Data Security: Secret key

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Data Security: Secret key"

Átírás

1 Kulcsfolyaatos rejtjelezést tekintünk, azaz a kulcsbiteket od 2 hozzáadjuk a nyílt szöveg bitekhez. A kulcsot első 5 bitjéből periódikus isétléssel nyerjük, az első 5 bitet jelölje k,,k5. A nyílt szöveg egyás utáni bitjei, x,x2, képződési szabálya, x i +x i+ = x i+2, i=,4,7 Az első 5 egfigyelt rejtett szöveg bit a következő: Fejtsük eg a kulcsot!

2 x3=x+x2=y+y2+k+k2=k+k2+ x3=k3 (y3=x3+k3=0) x6=x4+x5=k4+k5+ x6=k+ x9=x7+x8=k2+k3 x9=k4+ x2=x0+x=k5+k+ x2=k2 x5=x3+x4=k3+k4 x5=k5+ (kulcsperiódus=5) alapján k+k2+k3= k+k4+k5=0 k2+k3+k4= k+k2+k5= k3+k4+k5= K=(,0,0,,0).

3 SPC (Substitution Perutation Cipher) (Tk.2.fejezet bevezető) x Shannon-i elv: Erős invertálható transzforáció előállítható egyszerű, könnyen analizálható és ipleentálható, de önagában gyenge transzforációk sokszori egyás utáni alkalazásával.. 2. S réteg. 2. s. P réteg k k2 Példa: szietrikus kulcsú rejtjelezők (pl. DES, IDEA, AES). kr r. y

4 SPC tervezési kritériuok Invertálhatóság Balansz tulajdonság (Tk.36.o.) Teljesség (T.38.o.) Nelinearitás (T o.) Lavinahatás (T.26.o, 40.o.) Lineáris dienzió (T.38.o.) Differenciális egyenletesség (T.38.o., 40.o) SPC Boole-függvény: f :{0,} {0,} S-box: n f :{0,} {0, } < n [ ] f () x = f (), x f (),... x f () x :{0,} {0, } 2 n f i

5 Invertálhatóság SPC F=F F 2...F r, Fi az i-edik rétegbeli transzforáció F - =F r - F r- -...F - Balansz tulajdonság A transzforáció ne torzítsa el egy egyenletes eloszlású beenet gyakoriság-statisztikáját. :{0,} n f {0,}, n #{ x {0,} : f( x) = y} = 2 n y {0,} n. 2. Példák f ( x) = A x + b A nx-es bináris átrix, rang=n x {0,}, b {0,} n f :{0,} {0, } n invertálható n

6 SPC Nelinearitás Boole-függvények távolsága: d( f, g) = #{ x {0,} : f( x) g( x)} = w( f + g) f, g:{0,} {0,} Lineáris Boole-függvény: Luv, ( x) = u x+ v ux, {0,} v {0,} Boole-függvény nelinearitása N( f ) = in d( f, L ) u {0,}, v {0,} S-box nelinearitása n w {0,}, w 0 uv, N( f) = in N( w f) f :{0,} {0,} n

7 SPC (Tk feladatok) Legyen n=2, továbbá n, 2: 2 2 f f V V jelölje az első illetve ásodik output bitre vonatkozó transzforáció-koponenst Ha f nelinearitása N, ekkora f nelinearitása, ha.) f 2 =f 2.) f 2 =.) 0, ivel az outputok w={,} súlyú lineáris kobinációja (bináris összege) konstans 2.) 0, ivel az outputok w={0,} súlyú lineáris kobinációja (a 2. kienet) konstans.

8 Lavinahatás kritériu 2 x {0,} () i w( f( x) + f( x+ e )) = n 2 i f :{0,} {0, } n Szigorú lavinahatás kritériu 2 x {0,} ( f ( x) + f ( x + ( i) e )) = (,,... ) i f :{0,} {0, } n

9 Differenciális egyenletesség DDT ( a, b) = { x {0,} : f ( x) + f ( x + a) = b} f a {0,}, b {0,} DDT (0, b) = 2 δ ( b). f n Példa: DDT ( a, b ) = 2 Ha f=ux+v lineáris, akkor, ha b=ua, egyébként 0 f

10 SPC (Tk. 2.. fejezet) L R L i+ = R i R i+ = L i + F(R i, K i ) Invertálható, függetlenül attól, hogy F invertálható, vagy se! L2 F R2 L i = R i+ + F(L i+, K i ) R i = L i+ F

11 SPC Nyílt blokk Kulcs IP L 32 K F R K u lc L2 32 K2 F R2 s ü te e z õ L6 K6 F R6 FP 64 Rejtett blokk

12 SPC X i 32 E K i S S 2 S 3 S 4 S 5 S 6 S 7 S 8 32 P 32 Y i S box

13 SPC S-doboz tervezési kritériuok: DES Minden S-doboz beenete 6, kienete 4 bites legyen. (DES egyetlen chip-be integrálásához) Egyetlen S-doboz egyetlen kieneti bitje se legyen közel a beeneti bitek valaely lineáris függvényéhez. (Tehát a nelinearitás legyen nagy.) Ha rögzítjük a két szélső bit értékét, és csak a beenet középső négy bitjét változtatjuk folyaatosan, akkor a kieneten inden 4 bites vektor pontosan egyszer jelenjen eg. (Azaz az S-dobozban található 4 darab 4 bitet 4 bitbe helyettesítő tábla indegyike legyen balansz. Ekkor persze aga az S-doboz is balansz, vagyis inden 4 bites kieneti vektor pontosan négyszer jelenik eg, ha a beeneten inden lehetséges értéket végigpörgetünk.) Ha az S-doboz beenetén egyetlen bitet egváltoztatunk, akkor a kieneten legalább két bit értéke változzon eg. (lavinahatás) Ha az S-doboz beenetén a két középső bitet egváltoztatjuk, akkor a kieneten legalább két bit értéke változzon eg. Ha két beeneti vektor első két bitje különböző, utolsó két bitje azonos, akkor a egfelelő kieneti vektorok ne lehetnek azonosak. Tetszőleges, ne nulla beeneti differencia esetén, az adott differenciával rendelkező 32 beeneti vektor pár közül legfeljebb nyolchoz tartozhat azonos kieneti differencia. (nagy differenciális egyenletesség)

14 P-doboz tervezési kritériuok: DES A P-doboz legyen olyan, hogy inden S-doboz négy kieneti bitje közül kettőt a következő réteg S-dobozainak középső bitjeihez, kettőt pedig szélső (táblázat választó) bitekhez továbbítson. Minden S-doboz négy kieneti bitje a következő rétegben hat különböző S- dobozra legyen hatással. Ha egy S-doboz valaely kieneti bitje egy ásik S-doboz valaely középső bitjéhez van vezetve, akkor ez utóbbi S-doboz egyetlen kienete se lehet az előző S-doboz középső beeneteihez vezetve.

