A MOLEKULADINAMIKAI MÓDSZEREK SZISZTEMATIKUS TÁRGYALÁSA: KLASSZIKUS DINAMIKA A PRIORI KORREKCIÓJA 1.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A MOLEKULADINAMIKAI MÓDSZEREK SZISZTEMATIKUS TÁRGYALÁSA: KLASSZIKUS DINAMIKA A PRIORI KORREKCIÓJA 1."

Átírás

1 A MOLEKULADNAMKA MÓDSZEREK SZSZTEMATKUS TÁRGYALÁSA: KLASSZKUS DNAMKA A PROR KORREKCÓJA. Klasszikus nukleáris trajektóriákat vizsgálunk az alapállapotú elektronikus potenciálfelületen. A potenciálfelület aktuális pontjait, és a szükséges gradienseket a trajektória mentén menet közben, on-thefly számoljuk. Ha a potenciálfelületet ab iníció módszerekkel kezeljük, ab iníció molekuladinamikai módszerrl beszélünk (AMD). A klasszikus nukleáris trajektóriákat használó adiabatikus AMD módszerek két csoportba szokás osztályozni: - Born-Oppenheimer Molekuladinamika (BOMD) - Általánosított Lagrange módszerek (ELMD) BORN-OPPENHEMER MD Born-Oppenheimer közelítés: atommagok mozgása lassú az elektronokhoz képest, így az utóbbiak (pontosabban az elektronikus hullámfüggvény) pillanatszeren adaptálódnak az új magkonfigurációhoz. Born-Oppenheimer közelítés kvázi következménye: Mozgásegyenletei:. nincs idfügg Schrödinger-egyenlet. az elektronikus és a nukleáris változók szét vannak csatolva M R ( t) = ψ H ψ (/) és H ψ Eψ = (/)

2 Menete: = ψ H ψ, azaz a magokra ható er kiszámolása magok klasszikus propagálása R t ) R( t ) H ψ Eψ Értelmezése: A klasszikus magok az elektronok által létrehozott potenciálon mozognak. A potenciált azonban nem kell ismernünk, az adott magkonfigurációhoz tartozó ψ ismeretében szimuláció közben, on-the-fly számolható a potenciál és az er. Mikor igaz? ( E Ei ) >> kt (azaz az alapállapot energiája kellen távol legyen a gerjesztett állapotok energiájától, és a klasszikus molekulák sebessége kicsi legyen ehhez a különbséghez képest) Megjegyzés a mozgásegyenletekhez: Az idtl független Schrödinger egyenlet, H ψ = Eψ, csak az egzakt hullámfüggvényre igaz. Közelít hullámfüggvények esetén a nukleáris koordináták { } propagálása a M R ( t) = min ψ H ψ variációs elv alkalmazásával történik. ( egyenlet szerint, a A hullámfüggvénynek minden dinamikai lépésnél teljesen konvergálnia kell. Egy elektron esetén ez a Hamilton-operátor mátrixának diagonalizálását jelenti. Több-elektronos rendszerek esetén nem kerülhet el egy iteratív SCF típusú eljárás, melynek során minden lépés mátrix diagonalizálással jár. Ez idigényes, ezért hátrányos.

3 Példa. - A rendszer relatíve kicsi. - Elektronszerkezet számítási módszere DFT: Kohn-Sham egyenletek iteratív megoldása. (lehetne HF is, esetleg valamely poszt-hf, de DFT típusú közelítés a legelterjedtebb ma már). - Bázis: síkhullám-bázis (nincs BSSE, nincs Pulay-er) - Erszámítás: Hellman-Feynman tétel felhasználásával. - dbeli propagáció:

4 Eredmények:

5

6

7 A módszer kiterjesztése A kezelés kiterjedhet az összes elektronra és az összes magra. Ekkor az összes elektront teljesen szeparáljuk, és együtt kezeljük, a klasszikus magoktól külön. Azonban a szeparálást részlegesen is végrehajthatjuk! Kémiailag érdekesebb elektronok terében a core, és a kevésbé érdekes, teljesen klasszikusan kezelt molekulák is kezelhetk. Ekkor: H T ve Vve ve Vve core = + +, (/) ahol az utolsó tag egy pszeudopotenciál (a core és a vegyértékelektronok átlagos kölcsönhatását írja le) Probléma általánosítása: Q/C-BOMD kvantumos rész + klasszikus rész elektronok + magok klasszikusan leírt oldószer molekulák (részleges töltés + L-J potenciál) Megjegyzés: igen nagy rendszerek is vizsgálhatók így! Ez utóbbi dinamika energia megmaradást biztosít (kevert kvantumosklasszikus, síkhullám-bázisban vagy teljes bázisban) = + bath + bath = + + R, (/4) v E ψ H ψ T V ψ H ψ µ V ahol µ a bath részecskék tömege.

8 Vegyük a fenti egyenlet idderiváltját: de d d v d R = ψ H ψ + µ v + RVR = dt dt dt dt dt d R ψ ψ + ψ RVQ ( r, R( t)) ψ + F v + RVR v = dt dt ( Q C ) ( Q C ) ψ T ψ v F + F v + F + F v = R (/5) Az eljárás mikrokanonikus (NVE) sokaságról kiterjeszthet kanonikus (NVT) sokaságra is. Megjegyzés: a BOMD adiabatikus, ezért nincs esély elektronikus átmenetre még akkor sem, ha az energiakülönbség csökken az alap és a gerjesztett állapotok között. (Pl. töltéstranszfer, elektrontranszfer, fotokémiai reakciók mind nemadiabatikusak, vagyis a potenciálfelületek között átmenetek zajlanak le) Megjegyzés: igen nagy rendszerek is vizsgálhatók így!

9 Példa. Vízklaszter anionok kvantum molekuladinamikai szimulációi: Elektron: kvantummechanika Vízmolekulák: klasszikus objektumok, köztük Lennard-Jones kölcsönhatások mködnek. Elektron-víz kölcsönhatás: pszeudopotenciál Hullámfüggvény: síkhullám bázis Hamilton-operátor mátrixa diagonalizálása: iteratív Lánczos módszerrel Klasszikus részecskék propagálása: Verlet algoritmus

10 Eredmények: Energetika Figure. Turi, Sheu and Rossky n= (S), T= K n= (S), T= K - - E/eV - - E/eV t/ps - n=45 (S), T= K -4 - t/ps n=45 (), T=6 K E/eV - - E/eV t/ps - n=66 (), T= K -4 t/ps - n=4 (), T=7 K E/eV - - E/eV t/ps n= (), T=5 K -4 t/ps - E/eV t/ps

11 Eredmények: Szerkezet Figure. Turi, Sheu and Rossky r/å r/å r/å r/å n= (S), T= K 9 n= (S), T= K t/ps r/å 9 n=45 (S), T= K t/ps 9 n=66 (), T= K t/ps n= (), T=5 K r/å r/å t/ps t/ps 9 n=45 (), T=6 K t/ps n=4 (), T=7 K t/ps

12 Eredmények: Spektroszkópia Figure. Turi, Sheu and Rossky ntensity n= (S), T= K n= (S), T= K n=45 (S), T= K n=45 (), T=6 K n=66 (), T= K n=4 (), T=7 K n= (), T=5 K E/eV

