Útban a Standard Modell felé

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Útban a Standard Modell felé"

Átírás

1 Útban a Standard Modell felé Mag é rézeckefizika 3. előadá márci 3.

2 Amiről eddig tanltnk: kíérletek 1895 Röntgen, röntgengárzá katódgárcővel 1896 Becqerel, ránók radioaktivitáa (kéőbb: gamma-gárzá) 1897 Thomon, elektron tömeg/tölté arány 1898 Crie-házapár, rádioaktivitá forráa, rádim kivonáa ránzrok ércből 1899 Rtherford, alfa- é béta-gárzá 1900 Villard; 1903 Rtherford, gamma-gárzá 1907 Rtherford, alfa-gárzá à He-ion 1909 Geiger, Marden, Rtherford, atommag (alfa rézeckék aranyfólián) 1923 Blackett, proton = atommag alkatréz 1932 Chadwick, netron 1932 Anderon, pozitron ködkamrával kozmik gárzából 1928 Dirac megjóolja 1936 Anderon é Neddermayer; Street é Stevenon, müon ködkamrával kozmik gárzából (eleinte pionnak hizik) 1947 Powell, pion fotoemlzióval kozmik gárzából 1934 Hideki Ykawa megjóolja

3 Amiről még nem bezéltünk: elméletek Rézeckefizika a harminca évek közepén Proton, elektron, netron, foton elég az atomok leíráához Teljenek tűnt a kép, de néhány apróág kilógott elméleti oldalról: Dirac-egyenlet antirézeckét jóol Pozitron (1932 Anderon) A béta-bomlában nem marad meg az energia? Láthatatlan, új rézecke: netrínó A magerő rövid hatótávolágú: a közvetítő rézeckéje, ha van, az elektronnál nehezebb, a protonnál könnyebb Pí-mezonok, avagy pionok (1947 Powell) Figyelmeztető jelek, hogy még hiányoznak fonto rézletek Vizatérünk ezekre hamaroan

4 Amiről eddig tanltnk: kvark-modell 1947 Rocheter, Btler Kozmik gárzá hatáára elnyelő ólomból V rézecke (àk 0 ) Kéőbb további V rézeckék, amik protonra bomlanak: Λ 0, (Σ +, Σ, Σ 0 ) Majd a nehezebb (Ξ, Ξ 0 ) Mltiplettek: haonló tömegű rézecke párok, triók Barion oktett Kvark feltételezé (, d, ) Spin (1/2) Izopin (p, n) (, d) Ritkaág ( kvarkok záma) Antibarionok gyorítóval: 1955 Segre, Chamberlain, antiproton 1956 Cork antinetron

5 Rézeckék felfedezée 200+ rézecke van felorolva a PDG-ben: Wolfgang Pali: "Had I foreeen thi, I wold have gone into botany à particle zoo Higg

6 Az elemi rézeckék története

7 Kvark-gondolat A rézeckék kirakhatók három kvarkból:,d, d r =1 Barion oktet dd n 2 d=1 0 dd d d 2 1 d p Σ Σ + Ξ 0 Ξ r =1 2 0 r = - = ritka kvarkok záma pin=1/2 T z +1/2 0 d -1/ Kontiten kvark tömegek: m m d < m p/n MeV Λ MeV Σ +/ / MeV Ξ / MeV

8 A kvark-gondolat Van valami zabályoág! (Gell-Mann, Ne eman, Nihijima) Építőkövek ritkaága é izopin harmadik komponene alapján előállítható ez a hatzög zerkezet. (Nobel-díj: 1969). Igazából: coportelméleti probléma. Három építőkő van: ritka építőkő, jele (trange), r=ritka építőkő záma, r=-, ahol a korábban definiált ritkaág-zám nem ritka építőkő, de T z -je 1/2, jele (p) nem ritka építőkő, de T z -je -1/2, jele d (down) A barionokat (protonnál nehezebb rézeckék) 3, a mezonokat 2 ilyenből rakjk öze S é T z özeadódó mennyiégek, a bemtatott özeállítá mellett minden, eddig kíérletben tapaztalt S é T z kijön.

9 Gell-Mann Nihijima formla Q: elektromo tölté I 3 (T 3,T z ): izopin hadmadik komponene S: ritkaág B: barionzám (három kvarkból álló rézeckék) Y=B+S neve: hipertölté MRF3 Izopin: Útban mennyi a SM haonló felé tömegű rézeckét találtnk

10 A kvarkok kvantmzámai 1. Az izopinek harmadik komponenei pont kijönnek: p = d 1/2+1/2-1/2=1/2 n = dd 1/2-1/2-1/2=-1/2 Σ + = 0+1/2+1/2=1 2. Az elektromo tölté: p=d 1=2x+y 1=x+1/3 x=2/3 n=dd 0=x+2y 1=3(x+y) y=-1/3 tört töltéek! Σ + = 1=z+4/3 z=-1/3 Q()=2/3, Q(d)= 1/3, Q()= 1/3 3. ritkaág kvantmzám: : 0, d: 0, : (-1) 4. pin = 1/2, (mint minden má elemi rézeckének) Érdekeég: d (középen) lehet két rézecke i. Ez T z =0 állapotú rézecke. Tartozhat T=1-hez é T=0-hoz i. A T=1 d három kb. azono tömegű rézeckéből az egyik (ezek neve i azono: Σ). A különbég a tömegükön kívül, hogy a kvarkok máként rendeződnek el bennük. (Egyfajta gerjeztett állapotnak i hívhatjk.) Σ 0 bomláa: Σ 0 Λ 0 +γ (rövid élettartam)

11 Kvarkok kvantmzámai izopin harmadik komponene (T z ) d 1/2 1/2 0 izopin (T) 1/2 1/2 0 ritkaág () pin 1/2 1/2 1/2 elektromo tölté (Q) 2/3 1/3 1/3

12 Hadronok

13 Hadronok: barionok (qqq)

14 _ Hadronok: mezonok (qq)

15 Hadronok: mezonok A mezon neve kvarkok Tömeg (GeV/ c 2 ) átlago éle=artam elektromo tölté (e) pozi@v pion π + d + 1 0,139 2, nega@v pion π emlege pion pozi@v kaon nega@v kaon π 0 0,135 8, K ,494 1, K emlege K kaon 0 5,2 10 0,498-8 é 0 8, anp-kaon K 0 0 J/pzí J/Ψ 3,097 0, üpzilon Υ 9,460 1, eta-nll η 0 0,

16 Mezonok oztályozáa S 1 T z 1 1/2 1/2 1 S = ritkaág-zám T z = izopin harmadik komponene 1

17 SU(3) coport: 3 kvark:, d, Fndamentáli ábrázolá: 3 (kvark) Komplex konjgált ábrázolá: 3 (anpkvark) Egy kvark é egy anpkvark 9-féle módon pároítható: Triviáli ábrázolá: 1 (zinglet) Adjngált ábrázolá: 8 (oktet) A kvark, d vagy mivolta a kvark íze (flavor), SU(3) az íz-zimmetria coport

18 Mezonok oztályozáa d K 0 1 d -1 K + 1 r =0 d dd d π π d=0 r = - = ritka kvarkok záma pin=0 1 r d K K 0 =0 Mezon oktet

19 Barionok 3/2 pinnel ddd dd d à zín 1232 MeV dd d 1385 MeV d 1530 MeV 1672 MeV Barion dekplet Ezzel a módzerrel jóolták meg a létét! Felfedezée a kvark modell ikere volt!

20 Bborék kamrák 1952, Donald A. Glaer (1960 Nobel díj) Folyadék, kicit a forrápont alatt à dgattyúval nyomácökkenté à forrápont fölé kerül à rézeckék ionizálnak, körülöttük bborékok keletkeznek Túlfűtött, átlátzó folyadék (pl. folyékony Hélim, T=30K) nagy henger-alakú térfogatban: áthaladó tölté forrát idéz elő 3D kép ok kamerával, néhány µm felbontá Bborék űrűég arányo a rézecke ionizáció de/dx energiavezteégével: felhaználható rézeckeazonoítára Trigger nem lehetége (pozitív ionok élettartama: ) Gyorító kíérletek, becapodó rézeckék érkezééhez időzítve Imétléi frekvencia: Hz Élettartam méréek hibája elérheti a ~ ot (σ x ~6 µm) Előnye a mai napig: 100% detektálái hatáfok Hátrány: laú, kici a mai energiákon Napjainkban: Sötét anyag (WIMP) kereé, pl. COUPP

21 Az Ω rézecke, 1964 Brookhaven National Laboratory Kaonok nyalábja! Ez a rézeckét előtte megjóolták A máodik bomláterméke i ritka, ritkaág = 3!!!

