmenedzsment. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék. Dr.

Dr. Kalló Noémi. Termelés- és szolgáltatásmenedzsment. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék. Dr. Termelés- és szolgáltatásmenedzsment egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Termelés- és szolgáltatásmenedzsment 13. Ismertesse a legfontosabb előrejelzési módszereket és azok gyakorlati

Részletesebben

Az idősorok összetevői Trendszámítás Szezonalitás Prognosztika ZH

Az idősorok összetevői Trendszámítás Szezonalitás Prognosztika ZH Idősorok Idősor Statisztikai szempontból: az egyes időpontokhoz rendelt valószínűségi változók összessége. Speciális sztochasztikus kapcsolat; a magyarázóváltozó az idő Determinisztikus idősorelemzés esetén

Részletesebben

Idősorok elemzése. Salánki Ágnes

Idősorok elemzése. Salánki Ágnes Idősorok elemzése Salánki Ágnes salanki.agnes@gmail.com 2012.04.13. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék 1 Idősorok analízise Alapfogalmak Komponenselemzés

Részletesebben

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani

Részletesebben

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó. 2010. június

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó. 2010. június GAZDASÁGSTATISZTIKA GAZDASÁGSTATISZTIKA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi

Részletesebben

Osztályozás, regresszió. Nagyméretű adathalmazok kezelése Tatai Márton

Osztályozás, regresszió. Nagyméretű adathalmazok kezelése Tatai Márton Osztályozás, regresszió Nagyméretű adathalmazok kezelése Tatai Márton Osztályozási algoritmusok Osztályozás Diszkrét értékkészletű, ismeretlen attribútumok értékének meghatározása ismert attribútumok értéke

Részletesebben

Bevezetés az ökonometriába

Bevezetés az ökonometriába Bevezetés az ökonometriába Többváltozós regresszió: nemlineáris modellek Ferenci Tamás MSc 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Hetedik előadás, 2010. november 10.

Részletesebben

Folyadékszcintillációs spektroszkópia jegyz könyv

Folyadékszcintillációs spektroszkópia jegyz könyv Folyadékszcintillációs spektroszkópia jegyz könyv Zsigmond Anna Julia Fizika MSc I. Mérés vezet je: Horváth Ákos Mérés dátuma: 2010. október 21. Leadás dátuma: 2010. november 8. 1 1. Bevezetés A mérés

Részletesebben

Számítógépes döntéstámogatás. Statisztikai elemzés

Számítógépes döntéstámogatás. Statisztikai elemzés SZDT-03 p. 1/22 Számítógépes döntéstámogatás Statisztikai elemzés Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás SZDT-03 p. 2/22 Rendelkezésre

Részletesebben

Csapadékmaximum-függvények változása

Csapadékmaximum-függvények változása Csapadékmaximum-függvények változása (Techniques and methods for climate change adaptation for cities /2013-1-HU1-LEO05-09613/) Dr. Buzás Kálmán, Dr. Honti Márk, Varga Laura Elavult mértékadó tervezési

Részletesebben

ELTECON MA Keresztmetszeti és panel ökonometria tematika

ELTECON MA Keresztmetszeti és panel ökonometria tematika ELTECON MA Keresztmetszeti és panel ökonometria tematika Készítette: Elek Péter Oktató: Elek Péter Demonstrátor: Pál Jenő (PhD-hallgató, CEU) Időkeret: heti 3*90 perc szeminarizált formában, 13 héten keresztül

Részletesebben

Statisztika I. 13. előadás Idősorok elemzése. Előadó: Dr. Ertsey Imre

Statisztika I. 13. előadás Idősorok elemzése. Előadó: Dr. Ertsey Imre Statisztika I. 13. előadás Idősorok elemzése Előadó: Dr. Ertse Imre A társadalmi - gazdasági jelenségek időbeli alakulásának törvénszerűségeit kell vizsgálni a változás, a fejlődés tendenciáját. Ezek a

Részletesebben

Irányításelmélet és technika II.