13 ÁLTALÁNOSÍTOTT LAGRANGE MÓDSZEREK: A CAR- PARRNELLO MOLEKULADNAMKA MÓDSZER Olyan módszer megalkotása a cél, amely egyesíti a BOMD elnyeit (az integrálás idskálája a magok mozgásának idskálájával összemérhet), de eközben használja az elektronmozgás dinamikáját is (az elektronikus szabadsági fokok gyorsabb idskálája ellenére!). Eredeti séma: R(t ), v(t ) elektronikus probléma megoldása Hellman-Feynman er newtoni mozgásegyenletek, magok mozdítása R(t ), v(t ), vissza az. lépéshez. Egy új séma bevezetése: a szimulált temperálás (simulated annealing, SA) módszere. SA módszer SA-módszer: globális optimálási technika, mely a statisztikus mechanikában jól ismert, a fázistérbeli minimális energiával rendelkez pont keresésére. Menete: Rendszerünk egy pont a fázistérben vándorol a teljes energiájának megfelelen csökkentsük a kinetikus energiát mesterségesen kisebb energiájú altérben mozog tovább a pontunk csökken a bejárható terület egészen a potenciális energia minimumáig mehet a keresés, amikor T= fennáll. A séma MC és MD implementációval is mködik. Alkalmazzuk az SA módszert az elektronikus probléma megoldására! Cél: annak a hullámfüggvénynek vagy elektronsrségnek a megtalálása, mely minimalizálja az elektronenergiát valamely elektronváltozók függvényében. Menete: elektronikus konfigurációs tér egy pontja gradiens a konfigurációs tér változói szerint MD mozgásegyenletek a gradienssel és a kényszerrel folytatás a potenciális energia

14 minimumáig a rendszer legurul a kinetikus energia n, ezt mesterségesen eltávolítjuk újra kezdjük Részletezzük: Legyen rendszerünk elektronikus energiája adott magkonfiguráció mellett E. Az elektronállapotot jellemzik a φ i betöltött pályák. Ezek kifejezhetk a bázisfüggvények lineáris kombinációjaként: i φi = ck χk, ahol φ i -k a betöltött pályák, c i -k a lineáris kombináció k koefficiensei, amelyek teljesen specifikálják az elektron konfigurációt. Cél: E(c opt ) megtalálása a {c} konfigurációs térben úgy, hogy közben kényszerek is vannak (a molekulapályák ortogonálisak!). A {c} konfiguráció térben definiáljunk egy sebességet : ahol a t fiktív, szerepe, hogy parametrizálja a koefficiens téren keresztül történ mozgást. dc dt i i k c k =, Erre a konfigurációs térre definiáljunk ezek után egy klasszikus Lagrange függvényt: i L = T V ahol T = µ ( c ) k és V = E{ ( c) } ahol T a fiktív kinetikus energia, µ a fiktív tömeg, mely az optimálás sebességét (és általában milyenségét) befolyásolja. A klasszikus mechanika Lagrange formalizmusa szerint (a Hamilton elvbl): d L L + = i i dt c c A koefficiensekre vonatkozó kényszer egyenletek: k σ = Ω d rψ * ( r) ψ ( r) δ = ij i j ij Ω σ = c c δ = i k k i* j ij k k ij k

15 A kényszerfeltételek kényszererket hoznak létre a koefficienseken. A mozgásegyenletek (variációszámítás segítségével): i E µ c k = λ σ ij c c i k j ij i k, majd a kényszerer differenciálhányadosának szétírásával E µ c = λ c i ' j k i ij k ck j ' λ = λij { ha i j Re ha i=j ahol ij ( λii ). Fiktív mozgásegyenlet a tényezk konfigurációs terén, ugyanolyan alakú, mint a merev molekulák MD-je. Kezelésére alkalmas pl. a SHAKE algoritmus. [SHAKE algoritmus: - kiindulás olyan rendszerbl, amely teljesíti a kényszereket - kényszer nélküli erk számítása - rendszer mozdítása ezen erk szerint - iterációs lépés. sorba veszi az összes kényszert a, kényszer egyenlet vizsgálata b, ha teljesül, a következ kényszerre lép c, kiszámítja azt a kényszerert, amely ahhoz kellett volna, hogy a vizsgált kényszer teljesüljön az aktuális pillanatban d, atomok mozdítása ezzel az ervel e, ugrás a következ kényszerre. következ iteráció az összes kényszerre - iteráció addig folytatódik, amíg az összes kényszer nem teljesül] Ha a dinamika megoldott, akkor az optimálás a fázistérben megoldható. tt azonban gyakorlatilag már csak MD implementáció lehetséges.

16 A Car-Parrinello módszer BOMD:. lépés hatékonyabb módszerrel megy, SCF-típusú iteratív megoldás, melynek minden lépésében mátrix diagonalizálást hajtunk végre. De még jön az er számítása is, a maga hátrányaival. A Car-Parrinello módszer az elektronikus probléma megoldását és a H-F er számítását, és a nukleáris dinamikát párhuzamosan végzi. Ehhez az elektronikus hullámfüggvény szemioptimálását hajtja végre a fenn látott dinamikai egyenletek segítségével! Az elektronikus szabadsági fokra tehát bevezetünk egy fiktív dinamikát, ezt már közös alapon kezelhetjük a magok dinamikájával! Eredmény: A fiktív elektron dinamika úgy mozgatja az elektron konfigurációt, hogy az megfelel az új magkonfiguráció adiabatikus elektron konfigurációjának (azaz az elektron hullámfüggvény beavatkozás nélkül a Born-Oppenheimer felületen, vagy legalábbis annak közvetlen közelében marad). Formálisan: Definiáljunk ezek után egy klasszikus Lagrange függvényt: L = T V, ahol i ( ) T = µ c + M R = E + E i k k FKE KE és {, } V = E R C = E + E elec A variációszámítás alapján levezethet mozgásegyenletek csatolják a koefficiens dinamikát a magdinamikához:

17 E µ c = λ c i ' j k i ij k ck j és M R = E{ R, C} Megjegyzés: az id itt már valós idként kezelend, a magdinamika idejeként, a két egyenlet azonos idlépéssel kezelend, s ehhez a lassú magdinamika idköze elégséges lehet. Energia megmaradás: E total = E FKE + E KE + E elec + E A klasszikus mechanika szerint E total = const. Ha a jól definiált B-O felületen játszódna a reakció, akkor : E real = E KE + E elec + E = const. Ha jó MD számítás a cél, akkor E real -nek gyakorlatilag konstansnak kell lennie (µ-nek, az adiabacitási paraméternek nagyon kicsinek kell lennie). Ez utóbbi feltétel részben biztosítja, hogy E FKE ne njön tendenciózusan. Tulajdonságok: - az elektronikus és a nukleáris változók párhuzamosan propagálódnak - az elektronikus dinamika fiktív - az elektronikus dinamika nem konvergál a Born-Oppenheimer potenciál felülethez (a BOMD eltéren viselkedik) - a nukleáris dinamika fizikailag reális, ha az adiabacitási paramétert, és a dinamika lépésközét megfelelen választjuk meg.