15 Tegyük fel, hogy DES rejtjelezést használunk 64 bites üzenetblokkon és belül a blokk végén 4 bites hibadetekciós ellenőrzőösszeget alkalazunk. Egy táadó ár egiserte a kulcs első két bitjét, ezután kierítő kulcskereséses táadást végez. 3 rejtjeles blokk egfigyelése elegendő-e a táadó száára a gyakorlatilag egyértelű kulcsazonosításhoz? (Tekintsük gyakorlatilag egyértelűnek a kulcsazonosítást, ha végül csak néhány kulcs közül kell a táadónak választania!) Igen: Annak a valószínűsége, hogy téves kulccsal helyes paritásúra dekódolunk egy rejtett szöveg blokkot, 2-4. Annak a valószínűsége, hogy 3 rejtjeles blokk indegyikét helyes paritásúra dekódoljuk téves kulcs ellett (2-4 ) 3 =2-52. Mivel a kulcstér érete az előzetesen kiszivárgott két kulcsbit iatt ár csak 2 54, a ne kiszűrt téves kulcsok átlagos száa a kulcstér teljes végigkeresése után = 22 = 4 lenne. (Tk.2..feladat)

16 Birthday paradox Algebrailag zárt blokk rejtjelező E = { E k ; E k : X Y, k K} T={E, *}. T zárt, ha EE = E, E Ek E k = E k, k 2 3 i K Π Tétel : A T zárt algebrai struktúra csoport.

17 Birthday paradox ( )( ) ( ) ( ) = = = 2 r i i r pr x e x + = 3! 2! 3 2 x x x e x ( ) r r e r i i e r i i 2 ) ( = = = 2 exp( /(2 )) p r r Születésnapi paradoxon- Pl. = 365 r = /2 9, p r - exp(-0.5) 0.4.

18 Birthday paradox U V W Születésnapi paradoxon-2 ) / 2 3 exp( 2! )! (2 2 0) ( r r r r r W V P = Pl. r = /2, p r - exp(-3) 0.95

19 Birthday paradox Középen találkozás táadás zárt struktúrájú rejtjelező ellen Táadó iserete: isert nyílt szövegű táadás Q={(x, y ), (x 2, y 2 ),... (x s, y s )}, Ek y l = E k (x l ), k az iseretlen kulcs U = E V = {E, E 2,... E r } W = {D 2 E k, D 22 E k,... D 2r E k }, x E E2 Er.. v v2 vr w w2 wr.. D22 D2r D2 y ahol V,W U. D k Ha V W 0, pl. E j = D 2i E k E k = E 2i E j r E /2!

20 Birthday paradox Két DES transzforációt egyás után használunk: y = E k 2 ( Ek( x)) ahol k, k2 két véletlen titkos kulcs. Azt reéljük, hogy ezzel a DES 56 bites kulséretének egfelelő kulcstér kierítő keresés 2 56 nagyságrendű száításigényét 2 2 nagyságrendűre tudjuk eelni. a.) Igazunk van-e? Milyen ódszerrel táadna a táadó helyében, ilyen adatok alapján. b.) Mekkorára becsli a táadás koplexitását (száításigény, tárkapacitás). (Száításigény a kódoló/dekódoló transzforációk száában. Tárkapacitás tárolandó blokkok száában.). a.) Ne. Középen találkozás táadás, isert nyílt-rejtett szöveg párok alapján. b.) 2*2 56 a száításigény, illetve tárkapacitás nagyságrendje.

21 Birthday paradox A száításokat gyorsítandó k=28 kulcsbitünket ne egy biztonságos 28 bit kulcséretű E* blokk-rejtjelezőhöz használjuk, hane két félre osztjuk k kulcsot, és y = E ** ( x) = E ( x k2) k k rejtjelezést hajtunk végre, ahol E egy biztonságos 64 bites kulcséretű blokkrejtjelező, k és k2 64 bites felei a k kulcsnak, x egy 64 bites üzenetblokk. A táadó egfigyelhet (x,y) nyílt-rejtett szöveg párokat. Az E* és E rejtjelező csak kierítő kulcskereséssel táadhatók. a.) Vesztettünk-e a táadhatóság okán vagy se, hogy E* helyett E** rejtjelezést alkalazzuk? b.) Hasonlítsa össze, kulcskereső táadás száításigényét a két esetben! a.) Igen, sokat vesztettünk, ivel E** két blokk rejtjelező kaszkádja, így középen találkozás táadással táadható. b.) Száításigény érleg: (E*) 2 28, (E**)

22 ECB (Tk.5.fejezet)

23 CBC

24 CBC

25 CBC 28 bites nyílt szöveg blokkok sorozatát AES rejtjelezővel CBC ódban rejtjelezzük: Mennyi blokkot kell rejtjelezni ahhoz, hogy >0.5 valószínűséggel előforduljon két azonos rejtett szöveg blokk? 28 bites rejtett szöveg blokkok összes száa =2 28. CBC ódban a rejtett szöveg blokkokat odellezhetjük véletlenül választottaknak függetlenül a nyílt szöveg tulajdonságoktól. Így a születésnapi paradoxon alapján p ~ -exp(-r 2 /2) összefüggésből, p=0.5 esetén eredény adódik. Ha két azonos rejtett szöveg blokkot detektáltunk, it tudunk ondani a hozzájuk tartozó nyílt szöveg blokkról? Meg tudjuk határozni a két nyílt szöveg differenciáját! xk yk= xi yi xk xi = yk yi

26 CFB

27 OFB, CTR

28 OFB Véletlen bithibázású csatornán rejtjelezetten továbbítjuk az üzenetünket CBC blokk rejtjelező ódban. A véletlen hibázás ellen hibajavító kódolást alkalazunk. Végezzük a hibajavító kódolást a rejtjelezést egelőzően: forrás hibajavító kódolás rejtjelezés, rejtjelfejtés hibajavító dekódolás nyelő. a.) Helyesen járunk-e el a fenti ódon a hibák javításával kapcsolatosan? b.) Mi a válasz a kérdésre, ha CBC ód helyett OFB ódban rejtjelezünk? a.) Ne. A CBC ód hibaterjedés tulajdonsága szerint egy véletlen hiba esetén, hibázás utáni első blokk bitjeinek átlagosan fele hibás lesz, s ég a rákövetkező blokk egy bitje. Ezt a nagyértékű eghibásodást csak igen költséges, koplex javító kóddal tudnánk eliinálni. A helyes egoldás a rejtjelezés utáni hibajavító kódolás alkalazása. b.) Igen. Nincs hibaterjedés a kulcsfolyaatos típusú rejtjelezés ód iatt. Ez esetben alkalazhatjuk a hibajavítást a rejtjelezést egelőzően.