22 A reakció leíráa K + p + K 0 + K + + Ω Ω Ξ 0 + π ritkaág 3 2 Ξ 0 Λ 0 + (π 0 2γ) ritkaág 2 1 Keletkezékor ritkaág megmarad: (K )= 1, (K + )=+1 Különlege -3 ritkaágú rézecke Ma i vizgálják, pl. CERN CMS

23 Omega rézecke máfajta keletkezée K +p + K + +K + +Ω + π Ω Λ 0 + K 3 1+ ( 1) Λ 0 p + π 1 0 keletkezékor ritkaág megmarad bomlákor 1-gyel változik

24 Reakciók kvark-képben K +p + K + +K + +Ω + π + d d + d + d + + mechanizm: két - kelté az új m 0 -t az E kin fedezi d d π K + Ω K +

25 Reakciók kvark-képben Ω Λ 0 + K d + melyik valól meg? d Λ 0 K mechanizm: pontán bomlá átalaklá, (gyenge bomlá) eltűnik egy ritka kvark: Δr=1 új m 0 -t () a tömegkülönbég (m -m d )c 2 é a köté erőödée fedezi d Λ 0 ohaem alakl át d-be! K Ω Ξ 0 + π + d d Ξ 0 π

26 További reakciók kvark-képben π + p Λ 0 + K 0 d + d d + d Ξ 0 Λ 0 + π 0 d d d d d K 0 Λ 0 d π 0 ( 2γ) Λ 0

27 További reakciók kvark-képben Λ 0 p + + π K 0 π + + π d d + d d d + d d d d p + π d d d π π +

28 A ritkaág megváltozáa Az kvark -ba alakl, é megváltozik a ritkaág ezt a gyenge kölcönhatá közvecd (-1/3) W (2/3) d (-1/3) (-2/3) (1/3) W + (-2/3) (2/3) d (1/3)

29 Omega rézecke Milyen reakció ez?

30 Omega rézecke HF: rajzolja le kvark képben Milyen reakció ez? K + p + K 0 + K + + Ω Ω Λ 0 + K

31 Δ ++ () A három fele pinű kvark pinje egyirányba mtat (telje pin = 3/2) Pályaimplzmomentm: 0 Teljeen zimmetrik állapot (hllámfgv) Pali-elv: nem lehetnek egy kvantmállapotban (andzimmetrik kell)! Kell, hogy legyen egy eddig imeretlen kvantmzámk, amely megkülönbözted őket: SZÍN Ebben andzimmetrikak leznek az állapotok

32 Mikrorézeckék felépítée Az elektronnál, müonnál nehezebb rézeckék tlajdonágait a kvarkmodell jól adja viza. Az elektron, müon ninc benne a rendzerben! Ezek máfajta rézeckék. A kvarkokból álló mikrorézeckék özefoglaló neve: HADRONOK (Érdeke, az elektronból é a müonból nem lehet mikrorézeckéket előállítani. Ezek nem kötődnek egymához olyan erően. Pl. a µ e + rendzer inkább egy atomhoz haonlít.) A közepe tömegű rézeckék kvark-antikvark párból állnak, nevük: MEZONOK qq A nehezebb tömegű rézeckék három kvarkból állnak, nevük: BARIONOK qqq (Találtak a könnyebb barionoknál nehezebb mezonokat i!) A barion-oktett felépítééhez haznált kvarkok a mezon-nonettnél i mindent pontoan vizaadnak. A kvarkmodell tényleg jól működik. π 0 (135 MeV) = A mezonoknál a középő pontban három rézecke lehet, az, dd, állapotok kvantmmechanikai zperpozíciói leznek a detektálható rézeckék. T=1 (+dd)*( )

33 Hadronok Barionok qqq Nkleonok: n,p π, η, ρ, Κ, J/ψ, ϒ, Hiperonok: Σ, Ξ, Ω,... N, Δ,... é antirézeckéik

34 Mikrorézeckék gerjeztel állapotai d proton (d) pinje =1/2 gerjeztel állapot =3/2 3 db 1/2-e izopin özege: T=3/2 T z = 3/2 1/2-1/2-3/2 1/2+1/2+1/2 Q=3*2/3=2 4/3-1/3=1 2/3-2*1/3= T z =T z1 +T z2 +T z3 Δ rezonanciák Ninc nkleon megfelelőjük (++, -)

35 Rezonanciák előállítáa π + +p ütközé hatákereztmetzete: rezonanciacúc rézeckének értelmezzük: Δ ++ π + +n, π +p, π +n reakciókban zintén van rezonancia azono energiánál. Δ rezonanciák: Δ, Δ 0, Δ +, Δ ++ T(π)=1, T(p)=1/2 T(π+p) = 1 1/2 = 3/2 1/2 Ennek a 4 z komponene m p + m π + E kin = 938 MeV MeV MeV = = 1267 MeV = m Δ c 2 + E tkp Γ = 120 MeV =8π ħ 2 / p 2 Rgalma zórá max. hatákereztmetzet 1232 MeV

36 Pion proton zórá Rezonancia tömegénél jelennek meg a cúcok

37 Rezonancia Cúc a differenciáli hatákereztmetzetben egy adott energiánál zórákíérletekben Egy rövid élettartamú rézecke keletkezéét é bomláát jelzi A rezonancia zéleége a rézecke élettartamától függ: Γ = h / τ (Heienberg határozatlanági reláció!) Valózínűég-elozlá: f(e) = Γ /2 (E M) 2 + (Γ /2) 2 M: rezonancia helye Γ: rezonancia zéleége HTP2015 Páztor: Bevezeté a rézeckefizikába 38

38 Határozatlanági relációk Egy rézecke helyzetét é ebeégét (illetve implzát) egyidejűleg nem lehet pontoan meghatározni Az egyidejű méréek pontoágának a haznált mérőberendezé tlajdonágaitól független elvi határa a kvantmmechanikában, amelyet Werner Heienberg német fizik állapított meg 1927-ben: Δx Δp h / 4π Idő energia határozatlanági reláció: ΔE Δt h / 4π Emlékeztető: [x] [p] = [E] [t] ħ=6.6e-22 MeV

39 A rezonanciák élelartama Heienberg-határozatlanág reláció: a rézecke élettartama*rezonancia zéleége kb. a Planck-állandó τγ=h Az állapot élettartama: τ=h/γ= hc/γc=197 MeV fm/120 MeV c= =1,6 fm/ m/ = 5, magfizikai időkála: egyége amig a fény áthalad a nkleonokon t 0 =/v=10-15 m/ m/ A rezonanciák élettartama rövid, néhány időegyégnyi

40 Rezonanciák újra felfedezée az LHC-n Tökélete ezközök a detektor ponto kalibrációjára!

41 Az elektron proton zóródá E = 1 MeV λ=hc/ (E 2 -mc 2 ) 200 fm Rtherford-zórá reladvizdkan, Mol-zórá E = 10 MeV λ hc/e 20 fm még pontzerűnek látzik a proton E = 100 MeV λ 2 fm az atommag zerkezete már látzik, alakfaktor E = 10 GeV λ 0,02 fm (10-17 m) a proton belő zerkezete i már érezhető, de 150 MeV felel bonyodalom: új rézeckék keletkezée megengedel, rgalmatlan zórá, térelméled leírá (MSc-ben) zerkezet-függvény dσ dσ ( ϑ) = dω d Ω Rth. F( q) A kvarkok létét alátámaztola a mért zerkezeoüggvény, így ez a kvarkmodell egyik kíérled bázia.

42 A kvarkok létezéének kíérled igazoláa : zórákíérletek Stanfordban: a protonnak belő zerkezete van! elektron proton Jerome I. Friedman (1930-) Nobel-díj: 1990 gyakran különöen nagy zögben i zóródnak az elektronok! ez cak akkor lehet, ha a protonban vannak apró alkotórézek. Haonló a Rtherford-kíérlethez!