18 A módszer hatása: publikációk száma Összefoglalva: CP-MD és mozgásegyenletei KS-DFT-ben síkhullám bázissal * L = µ ci( G) + M R EKS{ G},{ R } + Λij ci ( G) c j ( G) δij i G ij G Az Euler-Lagrange mozgásegyenletek: E µ c ( G) = + Λ c ( G) i * ij j ci ( G) ij M R E = R c i (G) φ i G-térbeli reprezentációja

19 Általánosítási irányok Példák: mikrokanonikus sokaságról. kanonikus sokaságra (Nosé-Hoover termosztát). állandó nyomásra (barosztátok) elektronikus alapállapotról gerjesztett állapotra klasszikus magok kvantumos magok (ab initio út-integrál módszer) - szilárd fázisú alkalmazások (szilícium olvadása, molekuláris kristályok szimulációja (jég, HBr)) - felületek szimulációja - molekulák adszorpciója felületekre - folyadékok (víz, ammónia, HF)

20 Példa. Módszertan Effect of Choice of Ficticious Mass for HO Overlap of onic and Electronic Vibrational Modes

21 Comparison with Experiment n Figure, the oxygen-oxygen radial distribution function is shown for our BO and CP molecular dynamics simulations of water. The radial distribution functions were each collected over ps of simulation under constant energy conditions at an average temperature of K. The agreement between the BO and CP results in Figure is quite good and indicates that for well-converged simulations of water, the use of the CP technique does not have a significant effect on the structural properties of the liquid.

22 Példa. Biológiailag fontos vegyületek oldatfázisban E. Schwegler, G. Galli and F. Gygi, Conformational dynamics of the dimethyl phosphate anion in solution, Chemical Physics Letters 4, 44 () Figure : n a) the evolution of the O-P-O-C torsion angles is shown for a simulation of DMP in water with a sodium counterion. At approximately ps into the simulation there is a change from the -sc/-sc to the -sc/-ap conformation. As can be seen in b), this change is immediately preceded by the sodium counterion forming a contact ion pair with one of the anionic oxygen atoms of DMP.

23 Példa.: hidrofób hidratáció

Molekuláris dinamika I. 10. előadás

Molekuláris dinamika I. 10. előadás Molekuláris dinamika I. 10. előadás Miről is szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten minden részecske mozgását szimuláljuk? Hogyan tudjuk megérteni a folyadékok,

Részletesebben

Atomok és molekulák elektronszerkezete

Atomok és molekulák elektronszerkezete Atomok és molekulák elektronszerkezete Szabad atomok és molekulák Schrödinger egyenlete Tekintsünk egy kvantummechanikai rendszert amely N n magból és N e elektronból áll. Koordinátáikat jelölje rendre

Részletesebben

Számítógépes szimulációk: molekuláris dinamika és Monte Carlo

Számítógépes szimulációk: molekuláris dinamika és Monte Carlo Számítógépes szimulációk: molekuláris dinamika és Monte Carlo Boda Dezső Fizikai Kémiai Tanszék Pannon Egyetem boda@almos.vein.hu 2014. március 21. Boda Dezső (Pannon Egyetem) Habilitációs előadás 2014.

Részletesebben

Molekuláris dinamika. 10. előadás

Molekuláris dinamika. 10. előadás Molekuláris dinamika 10. előadás Mirőlis szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten? Hogyan tudjuk megérteni a folyadékok, gázok, szilárdtestek makroszkópikus

Részletesebben

Kémiai reakciók mechanizmusa számítógépes szimulációval

Kémiai reakciók mechanizmusa számítógépes szimulációval Kémiai reakciók mechanizmusa számítógépes szimulációval Stirling András stirling@chemres.hu Elméleti Kémiai Osztály Budapest Stirling A. (MTA Kémiai Kutatóközpont) Reakciómechanizmus szimulációból 2007.

Részletesebben

January 16, ψ( r, t) ψ( r, t) = 1 (1) ( ψ ( r,

January 16, ψ( r, t) ψ( r, t) = 1 (1) ( ψ ( r, Közelítő módszerek January 16, 27 1 A variációs módszer A variációs módszer szintén egy analitikus közelítő módszer. Olyan esetekben alkalmazzuk mikor ismert az analitikus alak amelyben keressük a sajátfüggvényt,

Részletesebben

Idegen atomok hatása a grafén vezet képességére

Idegen atomok hatása a grafén vezet képességére hatása a grafén vezet képességére Eötvös Loránd Tudományegyetem, Komplex Rendszerek Fizikája Tanszék Mahe Tisk'11 Vázlat 1 Kisérleti eredmények Kémiai szennyez k hatása a Fermi-energiára A vezet képesség

Részletesebben

Kvantummechanika gyakorlat Beadandó feladatsor Határid : 4. heti gyakorlatok eleje

Kvantummechanika gyakorlat Beadandó feladatsor Határid : 4. heti gyakorlatok eleje Kvantummechanika gyakorlat 015 1. Beadandó feladatsor Határid : 4. heti gyakorlatok eleje 1. Mutassuk meg, hogy A és B tetsz leges operátorokra igaz, hogy e B A e B = A + [B, A] + 1![ B, [B, A] ] +....

Részletesebben

A spin. November 28, 2006

A spin. November 28, 2006 A spin November 28, 2006 1 A spin a kvantummechanikában Az elektronnak és sok más kvantummechanikai részecskének is van egy saját impulzusnyomatéka amely független a mozgásállapottól. (Úgy is mondhatjuk,

Részletesebben

Lagrange és Hamilton mechanika

Lagrange és Hamilton mechanika Lagrange és 2010. október 17. Lagrange és Tartalom 1 Variáció Lagrange egyenlet Legendre transzformáció Hamilton egyenletek 2 3 Szimplektikus sokaság Hamilton mez Hamilton és Lagrange egyenletek ekvivalenciája

Részletesebben

A kémiai kötés eredete; viriál tétel 1

A kémiai kötés eredete; viriál tétel 1 A kémiai kötés ereete; viriál tétel 1 Probléma felvetés Ha egy molekula atommagjai közötti távolság csökken, akkor a közöttük fellép elektrosztatikus taszításhoz tartozó energia n. Ugyanez igaz az elektronokra

Részletesebben

Tárgymutató. dinamika, 5 dinamikai rendszer, 4 végtelen sok állapotú, dinamikai törvény, 5 dinamikai törvények, 12 divergencia,

Tárgymutató. dinamika, 5 dinamikai rendszer, 4 végtelen sok állapotú, dinamikai törvény, 5 dinamikai törvények, 12 divergencia, Tárgymutató állapottér, 3 10, 107 általánosított impulzusok, 143 147 általánosított koordináták, 143 147 áramlás, 194 197 Arisztotelész mozgástörvényei, 71 77 bázisvektorok, 30 centrifugális erő, 142 ciklikus

Részletesebben

AZ ELEKTRON MÁGNESES MOMENTUMA. H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat.

AZ ELEKTRON MÁGNESES MOMENTUMA. H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat. AZ ELEKTRON MÁGNESES MOMENTUMA Mágneses dipólmomentum: m H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat. M = m H sinϕ (Elektromos töltés, q: monopólus

Részletesebben

A kémiai kötés magasabb szinten

A kémiai kötés magasabb szinten A kémiai kötés magasabb szinten 11-1 Mit kell tudnia a kötéselméletnek? 11- Vegyérték kötés elmélet 11-3 Atompályák hibridizációja 11-4 Többszörös kovalens kötések 11-5 Molekulapálya elmélet 11-6 Delokalizált

Részletesebben

2015/16/1 Kvantummechanika B 2.ZH

2015/16/1 Kvantummechanika B 2.ZH 2015/16/1 Kvantummechanika B 2.ZH 2015. december 10. Információk 0. A ZH ideje minimum 90 perc, maximum 180 perc. 1. Az összesen elérhet pontszám 270 pont. 2. A jeles érdemjegy eléréséhez nem szükséges

Részletesebben

Differenciálegyenletek numerikus integrálása április 9.