29 Block cipher odes Ha egy csatorna 0-9 bithibaaránnyal űködik, akkor hogyan alakul a bithibaarány rejtjelezett esetben? a.)28 bites kódolás ECB rejtjelező ódban b.)28 bites kódolás CBC rejtjelező ódban c.)64 bites kódolás CFB byte alapú folyarejtjelezésnél d.)64 bites kódolás OFB byte alapú folyarejtjelezésnél a.) b.) c.) d.) 64 E-9 65 E-9 33 E-9 E-9

30 Block cipher odes Javasolható-e RSA blokk kódolás alkalazása.) ECB ódban? 2.) OFB ódban?.) Igen, de csak korlátozottan. Kulcs küldésre alkalazható, csak véletlen, illetve nagy inforációtartalú üzenet kódolható így. Nyílt szöveg alapú próbálgatás ellen ne véd. 2.) Sohase alkalazható. Az OFB ódban az RSA indkét oldalon kódoló üzeódban űködne, azaz a nyilvános kulcs kellene a dekódoláshoz is.

31 Melyiket blokk rejtjelező ódot ne tanácsolná a következő alkalazási feltételek esetén és iért?.) fennáll a kezdővektor (IV) átírásának veszélye 2.) bitkieséses szinkronhibás csatornán továbbítás 3.) nyílt szöveg 3 különböző értéket vehet csak fel.) CBC: IV átírással első üzenetblokk táadható 2.) OFB: szinkroncsúszás esetén a kulcsfolya elcsúszik és véletlen bitfolyaot dekódolunk vagy CBC: egy bit elvesztése eseten a blokkhatárok az üzenet végéig elcsúsznak 3.) eredeti forában egyiket se; üzenetteret randoizálással növelni kell (Tk feladatok)

Modern szimmetrikus kulcsú rejtjelezők kriptoanalízise

Modern szimmetrikus kulcsú rejtjelezők kriptoanalízise Modern szimmetrikus kulcsú rejtjelezők kriptoanalízise - kimerítő kulcskeresés: határa ma 64 bit számítási teljesítmény költsége feleződik 18 havonta 25 éven belül 80 bit - differenciális kriptoanalízis:

Részletesebben

Helyettesítéses-permutációs iteratív rejtjelezők

Helyettesítéses-permutációs iteratív rejtjelezők Helyeesíéses-peruációs ieraív rejjelezők I. Shao-i elv: kofúzió/diffúzió Erős iverálhaó raszforáció előállíhaó egyszerű, köye aalizálhaó és ipleeálhaó, de öagába gyege raszforációk sokszori egyás uái alkalazásával.

Részletesebben

Data Security: Access Control

Data Security: Access Control Data Security 1. Alapelvek 2. Titkos kulcsú rejtjelezés 3. Nyilvános kulcsú rejtjelezés 4. Kriptográfiai alapprotokollok I. 5. Kriptográfiai alapprotokollok II. Data Security: Access Control A Rossz talált

Részletesebben

Data Security: Access Control

Data Security: Access Control Data Security 1. Alapelvek 2. Titkos kulcsú rejtjelezés 3. Nyilvános kulcsú rejtjelezés 4. Kriptográfiai alapprotokollok I. 5. Kriptográfiai alapprotokollok II. Data Security: Access Control A Rossz talált

Részletesebben

KÓDOLÁSTECHNIKA PZH. 2006. december 18.

KÓDOLÁSTECHNIKA PZH. 2006. december 18. KÓDOLÁSTECHNIKA PZH 2006. december 18. 1. Hibajavító kódolást tekintünk. Egy lineáris bináris blokk kód generátormátrixa G 10110 01101 a.) Adja meg a kód kódszavait és paramétereit (n, k,d). (3 p) b.)

Részletesebben

Kriptográfia I. Kriptorendszerek

Kriptográfia I. Kriptorendszerek Kriptográfia I Szimmetrikus kulcsú titkosítás Kriptorendszerek Nyíltszöveg üzenettér: M Titkosított üzenettér: C Kulcs tér: K, K Kulcsgeneráló algoritmus: Titkosító algoritmus: Visszafejt algoritmus: Titkosítás

Részletesebben

Data Security. 1. Concepts 2. Secret key methods 3. Public key methods 4. Protocols I. 5. Protocols II.

Data Security. 1. Concepts 2. Secret key methods 3. Public key methods 4. Protocols I. 5. Protocols II. Data Security 1. Concepts 2. Secret key methods 3. Public key methods 4. Protocols I. 5. Protocols II. Data Security: Access Control A Rossz talált egy bankkártyát, s szeretné a pénzt megszerezni. Tudja,

Részletesebben

Sapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro

Sapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro Kriptográfia és Információbiztonság 10. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2015 Vizsgatematika 1 Klasszikus kriptográfiai rendszerek

Részletesebben

Adatbiztonság 1. KisZH (2010/11 tavaszi félév)

Adatbiztonság 1. KisZH (2010/11 tavaszi félév) Adatbiztonság 1. KisZH (2010/11 tavaszi félév) Ez a dokumentum a Vajda Tanár úr által közzétett fogalomlista teljes kidolgozása az első kiszárthelyire. A tartalomért felelősséget nem vállalok, mindenki

Részletesebben

Data Security: Concepts

Data Security: Concepts Data Security 1. Alapelvek 2. Titkos kulcsú rejtjelezés 3. Nyilvános kulcsú rejtjelezés 4. Kriptográfiai alapprotokollok I. 5. Kriptográfiai alapprotokollok II. Data Security: Concepts 1. Hozzáférésvédelem

Részletesebben

1. Az adott kifejezést egyszerűsítse és rajzolja le a lehető legkevesebb elemmel, a legegyszerűbben.

1. Az adott kifejezést egyszerűsítse és rajzolja le a lehető legkevesebb elemmel, a legegyszerűbben. 1 1. z adott kifejezést egyszerűsítse és rajzolja le a lehető legkevesebb eleel, a legegyszerűbben. F függvény 4 változós. MEGOLÁS: legegyszerűbb alak egtalálása valailyen egyszerűsítéssel lehetséges algebrai,

Részletesebben

Információs társadalom alapismeretek

Információs társadalom alapismeretek Információs társadalom alapismeretek Szabó Péter Gábor Titkosítás és számítástechnika Titkosítás alapfogalmai A Colossus Kriptográfia A rejtjelezés két fı lépésbıl áll: 1) az üzenet titkosítása (kódolás)

Részletesebben

Best of Criptography Slides

Best of Criptography Slides Best of Criptography Slides Adatbiztonság és Kriptográfia PPKE-ITK 2008. Top szlájdok egy helyen 1 Szimmetrikus kulcsú rejtjelezés Általában a rejtjelező kulcs és a dekódoló kulcs megegyezik, de nem feltétlenül.