43 MIT-SLAC zórákíérlet Méréek különböző zögeknél 5 mágne: dipól é kvadrpól Nyomkövető

44 MIT-SLAC zórákíérlet

45 Mélyen rgalmatlan zórá DIS deep inelatic cattering

46 A kvark felfedezée MIT-SLAC kíérlet Egyenlete töltéelozlá alapján meredeken cökkenő függvényt vártak Ezzel zemben, okkal nagyobb hatákereztmetzeteket mértek nagy implzátadánál

47 Bjorken-x változó RUGALMAS ütközé eetén: Tehát az elaztik ütközétől való eltéré

48 HERA: modern adatok Bjorken-kálázá: Ha a zóródá ½ pinű rézeckéken történik, akkor a trktúrafüggvények (hatákereztmetzetek) cak x-től függnek, Q-tól külön nem. Skálázá érül egy kicit

49 Hatákereztmetzet Kölcönhatái valózínűég mértéke: σ = W / φ Flx, a bombázó rézeckenyaláb áraműrűége: φ = űrűég ebeég [φ] = 1 / (m 2 ) Átmeneti valózínűég egyégnyi idő alatt: W [W] = 1 / Hatákereztmetzet: [σ] = m 2 barn: 1 b = m 2 Rézeckefizikában: pb = m 2 Bombázó rézeckenyaláb Eeményzám: N = σ L Céltárgy rézeckéje

50 Elektronokkal bombázol n, p ~Q q ~Q e EM kölcönhatá, kvark tölté négyzet jelenik meg a hatákereztmetzetben Netron:, d, d, kvark töltéek négyzetözege: (2/3) 2 + (1/3) 2 + (1/3) 2 = 2/3 Proton:,, d (2/3) 2 + (2/3) 2 + (1/3) 2 = 1 Tenger kvarkok: gyanaz a p é n eetén, qq párok σ n /σ p =1 Ha a n-ban a d, a p-ban az kvark a leggyorabb: (1/3) 2 /(2/3) 2 = 1/4 Laú kvarkok Gyor kvarkok elaztik

51 A kvarkok felfedezée 1968, SLAC: a kvarkok felfedezée mélyen rgalmatlan elektron proton zórában 1974, SLAC é Brookhaven: a c kvark felfedezée elektron pozitron annihilációban é proton Berylim zórában 1977, Fermilab: a b kvark felfedezée proton atommag (C, Pt) ütközéekben 1995, Fermilab: a top kvark felfedezée proton andproton ütközéekben

52 Ütköző nyalábok

53 Charm (c) kvark felfedezée, 1968

54 A beaty / bolom (b) kvark felfedezée, 1974 Egy máik híre rezonanciacúc: Υ rézecke b and-b állapot

55 Top (t) kvark felfedezée, 1995

56 Elektron pozitron ütközéek A legnagyobb: CERN LEP 27 km körgyűrű, hatákereztmetzet rézecke keletkezéel járó reakciók záma 1/2 2E a bombázó energia GeV-ben σ=10-9 barn, nagyon kici, 1 barn=100fm 2, egy atommag kereztmetzete, ok ütközé kellel Egy alapvető folyamat hatványfgv zerint cökkenő hatákereztmetzet, gráok, rezonanciák

57 Q e+ *Q e- f Q- f *Q f f - Hadronpár keletkezé hatákereztmetzete e + e - ütközében Tölté-négyzettől é a lehetége végállapotok zámától függ Szín nélkül: 3 zínnel: Magaabb energián több kvark fajta válik elérhetővé: ~2 ~10/3 ~11/3 HTP

58 Elektron pozitron ütközéek lépcők: új, nehéz kvarkok i keletkeznek! Cúcok: új rézeckék, pl. φ(), J/ψ(cc), Υ(bb)

59 Nehéz kvarkok Ω b Ω + J/Ψ Ξ b Ξ + J/Ψ d b d c c b c c db A b kvark i gyengén bomlik, c kvarkba alakl

60 Nehéz kvarkok + + lepton proton ütközé: gyenge kölcönhatá proton egyik kvarkjának íze megváltozhat ν µ +p(d) (c) + µ - Σ c 3π + (d)+ π - (d) + Λ 0 (d) + µ -

Kvarkok, elemirészecskék, kölcsönhatások. Atommag és részecskefizika 4. előadás március 8.

Kvarkok, elemirészecskék, kölcsönhatások. Atommag és részecskefizika 4. előadás március 8. Kvarkok, elemirézeckék, kölcönhatáok Atommag é rézeckefizika 4. előadá 2011. márci 8. Új rézeckék K 0, K 0,K +,K Λ 0 Σ +, Σ, Σ 0 Ξ, Ξ 0 Ω ±1 kb. 500 MeV -1 kb. 1116 MeV -1 kb. 1190 MeV -2 kb. 1320 MeV

Részletesebben

Úton a kvarkok felé. Atommag-és részecskefizika 3. előadás február 23.

Úton a kvarkok felé. Atommag-és részecskefizika 3. előadás február 23. Úton a kvarkok felé Atommag-é rézeckefizika 3. előaá 010. febrár 3. V-rézeckék 1. felfeezé 1946, Rocheter, Btler ezen a képen egy emlege rézecke bomláakor két töltött rézecke (pionok) nyoma villa alakot

Részletesebben

Elemi részecskék, kölcsönhatások. Atommag és részecskefizika 4. előadás március 2.

Elemi részecskék, kölcsönhatások. Atommag és részecskefizika 4. előadás március 2. Elemi részecskék, kölcsönhatások Atommag és részecskefizika 4. előadás 2010. március 2. Az elektron proton szóródás E=1MeVλ=hc/(sqrt(E 2 -mc 2 )) 200fm Rutherford-szórás relativisztikusan Mott-szórás E=10MeVλ

Részletesebben

Bevezetés a részecske fizikába

Bevezetés a részecske fizikába Bevezetés a részecske fizikába Kölcsönhatások és azok jellemzése Kölcsönhatás Erősség Erős 1 Elektromágnes 1 / 137 10-2 Gyenge 10-12 Gravitációs 10-44 Erős kölcsönhatás Közvetítő részecske: gluonok Hatótávolság:

Részletesebben

Belső szimmetriacsoportok: SU(2), SU(3) és a részecskék rendszerezése, a kvarkmodell alapjai

Belső szimmetriacsoportok: SU(2), SU(3) és a részecskék rendszerezése, a kvarkmodell alapjai Belső szimmetriacsoportok: SU(), SU() és a részecskék rendszerezése, a kvarkmodell alapjai Izospin Heisenberg, 9: a proton és a neutron nagyon hasonlít egymásra, csak a töltésük különbözik. Ekkor, -ben

Részletesebben

Hadronok, atommagok, kvarkok

Hadronok, atommagok, kvarkok Zétényi Miklós Hadronok, atommagok, kvarkok Teleki Blanka Gimnázium Székesfehérvár, 2012. február 21. www.meetthescientist.hu 1 26 Atomok Démokritosz: atom = legkisebb, oszthatatlan részecske Rutherford

Részletesebben

Kvarkok. Mag és részecskefizika 2. előadás Február 24. MRF2 Kvarkok, neutrínók

Kvarkok. Mag és részecskefizika 2. előadás Február 24. MRF2 Kvarkok, neutrínók Kvarkok Mag és részecskefizika. előadás 017. Február 4. V-részecskék 1. A15 felfedezés 1946, Rochester, Butler ezen a képen egy semleges részecske bomlásakor két töltött részecske (pionok) nyoma villa

Részletesebben

Kvarkok. Mag és részecskefizika 2. előadás Február 23. MRF2 Kvarkok, neutrínók

Kvarkok. Mag és részecskefizika 2. előadás Február 23. MRF2 Kvarkok, neutrínók Kvarkok Mag és részecskefizika. előadás 018. Február 3. A pozitron felfedezése A1 193 Anderson (Cal Tech) ködkamra kozmikus sugárzás 1300 db fénykép pozitrónium PET Antihidrogén Kozmikus sugárzás antirészecske:

Részletesebben

Úton az elemi részecskék felé. Atommag és részecskefizika 2. előadás február 16.