Differenciálegyenletek numerikus integrálása április 9. Differenciálegyenletek numerikus integrálása 2018. április 9. Differenciálegyenletek Olyan egyenletek, ahol a megoldást függvény alakjában keressük az egyenletben a függvény és deriváltjai szerepelnek

Részletesebben

dinamikai tulajdonságai

dinamikai tulajdonságai Szilárdtest rácsok statikus és dinamikai tulajdonságai Szilárdtestek osztályozása kötéstípusok szerint Kötések eredete: elektronszerkezet k t ionok (atomtörzsek) tö Coulomb- elektronok kölcsönhatás lokalizáltak

Részletesebben

A kémiai kötés magasabb szinten

A kémiai kötés magasabb szinten A kémiai kötés magasabb szinten 13-1 Mit kell tudnia a kötéselméletnek? 13- Vegyérték kötés elmélet 13-3 Atompályák hibridizációja 13-4 Többszörös kovalens kötések 13-5 Molekulapálya elmélet 13-6 Delokalizált

Részletesebben

Lagrange egyenletek. Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását

Lagrange egyenletek. Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását Lagrange egyenletek Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását megnehezíti a δr i virtuális elmozdulások egymástól való függősége. (F i ṗ i )δx i = 0, i = 1, 3N. (1) i 3N infinitezimális

Részletesebben

Simított részecskedinamika Smoothed Particle Hydrodynamics (SPH)

Simított részecskedinamika Smoothed Particle Hydrodynamics (SPH) Smoothed Particle Hydrodynamics (SPH) Áramlások numerikus modellezése II. Tóth Balázs BME-ÉMK Vízépítési és Vízgazdálkodási Tanszék Numerikus módszerek Osztályozás A numerikus sémák két csoportosítási

Részletesebben

Alapvető bimolekuláris kémiai reakciók dinamikája

Alapvető bimolekuláris kémiai reakciók dinamikája Alapvető bimolekuláris kémiai reakciók dinamikája Czakó Gábor Emory University (008 011) és ELTE (011. december ) Szedres, 01. október 13. A Polanyi szabályok Haladó mozgás (ütközési energia) vs. rezgő

Részletesebben

összetevője változatlan marad, a falra merőleges összetevő iránya ellenkezőjére változik, miközben nagysága ugyanakkora marad.

összetevője változatlan marad, a falra merőleges összetevő iránya ellenkezőjére változik, miközben nagysága ugyanakkora marad. A termodinamika 2. főtétele kis rendszerekben Osváth Szabolcs Semmelweis Egyetem Statisztikus sokaságok Nyomás Nyomás: a tartály falával ütköző molekulák, a falra erőt fejtenek ki Az ütközésben a részecske

Részletesebben

Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás

Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás Démon algoritmus az ideális gázra időátlag fizikai mennyiségek átlagértéke sokaságátlag E, V, N pl. molekuláris dinamika Monte

Részletesebben

Folyadékfázisú relaxációs folyamatok tanulmányozása a szolvatált elektron modelljének kvantum molekuladinamikai szimulációjával.

Folyadékfázisú relaxációs folyamatok tanulmányozása a szolvatált elektron modelljének kvantum molekuladinamikai szimulációjával. Folyadékfázisú relaxációs folyamatok tanulmányozása a szolvatált elektron modelljének kvantum molekuladinamikai szimulációjával Doktori Értekezés Túri László ELTE TTK, Kémiai Intézet Budapest 2006 2006

Részletesebben

Az alábbi fogalmak és törvények jelentését/értelmezését/matematikai alakját (megfelelő mélységben) ismerni kell: Newtoni mechanika

Az alábbi fogalmak és törvények jelentését/értelmezését/matematikai alakját (megfelelő mélységben) ismerni kell: Newtoni mechanika Az alábbi fogalmak és törvények jelentését/értelmezését/matematikai alakját (megfelelő mélységben) ismerni kell: Newtoni mechanika 1. előadás Vonatkoztatási rendszer Hely-idő-tömeg standardok 3-dimenziós

Részletesebben

Kémiai kötés. Általános Kémia, szerkezet Dia 1 /39

Kémiai kötés. Általános Kémia, szerkezet Dia 1 /39 Kémiai kötés 4-1 Lewis elmélet 4-2 Kovalens kötés: bevezetés 4-3 Poláros kovalens kötés 4-4 Lewis szerkezetek 4-5 A molekulák alakja 4-6 Kötésrend, kötéstávolság 4-7 Kötésenergiák Általános Kémia, szerkezet

Részletesebben

Klasszikus és kvantum fizika

Klasszikus és kvantum fizika Klasszikus és kvantum fizika valamint a Wigner függvény T.S. Biró MTA Fizikai Kutatóközpont, Budapest 2017. november 13. T.S.Biró Wigner 115, Budapest, 2017. Nov. 15. Biró Klassz kvantum 1 / 22 Abstract

Részletesebben

Konjugált gradiens módszer

Konjugált gradiens módszer Közelítő és szimbolikus számítások 12. gyakorlat Konjugált gradiens módszer Készítette: Gelle Kitti Csendes Tibor Vinkó Tamás Faragó István Horváth Róbert jegyzetei alapján 1 LINEÁRIS EGYENLETRENDSZEREK

Részletesebben

Kémiai kötés. Általános Kémia, szerkezet Dia 1 /39

Kémiai kötés. Általános Kémia, szerkezet Dia 1 /39 Kémiai kötés 4-1 Lewis-elmélet 4-2 Kovalens kötés: bevezetés 4-3 Poláros kovalens kötés 4-4 Lewis szerkezetek 4-5 A molekulák alakja 4-6 Kötésrend, kötéstávolság 4-7 Kötésenergiák Általános Kémia, szerkezet

Részletesebben

Elektronok mozgása nanostruktúrákban 2-D elektrongáz, kvantumdrót és kvantumpötty

Elektronok mozgása nanostruktúrákban 2-D elektrongáz, kvantumdrót és kvantumpötty Elektronok mozgása nanostruktúrákban 2-D elektrongáz, kvantumdrót és kvantumpötty Dr. Berta Miklós bertam@sze.hu 2017. október 26. 1 / 11 Tekintsünk egy olyan kristályrácsot, amelynek minden mérete sokkal

Részletesebben

Geometriai vagy kinematikai természetű feltételek: kötések vagy. kényszerek. 1. Egy apró korong egy mozdulatlan lejtőn vagy egy gömb belső

Geometriai vagy kinematikai természetű feltételek: kötések vagy. kényszerek. 1. Egy apró korong egy mozdulatlan lejtőn vagy egy gömb belső Kényszerek Geometriai vagy kinematikai természetű feltételek: kötések vagy kényszerek. Példák: 1. Egy apró korong egy mozdulatlan lejtőn vagy egy gömb belső felületén mozog. Kényszerek Geometriai vagy

Részletesebben

A s r ségfunkcionál elmélet (Density Functional Theory)