Részletesebben

Digitális aláírás és kriptográfiai hash függvények. 1. az aláírás generálása (az X üzenetet küldő A fél végzi): A B: X, D A (X)

Digitális aláírás és kriptográfiai hash függvények. 1. az aláírás generálása (az X üzenetet küldő A fél végzi): A B: X, D A (X) Digitális aláírás és kriptográfiai hash függvények A digitális aláírás protokollok feladatai: 1. az aláírás generálása (az X üzenetet küldő A fél végzi): A B: X, D A (X) 2. az aláírás ellenőrzése (B címzett

Részletesebben

Webalkalmazás-biztonság. Kriptográfiai alapok

Webalkalmazás-biztonság. Kriptográfiai alapok Webalkalmazás-biztonság Kriptográfiai alapok Alapfogalmak, áttekintés üzenet (message): bizalmas információhalmaz nyílt szöveg (plain text): a titkosítatlan üzenet (bemenet) kriptoszöveg (ciphertext):

Részletesebben

Híradástechikai jelfeldolgozás

Híradástechikai jelfeldolgozás Híradástechikai jelfeldolgozás 13. Előadás 015. 04. 4. Jeldigitalizálás és rekonstrukció 015. április 7. Budapest Dr. Gaál József docens BME Hálózati Rendszerek és SzolgáltatásokTanszék gaal@hit.bme.hu

Részletesebben

Data Security. 1. Concepts 2. Secret key methods 3. Public key methods 4. Protocols I. 5. Protocols II.

Data Security. 1. Concepts 2. Secret key methods 3. Public key methods 4. Protocols I. 5. Protocols II. Data Security 1. Concepts 2. Secret key methods 3. Public key methods 4. Protocols I. 5. Protocols II. Data Security: Concepts 1. Access control 2. Encryption 3. Identification 4. Integrity protection

Részletesebben

Adatbiztonság PPZH 2011. május 20.

Adatbiztonság PPZH 2011. május 20. Adatbiztonság PPZH 2011. május 20. 1. Mutassa meg, hogy a CBC-MAC kulcsolt hashing nem teljesíti az egyirányúság követelményét egy a k kulcsot ismerő fél számára, azaz tetszőleges MAC ellenőrzőösszeghez

Részletesebben

Adatbiztonság a gazdaságinformatikában ZH 2015. december 7. Név: Neptun kód:

Adatbiztonság a gazdaságinformatikában ZH 2015. december 7. Név: Neptun kód: Adatbiztonság a gazdaságinformatikában ZH 015. december 7. Név: Neptun kód: 1. Tekintsük a következő rejtjelező kódolást: nyílt üzenetek almaza {a,b}, kulcsok almaza {K1,K,K3,K4,K5}, rejtett üzenetek almaza

Részletesebben

Hibadetektáló és javító kódolások

Hibadetektáló és javító kódolások Hibadetektáló és javító kódolások Számítógépes adatbiztonság Hibadetektálás és javítás Zajos csatornák ARQ adatblokk meghibásodási valószínségének csökkentése blokk bvítése redundáns információval Hálózati

Részletesebben

Kvantumkriptográfia II.

Kvantumkriptográfia II. LOGO Kvantumkriptográfia II. Gyöngyösi László BME Villamosmérnöki és Informatikai Kar Titkos kommunikáció modellje k 1 k 2 k n k 1 k 2 k n A titkos kommunikáció során Alice és Bob szeretne egymással üzeneteket

Részletesebben

3. 1 dimenziós mozgások, fázistér

3. 1 dimenziós mozgások, fázistér Drótos G.: Fejezetek az eléleti echanikából 3. rész 3. dienziós ozgások, fázistér 3.. Az dienziós ozgások leírása, a fázistér fogala dienziós ozgás alatt egy töegpont olyan ozgását értjük ebben a jegyzetben,

Részletesebben

Sapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro

Sapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro Kriptográfia és Információbiztonság 4. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2015 Miről volt szó az elmúlt előadáson? blokk-titkosító

Részletesebben

Data Security: Protocols Digital Signature (Tk.7.fejezet)

Data Security: Protocols Digital Signature (Tk.7.fejezet) Digital Signature (Tk.7.fejezet) A digitális aláírás protokollok feladatai: 1. az aláírás generálása (az X üzenetet küldő A fél végzi): A B: X, D A (X) 2. az aláírás ellenőrzése (B címzett által) B: X

Részletesebben

2013.11.25. H=0 H=1. Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban,

2013.11.25. H=0 H=1. Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban, Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban, akkor a i (gyakorisága) = k i a i relatív gyakorisága: A jel információtartalma:

Részletesebben

13. Egy x és egy y hosszúságú sorozat konvolúciójának hossza a. x-y-1 b. x-y c. x+y d. x+y+1 e. egyik sem

13. Egy x és egy y hosszúságú sorozat konvolúciójának hossza a. x-y-1 b. x-y c. x+y d. x+y+1 e. egyik sem 1. A Huffman-kód prefix és forráskiterjesztéssel optimálissá tehető, ezért nem szükséges hozzá a forrás valószínűség-eloszlásának ismerete. 2. Lehet-e tökéletes kriptorendszert készíteni? Miért? a. Lehet,

Részletesebben

Data Security: Public key

Data Security: Public key Nyilvános kulcsú rejtjelezés RSA rejtjelező El-Gamal rejtjelező : Elliptikus görbe kriptográfia RSA 1. Véletlenszerűen választunk két "nagy" prímszámot: p1, p2 2. m= p1p2 φ ( ) = ( p -1)( p -1) m 1 2 3.

Részletesebben

Rugalmas megtámasztású merev test támaszreakcióinak meghatározása I. rész

Rugalmas megtámasztású merev test támaszreakcióinak meghatározása I. rész Rugalas egtáasztású erev test táaszreakióinak eghatározása I. rész Bevezetés A következő, több dolgozatban beutatott vizsgálataink tárgya a statikai / szilárdságtani szakirodalo egyik kedvene. Ugyanis

Részletesebben

Kriptográfiai alapfogalmak

Kriptográfiai alapfogalmak Kriptográfiai alapfogalmak A kriptológia a titkos kommunikációval foglalkozó tudomány. Két fő ága a kriptográfia és a kriptoanalízis. A kriptográfia a titkosítással foglalkozik, a kriptoanalízis pedig

Részletesebben

SSL elemei. Az SSL illeszkedése az internet protokoll-architektúrájába

SSL elemei. Az SSL illeszkedése az internet protokoll-architektúrájába SSL 1 SSL elemei Az SSL illeszkedése az internet protokoll-architektúrájába 2 SSL elemei 3 SSL elemei 4 SSL Record protokoll 5 SSL Record protokoll Az SSL Record protokoll üzenet formátuma 6 SSL Record

Részletesebben

Kriptográfiai protokollok

Kriptográfiai protokollok Kriptográfiai protokollok Protokollosztályok - partnerhitelesítés - kulcskiosztás - üzenetintegritás - digitális aláírás - egyéb(titokmegosztás, zero knowledge...) 1 Shamir "háromlépéses" protokollja Titok

Részletesebben

Hibajavító kódolás (előadásvázlat, 2012. november 14.) Maróti Miklós

Hibajavító kódolás (előadásvázlat, 2012. november 14.) Maróti Miklós Hibajavító kódolás (előadásvázlat, 2012 november 14) Maróti Miklós Ennek az előadásnak a megértéséhez a következő fogalmakat kell tudni: test, monoid, vektortér, dimenzió, mátrixok Az előadáshoz ajánlott

Részletesebben

Adja meg, hogy ebben az esetben mely handshake üzenetek kerülnek átvitelre, és vázlatosan adja meg azok tartalmát! (8p)

Adja meg, hogy ebben az esetben mely handshake üzenetek kerülnek átvitelre, és vázlatosan adja meg azok tartalmát! (8p) Adatbiztonság a gazdaságinformatikában PZH 2013. december 9. 1. Tekintsük a következő rejtjelező kódolást: nyílt üzenetek halmaza {a,b}, kulcsok halmaza {K1,K2,K3,K4,K5}, rejtett üzenetek halmaza {1,2,3,4,5}.