Úton az elemi részecskék felé. Atommag és részecskefizika 2. előadás február 16. Úton az elemi részecskék felé Atommag és részecskefizika 2. előadás 2010. február 16. A neutron létének következményei I. 1. Az atommag alkotórészei Z db proton + N db neutron, A=N+Z az atommag tömege

Részletesebben

Radioaktivitás és mikrorészecskék felfedezése

Radioaktivitás és mikrorészecskék felfedezése Radioaktivitás és mikrorészecskék felfedezése Mag és részecskefizika 1. előadás 2017. Február 17. A félév tematikája 1. Mikrorészecskék felfedezése 2. Kvark gondolat bevezetése, béta-bomlás, neutrínóhipotézis

Részletesebben

Diagnosztikai módszerek II. PET,MRI 2011.05.08. Diagnosztikai módszerek II. Annihiláció. Pozitron emissziós tomográfia (PET)

Diagnosztikai módszerek II. PET,MRI 2011.05.08. Diagnosztikai módszerek II. Annihiláció. Pozitron emissziós tomográfia (PET) 0.05.08. Diagnoztikai ódzerek II. Pozitron eizió toográfia (PT) Diagnoztikai ódzerek II. PT,MRI Kardo Roland 0 05.0 Mágnee agrezonancia képalkotá (MRI) -Strukturáli MRI (MRI) -Funkcionáli MRI (fmri) Pozitron

Részletesebben

Radioaktivitás. 9.2 fejezet

Radioaktivitás. 9.2 fejezet Radioaktivitás 9.2 fejezet A bomlási törvény Bomlási folyamat alapjai: Értelmezés (bomlás): Azt a magfizikai folyamatot, amely során nagy tömegszámú atommagok spontán módon, azaz véletlenszerűen (statisztikailag)

Részletesebben

= 450 kg. b) A hó 4500 N erővel nyomja a tetőt. c) A víz tömege m víz = m = 450 kg, V víz = 450 dm 3 = 0,45 m 3. = 0,009 m = 9 mm = 1 14

= 450 kg. b) A hó 4500 N erővel nyomja a tetőt. c) A víz tömege m víz = m = 450 kg, V víz = 450 dm 3 = 0,45 m 3. = 0,009 m = 9 mm = 1 14 . kategória... Adatok: h = 5 cm = 0,5 m, A = 50 m, ρ = 60 kg m 3 a) kg A hó tömege m = ρ V = ρ A h m = 0,5 m 50 m 60 3 = 450 kg. b) A hó 4500 N erővel nyomja a tetőt. c) A víz tömege m víz = m = 450 kg,

Részletesebben

BEVEZETÉS A RÉSZECSKEFIZIKÁBA

BEVEZETÉS A RÉSZECSKEFIZIKÁBA BEVEZETÉS A RÉSZECSKEFIZIKÁBA Pásztor Gabriella Gabriella.Pasztor@cern.ch CERN Hungarian Teachers Programme 2011. augusztus 15 10. 1. RÉSZ Mit vizsgál a részecskefizika és milyen eszközökkel? Elemi részecskék

Részletesebben

Úton a kvarkok felé. Atommag- és részecskefizika 3. előadás március 1.

Úton a kvarkok felé. Atommag- és részecskefizika 3. előadás március 1. Úton a kvarkok felé Atommag- és részecskefizika 3. előadás 2010. március 1. A béta-bomlás energiaspektruma 1. béta-bomló atommagok: 40 K, 14 C, 3 H, 214 Bi 2. e/m meghatározás a keletkező részecske egy

Részletesebben

A kémiai kötés magasabb szinten

A kémiai kötés magasabb szinten A kémiai köté magaabb zinten 5-1 Mit kell tudnia a kötéelméletnek? 5- Vegyérték köté elmélet 5-3 Atompályák hibridizációja 5-4 Többzörö kovalen kötéek 5-5 Molekulapálya elmélet 5-6 Delokalizált elektronok:

Részletesebben

Sinkovicz Péter. ELTE, MSc II november 8.

Sinkovicz Péter. ELTE, MSc II november 8. Út az elemi részecskék felfedezéséhez és az e e + ütközések ELTE, MSc II. 2011. november 8. Bevezető c kvark τ lepton b kvark Gyenge kölcsönhatás Áttekintés 1 Bevezető 2 c kvark V-A elmélet GIM mechanizmus

Részletesebben

JÁTSSZUNK RÉSZECSKEFIZIKÁT!

JÁTSSZUNK RÉSZECSKEFIZIKÁT! JÁTSSZUNK RÉSZECSKEFIZIKÁT! Dr. Oláh Éva Mária Bálint Márton Általános Iskola és Középiskola, Törökbálint MTA Wigner FK, RMI, NFO ELTE, Fizikatanári Doktori Iskola, Fizika Tanítása Program PhD olaheva@hotmail.com

Részletesebben

A Lederman-Steinberger-Schwartz-f ele k et neutrn o ks erlet

A Lederman-Steinberger-Schwartz-f ele k et neutrn o ks erlet A Lederman-Steinberger-Schwartz-f ele k et neutrn o ks erlet Modern zikai ks erletek szemin arium Kincses D aniel E otv os Lor and Tudom anyegyetem 2017. február 21. Kincses Dániel (ELTE) A két neutrínó

Részletesebben

Fizikai Szemle MAGYAR FIZIKAI FOLYÓIRAT

Fizikai Szemle MAGYAR FIZIKAI FOLYÓIRAT Fizikai Szemle MAGYAR FIZIKAI FOLYÓIRAT A Mathematikai é Termézettományi Érteítõt az Akaémia 1882-ben inította A Mathematikai é Phyikai Lapokat Eötvö Lorán 1891-ben alapította LXI. évfolyam 1. zám 211.

Részletesebben

Bevezetés a részecskefizikába

Bevezetés a részecskefizikába Bevezetés a részecskefizikába Előadássorozat fizikatanárok részére (CERN, 2007) Horváth Dezső horvath@rmki.kfki.hu. MTA KFKI Részecske és Magfizikai Kutatóintézet, Budapest és ATOMKI, Debrecen Horváth

Részletesebben

Részecske- és magfizika vizsgakérdések

Részecske- és magfizika vizsgakérdések Részecske- és magfizika vizsgakérdések Az alábbi kérdések (vagy ezek kombinációi) fognak az írásbeli és szóbeli vizsgán is szerepelni. A vastag betűs kérdések egyszerűbb, beugró-kérdések, ezeknek kb. 90%-át

Részletesebben

A CERN, az LHC és a vadászat a Higgs bozon után. Genf

A CERN, az LHC és a vadászat a Higgs bozon után. Genf A CERN, az LHC és a vadászat a Higgs bozon után Genf European Organization for Nuclear Research 20 tagállam (Magyarország 1992 óta) CERN küldetése: on ati uc Ed on Alapítva 1954-ben Inn ov ati CERN uniting

Részletesebben

Bevezetés a részecskefizikába

Bevezetés a részecskefizikába Horváth Dezső: Bevezetés a részecskefizikába I: SM CERN, 2014. augusztus 18. p. 1 Bevezetés a részecskefizikába Előadássorozat fizikatanárok részére CERN, 2014. aug. 18-22. (Pásztor Gabriella helyett)

Részletesebben

Az üzemanyagcellákat vezérlı egyenletek dokumentációja

Az üzemanyagcellákat vezérlı egyenletek dokumentációja Az üzemanyagcellákat vezérlı egyenletek dokumentációja Telje rendzer Létrehozta: Szabó Tamá Utoljára változtatta: Szabó Tamá Létrehozva: 2008.11.13 Módoítva: 2009.02.19. 1. oldal Ellenırizte: ReCoMend

Részletesebben

A tau lepton felfedezése

A tau lepton felfedezése A tau lepton felfedezése Szabó Attila András ELTE TTK Kísérleti mag- és részecskefizikai szeminárium 2014.12.04. Tartalom 1 Előzmények(-1973) e-μ probléma e+e- annihiláció kísérletekhez vezető út 2 Felfedezés(1973-1976)

Részletesebben

Atommagok alapvető tulajdonságai

Atommagok alapvető tulajdonságai Atommagok alapvető tulajdonságai Mag és részecskefizika 5. előadás 017. március 17. Áttekintés Atommagok szerkezete a kvarkképben proton szerkezete, atommagok szerkezete, magerő Atommagok összetétele izotópok,

Részletesebben

Papp Gábor, Németh Judit. Magfizika. egyetemi jegyzet fizika tanár szakos hallgatóknak. 2003, ELTE, Budapest

Papp Gábor, Németh Judit. Magfizika. egyetemi jegyzet fizika tanár szakos hallgatóknak. 2003, ELTE, Budapest 1 Papp Gábor, Németh Judit Magfizika egyetemi jegyzet fizika tanár szakos hallgatóknak 2003, ELTE, Budapest 2 Tartalomjegyzék 1. Atommagok tulajdonságai 7 1.1. Az atommag alkotórészei......................