A s r ségfunkcionál elmélet (Density Functional Theory) A s r ségfunkcionál elmélet (Density Functional Theory) Tekintsünk egy szabad, N elektronos molekulát N m maggal. A Hamilton operátor rögzített magok esetében ^H = ^T + ^V + ^W ; ahol ^T a kinetikai energia,

Részletesebben

A MOLEKULADINAMIKAI MÓDSZEREK SZISZTEMATIKUS TÁRGYALÁSA: KLASSZIKUS DINAMIKA A POSTERIORI KORREKCIÓJA

A MOLEKULADINAMIKAI MÓDSZEREK SZISZTEMATIKUS TÁRGYALÁSA: KLASSZIKUS DINAMIKA A POSTERIORI KORREKCIÓJA A MOLEKULADINAMIKAI MÓDSZEREK SZISZTEMATIKUS TÁRGYALÁSA: KLASSZIKUS DINAMIKA A POSTERIORI KORREKCIÓJA KLASSZIKUS DINAMIKA Klasszkus magok mozognak egy elre elkészített potencálfelületen. Potencálfelület

Részletesebben

Kvantum kontrol frekvencia csörpölt lézer indukált kónikus keresztez désekkel

Kvantum kontrol frekvencia csörpölt lézer indukált kónikus keresztez désekkel Kvantum kontrol frekvencia csörpölt lézer indukált kónikus keresztez désekkel Vibók Ágnes ELI-ALPS, ELI-HU Non-Prot Ltd. University of Debrecen Department of Theoretical Physics, Áttekintés 1 Kónikus keresztez

Részletesebben

Univerzalitási osztályok nemegyensúlyi rendszerekben, Ódor Géza

Univerzalitási osztályok nemegyensúlyi rendszerekben, Ódor Géza Univerzalitási osztályok nemegyensúlyi rendszerekben, Ódor Géza odor@mfa.kfki.hu 1. Bevezetõ, dinamikus skálázás, kritikus exponensek, térelmélet formalizmus, renormalizáció, topológius fázis diagrammok,

Részletesebben

Szén nanoszerkezetek grafén nanolitográfiai szimulációja

Szén nanoszerkezetek grafén nanolitográfiai szimulációja GYŐR Szén nanoszerkezetek grafén nanolitográfiai szimulációja Dr. László István, Dr. Zsoldos Ibolya BMGE Elméleti Fizika Tanszék, SZE Anyagtudomány és Technológia Tanszék GYŐR Motiváció, előzmény: Grafén

Részletesebben

Elektrodinamika. Maxwell egyenletek: Kontinuitási egyenlet: div n v =0. div E =4 div B =0. rot E = rot B=

Elektrodinamika. Maxwell egyenletek: Kontinuitási egyenlet: div n v =0. div E =4 div B =0. rot E = rot B= Elektrodinamika Maxwell egyenletek: div E =4 div B =0 rot E = rot B= 1 B c t 1 E c t 4 c j Kontinuitási egyenlet: n t div n v =0 Vektoranalízis rot rot u=grad divu u rot grad =0 div rotu=0 udv= ud F V

Részletesebben

Pere Balázs október 20.

Pere Balázs október 20. Végeselem anaĺızis 1. előadás Széchenyi István Egyetem, Alkalmazott Mechanika Tanszék 2014. október 20. Mi az a VégesElem Anaĺızis (VEA)? Mi az a VégesElem Anaĺızis (VEA)? Mi az a VégesElem Anaĺızis (VEA)?

Részletesebben

A racionális gyógyszertervezés lehetőségei. A racionális gyógyszertervezés lehetőségei. A racionális gyógyszertervezés lehetőségei

A racionális gyógyszertervezés lehetőségei. A racionális gyógyszertervezés lehetőségei. A racionális gyógyszertervezés lehetőségei Cél: kis koncentrációban kötődő célvegyület tervezése Agonista: segíti az enzim működését, hatékonyabb, mint a természetes szubsztrát Antagonista: gátolja az enzim működését, ellentétes hatású, mint a

Részletesebben

Fermi Dirac statisztika elemei

Fermi Dirac statisztika elemei Fermi Dirac statisztika elemei A Fermi Dirac statisztika alapjai Nagy részecskeszámú rendszerek fizikai jellemzéséhez statisztikai leírást kell alkalmazni. (Pl. gázokra érvényes klasszikus statisztika

Részletesebben

Elektrosztatikus számítások. Elektrosztatikus számítások. Elektrosztatikus számítások. Elektrosztatikus számítások Definíciók

Elektrosztatikus számítások. Elektrosztatikus számítások. Elektrosztatikus számítások. Elektrosztatikus számítások Definíciók Jelentősége szubsztrát kötődés szolvatáció ionizációs állapotok (pka) mechanizmus katalízis ioncsatornák szimulációk (szerkezet) all-atom dipolar fluid dipolar lattice continuum Definíciók töltéseloszlás

Részletesebben

Lássuk be, hogy nem lehet a három pontot úgy elhelyezni, hogy egy inerciarendszerben

Lássuk be, hogy nem lehet a három pontot úgy elhelyezni, hogy egy inerciarendszerben Feladat: A háromtest probléma speciális megoldásai Arra vagyunk kiváncsiak, hogy a bolygó mozgásnak milyen egyszerű egyensúlyi megoldásai vannak három bolygó esetén. Az így felmerülő három-test probléma

Részletesebben

Császár Attila. Molekularezgések. kvantummechanikája

Császár Attila. Molekularezgések. kvantummechanikája 1 Császár Attila Molekularezgések kvantummechanikája Jegyzet(kezdemény) Budapest, 2011 2 A félév során feldolgozandó témák: 1. A tömegközéppont mozgásának leválasztása 2. Az időfüggetlen rovibronikus Schrödinger-egyenlet

Részletesebben

Szilárdtestek el e ek e tr t o r n o s n zer e k r ez e et e e t

Szilárdtestek el e ek e tr t o r n o s n zer e k r ez e et e e t Szilárdtestek elektronszerkezete Kvantummechanikai leírás Ismétlés: Schrödinger egyenlet, hullámfüggvény, hidrogén-atom, spin, Pauli-elv, periódusos rendszer 2 Szilárdtestek egyelektron-modellje a magok

Részletesebben

Tartalomjegyzék. A mechanika elvei. A virtuális munka elve. A TételWiki wikiből 1 / 6

Tartalomjegyzék. A mechanika elvei. A virtuális munka elve. A TételWiki wikiből 1 / 6 1 / 6 A TételWiki wikiből Tartalomjegyzék 1 A mechanika elvei 2 A virtuális munka elve 3 d'alembert elv és a Lagrange-féle elsőfajú egyenletek 4 A Gauss-féle legkisebb kényszer 5 Általános koordináták

Részletesebben

Fizikai kémia 2. Előzmények. A Lewis-féle kötéselmélet A VB- és az MO-elmélet, a H 2+ molekulaion

Fizikai kémia 2. Előzmények. A Lewis-féle kötéselmélet A VB- és az MO-elmélet, a H 2+ molekulaion 06.07.5. Fizikai kémia. 4. A VB- és az -elmélet, a H + molekulaion Dr. Berkesi ttó ZTE Fizikai Kémiai és Anyagtudományi Tanszéke 05 Előzmények Az atomok szerkezetének kvantummehanikai leírása 90-30-as

Részletesebben

MOLEKULÁRIS TULAJDONSÁGOK

MOLEKULÁRIS TULAJDONSÁGOK 7 MOLKULÁIS TULAJDONSÁGOK Az elektronszerkezet számítások fókuszában többnyire az energiának és a hullámfüggvénynek egy adott geometriában történ kiszámítása áll Bár a gyakorlati kémiában a relatív energiák

Részletesebben

Adalékok molekulák rezgési-forgási színképének számításához

Adalékok molekulák rezgési-forgási színképének számításához Fábri Csaba Adalékok molekulák rezgési-forgási színképének számításához Témavezető Dr. Császár Attila egyetemi tanár Eötvös Loránd Tudományegyetem Kémiai Intézet Molekulaspektroszkópiai Laboratórium 009.05.04.