Részletesebben

Informatika Biztonság Alapjai

Informatika Biztonság Alapjai Informatika Biztonság Alapjai Tételek 1. Történeti titkosítási módszerek. 2. Szimmetrikus titkosítási módszerek. Vigenere módszer és törése 3. Véletlen átkulcsolás módszere. 4. Transzpozíciós módszer és

Részletesebben

7. OSZTÁLY TANMENETE MATEMATIKÁBÓL 2014/2015

7. OSZTÁLY TANMENETE MATEMATIKÁBÓL 2014/2015 7. OSZTÁLY TANMENETE MATEMATIKÁBÓL 2014/2015 Évi óraszá: 108 óra Heti óraszá: 3 óra 1. téa: Racionális száok, hatványozás 11 óra 2. téa: Algebrai kifejezések 12 óra 1. téazáró dolgozat 3. téa: Egyenletek,

Részletesebben

Data Security: Protocols Integrity

Data Security: Protocols Integrity Integrity Az üzenethitelesítés (integritásvédelem) feladata az, hogy a vételi oldalon detektálhatóvá tegyük azon eseményeket, amelyek során az átviteli úton az üzenet valamilyen módosulást szenvedett el.

Részletesebben

Data Security: Protocols Digital Signature (Tk.7.fejezet)

Data Security: Protocols Digital Signature (Tk.7.fejezet) Digital Signature (Tk.7.fejezet) A digitális aláírás protokollok feladatai:. az aláírás generálása (az X üzenetet küldő A fél végzi): A B: X, D A (X) 2. az aláírás ellenőrzése (B címzett által) B: X =

Részletesebben

Prímtesztelés, Nyilvános kulcsú titkosítás

Prímtesztelés, Nyilvános kulcsú titkosítás Prímtesztelés, Nyilvános kulcsú titkosítás Papp László BME December 8, 2018 Prímtesztelés Feladat: Adott egy nagyon nagy n szám, döntsük el, hogy prímszám-e! Naív kísérletek: 1. Nézzük meg minden nála

Részletesebben

Hibajavító kódok május 31. Hibajavító kódok 1. 1

Hibajavító kódok május 31. Hibajavító kódok 1. 1 Hibajavító kódok 2007. május 31. Hibajavító kódok 1. 1 Témavázlat Hibajavító kódolás Blokk-kódok o Hamming-távolság, Hamming-súly o csoportkód o S n -beli u középpontú t sugarú gömb o hibajelzı képesség

Részletesebben

2. Rugalmas állandók mérése

2. Rugalmas állandók mérése . Rugalas állandók érése PÁPICS PÉTER ISTVÁN csillagász, 3. évfolya 00.10.7. Beadva: 00.1.1. 1. A -ES, AZAZ AZ ABLAK FELLI MÉRHELYEN MÉRTEM. Ezen a laboron a férudak Young-oduluszát értük, pontosabban

Részletesebben

Mágneses momentum, mágneses szuszceptibilitás

Mágneses momentum, mágneses szuszceptibilitás Mágneses oentu, ágneses szuszceptibilitás A olekuláknak (atooknak, ionoknak) elektronszerkezetüktől függően lehet állandóan eglévő, azaz peranens ágneses oentua (ha van bennük párosítatlan elektron, azaz

Részletesebben

ú ú ú ű ú Ó ú ű Ö Ö ű ű ű ú ú ű ű ű ű ú ű Ö ú ú ű Ó ű ű

ú ú ú ű ú Ó ú ű Ö Ö ű ű ű ú ú ű ű ű ű ú ű Ö ú ú ű Ó ű ű Ú ű ű ú ú ú ú ű ú Ó ú ű Ö Ö ű ű ű ú ú ű ű ű ű ú ű Ö ú ú ű Ó ű ű Ö Ó ú Ü Ü Ó Ő ű ú ú Ö Ö ú ű ú ú ú ű ű ű Ú ú ű ú ű Ö Ő ú ú ú Ü ú ű ű ű ű ű ű Ü ú ű Ú ú ű ú ű ú ú ű ú ú ű ű ú Ö ú ű Ó ú ú ú Ü ű ú ú ú ű Ü ű

Részletesebben

ű ű ű Ú ű ű Ó ű Ó Ö

ű ű ű Ú ű ű Ó ű Ó Ö Ö Ú ű ű Ü ű ű Ú ű ű ű Ú ű ű Ó ű Ó Ö ű Ú Ü ű Ú ű ű ű Ú ű ű Ú Ú Ó Ü ű ű Ú Ú Ú Ú ű Ű ű Ó ű Ó Ó ű Ú Ó Ú Ü Ú Ó Ú Ú Ű ű Ö ű ű Ú Ö Ú ű Ö Ú Ö Ú ű ű Ó ű Ú ű ű ű Ö ű ű ű Ó ű ű Ú ű ű Ö ű Ú ű Ó ű Ü Ú Ó ű ű ű Ú Ú Ó

Részletesebben

Ú ű Ö ű ű Ü Ú ű Ü ű ű ű ű ű Ö ű

Ú ű Ö ű ű Ü Ú ű Ü ű ű ű ű ű Ö ű Ü Ü ű ű ű Ü ű Ú ű Ú ű Ö ű ű Ü Ú ű Ü ű ű ű ű ű Ö ű ű ű ű ű ű ű Ö ű ű Ö ű ű Ú ű ű ű ű Ö Ú Ü ű ű ű ű Ö ű ű ű ű ű ű ű ű ű ű ű Ö ű ű ű ű ű ű Ö ű ű ű ű ű ű ű ű Ú ű Ü Ú Ú ű Ü ű ű Ö ű ű ű ű ű ű ű ű ű ű Ü ű ű Ű

Részletesebben

ű ű Ó

ű ű Ó ű ű ű Ó Ü Ü Ú Ö Ö ű Ó ű ű ű ű Ú Ú Ó ű Ó ű ű ű ű Ó ű Ú Ü Ü ű Ú ű ű Ó Ú Ö ű Ó Ü Ú Ó ű ű ű ű Ú Ó ű ű Ö Ú ű ű Ó ű Ó Ü Ö Ú Ö Ö ű ű Ü Ó Ó Ú Ó Ü Ó Ü Ő ű ű Ú ű ű ű ű ű Ó Ó ű ű ű ű Ú ű ű ű Ó Ú ű Ö ű Ó Ö Ú ű Ó Ú