Részletesebben

Bevezetés a részecskefizikába

Bevezetés a részecskefizikába Bevezetés a részecskefizikába Kölcsönhatások Az atommag felépítése Az atommag pozitív töltésű protonokból (p) és semleges neutronokból (n) áll. A protonok és neutronok kvarkokból + gluonokból állnak. A

Részletesebben

BEVEZETÉS A RÉSZECSKEFIZIKÁBA

BEVEZETÉS A RÉSZECSKEFIZIKÁBA BEVEZETÉS A RÉSZECSKEFIZIKÁBA Pásztor Gabriella University of Geneva & MTA Wigner FK Gabriella.Pasztor@cern.ch CERN Hungarian Teachers Programme. PROGRAM HéOő Részecskefizika célja, eszközei Elemi részecskék

Részletesebben

Z bozonok az LHC nehézion programjában

Z bozonok az LHC nehézion programjában Z bozonok az LHC nehézion programjában Zsigmond Anna Julia MTA Wigner FK Max Planck Institut für Physik Fizikus Vándorgyűlés Szeged, 2016 augusztus 24-27. Nehézion-ütközések az LHC-nál A-A és p-a ütközések

Részletesebben

A RÉSZECSKEFIZIKA ANYAGELMÉLETE: A STANDARD MODELL

A RÉSZECSKEFIZIKA ANYAGELMÉLETE: A STANDARD MODELL tartozó valószínûség -hez, a többi nullához tart. A most vizsgált esetben (M M = 0) a (0) szerint valóban ennekkell történnie. Teljesen hasonlóan igazolható (0) helyessége akkor is, amikor k = n. A közbensô

Részletesebben

Paritássértés FIZIKA BSC III. MAG- ÉS RÉSZECSKEFIZIKA SZEMINÁRIUM PARITÁSSÉRTÉS 1

Paritássértés FIZIKA BSC III. MAG- ÉS RÉSZECSKEFIZIKA SZEMINÁRIUM PARITÁSSÉRTÉS 1 Paritássértés SZEGEDI DOMONKOS FIZIKA BSC III. MAG- ÉS RÉSZECSKEFIZIKA SZEMINÁRIUM 2013.11.27. PARITÁSSÉRTÉS 1 Tartalom 1. Szimmetriák 2. Paritás 3. P-sértés 1. Lee és Yang 2. Wu kísérlet 3. Lederman kísérlet

Részletesebben

Szakács Jenő Megyei Fizika Verseny, I. forduló, 2003/2004. Megoldások 1/9., t L = 9,86 s. = 104,46 m.

Szakács Jenő Megyei Fizika Verseny, I. forduló, 2003/2004. Megoldások 1/9., t L = 9,86 s. = 104,46 m. Szakác enő Megyei Fizika Vereny, I. forduló, 00/004. Megoldáok /9. 00, v O 4,9 k/h 4,9, t L 9,86.,6 a)?, b)?, t t L t O a) A futók t L 9,86 ideig futnak, így fennáll: + t L v O. Az adott előny: 4,9 t L

Részletesebben

Atomfizika zh megoldások

Atomfizika zh megoldások Atomfizika zh megoldáok 008.04.. 1. Hány hidrogénatomot tartalmaz 6 g víz? m M = 6 g = 18 g H O, perióduo rendzerből: (1 + 1 + 16) g N = m M N A = 6 g 18 g 6 10 3 1 = 103 vízekula van 6 g vízben. Mivel

Részletesebben

Milyen eszközökkel figyelhetők meg a világ legkisebb alkotórészei?

Milyen eszközökkel figyelhetők meg a világ legkisebb alkotórészei? Milyen eszközökkel figyelhetők meg a világ legkisebb alkotórészei? Veres Gábor ELTE Fizikai Intézet Atomfizikai Tanszék e-mail: vg@ludens.elte.hu Az atomoktól a csillagokig előadássorozat nem csak középiskolásoknak

Részletesebben

Határtalan neutrínók

Határtalan neutrínók Határtalan neutrínók Trócsányi Zoltán Eötvös Loránd Tudományegyetem és MTA-DE Részecskefizikai Kutatócsoport HTP utótalálkozó Budapest 218. december 8 Mottó A tudománynak azonban, hogy el ne satnyuljon,

Részletesebben

http://www.nature.com 1) Magerő-sugár: a magközéppontból mért távolság, ameddig a magerők hatótávolsága terjed. Rutherford-szórásból határozható meg. R=1,4 x 10-13 A 1/3 cm Az atommag terének potenciálja

Részletesebben

Részecskefizikai gyorsítók

Részecskefizikai gyorsítók Részecskefizikai gyorsítók 2010.12.09. Kísérleti mag- és részecskefizikai szeminárium Márton Krisztina Hogyan látunk különböző méreteket? 2 A működés alapelve az elektromos tér gyorsítja a részecskét különböző

Részletesebben

Sugárzások kölcsönhatása az anyaggal. Dr. Vincze Árpád vincze@oah.hu

Sugárzások kölcsönhatása az anyaggal. Dr. Vincze Árpád vincze@oah.hu Sugárzások kölcsönhatása az anyaggal Dr. Vincze Árpád vincze@oah.hu Mitől függ a kölcsönhatás? VÁLASZ: Az anyag felépítése A sugárzások típusai, forrásai és főbb tulajdonságai A sugárzások és az anyag

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika emelt zint 08 É RETTSÉGI VIZSGA 0. október 7. FIZIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM A dolgozatokat az útmutató utaítáai zerint,

Részletesebben

A 2006/2007. tanévi Országos középiskolai Tanulmányi Verseny második fordulójának feladatai és azok megoldásai f i z i k á b ó l. I.

A 2006/2007. tanévi Országos középiskolai Tanulmányi Verseny második fordulójának feladatai és azok megoldásai f i z i k á b ó l. I. 006/007. tanévi Orzágo középikolai Tanulmányi Vereny máodik fordulójának feladatai é azok megoldáai f i z i k á b ó l I. kategória. feladat. Egy m maga 30 hajlázögű lejtő lapjának elő é máodik fele különböző

Részletesebben

Kvarkok 1. R. P. Feynman

Kvarkok 1. R. P. Feynman Kvarkok 1 R. P. Feynman Az anyag atomokból épül fel. Maguk az atomok kétféle építőkőből tehetők össze: elektronokból és atommagból. Nézzük, miből épülnek fel az elektronok. Mai tudásunk szerint az elektronok

Részletesebben

2012. október 23. Csanád Máté, ELTE Atomfizikai Tanszék Részecske- és magfizikai szeminárium 1 / 18

2012. október 23. Csanád Máté, ELTE Atomfizikai Tanszék Részecske- és magfizikai szeminárium 1 / 18 Az erős és az elektrogyenge kölcsönhatás elmélet Csanád Máté ELTE Atomfizikai Tanszék Részecske- és magfizikai szeminárium 2012. október 23. Csanád Máté, ELTE Atomfizikai Tanszék Részecske- és magfizikai

Részletesebben

Sugárvédelem kurzus fogorvostanhallgatók számra. Töltött részecskék elnyelődése. Sugárzások és anyag kölcsönhatása. A sugárzások elnyelődése

Sugárvédelem kurzus fogorvostanhallgatók számra. Töltött részecskék elnyelődése. Sugárzások és anyag kölcsönhatása. A sugárzások elnyelődése Sugárvédelem kurzus fogorvostanhallgatók számra 2. Az ionizáló sugárzás és az anyag kölcsönhatása. Fizikai dózisfogalmak és az ionizáló sugárzás mérése Sugárzások és anyag kölcsönhatása. A sugárzások elnyelődése

Részletesebben

Magfizika szeminárium

Magfizika szeminárium Paritássértés a Wu-kísérletben Körtefái Dóra Magfizika szeminárium 2019. 03. 25. Áttekintés Szimmetriák Paritás Wu-kísérlet Lederman-kísérlet Szimmetriák Adott transzformációra invaráns mennyiségek. Folytonos

Részletesebben

Nehézion ütközések az európai Szupergyorsítóban

Nehézion ütközések az európai Szupergyorsítóban Nehézion ütközések az európai Szupergyorsítóban Lévai Péter MTA KFKI RMKI Részecske- és Magfizikai Kutatóintézet Az atomoktól a csillagokig ELTE, 2008. márc. 27. 17.00 Tartalomjegyzék: 1. Mik azok a nehézionok?