Részletesebben

Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/

Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/ Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 9. Előadás Az optimalizálás alapfeladata Keressük f függvény maximumát ahol f : R n R és

Részletesebben

Erőterek. Erőterek. Erőterek. Erőterek. Erőterek. Erőterek. Probléma: fehérjéknél nagy dimenziók értelmetlen QM eredmények.

Erőterek. Erőterek. Erőterek. Erőterek. Erőterek. Erőterek. Probléma: fehérjéknél nagy dimenziók értelmetlen QM eredmények. fehérjéknél nagy dimenziók értelmetlen QM eredmények Megoldás: egyszerűsítés dimenzió-csökkentés Közelítések Born-Oppenheimer közelítés (Ψ mol = Ψ el Ψ mag ; E tot =E el +E mag ) az energia párkölcsönhatások

Részletesebben

Elektronegativitás. Elektronegativitás

Elektronegativitás. Elektronegativitás Általános és szervetlen kémia 3. hét Elektronaffinitás Az az energiaváltozás, ami akkor következik be, ha 1 mól gáz halmazállapotú atomból 1 mól egyszeresen negatív töltésű anion keletkezik. Mértékegysége:

Részletesebben

Diffúzió. Diffúzió. Diffúzió. Különféle anyagi részecskék anyagon belüli helyváltoztatása Az anyag lehet gáznemű, folyékony vagy szilárd

Diffúzió. Diffúzió. Diffúzió. Különféle anyagi részecskék anyagon belüli helyváltoztatása Az anyag lehet gáznemű, folyékony vagy szilárd Anyagszerkezettan és anyagvizsgálat 5/6 Diffúzió Dr. Szabó Péter János szpj@eik.bme.hu Diffúzió Különféle anyagi részecskék anyagon belüli helyváltoztatása Az anyag lehet gáznemű, folyékony vagy szilárd

Részletesebben

2, = 5221 K (7.2)

2, = 5221 K (7.2) 7. Gyakorlat 4A-7 Az emberi szem kb. 555 nm hullámhossznál a Iegnagyobb érzékenységű. Adjuk meg annak a fekete testnek a hőmérsékletét, amely sugárzásának a spektrális teljesitménye ezen a hullámhosszon

Részletesebben

? ligandum kötés konformációs változás aktiválási energia számítás pka számítás kötési energiák

? ligandum kötés konformációs változás aktiválási energia számítás pka számítás kötési energiák Szabadenergia Definíció:? ligandum kötés konformációs változás aktiválási energia számítás pka számítás kötési energiák Fázistér teljes térfogatára kell számítani! Mennyiség átlagértéke: Sokaság-átlag

Részletesebben

A H + 2. molekulaion1. molekulaion, ami két azonos atommagból (protonok) és egyetlen elektronból. A legegyszer bb molekula a H + 2 áll.

A H + 2. molekulaion1. molekulaion, ami két azonos atommagból (protonok) és egyetlen elektronból. A legegyszer bb molekula a H + 2 áll. W. Demtröder, Atoms Molecules and Photons és Cohen-Tannoudji C., Diu B., Laloe F. Quantum mechanics cím könyve alapján A H + molekulaion A legegyszer bb molekula a H + áll. molekulaion, ami két azonos

Részletesebben

Erős terek leírása a Wigner-formalizmussal

Erős terek leírása a Wigner-formalizmussal Erős terek leírása a Wigner-formalizmussal Berényi Dániel 1, Varró Sándor 1, Vladimir Skokov 2, Lévai Péter 1 1, MTA Wigner FK, Budapest 2, RIKEN/BNL, Upton, USA Wigner 115 2017. November 15. Budapest

Részletesebben

Kutatási terület. Szervetlen és szerves molekulák szerkezetének ab initio tanulmányozása

Kutatási terület. Szervetlen és szerves molekulák szerkezetének ab initio tanulmányozása Kutatási terület zervetlen és szerves molekulák szerkezetének ab initio tanulmányozása Cél: a molekulák disszociatív ionizációja során keletkező semleges és ionizált fragmentumok energetikai paramétereinek

Részletesebben

Diffúzió 2003 március 28

Diffúzió 2003 március 28 Diffúzió 3 március 8 Diffúzió: különféle anyagi részecskék (szilárd, folyékony, gáznemű) anyagon belüli helyváltozása. Szilárd anyagban való mozgás Öndiffúzió: a rácsot felépítő saját atomok energiaszint-különbség

Részletesebben

Elméleti kérdések 11. osztály érettségire el ı készít ı csoport

Elméleti kérdések 11. osztály érettségire el ı készít ı csoport Elméleti kérdések 11. osztály érettségire el ı készít ı csoport MECHANIKA I. 1. Definiálja a helyvektort! 2. Mondja meg mit értünk vonatkoztatási rendszeren! 3. Fogalmazza meg kinematikailag, hogy mikor

Részletesebben

Saj at ert ek-probl em ak febru ar 26.

Saj at ert ek-probl em ak febru ar 26. Sajátérték-problémák 2018. február 26. Az alapfeladat Adott a következő egyenlet: Av = λv, (1) ahol A egy ismert mátrix v ismeretlen, nem zérus vektor λ ismeretlen szám Azok a v, λ kombinációk, amikre

Részletesebben

([P2]: Eq.4) C N/[ [(+(discr(q 1 )) 1/2 -B)/(2A)] 3 dq 1 ],

([P2]: Eq.4) C N/[ [(+(discr(q 1 )) 1/2 -B)/(2A)] 3 dq 1 ], Kristyán Sándor ''Kohn-Sham formalizmustól eltérő (hatványsoros) sűrűség funkcionál algoritmus kidolgozása kémiai potenciálfelületek vizsgálatára'' című, KM1 zsűrihez tartozó OTKA-2007-K-68293-KM1 kutatás

Részletesebben

Alkalmazott spektroszkópia

Alkalmazott spektroszkópia Alkalmazott spektroszkópia 009 Bányai István MR és a fémionok: koordinációs kémiai alkalmazások Bányai István Debreceni Egyetem TEK Kolloid- és Környezetkémiai Tanszék A mágnesség A mágneses erő: F pp

Részletesebben

Hamilton rendszerek, Lyapunov függvények és Stabilitás. Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek

Hamilton rendszerek, Lyapunov függvények és Stabilitás. Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek Hamilton rendszerek, Lyapunov függvények és Stabilitás Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek Sokszor nem lehetséges, hogy a tanult linearizációs módszerrel meghatározzuk

Részletesebben

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg

Részletesebben

13. Molekulamodellezés

13. Molekulamodellezés 13. Molekulamodellezés Koltai János és Zólyomi Viktor 2013. április Tartalomjegyzék 1. Bevezetés 2 2. Sokelektronos rendszerek leírása 2 2.1. A Schrödinger-egyenlet sokelektronos rendszerekre.............