Részletesebben

Ó

Ó Ó Ó Ú Ú Ü Ü Ü Ü Ű Ü ű Ü Ü Ö Ü Ü Ú Ü Ö Ő Ü Ú Ő Ö ű ű ű Ú Ú Ü Ü Ú Ú Ü ű Ü Ő ű Ö Ü Ü ű ű Ü Ü ű Ő ű Ú Ú Ö Ö Ő Ü ű Ü ű ű ű Ü ű Ő Ü Ú ű Ő Ó Ú Ö Ü Ú Ú ű Ü Ü Ü ű Ü ű ű ű Ú Ó ű Ü Ö Ú Ö Ö Ü Ú ű Ú ű Ü Ü Ü Ő ű Ú Ü

Részletesebben

Ó Ó ü ú ú

Ó Ó ü ú ú ü Ü ű Ó Ó ü ú Ó Ó ü ú ú Ó Ó ü ú ú ü Ü ü Ó Ó ú ü ű ü Ó Ó ü ú Ü Ü ü ü Ű Ű ú Ó ü ú ú Ó Ó ú Ö Ó Ó ú Ó Ó ú ü ü ü ü ü Ü Ó Ó ü ü ü ü ü ü Ó Ó ü Ü ú ü Ó Ó Ó Ü ű Ü ü ű Ü Ő Ő ü Ő ú ú ú ü Ó Ó ú Ó Ó Ó ű Ő Ő Ő Ő Ü ú

Részletesebben

Információs rendszerek elméleti alapjai. Információelmélet

Információs rendszerek elméleti alapjai. Információelmélet Információs rendszerek elméleti alapjai Információelmélet Az információ nem növekedés törvénye Adatbázis x (x adatbázis tartalma) Kérdés : y Válasz: a = f(y, x) Mennyi az a információtartalma: 2017. 04.

Részletesebben

Informatikai Rendszerek Alapjai

Informatikai Rendszerek Alapjai Informatikai Rendszerek Alapjai Dr. Kutor László A redundancia fogalma és mérése Minimális redundanciájú kódok 1. http://uni-obuda.hu/users/kutor/ IRA 2014 könyvtár Óbudai Egyetem, NIK Dr. Kutor László

Részletesebben

A szimplex algoritmus

A szimplex algoritmus A szimplex algoritmus Ismétlés: reprezentációs tétel, az optimális megoldás és az extrém pontok kapcsolata Alapfogalmak: bázisok, bázismegoldások, megengedett bázismegoldások, degenerált bázismegoldás

Részletesebben

Véletlenszám generátorok és tesztelésük. Tossenberger Tamás

Véletlenszám generátorok és tesztelésük. Tossenberger Tamás Véletlenszám generátorok és tesztelésük Tossenberger Tamás Érdekességek Pénzérme feldobó gép: $0,25-os érme 1/6000 valószínűséggel esik az élére 51% eséllyel érkezik a felfelé mutató oldalára Pörgetésnél

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

É Ö É É Ú ü É Ü É ü Ü ü

É Ö É É Ú ü É Ü É ü Ü ü É Ö É É Ú ü É Ü É ü Ü ü ü É ü ü ü ü Ü ü Ü Ü ü Ü ü ü ü ü ü ű ű ü ü ű ü ü ü ü ü ü Ü ü ű Ö ü ü Ö ű ü Ö ü ü ü Ö ü ü Ö ü ü Ö ü Öü Ú Ö ü ü Ö Ö ű ü ü ű ü ü Ö ü É ü ü ü É ű ü ü ü ü ü Ö ü ű ü Ö ü ü Ö ű ű ü ü ü

Részletesebben

Analóg és digitális jelek. Az adattárolás mértékegységei. Bit. Bájt. Nagy mennyiségû adatok mérése

Analóg és digitális jelek. Az adattárolás mértékegységei. Bit. Bájt. Nagy mennyiségû adatok mérése Analóg és digitális jelek Analóg mennyiség: Értéke tetszõleges lehet. Pl.:tömeg magasság,idõ Digitális mennyiség: Csak véges sok, elõre meghatározott értéket vehet fel. Pl.: gyerekek, feleségek száma Speciális

Részletesebben

Programozható chipkártyák kriptográfiai alkalmazása 1

Programozható chipkártyák kriptográfiai alkalmazása 1 Programozható chipkártyák kriptográfiai alkalmazása 1 Berta István Zsolt Mann Zoltán Ádám A programozható smartcardokról Az utóbbi években immár Magyarországon is megszokottá vált, hogy az emberek tárcájában

Részletesebben

Hírek kriptográfiai algoritmusok biztonságáról

Hírek kriptográfiai algoritmusok biztonságáról Hírek kriptográfiai algoritmusok biztonságáról Dr. Berta István Zsolt K+F igazgató Microsec Kft. http://www.microsec.hu Mirıl fogok beszélni? Bevezetés Szimmetrikus kulcsú algoritmusok

Részletesebben

Összefüggések egy csonkolt hasábra

Összefüggések egy csonkolt hasábra Összefüggések egy sonkolt hasábra Az idők során ár többször készítettünk hasonló dolgozatokat. Ne baj: az isétlés sose árt. Most tekintsük az. ábrát!. ábra Eszerint úgy is képzelhetjük hogy egy téglalap

Részletesebben

Sapientia Egyetem, Matematika-Informatika Tanszék.

Sapientia Egyetem, Matematika-Informatika Tanszék. Kriptográfia és Információbiztonság 8. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2018 Miről volt szó az elmúlt előadáson? az RSA titkosító

Részletesebben

TARTÓSZERKEZETEK I gyakorlat

TARTÓSZERKEZETEK I gyakorlat Nyírási vasalás tervezése NYOMOTT ÖV (beton) HÚZOTT RÁCSRUDAK (felhajlított hosszvasak) NYOMOTT RÁCSRUDAK (beton) HÚZOTT ÖV (hosszvasak) NYOMOTT ÖV (beton) HÚZOTT RÁCSRUDAK (kengyelek) NYOMOTT RÁCSRUDAK

Részletesebben

Egyfázisú aszinkron motor

Egyfázisú aszinkron motor AGISYS Ipari Keverés- és Hajtástecnika Kft. Egyfázisú aszinkron otor 1 Egy- és árofázisú otorok főbb jellegzetességei 1.1 Forgórész A kalickás aszinkron otorok a forgórész orony alakjának kialakításától

Részletesebben

Az Informatika Elméleti Alapjai

Az Informatika Elméleti Alapjai Az Informatika Elméleti Alapjai dr. Kutor László Minimális redundanciájú kódok Statisztika alapú tömörítő algoritmusok http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 BMF

Részletesebben

RSA algoritmus. P(M) = M e mod n. S(C) = C d mod n. A helyesség igazoláshoz szükséges számelméleti háttér. a φ(n) = 1 mod n, a (a 1,a 2,...