Irányításelmélet és technika II. Irányításelmélet és technika II. Legkisebb négyzetek módszere Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 200 november

Részletesebben

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó. 2010. június

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó. 2010. június GAZDASÁGSTATISZTIKA GAZDASÁGSTATISZTIKA Készül a TÁMOP-4..2-08/2/A/KMR-2009-004pályázai projek kereében Taralomfejleszés az ELTE TáK Közgazdaságudományi Tanszékén az ELTE Közgazdaságudományi Tanszék, az

Részletesebben

Több valószínűségi változó együttes eloszlása, korreláció

Több valószínűségi változó együttes eloszlása, korreláció Tartalomjegzék Előszó... 6 I. Valószínűségelméleti és matematikai statisztikai alapok... 8 1. A szükséges valószínűségelméleti és matematikai statisztikai alapismeretek összefoglalása... 8 1.1. Alapfogalmak...

Részletesebben

EGYVÁLTOZÓS IDŐSORMODELLEKEN ALAPULÓ INFLÁCIÓS ELŐREJELZÉSEK

EGYVÁLTOZÓS IDŐSORMODELLEKEN ALAPULÓ INFLÁCIÓS ELŐREJELZÉSEK EGYVÁLTOZÓS IDŐSORMODELLEKEN ALAPULÓ INFLÁCIÓS ELŐREJELZÉSEK LIELI RÓBERT Tanulmányomban a magyarországi inflációs folyamat egyváltozós idősormodellekkel történő leírására és előrejelzésére vállalkozom.

Részletesebben

Likelihood, deviancia, Akaike-féle információs kritérium

Likelihood, deviancia, Akaike-féle információs kritérium Többváltozós statisztika (SZIE ÁOTK, 2011. ősz) 1 Likelihood, deviancia, Akaike-féle információs kritérium Likelihood függvény Az adatokhoz paraméteres modellt illesztünk. A likelihood függvény a megfigyelt

Részletesebben

TŐZSDEI IDŐSOROK ELEMZÉSE ÉS ELŐREJELZÉSE

TŐZSDEI IDŐSOROK ELEMZÉSE ÉS ELŐREJELZÉSE Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Méréstechnika és Információs Rendszerek Tanszék Bartók Ferenc TŐZSDEI IDŐSOROK ELEMZÉSE ÉS ELŐREJELZÉSE KONZULENS Dr.

Részletesebben

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( ) Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó. 2010. június

GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó. 2010. június GAZDASÁGSTATISZTIKA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén, az ELTE Közgazdaságtudományi Tanszék, az MTA Közgazdaságtudományi

Részletesebben

Adatok statisztikai értékelésének főbb lehetőségei

Adatok statisztikai értékelésének főbb lehetőségei Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció

Részletesebben

Idősorok rendbecslése információelméleti módszerekkel

Idősorok rendbecslése információelméleti módszerekkel Idősorok rendbecslése információelméleti módszerekkel Diplomamunka Írta: Darabos Beáta Alkalmazott matematikus szak Témavezetõ: Márkus László, egyetemi docens Valószínûségelméleti és Statisztika Tanszék

Részletesebben

Irányításelmélet és technika II.

Irányításelmélet és technika II. Irányításelmélet és technika II. Modell-prediktív szabályozás Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 2010 november

Részletesebben

MNB Füzetek 1999/4 AZ IDÕSORMODELLEKEN ALAPULÓ INFLÁCIÓS ELÕREJELZÉSEK: Lieli Róbert: április EGYVÁLTOZÓS MÓDSZEREK

MNB Füzetek 1999/4 AZ IDÕSORMODELLEKEN ALAPULÓ INFLÁCIÓS ELÕREJELZÉSEK: Lieli Róbert: április EGYVÁLTOZÓS MÓDSZEREK MNB Füzetek 999/4 Lieli Róbert: AZ IDÕSORMODELLEKEN ALAPULÓ INFLÁCIÓS ELÕREJELZÉSEK: EGYVÁLTOZÓS MÓDSZEREK 999. április i ISSN 9 9575 ISBN 963 9057 38 x Az MNB megbízásából készítette: Lieli Róbert: a

Részletesebben

AZ ÖNKORMÁNYZATI HITELFINANSZÍROZÁS ÖKONOMETRIAI ELEMZÉSE KOVÁCS GÁBOR 1

AZ ÖNKORMÁNYZATI HITELFINANSZÍROZÁS ÖKONOMETRIAI ELEMZÉSE KOVÁCS GÁBOR 1 AZ ÖNKORMÁNYZATI HITELFINANSZÍROZÁS ÖKONOMETRIAI ELEMZÉSE KOVÁCS GÁBOR 1 Összefoglalás: A magyarországi helyi önkormányzatok adósságállománya az elmúlt öt évben drasztikusan emelkedett és az eladósodottságból

Részletesebben

Matematikai statisztikai elemzések 6.