Részletesebben

Degenerált állapotok és nemadiabatikus folyamatok molekuláris rendszerekben

Degenerált állapotok és nemadiabatikus folyamatok molekuláris rendszerekben MTA doktori értekezés tézisei Degenerált állapotok és nemadiabatikus folyamatok molekuláris rendszerekben Halász Gábor Debreceni Egyetem, Informatikai Kar Debrecen, 2012 I. Előzmények A molekuladinamikai

Részletesebben

Bevezetés a modern fizika fejezeteibe. 4. (b) Kvantummechanika. Utolsó módosítás: 2013. november 9. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 4. (b) Kvantummechanika. Utolsó módosítás: 2013. november 9. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 4. (b) Kvantummechanika Utolsó módosítás: 2013. november 9. 1 A legkisebb hatás elve (1) A legkisebb hatás elve (Hamilton-elv): S: a hatás L: Lagrange-függvény 2 A

Részletesebben

Szilárdtestek sávelmélete. Sávelmélet a szabadelektron-modell alapján

Szilárdtestek sávelmélete. Sávelmélet a szabadelektron-modell alapján Szilárdtestek sávelmélete Sávelmélet a szabadelektron-modell alapján A Fermi Dirac statisztika alapjai Nagy részecskeszámú rendszerek fizikai jellemzéséhez statisztikai leírást kell alkalmazni. (Pl. gázokra

Részletesebben

Kémiai kötés Lewis elmélet

Kémiai kötés Lewis elmélet Kémiai kötés 10-1 Lewis elmélet 10-2 Kovalens kötés: bevezetés 10-3 Poláros kovalens kötés 10-4 Lewis szerkezetek 10-5 A molekulák alakja 10-6 Kötésrend, kötéstávolság 10-7 Kötésenergiák Általános Kémia,

Részletesebben

Differenciálegyenletek numerikus megoldása

Differenciálegyenletek numerikus megoldása a Matematika mérnököknek II. című tárgyhoz Differenciálegyenletek numerikus megoldása Fokozatos közeĺıtés módszere (1) (2) x (t) = f (t, x(t)), x I, x(ξ) = η. Az (1)-(2) kezdeti érték probléma ekvivalens

Részletesebben

Infobionika ROBOTIKA. XI. Előadás. Robot manipulátorok III. Differenciális kinematika. Készült a HEFOP P /1.0 projekt keretében

Infobionika ROBOTIKA. XI. Előadás. Robot manipulátorok III. Differenciális kinematika. Készült a HEFOP P /1.0 projekt keretében Infobionika ROBOTIKA XI. Előadás Robot manipulátorok III. Differenciális kinematika Készült a HEFOP-3.3.1-P.-2004-06-0018/1.0 projekt keretében Tartalom A forgatási mátrix időbeli deriváltja A geometriai

Részletesebben

Rádl Attila december 11. Rádl Attila Spalláció december / 21

Rádl Attila december 11. Rádl Attila Spalláció december / 21 Spalláció Rádl Attila 2018. december 11. Rádl Attila Spalláció 2018. december 11. 1 / 21 Definíció Atommagok nagyenergiás részecskével történő ütközése során másodlagos részecskéket létrehozó rugalmatlan

Részletesebben

Dekoherencia Markovi Dinamika Diósi Lajos. Elméleti Fizikai Iskola Tihany, augusztus szeptember 3.

Dekoherencia Markovi Dinamika Diósi Lajos. Elméleti Fizikai Iskola Tihany, augusztus szeptember 3. Dekoherencia Markovi Dinamika Diósi Lajos Elméleti Fizikai Iskola Tihany, 2010. augusztus 30. - szeptember 3. Tartalomjegyzék 1 Projektív dekoherencia 2 Nyitott rendszer - Lindblad egy. 3 Dekoherencia

Részletesebben

Energiatételek - Példák

Energiatételek - Példák 9. Előadás Húzott rúd potenciális energiája: Hooke-modell: σ = Eε Geom. hetséges Geometriai egyenlet: + geom. peremfeltételek: u εx = ε = x u(0) = 0 ul () = 0 du dx Energiatételek Példák = k l 0 pudx l

Részletesebben

Degenerált állapotok és nemadiabatikus folyamatok molekuláris rendszerekben

Degenerált állapotok és nemadiabatikus folyamatok molekuláris rendszerekben MTA doktori értekezés Degenerált állapotok és nemadiabatikus folyamatok molekuláris rendszerekben Halász Gábor Debreceni Egyetem, Informatikai Kar Debrecen, 2012 Tartalomjegyzék 1. Bevezetés 3 2. A Born

Részletesebben

Magszerkezet modellek. Folyadékcsepp modell

Magszerkezet modellek. Folyadékcsepp modell Magszerkezet modellek Folyadékcsepp modell Az atommag összetevői (emlékeztető) atommag Z proton + (A-Z) neutron (nukleonok) szorosan kötve Állapot leírása: kvantummechanika + kölcsönhatások Nem relativisztikus

Részletesebben

Tartalomjegyzék. Typotex Kiadó, 2010

Tartalomjegyzék. Typotex Kiadó, 2010 Tartalomjegyzék 15. Elliptikus egyenletek 7 15.1. Bevezetés: Elliptikus egyenletek alkalmazott feladatokban... 7 15.2. Elméleti háttér.......................... 9 15.3. Véges dierencia eljárások II...................

Részletesebben

Diffúzió. Diffúzió sebessége: gáz > folyadék > szilárd (kötőerő)

Diffúzió. Diffúzió sebessége: gáz > folyadék > szilárd (kötőerő) Diffúzió Diffúzió - traszportfolyamat (fonon, elektron, atom, ion, hőmennyiség...) Elektromos vezetés (Ohm) töltés áram elektr. potenciál grad. Hővezetés (Fourier) energia áram hőmérséklet különbség Kémiai

Részletesebben

Végeselem analízis. 1. el adás

Végeselem analízis. 1. el adás Végeselem analízis 1. el adás Pere Balázs Széchenyi István Egyetem, Alkalmazott Mechanika Tanszék 2016. szeptember 7. Mi az a VégesElem Analízis (VEA)? Parciális dierenciálegyenletek (egyenletrendszerek)

Részletesebben

Atomfizika. A hidrogén lámpa színképei. Elektronok H atom. Fényképlemez. emisszió H 2. gáz

Atomfizika. A hidrogén lámpa színképei. Elektronok H atom. Fényképlemez. emisszió H 2. gáz Atomfizika A hidrogén lámpa színképei - Elektronok H atom emisszió Fényképlemez V + H 2 gáz Az atom és kvantumfizika fejlődésének fontos szakasza volt a hidrogén lámpa színképeinek leírása, és a vonalas

Részletesebben

Előszó.. Bevezetés. 1. A fizikai megismerés alapjai Tér is idő. Hosszúság- és időmérés.