RSA algoritmus. P(M) = M e mod n. S(C) = C d mod n. A helyesség igazoláshoz szükséges számelméleti háttér. a φ(n) = 1 mod n, a (a 1,a 2,... RSA algoritmus 1. Vegyünk véletlenszerűen két különböző nagy prímszámot, p-t és q-t. 2. Legyen n = pq. 3. Vegyünk egy olyan kis páratlan e számot, amely relatív prím φ(n) = (p 1)(q 1)-hez. 4. Keressünk

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint 08 ÉRESÉGI VIZSGA 008. ájus 4. FIZIKA KÖZÉPSZINŰ ÍRÁSBELI ÉRESÉGI VIZSGA JAVÍÁSI-ÉRÉKELÉSI ÚMUAÓ OKAÁSI ÉS KULURÁLIS MINISZÉRIUM A dolgozatokat az útutató utasításai szerint, jól követhetően

Részletesebben

Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony.

Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony. Determinánsok A determináns fogalma olyan algebrai segédeszköz, amellyel jól jellemezhető a mátrixok invertálhatósága, a mátrix rangja. Segítségével lineáris egyenletrendszerek megoldhatósága dönthető

Részletesebben

Adat és Információvédelmi Mesteriskola 30 MB. Dr. Beinschróth József SAJÁTOS LOGIKAI VÉDELEM: A KRIPTOGRÁFIA ALKALMAZÁSA

Adat és Információvédelmi Mesteriskola 30 MB. Dr. Beinschróth József SAJÁTOS LOGIKAI VÉDELEM: A KRIPTOGRÁFIA ALKALMAZÁSA 30 MB Dr. Beinschróth József SAJÁTOS LOGIKAI VÉDELEM: A KRIPTOGRÁFIA ALKALMAZÁSA Tartalom Alapvetések - kiindulópontok Alapfogalmak Változatok Tradicionális módszerek Szimmetrikus kriptográfia Aszimmetrikus

Részletesebben

Számítógépes Hálózatok. 7. gyakorlat

Számítógépes Hálózatok. 7. gyakorlat Számítógépes Hálózatok 7. gyakorlat Gyakorlat tematika Hibajelző kód: CRC számítás Órai / házi feladat Számítógépes Hálózatok Gyakorlat 7. 2 CRC hibajelző kód emlékeztető Forrás: Dr. Lukovszki Tamás fóliái

Részletesebben

Titkosírás. Biztos, hogy titkos? Szabó István előadása. Az életben sok helyen használunk titkosítást (mobil, internet, jelszavak...

Titkosírás. Biztos, hogy titkos? Szabó István előadása. Az életben sok helyen használunk titkosítást (mobil, internet, jelszavak... Biztos, hogy titkos? Szabó István előadása Az életben sok helyen használunk titkosítást (mobil, internet, jelszavak...) Története Az ókortól kezdve rengeteg feltört titkosírás létezik. Monoalfabetikus

Részletesebben

Titkosítás NetWare környezetben

Titkosítás NetWare környezetben 1 Nyílt kulcsú titkosítás titkos nyilvános nyilvános titkos kulcs kulcs kulcs kulcs Nyilvános, bárki által hozzáférhető csatorna Nyílt szöveg C k (m) Titkosított szöveg Titkosított szöveg D k (M) Nyílt

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Sapientia Egyetem, Matematika-Informatika Tanszék.

Sapientia Egyetem, Matematika-Informatika Tanszék. Kriptográfia és Információbiztonság 7. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2018 Miről volt szó az elmúlt előadáson? Kriptográfiai

Részletesebben

Teremtsen nyugalmat a városi forgatagban! Tökéletes választás otthona kényelméért megfizethető áron.

Teremtsen nyugalmat a városi forgatagban! Tökéletes választás otthona kényelméért megfizethető áron. Teretsen nyugalat a városi forgatagban! Tökéletes választás otthona kényeléért egfizethető áron. Miért érdees a Syen-t választania? A legújabb trendeknek egfelelő beépített funkciókat, hatékony szűrőket

Részletesebben

Informatikai alapismeretek

Informatikai alapismeretek Informatikai alapismeretek Informatika tágabb értelemben -> tágabb értelemben az információ keletkezésével, továbbításával, tárolásával és feldolgozásával foglalkozik Informatika szűkebb értelemben-> számítógépes

Részletesebben

Modern titkosírások és a matematika

Modern titkosírások és a matematika Modern titkosírások és a matematika Az Enigma feltörése Nagy Gábor Péter Szegedi Tudományegyetem Bolyai Intézet, Geometria Tanszék Kutatók Éjszakája 2015. szeptember 25. 1 / 20 Tagolás 1 A titkosírások

Részletesebben

Bevezetés az algebrába 2 Lineáris algebra alkalmazásai

Bevezetés az algebrába 2 Lineáris algebra alkalmazásai Bevezetés az algebrába 2 Lineáris algebra alkalmazásai Wettl Ferenc Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M

Részletesebben

megtalálásának hihetetlen nehéz voltán alapszik. Az eljárás matematikai alapja a kis FERMAT-tétel egy következménye:

megtalálásának hihetetlen nehéz voltán alapszik. Az eljárás matematikai alapja a kis FERMAT-tétel egy következménye: Az RSA módszer Az RSA módszer titkossága a prímtényezős felbontás nehézségén, a prímtényezők megtalálásának hihetetlen nehéz voltán alapszik. Az eljárás matematikai alapja a kis FERMAT-tétel egy következménye:

Részletesebben

2. LOGIKAI FÜGGVÉNYEK MEGADÁSI MÓDSZEREI. A tananyag célja: a többváltozós logikai függvények megadási módszereinek gyakorlása.

2. LOGIKAI FÜGGVÉNYEK MEGADÁSI MÓDSZEREI. A tananyag célja: a többváltozós logikai függvények megadási módszereinek gyakorlása. . LOGIKI ÜGGVÉNYEK EGÁSI ÓSZEREI taayag célja: a többváltozós logikai függvéyek egadási ódszereiek gyakorlása. Eléleti iseretayag: r. jtoyi Istvá: igitális redszerek I.... pot. Eléleti áttekités.. i jellezi

Részletesebben

Néhány mozgás kvantummechanikai tárgyalása

Néhány mozgás kvantummechanikai tárgyalása Néhány ozgás kvantuechanikai tárgyalása Mozzanatok: A Schrödinger-egyenlet felírása ĤΨ EΨ Hailton-operátor egállapítása a kinetikus energiaoperátor felírása, vagy 3 dienziós ozgásra, Descartes-féle koordinátarendszerben

Részletesebben

Ahol a kvantum mechanika és az Internet találkozik

Ahol a kvantum mechanika és az Internet találkozik Ahol a kvantum mechanika és az Internet találkozik Imre Sándor BME Híradástechnikai Tanszék Imre Sándor "The fastest algorithm can frequently be replaced by one that is almost as fast and much easier to