Részletesebben

Bevezetés a részecskefizikába

Bevezetés a részecskefizikába Horváth Dezső: Bevezetés a részecskefizikába I CERN, 2009. augusztus 18. 1. fólia p. 1 Bevezetés a részecskefizikába Előadássorozat fizikatanárok részére (CERN, 2009. aug. 17-21.) Horváth Dezső horvath@rmki.kfki.hu

Részletesebben

Hidrogénszerű atomi részecskék. Hidrogénszerű atomi részecskék

Hidrogénszerű atomi részecskék. Hidrogénszerű atomi részecskék Hidrogénzerű rézeckék páyáinak radiái fuámfüggvénye: páya radiái uámfüggvény p 3 3p 3d Zr Zr Rn, ( r) Nn, r exp Ln radiái uámfüggvény na na R ( Z / a ) exp( Zr / a ) 3, R ( Z / a ) ( Zr / a )exp( Zr /

Részletesebben

Széchenyi István Egyetem MTK Szerkezetépítési és Geotechnikai Tanszék Tartók statikája I. Dr. Papp Ferenc RÚDAK CSAVARÁSA

Széchenyi István Egyetem MTK Szerkezetépítési és Geotechnikai Tanszék Tartók statikája I. Dr. Papp Ferenc RÚDAK CSAVARÁSA Széchenyi Itván Egyetem MTK Szerkezetépítéi é Geotechnikai Tanzék Tartók tatikája I. 1. Prizmatiku rúdelem cavaráa r. Papp Ferenc RÚAK CSAVARÁSA Egyene tengelyű é állandó kereztmetzetű (prizmatiku) rúdelem

Részletesebben

Sugárzások kölcsönhatása az anyaggal

Sugárzások kölcsönhatása az anyaggal Radioaktivitás Biofizika előadások 2013 december Sugárzások kölcsönhatása az anyaggal PTE ÁOK Biofizikai Intézet, Orbán József Összefoglaló radioaktivitás alapok Nukleononkénti kötési energia (MeV) Egy

Részletesebben

A m becslése. A s becslése. A (tapasztalati) szórás. n m. A minta és a populáció kapcsolata. x i átlag

A m becslése. A s becslése. A (tapasztalati) szórás. n m. A minta és a populáció kapcsolata. x i átlag 016.09.09. A m beclée A beclée = Az adatok átlago eltérée a m-től. (tapaztalat zórá) = az elemek átlago eltérée az átlagtól. átlag: az elemekhez képet középen kell elhelyezkedne. x x 0 x n x Q x x x 0

Részletesebben

Dinamika. F = 8 N m 1 = 2 kg m 2 = 3 kg

Dinamika. F = 8 N m 1 = 2 kg m 2 = 3 kg Dinamika 1. Vízzinte irányú 8 N nagyágú erővel hatunk az m 1 2 kg tömegű tetre, amely egy fonállal az m 2 3 kg tömegű tethez van kötve, az ábrán látható elrendezében. Mekkora erő fezíti a fonalat, ha a

Részletesebben

Röntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT)

Röntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT) Röntgensugárzás az orvostudományban Röntgen kép és Komputer tomográf (CT) Orbán József, Biofizikai Intézet, 2008 Hand mit Ringen: print of Wilhelm Röntgen's first "medical" x-ray, of his wife's hand, taken

Részletesebben

Diszkrét Matematika. zöld könyv ): XIII. fejezet: 1583, 1587, 1588, 1590, Matematikai feladatgyűjtemény II. (

Diszkrét Matematika. zöld könyv ): XIII. fejezet: 1583, 1587, 1588, 1590, Matematikai feladatgyűjtemény II. ( FELADATOK A LEKÉPEZÉSEK, PERMUTÁCIÓK TÉMAKÖRHÖZ Diszkrét Matematika 4. LEKÉPEZÉSEK Értelmezési tartomány és értékkészlet meghatározása : Összefoglaló feladatgyűjtemény matematikából ( zöld könyv ): XIII.

Részletesebben

Gyengesavak disszociációs állandójának meghatározása potenciometriás titrálással

Gyengesavak disszociációs állandójának meghatározása potenciometriás titrálással Gyengeavak izociáció állanójának meghatározáa potenciometriá titráláal 1. Bevezeté a) A titrálái görbe egyenlete Egy egybáziú A gyengeavat titrálva NaO mérőolattal a titrálá bármely pontjában teljeül az

Részletesebben

Detektorok. Fodor Zoltán. Wigner fizikai Kutatóközpont. Hungarian Teachers Programme 2015

Detektorok. Fodor Zoltán. Wigner fizikai Kutatóközpont. Hungarian Teachers Programme 2015 Detektorok Fodor Zoltán Wigner fizikai Kutatóközpont Hungarian Teachers Programme 2015 Mi is a kisérleti fizika HTP 2015 Detektorok, Fodor Zoltán 2 A természetben is lejátszodó eseményeket ismételjük meg

Részletesebben

Gyorsítók. Veszprémi Viktor ATOMKI, Debrecen. Supported by NKTH and OTKA (H07-C 74281) 2009. augusztus 17 Hungarian Teacher Program, CERN 1

Gyorsítók. Veszprémi Viktor ATOMKI, Debrecen. Supported by NKTH and OTKA (H07-C 74281) 2009. augusztus 17 Hungarian Teacher Program, CERN 1 Gyorsítók Veszprémi Viktor ATOMKI, Debrecen Supported by NKTH and OTKA (H07-C 74281) 2009. augusztus 17 Hungarian Teacher Program, CERN 1 Az anyag felépítése Részecskefizika kvark, lepton Erős, gyenge,

Részletesebben

BEVEZETÉS A RÉSZECSKEFIZIKÁBA

BEVEZETÉS A RÉSZECSKEFIZIKÁBA BEVEZETÉS A RÉSZECSKEFIZIKÁBA Gabriella.Pasztor@cern.ch CERN Hungarian Teachers Programme 2015. augusztus 17-21. Pásztor: Bevezetés a részecskefizikába 1 PROGRAM Részecskefizika célja, eszközei Elemi részecskék

Részletesebben

Puskin utcai kvarkok. A kvarkfizika második korszaka ( )

Puskin utcai kvarkok. A kvarkfizika második korszaka ( ) Puskin utcai kvarkok A kvarkfizika másoik korszaka 968-978 SZUBJKTÍV KVARKTÖRTÉNT!! A MI VRZIÓNK! Szilár Leó Az első korszak 963-968 Gell-Mann és Zweig kvarkjai Aitív kvark moell MZONOK Zweig-szabály MÉLYN

Részletesebben

Útban a Standard Modell felé

Útban a Standard Modell felé Útban a Standard Modell felé Mag és részecskefizika 4. előadás 2017. március 10. Amiről eddig tanultunk Hadronok: kvarkok kötött állapotai Barionok (qqq), anti-barionok (qqq), mezonok (qq) Rezonanciák

Részletesebben

Szakács Jenő Megyei Fizika Verseny, az I. forduló feladatainak megoldása 1

Szakács Jenő Megyei Fizika Verseny, az I. forduló feladatainak megoldása 1 Szakác enő Megyei Fizika Vereny, az I. forduló feladatainak megoldáa. t perc, az A fiú ebeége, a B fiú ebeége, b 6 a buz ebeége. t? A rajz alapján: t + t + b t t t + t + 6 t t 7 t t t 7t 4 perc. Így A

Részletesebben

Compton-effektus. Zsigmond Anna. jegyzıkönyv. Fizika BSc III.