Matematikai statisztikai elemzések 6. Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematikai statisztikai elemzések 6. MSTE6 modul Regressziószámítás: kétváltozós lineáris és nemlineáris regresszió, többváltozós

Részletesebben

Szezonális kiigazítás munkaügyi idősorokra

Szezonális kiigazítás munkaügyi idősorokra Szezonális kiigazítás munkaügyi idősorokra Készítette: Szente László és Láz József (MultiRáció Kft.) Szezonalitás a munkaügyi idősorokban Éven belüli, évről évre ismétlődő ingadozás, hullámzás figyelhető

Részletesebben

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet GVMST22GNC Statisztika II. 3. előadás: 8. Hipotézisvizsgálat Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Hipotézisvizsgálat v becslés Becslés Ismeretlen paraméter Közeĺıtő

Részletesebben

Jelek és rendszerek - 4.előadás

Jelek és rendszerek - 4.előadás Jelek és rendszerek - 4.előadás Rendszervizsgálat a komplex frekvenciatartományban Mérnök informatika BSc (lev.) Pécsi Tudományegyetem, Pollack Mihály Műszaki Kar Műszaki Informatika és Villamos Intézet

Részletesebben

Statisztika 3. Dr Gősi Zsuzsanna Egyetemi adjunktus Koncentráció mérése Koncentráció általában a jelenségek tömörülését, összpontosulását értjük. Koncentráció meglétéről gyorsan tájékozódhatunk, ha sokaságot

Részletesebben

Ingatlanpiac és elemzése. 15-16. óra Ingatlanpiaci előrejelzés

Ingatlanpiac és elemzése. 15-16. óra Ingatlanpiaci előrejelzés Ingatlanpiac és elemzése 15-16. óra Ingatlanpiaci előrejelzés Horváth Áron ELTEcon Ingatlanpiaci Kutatóközpont eltinga.hu Ingatlanpiaci előrejelzés 1. Egyváltozós elemzés trend + ciklus + szezonalitás

Részletesebben

Bemenet modellezése (III.), forgalommodellezés

Bemenet modellezése (III.), forgalommodellezés Bemenet modellezése (III.), forgalommodellezés Vidács Attila 2007. október 31. Hálózati szimulációs technikák, 2007/10/31 1 Modellválasztás A modellezés kedvez esetben leegyszer södik a megfelel eloszlás

Részletesebben

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék Jelek és rendszerek 1 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék 1 Ajánlott irodalom: FODOR GYÖRGY : JELEK ÉS RENDSZEREK EGYETEMI TANKÖNYV Műegyetemi Kiadó, Budapest, 2006

Részletesebben

SZENT ISTVÁN EGYETEM GAZDÁLKODÁS- ÉS SZERVEZÉSTUDOMÁNYI DOKTORI ISKOLA

SZENT ISTVÁN EGYETEM GAZDÁLKODÁS- ÉS SZERVEZÉSTUDOMÁNYI DOKTORI ISKOLA SZENT ISTVÁN EGYETEM GAZDÁLKODÁS- ÉS SZERVEZÉSTUDOMÁNYI DOKTORI ISKOLA Az új termék elterjedési modellek üzleti alkalmazásának módszertani kérdései Doktori (PhD) értekezés Orova Lászlóné Témavezetı: Dr.

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:

Részletesebben

A statisztika oktatásáról konkrétan

A statisztika oktatásáról konkrétan A világ statisztikája a statisztika világa ünnepi konferencia Esztergom, 2010.október 15. A statisztika oktatásáról konkrétan Dr. Varga Beatrix PhD. egyetemi docens MISKOLCI EGYETEM Üzleti Statisztika

Részletesebben

GVMST22GNC Statisztika II.