Előszó.. Bevezetés. 1. A fizikai megismerés alapjai Tér is idő. Hosszúság- és időmérés. SZABÓ JÁNOS: Fizika (Mechanika, hőtan) I. TARTALOMJEGYZÉK Előszó.. Bevezetés. 1. A fizikai megismerés alapjai... 2. Tér is idő. Hosszúság- és időmérés. MECHANIKA I. Az anyagi pont mechanikája 1. Az anyagi

Részletesebben

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( ) Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:

Részletesebben

"Flat" rendszerek. definíciók, példák, alkalmazások

Flat rendszerek. definíciók, példák, alkalmazások "Flat" rendszerek definíciók, példák, alkalmazások Hangos Katalin, Szederkényi Gábor szeder@scl.sztaki.hu, hangos@scl.sztaki.hu 2006. október 18. flatness - p. 1/26 FLAT RENDSZEREK: Elméleti alapok 2006.

Részletesebben

Hogyan bírhatjuk szóra a molekulákat, avagy mi is az a spektroszkópia?

Hogyan bírhatjuk szóra a molekulákat, avagy mi is az a spektroszkópia? Hogyan bírhatjuk szóra a molekulákat, avagy mi is az a spektroszkópia? Prof. Túri László (ELTE, Kémiai Intézet) turi@chem.elte.hu 2012. november 19. Szent László Gimnázium Önképzőkör 1 Kapcsolódási pontok

Részletesebben

Szemidenit optimalizálás és az S-lemma

Szemidenit optimalizálás és az S-lemma Szemidenit optimalizálás és az S-lemma Pólik Imre SAS Institute, USA BME Optimalizálás szeminárium 2011. október 6. Outline 1 Egyenl tlenségrendszerek megoldhatósága 2 Az S-lemma 3 Szemidenit kapcsolatok

Részletesebben

ACM Snake. Orvosi képdiagnosztika 11. előadás első fele

ACM Snake. Orvosi képdiagnosztika 11. előadás első fele ACM Snake Orvosi képdiagnosztika 11. előadás első fele ACM Snake (ismétlés) A szegmentáló kontúr egy paraméteres görbe: x Zs s X s, Y s,, s A szegmentáció energia funkcionál minimalizálása: E x Eint x

Részletesebben

Kémiai kötés. Általános Kémia, szerkezet Slide 1 /39

Kémiai kötés. Általános Kémia, szerkezet Slide 1 /39 Kémiai kötés 12-1 Lewis elmélet 12-2 Kovalens kötés: bevezetés 12-3 Poláros kovalens kötés 12-4 Lewis szerkezetek 12-5 A molekulák alakja 12-6 Kötésrend, kötéstávolság 12-7 Kötésenergiák Általános Kémia,

Részletesebben

PETER PAZMANY CATHOLIC UNIVERSITY Consortium members SEMMELWEIS UNIVERSITY, DIALOG CAMPUS PUBLISHER

PETER PAZMANY CATHOLIC UNIVERSITY Consortium members SEMMELWEIS UNIVERSITY, DIALOG CAMPUS PUBLISHER SEMMELWEIS UNIVERSITY PETER PAMANY CATLIC UNIVERSITY Development of Complex Curricula for Molecular Bionics and Infobionics Programs within a consortial* framework** Consortium leader PETER PAMANY CATLIC

Részletesebben

Nemlineáris programozás 2.

Nemlineáris programozás 2. Optimumszámítás Nemlineáris programozás 2. Többváltozós optimalizálás feltételek mellett. Lagrange-feladatok. Nemlineáris programozás. A Kuhn-Tucker feltételek. Konvex programozás. Sydsaeter-Hammond: 18.1-5,

Részletesebben

Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27

Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27 Az egyensúly 6'-1 6'-2 6'-3 6'-4 6'-5 Dinamikus egyensúly Az egyensúlyi állandó Az egyensúlyi állandókkal kapcsolatos összefüggések Az egyensúlyi állandó számértékének jelentősége A reakció hányados, Q:

Részletesebben

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA 9. évfolyam Osztályozóvizsga tananyaga A testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás: gyorsulás fogalma, szabadon eső test mozgása 3. Bolygók mozgása: Kepler törvények A Newtoni

Részletesebben

BUDAPESTI MŐSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM

BUDAPESTI MŐSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM BUDAPESTI MŐSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Számítógépes Modellezés Házi Feladat Készítete: Magyar Bálint Dátum: 2008. 01. 01. A feladat kiírása A számítógépes modellezés c. tárgy házi feladataként

Részletesebben

Differenciálegyenlet rendszerek

Differenciálegyenlet rendszerek Differenciálegyenlet rendszerek (A kezdeti érték probléma. Lineáris differenciálegyenlet rendszerek, magasabb rendű lineáris egyenletek.) Szili László: Modellek és algoritmusok ea+gyak jegyzet alapján

Részletesebben

http://www.nature.com 1) Magerő-sugár: a magközéppontból mért távolság, ameddig a magerők hatótávolsága terjed. Rutherford-szórásból határozható meg. R=1,4 x 10-13 A 1/3 cm Az atommag terének potenciálja

Részletesebben

Röntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT)

Röntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT) Röntgensugárzás az orvostudományban Röntgen kép és Komputer tomográf (CT) Orbán József, Biofizikai Intézet, 2008 Hand mit Ringen: print of Wilhelm Röntgen's first "medical" x-ray, of his wife's hand, taken

Részletesebben

Gyakorló feladatok. Agbeko Kwami Nutefe és Nagy Noémi

Gyakorló feladatok. Agbeko Kwami Nutefe és Nagy Noémi Gyakorló feladatok Agbeko Kwami Nutefe és Nagy Noémi 25 Tartalomjegyzék. Klasszikus hibaszámítás 3 2. Lineáris egyenletrendszerek 3 3. Interpoláció 4 4. Sajátérték, sajátvektor 6 5. Lineáris és nemlineáris

Részletesebben

Anyagismeret 2016/17. Diffúzió. Dr. Mészáros István Diffúzió

Anyagismeret 2016/17. Diffúzió. Dr. Mészáros István Diffúzió Anyagismeret 6/7 Diffúzió Dr. Mészáros István meszaros@eik.bme.hu Diffúzió Különféle anyagi részecskék anyagon belüli helyváltoztatása Az anyag lehet gáznemű, folyékony vagy szilárd Diffúzió Diffúzió -

Részletesebben

Bolygómozgás. Számítógépes szimulációk fn1n4i11/1. Csabai István, Stéger József

Bolygómozgás. Számítógépes szimulációk fn1n4i11/1. Csabai István, Stéger József Bolygómozgás Számítógépes szimulációk fn1n4i11/1 Csabai István, Stéger József ELTE Komplex Rendszerek Fizikája Tanszék Email: csabai@complex.elte.hu, steger@complex.elte.hu Bevezetés Egy Nap körül kering

Részletesebben

Folyadékszcintillációs spektroszkópia jegyz könyv

Folyadékszcintillációs spektroszkópia jegyz könyv Folyadékszcintillációs spektroszkópia jegyz könyv Zsigmond Anna Julia Fizika MSc I. Mérés vezet je: Horváth Ákos Mérés dátuma: 2010. október 21. Leadás dátuma: 2010. november 8. 1 1. Bevezetés A mérés

Részletesebben

3. előadás Stabilitás

3. előadás Stabilitás Stabilitás 3. előadás 2011. 09. 19. Alapfogalmak Tekintsük dx dt = f (t, x), x(t 0) = x 0 t (, ), (1) Jelölje t x(t; t 0, x 0 ) vagy x(.; t 0, x 0 ) a KÉF megoldását. Kívánalom: kezdeti állapot kis megváltozása

Részletesebben