Compton-effektus. Zsigmond Anna. jegyzıkönyv. Fizika BSc III. Compton-effektus jegyzıkönyv Zsigmond Anna Fizika BSc III. Mérés vezetıje: Csanád Máté Mérés dátuma: 010. április. Leadás dátuma: 010. május 5. Mérés célja A kvantumelmélet egyik bizonyítékának a Compton-effektusnak

Részletesebben

Sugárzások és anyag kölcsönhatása

Sugárzások és anyag kölcsönhatása Sugárzások és anyag kölcsönhatása Az anyaggal kölcsönhatásba lépő részecskék Töltött részecskék Semleges részecskék Nehéz Könnyű Nehéz Könnyű T D p - + n Radioaktív sugárzás + anyag energia- szóródás abszorpció

Részletesebben

Theory hungarian (Hungary)

Theory hungarian (Hungary) Q3-1 A Nagy Hadronütköztető (10 pont) Mielőtt elkezded a feladat megoldását, olvasd el a külön borítékban lévő általános utasításokat! Ez a feladat a CERN-ben működő részecskegyorsító, a Nagy Hadronütköztető

Részletesebben

Irányítástechnika 3. előadás

Irányítástechnika 3. előadás Irányítátechnika 3. előadá Dr. Kovác Levente 203. 04. 6. 203.04.6. Tartalom Laplace tranzformáció, fontoabb jelek Laplace tranzformáltja Stabilitá alaptétele Bode diagram, Bode-féle tabilitá kritérium

Részletesebben

Sugárzás kölcsönhatása az anyaggal 1. Fény kölcsönhatása az anyaggal. 2. Ionizáló sugárzás kölcsönhatása az anyaggal KAD

Sugárzás kölcsönhatása az anyaggal 1. Fény kölcsönhatása az anyaggal. 2. Ionizáló sugárzás kölcsönhatása az anyaggal KAD Sugárzás kölcsönhatása az anyaggal 1. Fény kölcsönhatása az anyaggal 2. Ionizáló sugárzás kölcsönhatása az anyaggal KAD 2012.10.03 1976 2 1. 3 4 n 1 >n 2 5 6 7 8 9 10 11 12 13 14 2. Az ionizáló sugárzások

Részletesebben

Detektorok. Siklér Ferenc MTA KFKI Részecske- és Magfizikai Kutatóintézet Budapest

Detektorok. Siklér Ferenc MTA KFKI Részecske- és Magfizikai Kutatóintézet Budapest Detektorok Siklér Ferenc sikler@rmki.kfki.hu MTA KFKI Részecske- és Magfizikai Kutatóintézet Budapest Hungarian Teachers Programme 2008 Genf, 2008. augusztus 19. Detektorok 1970 16 GeV π nyaláb, folyékony

Részletesebben

Frekvenciatartomány Irányítástechnika PE MI BSc 1

Frekvenciatartomány Irányítástechnika PE MI BSc 1 Frekvenciatartomány ny 008.03.4. Irányítátechnika PE MI BSc Frekvenciatartomány bevezetéének indoka: általában időtartománybeli válaz kell alkalmazott teztelek i ezt indokolák információ rendzerek eetében

Részletesebben

Megmérjük a láthatatlant

Megmérjük a láthatatlant Megmérjük a láthatatlant (részecskefizikai detektorok) Hamar Gergő MTA Wigner FK 1 Tartalom Mik azok a részecskék? mennyi van belőlük? miben különböznek? Részecskegyorsítók, CERN mire jó a gyorsító? hogy

Részletesebben

KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II.

KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II. KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II. 12 A MODERN FIZIKa ELEMEI XII. MAGfIZIkA ÉS RADIOAkTIVITÁS 1. AZ ATOmmAG Rutherford (1911) arra a következtetésre jutott, hogy az atom pozitív töltését hordozó anyag

Részletesebben

Elektronok, atomok. Általános Kémia - Elektronok, Atomok. Dia 1/61

Elektronok, atomok. Általános Kémia - Elektronok, Atomok. Dia 1/61 Elektronok, atomok 2-1 Elektromágneses sugárzás 2-2 Atomi Spektrum 2-3 Kvantumelmélet 2-4 A Bohr Atom 2-5 Az új Kvantummechanika 2-6 Hullámmechanika 2-7 Kvantumszámok Dia 1/61 Tartalom 2-8 Elektronsűrűség

Részletesebben

A CERN NA61 kísérlet kisimpulzusú részecskedetektorának építése és fizikai analízise

A CERN NA61 kísérlet kisimpulzusú részecskedetektorának építése és fizikai analízise A CERN NA61 kísérlet kisimpulzusú részecskedetektorának építése és fizikai analízise MSc Diplomamunka Márton Krisztina Fizikus MSc II. ELTE TTK Témavezető: dr. Varga Dezső ELTE TTK Komplex Rendszerek Fizikája

Részletesebben

Mikrofizika egy óriási gyorsítón: a Nagy Hadron-ütköztető

Mikrofizika egy óriási gyorsítón: a Nagy Hadron-ütköztető Mikrofizika egy óriási gyorsítón: a Nagy Hadron-ütköztető MAFIOK 2010 Békéscsaba, 2010.08.24. Hajdu Csaba MTA KFKI RMKI hajdu@mail.kfki.hu 1 Large Hadron Nagy Collider Hadron-ütköztető proton ólom mag

Részletesebben

NAGY Elemér Centre de Physique des Particules de Marseille

NAGY Elemér Centre de Physique des Particules de Marseille Korai CERN együtműködéseink a kísérleti részecskefizika terén Az EMC és L3 kísérletek NAGY Elemér Centre de Physique des Particules de Marseille Előzmények A 70-es évektől kezdve a CERN meghatározó szerephez

Részletesebben

Atomfizika. Fizika kurzus Dr. Seres István

Atomfizika. Fizika kurzus Dr. Seres István Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés 440 BC Democritus, Leucippus, Epicurus 1660 Pierre Gassendi 1803 1897 1904 1911 19 193 John Dalton Joseph John (J.J.) Thomson J.J. Thomson

Részletesebben

A sugárzás és az anyag kölcsönhatása. A béta-sugárzás és anyag kölcsönhatása

A sugárzás és az anyag kölcsönhatása. A béta-sugárzás és anyag kölcsönhatása A sugárzás és az anyag kölcsönhatása A béta-sugárzás és anyag kölcsönhatása Cserenkov-sugárzás v>c/n, n törésmutató cos c nv Cserenkov-sugárzás Pl. vízre (n=1,337): 0,26 MeV c 8 m / s 2. 2* 10 A sugárzás

Részletesebben

Hatvani István fizikaverseny forduló megoldások. 1. kategória. v(m/s)

Hatvani István fizikaverseny forduló megoldások. 1. kategória. v(m/s) . kateória... a) A rafikonról leolvaható: v = 40 km =, m, v = 0 km = 5,55 m, v 3 = 0 km =,77 m h h h t = 5 min = 300 t = 5 min = 300 t 3 = min = 0 = v t, = v t 3 = v 3 t 3 ezért = 3333,3 m = 666,6 m 3

Részletesebben

Részecskék osztályozása, kölcsönhatások, Standard Modell?

Részecskék osztályozása, kölcsönhatások, Standard Modell? Részecskék osztályozása, kölcsönhatások, Standard Modell? Mag-, részecskefizika és asztrofizika 4. előadás 2018. október 2. Köszönet Pásztor Gabriellának http://gpasztor.web.cern.ch/gpasztor/mrf2017 Részecskefizika4,.htmlSzimmetriák,

Részletesebben

Az ionizáló sugárzások fajtái, forrásai

Az ionizáló sugárzások fajtái, forrásai Az ionizáló sugárzások fajtái, forrásai magsugárzás Magsugárzások Röntgensugárzás Függelék. Intenzitás 2. Spektrum 3. Atom Repetitio est mater studiorum. Röntgen Ionizációnak nevezzük azt a folyamatot,

Részletesebben

Atomfizika. Fizika kurzus Dr. Seres István

Atomfizika. Fizika kurzus Dr. Seres István Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés J.J. Thomson (1897) Katódsugárcsővel végzett kísérleteket az elektron fajlagos töltésének (e/m) meghatározására. A katódsugarat alkotó részecskét

Részletesebben

PENTAKVARKOK. KFKI Részecske- és Magfizikai Kutatóintézet, Budapest. CERN NA49 kísérlet. p.1/60

PENTAKVARKOK. KFKI Részecske- és Magfizikai Kutatóintézet, Budapest. CERN NA49 kísérlet. p.1/60 PENTAKVARKOK Dániel Barna barnad@rmki.kfki.hu KFKI Részecske- és Magfizikai Kutatóintézet, Budapest & CERN NA49 kísérlet p.1/60 A történet kezdete... 2003 Január: LEPS kísérlet (SPring-8, Japán) PRL-hez

Részletesebben

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma:

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma: Normális eloszlás ξ valószínűségi változó normális eloszlású. ξ N ( µ, σ 2) Paraméterei: µ: várható érték, σ 2 : szórásnégyzet (µ tetszőleges, σ 2 tetszőleges pozitív valós szám) Normális eloszlás sűrűségfüggvénye:

Részletesebben

Középszintű érettségi feladatsor Fizika. Első rész. 1. Melyik sebesség-idő grafikon alapján készült el az adott út-idő grafikon? v.