GVMST22GNC Statisztika II. GVMST22GNC Statisztika II. 4. előadás: 9. Kétváltozós korreláció- és regressziószámítás Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Korrelációszámítás

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

Digitális képek szegmentálása. 5. Textúra. Kató Zoltán.

Digitális képek szegmentálása. 5. Textúra. Kató Zoltán. Digitális képek szegmentálása 5. Textúra Kató Zoltán http://www.cab.u-szeged.hu/~kato/segmentation/ Textúra fogalma Sklansky: Egy képen egy területnek állandó textúrája van ha a lokális statisztikák vagy

Részletesebben

x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx

x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx Integrálszámítás II. Parciális integrálás. g) i) l) o) e ( + )(e e ) cos h) e sin j) (sin 3 cos) m) arctg p) arcsin e (3 )e sin f) cos ( )(sin cos 3) e cos k) e sin cos ln n) ( + ) ln. e 3 e cos 3 3 cos

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát

Részletesebben

Debreceni Egyetem Informatikai Kar INFLÁCIÓ ELŐREJELZÉSE STATISZTIKAI MODELLEKKEL. Debrecen

Debreceni Egyetem Informatikai Kar INFLÁCIÓ ELŐREJELZÉSE STATISZTIKAI MODELLEKKEL. Debrecen Debreceni Egyetem Informatikai Kar INFLÁCIÓ ELŐREJELZÉSE STATISZTIKAI MODELLEKKEL Témavezető: Dr. Gáll József egyetemi docens Készítette: Nagy Gyula Tamás gazdaságinformatikus Debrecen 2010 0 Plágium -

Részletesebben

Matematika gyógyszerészhallgatók számára. A kollokvium főtételei tanév

Matematika gyógyszerészhallgatók számára. A kollokvium főtételei tanév Matematika gyógyszerészhallgatók számára A kollokvium főtételei 2015-2016 tanév A1. Függvénytani alapfogalmak. Kölcsönösen egyértelmű függvények és inverzei. Alkalmazások. Alapfogalmak: függvény, kölcsönösen

Részletesebben

A Statisztika alapjai

A Statisztika alapjai A Statisztika alapjai BME A3c Magyar Róbert 2016.05.12. Mi az a Statisztika? A statisztika a valóság számszerű információinak megfigyelésére, összegzésére, elemzésére és modellezésére irányuló gyakorlati

Részletesebben

Excel segédlet Üzleti statisztika tantárgyhoz

Excel segédlet Üzleti statisztika tantárgyhoz Miskolci Egyetem Üzleti Statisztika és Előrejelzési Intézeti Tanszék Excel segédlet Üzleti statisztika tantárgyhoz. Z próba einek meghatározása óbafüggvény: x - m z = ; vagy σ/ n x - m z = ; vagy s/ n

Részletesebben

Korreláció és lineáris regresszió

Korreláció és lineáris regresszió Korreláció és lineáris regresszió Két folytonos változó közötti összefüggés vizsgálata Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi Fizika és Statisztika I. előadás 2016.11.02.

Részletesebben

ELTE TáTK Közgazdaságtudományi Tanszék ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter. 2010. június

ELTE TáTK Közgazdaságtudományi Tanszék ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter. 2010. június ÖKONOMETRIA ÖKONOMETRIA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék, az MTA

Részletesebben

Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető!

Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető! BGF KKK Módszertani Intézeti Tanszéki Osztály Budapest, 2012.. Név:... Neptun kód:... Érdemjegy:..... STATISZTIKA II. VIZSGADOLGOZAT Feladatok 1. 2. 3. 4. 5. 6. Összesen Szerezhető pontszám 21 20 7 22

Részletesebben

A gazdasági válság hatása a munkanélküliség alakulására

A gazdasági válság hatása a munkanélküliség alakulására 136 A gazdasági válság hatása a munkanélküliség alakulására országos és megyei szinten Romániában MADARAS SZILÁRD 1 Tanulmányomban a munkanélküliség alakulását vizsgálom Romániában, különösen a 2008-as

Részletesebben

Matematikai geodéziai számítások 6.