Részletesebben

A továbbiakban Y = {0, 1}, azaz minden szóhoz egy bináris sorozatot rendelünk

A továbbiakban Y = {0, 1}, azaz minden szóhoz egy bináris sorozatot rendelünk 1. Kódelmélet Legyen X = {x 1,..., x n } egy véges, nemüres halmaz. X-et ábécének, elemeit betűknek hívjuk. Az X elemeiből képzett v = y 1... y m sorozatokat X feletti szavaknak nevezzük; egy szó hosszán

Részletesebben

ö ű é é é é é é ü é é é é ű é é ü é é é é é ó ó é Í é í é é é é ó ö é ö ö ö ó é é í é é é é Ő é é é ü ü é é é ö ö ö é ü é é í é ó ü é é ü é ó é ó ó é

ö ű é é é é é é ü é é é é ű é é ü é é é é é ó ó é Í é í é é é é ó ö é ö ö ö ó é é í é é é é Ő é é é ü ü é é é ö ö ö é ü é é í é ó ü é é ü é ó é ó ó é ö é ü ö ö Ö ú é ü ü é é é ó é é é é é ó é é Ö ö é é ó é é ó é é í é é ö ó ó ó ö ö ü é é ü é í ü é ö í é é é é é ü é ó é ü ö í í ó í ü Í é é é ü é é é ü é é ü ö ö ó ó é é í é é é é é é é Ö í ó é í ö é é

Részletesebben

Elektronikus aláírás. Miért van szükség elektronikus aláírásra? A nyiltkulcsú titkosítás. Az elektronikus aláírás m ködése. Hitelesít szervezetek.

Elektronikus aláírás. Miért van szükség elektronikus aláírásra? A nyiltkulcsú titkosítás. Az elektronikus aláírás m ködése. Hitelesít szervezetek. Elektronikus aláírás Miért van szükség elektronikus aláírásra? A nyiltkulcsú titkosítás. Az elektronikus aláírás m ködése. Jogi háttér Hitelesít szervezetek. Miért van szükség elektronikus aláírásra? Elektronikus

Részletesebben

É ű ű ú ú ú Ü ú Ö ű ü ü ü

É ű ű ú ú ú Ü ú Ö ű ü ü ü ű ű É ű ű ú ú ú Ü ú Ö ű ü ü ü Ü Ö ü ú ű ű ü ű ú Ú Ú ú ü ú ú ű ú ú ú ű ú ű ú ű ű ű ű ü Ü ú ú ű ü ű ü ű ű Ü É ü ú ű ü ú ü É Ő ű ü Ü ü ü ü ü ű Ü Ü ű ü Ü ü É ü Ü É Í É Ü Ö Ó Ö ú Ö Ú Ú Ü ú ú ú Ü ű ű ü ÉÉ ű

Részletesebben

Fluidizált halmaz jellemzőinek mérése

Fluidizált halmaz jellemzőinek mérése 1. Gyakorlat célja Fluidizált halaz jellezőinek érése A szecsés halaz tulajdonságainak eghatározása, a légsebesség-nyoásesés görbe és a luidizációs határsebesseg eghatározása. A érésekböl eghatározott

Részletesebben

D I G I T Á L I S T E C H N I K A G Y A K O R L Ó F E L A D A T O K 1.

D I G I T Á L I S T E C H N I K A G Y A K O R L Ó F E L A D A T O K 1. D I G I T Á L I S T E C H N I K A G Y A K O R L Ó F E L A D A T O K 1. Kötelezően megoldandó feladatok: A kódoláselmélet alapjai részből: 6. feladat 16. feladat A logikai függvények részből: 19. feladat

Részletesebben

ü ü ű ű ü ü ü Á ű ü ü ü ű Ü

ü ü ű ű ü ü ü Á ű ü ü ü ű Ü ü ű ü ű ü ü ü ü Á ü ü ű ű ü ü ü Á ű ü ü ü ű Ü É É Á Á Á Á É Á Á Ő É É É Á É Á É Á É Á ű É É Á Á É É É Á É Á É Á É Á Á ü ű ű ü ü ü ü ü üü ü ü ü ü ü ü ű ü ü ű ü ü ü ü ű ü ü ü ű ü ü ü ü ü ü ü ü ü ü ü ű ü

Részletesebben

Í Á ő é é é é é ő é ő é ő é Í Á Ú Á Á é ő é ő é é é é é ű é é é é é é é é Á é é é é é ú ú é é é é é é é ú é é é é é é é é é é é ő é é é é é é é é ű é

Í Á ő é é é é é ő é ő é ő é Í Á Ú Á Á é ő é ő é é é é é ű é é é é é é é é Á é é é é é ú ú é é é é é é é ú é é é é é é é é é é é ő é é é é é é é é ű é é é é Í Ó é é ü ő é é é ű ő ő ű é ő Í Ó ő ü é ő é ü é ő é é é é é é ú é ú Í Á é é é é é ű é é é é é é ú é ő é é é é ú é é é é é é é é é é é é é ő é é ő Í Á ő é é é é é ő é ő é ő é Í Á Ú Á Á é ő é ő é é

Részletesebben

Dr. Beinschróth József Kriptográfiai alkalmazások, rejtjelezések, digitális aláírás

Dr. Beinschróth József Kriptográfiai alkalmazások, rejtjelezések, digitális aláírás 2017.10.13. Dr. Beinschróth József Kriptográfiai alkalmazások, rejtjelezések, digitális aláírás 1 Tartalom Alapvetések Alapfogalmak Változatok Tradicionális Szimmetrikus Aszimmetrikus Kombinált Digitális

Részletesebben

RSA algoritmus. Smidla József. Rendszer- és Számítástudományi Tanszék Pannon Egyetem

RSA algoritmus. Smidla József. Rendszer- és Számítástudományi Tanszék Pannon Egyetem RSA algoritmus Smidla József Rendszer- és Számítástudományi Tanszék Pannon Egyetem 2012. 3. 27. Smidla József (RSZT) RSA algoritmus 2012. 3. 27. 1 / 29 Tartalom 1 Aszimmetrikus kódolók 2 Matematikai alapok

Részletesebben

Shannon és Huffman kód konstrukció tetszőleges. véges test felett

Shannon és Huffman kód konstrukció tetszőleges. véges test felett 1 Shannon és Huffman kód konstrukció tetszőleges véges test felett Mire is jók ezek a kódolások? A szabványos karakterkódolások (pl. UTF-8, ISO-8859 ) általában 8 biten tárolnak egy-egy karaktert. Ha tudjuk,

Részletesebben

Számítógépes Hálózatok. 4. gyakorlat

Számítógépes Hálózatok. 4. gyakorlat Számítógépes Hálózatok 4. gyakorlat Feladat 0 Számolja ki a CRC kontrollösszeget az 11011011001101000111 üzenetre, ha a generátor polinom x 4 +x 3 +x+1! Mi lesz a 4 bites kontrollösszeg? A fenti üzenet

Részletesebben