Középszintű érettségi feladatsor Fizika. Első rész. 1. Melyik sebesség-idő grafikon alapján készült el az adott út-idő grafikon? v. Középzinű éreégi feladaor Fizika Elő réz 1. Melyik ebeég-idő grafikon alapján kézül el az ado ú-idő grafikon? v v v v A B C D m 2. A gokar gyoruláa álló helyzeből12. Melyik állíá helye? m A) 1 ala12 a

Részletesebben

töltéssel rendelkező vagy semleges részecskék kinetikus energiája és (vagy) impulzusa a kondenzált közegek atomjaival ütközve megváltozhat.

töltéssel rendelkező vagy semleges részecskék kinetikus energiája és (vagy) impulzusa a kondenzált közegek atomjaival ütközve megváltozhat. Néhány szó a neutronról Különböző részecskék, úgymint fotonok, neutronok, elektronok és más, töltéssel rendelkező vagy semleges részecskék kinetikus energiája és (vagy) impulzusa a kondenzált közegek atomjaival

Részletesebben

Mindennapjaink. A költő is munkára

Mindennapjaink. A költő is munkára A munka zót okzor haználjuk, okféle jelentée van. Mi i lehet ezeknek az egymától nagyon különböző dolgoknak a közö lényege? É mi köze ezeknek a fizikához? A költő i munkára nevel 1.1. A munka az emberi

Részletesebben

GÉPÉSZETI ALAPISMERETEK

GÉPÉSZETI ALAPISMERETEK Gépézeti alapimeretek középzint 2 ÉRETTSÉGI VIZSGA 204. máju 20. GÉPÉSZETI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fonto tudnivalók

Részletesebben

F1404 ATOMMAG- és RÉSZECSKEFIZIKA

F1404 ATOMMAG- és RÉSZECSKEFIZIKA F1404 ATOMMAG- és RÉSZECSKEFIZIKA Dr. Raics Péter DE TTK Kísérleti Fizikai Tanszék, Debrecen, Bem tér 18/A RAICS@TIGRIS.KLTE.HU Ajánlott irodalom Raics P.: Atommag- és részecskefizika. Jegyzet. DE Kísérleti

Részletesebben

RÉSZECSKÉK ÉS KÖLCSÖNHATÁSAIK (PARTICLES AND THEIR INTERACTIONS)

RÉSZECSKÉK ÉS KÖLCSÖNHATÁSAIK (PARTICLES AND THEIR INTERACTIONS) ATOMMAGFIZIKA II. (NUCLEAR PHYSICS II.) RÉSZECSKÉK ÉS KÖLCSÖNHATÁSAIK (PARTICLES AND THEIR INTERACTIONS) (Harmadik, korszerűsített kiadás) (Third up-dated edition) FÉNYES TIBOR DEBRECENI EGYETEMI KIADÓ,

Részletesebben

Szakács Jenő Fizikaverseny II. forduló, megoldások 1/7. a) Az utolsó másodpercben megtett út, ha t a teljes esési idő: s = 2

Szakács Jenő Fizikaverseny II. forduló, megoldások 1/7. a) Az utolsó másodpercben megtett út, ha t a teljes esési idő: s = 2 Szaác Jenő Fiziaereny 008-009. II. forduló, egoldáo 1/7 1. t 1 0,6 h g 10 / a) t? b) h? c)? a) z utoló áodercben egtett út, ha t a tele eéi idő: g t g (t + t) g t g t + g t t g ( t), 10 t 1 5 (1 ) 10 t

Részletesebben

Fizikaverseny, Döntő, Elméleti forduló 2013. február 8.

Fizikaverseny, Döntő, Elméleti forduló 2013. február 8. Fizikaverseny, Döntő, Elméleti forduló 2013. február 8. 1. feladat: Az elszökő hélium Több helyen hallhattuk, olvashattuk az alábbit: A hélium kis móltömege miatt elszökik a Föld gravitációs teréből. Ennek

Részletesebben

8. AZ ATOMMAG FIZIKÁJA

8. AZ ATOMMAG FIZIKÁJA 8. AZ ATOMMAG FIZIKÁJA Az atommag szerkezete (40-44 oldal) A tömegspektrométer elve Az atommag komponensei Izotópok Tömeghiány, kötési energia, stabilitás Magerők Magmodellek Az atommag stabilitásának

Részletesebben

Gyorsítók a részecskefizikában

Gyorsítók a részecskefizikában Gyorsítók a részecskefizikában Vesztergombi György CERN-HST2006 Genf, 2006, augusztus 20-25. Bevezetés a kísérleti részecskefizikába Ha valaki látott már közelrõl egy modern nagyenergiájú részecskegyorsítót,

Részletesebben

A részecskefizika eszköztára: felfedezések és detektorok

A részecskefizika eszköztára: felfedezések és detektorok A részecskefizika eszköztára: felfedezések és detektorok Varga Dezső MTA WIGNER FK, RMI NFO Az évszázados kirakójáték: az elemi részecskék rendszere A buborékkamrák kora: a látható részecskék Az elektronikus

Részletesebben

Fázisátalakulások, avagy az anyag ezer arca. Sasvári László ELTE Fizikai Intézet ELTE Bolyai Kollégium

Fázisátalakulások, avagy az anyag ezer arca. Sasvári László ELTE Fizikai Intézet ELTE Bolyai Kollégium Fázisátalakulások, avagy az anyag ezer arca Sasvári László ELTE Fizikai Intézet ELTE Bolyai Kollégium Atomoktól a csillagokig, Budapest, 2016. december 8. Fázisátalakulások Csak kondenzált anyag? A kondenzált

Részletesebben

Mérnöki alapok 9. előadás

Mérnöki alapok 9. előadás érnök alapk 9. előadá Kézíee: dr. Várad Sándr Budape űzak é Gazdaágudmány Egyeem Gépézmérnök Kar Hdrdnamka Rendzerek Tanzék, Budape, űegyeem rkp. 3. D ép. 334. Tel: 463-6-80 Fax: 463-30-9 hp://www.zgep.bme.hu

Részletesebben

FIZIKA. Sugárzunk az elégedettségtől! (Atomfizika) Dr. Seres István

FIZIKA. Sugárzunk az elégedettségtől! (Atomfizika) Dr. Seres István Sugárzunk az elégedettségtől! () Dr. Seres István atommagfizika Atommodellek 440 IE Democritus, Leucippus, Epicurus 1803 1897 John Dalton J.J. Thomson 1911 Ernest Rutherford 19 Niels Bohr 3 Atommodellek

Részletesebben

Hatvani István fizikaverseny forduló megoldások. 1. kategória

Hatvani István fizikaverseny forduló megoldások. 1. kategória Hatvani Itván fizikavereny 07-8.. kategória.3.. A kockából cak cm x cm x 6 cm e függőlege ozlopokat vehetek el. Ezt n =,,,35 eetben tehetem meg, így N = n 6 db kockát vehetek el egyzerre úgy, hogy a nyomá

Részletesebben

Hőátviteli műveletek példatár. Szerkesztette: Erdélyi Péter és Rajkó Róbert

Hőátviteli műveletek példatár. Szerkesztette: Erdélyi Péter és Rajkó Róbert Hőátviteli műveletek példatár Szerkeztette: Erdélyi Péter é Rajkó Róbert . Milyen vatag legyen egy berendezé poliuretán zigetelée, ha a megengedhető legnagyobb hővezteég ϕ 8 m? A berendezé két oldalán

Részletesebben

Atomok, elektronok. Általános Kémia - Elektronok, Atomok. Dia 1/61

Atomok, elektronok. Általános Kémia - Elektronok, Atomok. Dia 1/61 , elektronok 2-1 Elektromágneses sugárzás 2-2 Atomi spektrum 2-3 Kvantumelmélet 2-4 Bohr-atom 2-5 Az új kvantummechanika 2-6 Hullámmechanika 2-7 A hidrogénatom hullámfüggvényei Dia 1/61 , elektronok 2-8

Részletesebben