Matematikai geodéziai számítások 6. Matematikai geodéziai számítások 6. Lineáris regresszió számítás elektronikus távmérőkre Dr. Bácsatyai, László Matematikai geodéziai számítások 6.: Lineáris regresszió számítás elektronikus távmérőkre

Részletesebben

1. hét. Neptun kód. Összesen. Név

1. hét. Neptun kód. Összesen. Név 1. hét 1 5 1 3 28 1 1 8 1 3 3 44 1 5 1 3 2 3 1 7 5 1 3 1 45 1 5 1 1 1 6 51 1 1 1 1 1 5 1 2 8 1 7 3 4 8 5 8 1 1 41 1 5 8 1 1 3 46 1 8 1 3 2 33 1 7 8 1 3 38 1 5 7 1 7 1 49 1 1 5 1 1 45 1 8 1 3 31 1 8 8 1

Részletesebben

ELTE TáTK Közgazdaságtudományi Tanszék ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június

ELTE TáTK Közgazdaságtudományi Tanszék ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június ÖKONOMETRIA ÖKONOMETRIA Készül a TÁMOP-4..2-08/2/A/KMR-2009-004pályázai projek kereében Taralomfejleszés az ELTE TáK Közgazdaságudományi Tanszékén az ELTE Közgazdaságudományi Tanszék, az MTA Közgazdaságudományi

Részletesebben

előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás

előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás 13-14. előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás 2016. november 28. és december 5. 13-14. előadás 1 / 35 Bevezetés A diszkrét

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

A mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv

A mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv Mérések, mérési eredmények, mérési bizonytalanság A mérések általános és alapvető metrológiai fogalmai és definíciói mérés Műveletek összessége, amelyek célja egy mennyiség értékének meghatározása. mérési

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok II. útmutató

TANTÁRGYI PROGRAM Matematikai alapok II. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok II. útmutató 2013/2014. tanév II. félév Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa:

Részletesebben

JPTE PMMFK Levelező-távoktatás, villamosmérnök szak

JPTE PMMFK Levelező-távoktatás, villamosmérnök szak JPTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) (Összeállította: Kis Miklós) Tankönyvek Megegyeznek az 1. félévben használtakkal.

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató

TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató 2015/2016. tanév I. félév Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa:

Részletesebben

KÖZPONTI STATISZTIKAI HIVATAL. Szóbeli vizsgatevékenység

KÖZPONTI STATISZTIKAI HIVATAL. Szóbeli vizsgatevékenység KÖZPONTI STATISZTIKAI HIVATAL A vizsgarészhez rendelt követelménymodul azonosító száma, megnevezése: 2144-06 Statisztikai szervezői és elemzési feladatok A vizsgarészhez rendelt vizsgafeladat megnevezése:

Részletesebben

Adatmanipuláció, transzformáció, szelekció SPSS-ben

Adatmanipuláció, transzformáció, szelekció SPSS-ben Adatmanipuláció, transzformáció, szelekció SPSS-ben Statisztikai szoftver alkalmazás Géczi-Papp Renáta Számított változó A már meglévő adatokból (változókból) további adatokat származtathatunk. munkavállalók.sav

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

Véletlenszám generátorok és tesztelésük HORVÁTH BÁLINT

Véletlenszám generátorok és tesztelésük HORVÁTH BÁLINT Véletlenszám generátorok és tesztelésük HORVÁTH BÁLINT Mi a véletlen? Determinisztikus vs. Véletlen esemény? Véletlenszám: számok sorozata, ahol véletlenszerűen követik egymást az elemek Pszeudo-véletlenszám

Részletesebben

Az Excel táblázatkezelő program használata a matematika és a statisztika tantárgyak oktatásában

Az Excel táblázatkezelő program használata a matematika és a statisztika tantárgyak oktatásában Az Excel táblázatkezelő program használata a matematika és a statisztika tantárgyak oktatásában Hódiné Szél Margit SZTE MGK 1 A XXI. században az informatika rohamos terjedése miatt elengedhetetlen, hogy

Részletesebben

cos 2 (2x) 1 dx c) sin(2x)dx c) cos(3x)dx π 4 cos(2x) dx c) 5sin 2 (x)cos(x)dx x3 5 x 4 +11dx arctg 11 (2x) 4x 2 +1 π 4

cos 2 (2x) 1 dx c) sin(2x)dx c) cos(3x)dx π 4 cos(2x) dx c) 5sin 2 (x)cos(x)dx x3 5 x 4 +11dx arctg 11 (2x) 4x 2 +1 π 4 Integrálszámítás I. Végezze el a következő integrálásokat:. α, haα sin() cos() e f) a sin h) () cos ().. 5 4 ( ) e + 4 sin h) (+) sin() sin() cos() + f) 5 i) cos ( +) 7 4. 4 (+) 6 4 cos() 5 +7 5. ( ) sin()cos

Részletesebben

LEGJOBB BECSLÉS Módszerek, egyszerűsítések

LEGJOBB BECSLÉS Módszerek, egyszerűsítések LEGJOBB BECSLÉS Módszerek, egyszerűsítések Tusnády Paula 2010. Június 24. 1 Tartalom Értékelési folyamat lépései Módszerek Arányosság elve Élet ági egyszerűsítések Nem-élet ági egyszerűsítések 2 Értékelési

Részletesebben

A sztochasztikus idősorelemzés alapjai

A sztochasztikus idősorelemzés alapjai A sztochasztikus idősorelemzés alapjai Ferenci Tamás BCE, Statisztika Tanszék tamas.ferenci@medstat.hu 2013. november 29. 2 Tartalomjegyzék 1. Az idősorelemzés fogalma, megközelítései 5 1.1. Az idősor

Részletesebben

Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 11. előadás Előadó: Dr. Ertsey Imre Összefüggés vizsgálatok A társadalmi gazdasági élet jelenségei kölcsönhatásban állnak, összefüggnek egymással. Statisztika alapvető feladata: - tényszerűségek

Részletesebben

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás Matematikai alapok és valószínőségszámítás Valószínőségi eloszlások Binomiális eloszlás Bevezetés A tudományos életben megfigyeléseket teszünk, kísérleteket végzünk. Ezek többféle különbözı eredményre

Részletesebben

Ökonometria. Logisztikus regresszió. Ferenci Tamás 1 Nyolcadik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék

Ökonometria. Logisztikus regresszió. Ferenci Tamás 1 Nyolcadik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék Ferenci Tamás 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Nyolcadik fejezet Tartalom V. esettanulmány 1 V. esettanulmány Csődelőrejelzés 2 Általános gondolatok 3 becslése

Részletesebben

A dolgozatot a négy érdemi fejezetben tárgyalt eredményeket tartalmazó 9 oldalas Összefoglalás (86-94. o.) zárja le.

A dolgozatot a négy érdemi fejezetben tárgyalt eredményeket tartalmazó 9 oldalas Összefoglalás (86-94. o.) zárja le. OPPONENSI VÉLEMÉNY Matyasovszky István Néhány statisztikus módszer az elméleti és alkalmazott klimatológiai vizsgálatokban című akadémiai doktori értekezéséről 1. ÁLTALÁNOS MEGJEGYZÉSEK Az értekezés 100

Részletesebben

SZENT ISTVÁN EGYETEM GAZDÁLKODÁS- ÉS SZERVEZÉSTUDOMÁNYI DOKTORI ISKOLA

SZENT ISTVÁN EGYETEM GAZDÁLKODÁS- ÉS SZERVEZÉSTUDOMÁNYI DOKTORI ISKOLA SZENT ISTVÁN EGYETEM GAZDÁLKODÁS- ÉS SZERVEZÉSTUDOMÁNYI DOKTORI ISKOLA Az új termék elterjedési modellek üzleti alkalmazásának módszertani kérdései Doktori (PhD) értekezés tézisei Orova Lászlóné Témavezetı:

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,

Részletesebben

A MEGÚJULÓ ENERGIAPOTENCIÁL EGER TÉRSÉGÉBEN A KLÍMAVÁLTOZÁS TÜKRÉBEN

A MEGÚJULÓ ENERGIAPOTENCIÁL EGER TÉRSÉGÉBEN A KLÍMAVÁLTOZÁS TÜKRÉBEN A MEGÚJULÓ ENERGIAPOTENCIÁL EGER TÉRSÉGÉBEN A KLÍMAVÁLTOZÁS TÜKRÉBEN Mika János 1, Wantuchné Dobi Ildikó 2, Nagy Zoltán 2, Pajtókné Tari Ilona 1 1 Eszterházy Károly Főiskola, 2 Országos Meteorológiai Szolgálat,

Részletesebben

2. számú melléklet. D ö n t é s t á m

2. számú melléklet. D ö n t é s t á m 2. számú melléklet D ö n t é s t á m 2. oldal Tartalomjegyzék 1 A feladat meghatározása......3 2 Vezetői összefoglaló......4 2.1 Finanszírozási igény meghatározása...4 2.2 Finanszírozási módok...4 3 Felhasznált

Részletesebben

Határozatlan integrál, primitív függvény

Határozatlan integrál, primitív függvény Határozatlan integrál, primitív függvény Alapintegrálok Alapintegráloknak nevezzük az elemi valós függvények differenciálási szabályainak megfordításából adódó primitív függvényeket. ( ) n = n+ n+ + c,

Részletesebben

A TANTÁRGY ADATLAPJA

A TANTÁRGY ADATLAPJA A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény Babeş-Bolyai Tudományegyetem 1.2 Kar Közgazdaság- és Gazdálkodástudományi Kar 1.3 Intézet Közgazdaság- és Gazdálkodástudományi

Részletesebben

MÉRÉSTECHNIKA. BME Energetikai Gépek és Rendszerek Tanszék Fazekas Miklós (1) márc. 1

MÉRÉSTECHNIKA. BME Energetikai Gépek és Rendszerek Tanszék Fazekas Miklós (1) márc. 1 MÉRÉSTECHNIKA BME Energetikai Gépek és Rendszerek Tanszék Fazekas Miklós (1) 463 26 14 16 márc. 1 Méréstechnikai alapfogalmak CÉL Mennyiségek mérése Fizikai mennyiség Hosszúság L = 2 m Mennyiségi minőségi

Részletesebben

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése 4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól

Részletesebben

Sztochasztikus folyamatok alapfogalmak

Sztochasztikus folyamatok alapfogalmak Matematikai Modellalkotás Szeminárium 2012. szeptember 4. 1 Folytonos idejű Markov láncok 2 3 4 1 Folytonos idejű Markov láncok 2 3 4 Folytonos idejű Markov láncok I Adott egy G = (V, E) gráf Folytonos

Részletesebben

Diszkrét idejű felújítási paradoxon

Diszkrét idejű felújítási paradoxon Magda Gábor Szaller Dávid Tóvári Endre 2009. 11. 18. X 1, X 2,... független és X-szel azonos eloszlású, pozitív egész értékeket felvevő valószínűségi változó (felújítási idők) P(X M) = 1 valamilyen M N

Részletesebben

Mozgóátlag folyamatok

Mozgóátlag folyamatok Mozgóátlag folyamatok 3.. Deníció. Legyen ε(t független érték zaj, vagy fehér zaj - gyakran Gauss fehér zaj (GWN, Gaussian white noise. Ekkor az X(t = β ε(t + β ε(t +... + β q ε(t q folyamatot q-rend mozgóátlag

Részletesebben

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell Példa STATISZTIKA Egy gazdálkodó k kukorica hibrid termesztése között választhat. Jelöljük a fajtákat A, B, C, D-vel. Döntsük el, hogy a hibridek termesztése esetén azonos terméseredményre számíthatunk-e.

Részletesebben

Nem-paraméteres predikció, Lasso közelítés

Nem-paraméteres predikció, Lasso közelítés Problémamegoldó Szeminárium 2009. nov. 12 Motiváció Pénzügyi idősorok elemzése (Morgan-Stanley): Fedezési eljárások optimalizációja Lasso, Opció árazás: nem-paraméteres úton kernel regresszió. Funkcionális

Részletesebben