SZTOCHASZTIKUS JELENSÉGEK



Hasonló dokumentumok
OPERÁCIÓKUTATÁS. No. 1. Nagy Tamás - Klafszky Emil SZTOCHASZTIKUS JELENSÉGEK

OPCIÓS PIACOK VIZSGA MINTASOR

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.

Pénzügyi matematika. Vizsgadolgozat I. RÉSZ. 1. Deniálja pontosan, mit értünk amerikai vételi opció alatt!

A Markowitz modell: kvadratikus programozás

Gazdasági Információs Rendszerek

8-9 Opciós piacok. Options, Futures, and Other Derivatives, 8th Edition, Copyright John C. Hull

Elméleti összefoglaló a Valószín ségszámítás kurzushoz

Diverzifikáció Markowitz-modell MAD modell CAPM modell 2017/ Szegedi Tudományegyetem Informatikai Intézet

(CIB Prémium befektetés)

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem.

Készítette: Fegyverneki Sándor

Tájékoztató hirdetmény az OTP Bank Nyrt. Regionális Treasury Igazgatóságának Értékesítési Üzletszabályzatához

Mire jó az opció? Kisokos a hazai opciós termékekhez augusztus 2.

Matematikai statisztika I. témakör: Valószínűségszámítási ismétlés

Abszolút folytonos valószín ségi változó (4. el adás)

MINTASOR (Figyelem az I. rész - Szabályzatok és Elszámolás tesztkérdéseiben megadott válaszok a hatályos szabályzatok szerint változhatnak!

(Independence, dependence, random variables)

x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:

TERMÉKTÁJÉKOZTATÓ DIGITÁLIS (BINÁRIS) OPCIÓS ÜGYLETEKHEZ

5 Forward és Futures Árazás. Options, Futures, and Other Derivatives, 8th Edition, Copyright John C. Hull

Opciók árazása. Szakdolgozat. Írta: Kiss Valéria. Matematika BSc, Matematikai elemz szakirány. Témavezet :

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

A Markowitz modell: kvadratikus programozás

SCILAB programcsomag segítségével

Kockázatos pénzügyi eszközök

A pénzügyi kockázat elmélete

Elméleti összefoglaló a Sztochasztika alapjai kurzushoz

Taylor-polinomok. 1. Alapfeladatok április Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját!

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

2. A ξ valószín ségi változó eloszlásfüggvénye a következ : x 4 81 F (x) = x 4 ha 3 < x 0 különben

Szent István Egyetem Gazdasági és Társadalomtudományi Kar Pénzügyi és Számviteli Intézet. Beadandó feladat. Pénzügytan I. tárgyból

TERMÉKTÁJÉKOZTATÓ ÁTLAGÁRFOLYAMOS DEVIZA OPCIÓKHOZ (ÁZSIAI TÍPUSÚ OPCIÓ)

Definíciószerűen az átlagidő a kötvény hátralévő pénzáramlásainak, a pénzáramlás jelenértékével súlyozott átlagos futamideje. A duration képlete:

BIOMATEMATIKA ELŐADÁS

Opciók és stratégiák

14 A Black-Scholes-Merton modell. Options, Futures, and Other Derivatives, 8th Edition, Copyright John C. Hull

Mikroökonómia II. B. ELTE TáTK Közgazdaságtudományi Tanszék. 6. hét AZ IDŽ KÖZGAZDASÁGTANA, 1. rész

Vállalkozási finanszírozás kollokvium

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

A maximum likelihood becslésről

9. Tétel Els - és másodfokú egyenl tlenségek. Pozitív számok nevezetes közepei, ezek felhasználása széls érték-feladatok megoldásában

KOVÁCS BÉLA, MATEMATIKA I.

7. gyakorlat. Lineáris algebrai egyenletrendszerek megoldhatósága

1. Példa. A gamma függvény és a Fubini-tétel.

0,424 0,576. f) P (X 2 = 3) g) P (X 3 = 1) h) P (X 4 = 1 vagy 2 X 2 = 2) i) P (X 7 = 3, X 4 = 1, X 2 = 2 X 0 = 2) j) P (X 7 = 3, X 4 = 1, X 2 = 2)

Társadalmi és gazdasági hálózatok modellezése

4 Kamatlábak. Options, Futures, and Other Derivatives 8th Edition, Copyright John C. Hull

Korrelációs kapcsolatok elemzése

5 = hiszen és az utóbbi mátrix determinánsa a középs½o oszlop szerint kifejtve: 3 7 ( 2) = (példa vége). 7 5 = 8. det 6.

Szent István Egyetem Gazdasági és Társadalomtudományi Kar Pénzügyi és Számviteli Intézet. Beadandó feladat

7. forward extra ügylet (forward extra)

TERMÉKTÁJÉKOZTATÓ EGYSZERŰ (PLAIN VANILLA) DEVIZAÁRFOLYAM OPCIÓS ÜGYLETEKHEZ

A mérési eredmény megadása

Gazdasági matematika II. tanmenet

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II.

Neptun kód: KTA60220, KTA60850, TMME0408, KT30725, KT30320, T M3537

[Biomatematika 2] Orvosi biometria

Matematikai alapok és valószínőségszámítás. Normál eloszlás

a) 16% b) 17% c) 18% d) 19%

Vállalati pénzügyek alapjai

Vállalkozási finanszírozás kollokvium

TERMÉKTÁJÉKOZTATÓ BARRIER DEVIZAÁRFOLYAM OPCIÓS ÜGYLETEKHEZ

TERMÉKTÁJÉKOZTATÓ ÉRTÉKPAPÍR ADÁS-VÉTEL MEGÁLLAPODÁSOKHOZ

A valószínűségszámítás elemei

KÖTVÉNYFORRÁS MENEDZSMENT GYOMAENDRŐD VÁROS ÖNKORMÁNYZATA TÁJÉKOZTATÓ

Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek

Bitó Bálint István O PCIÓS T O ZSDEI KERESKEDELEM E ÖTVÖS L ORÁND T UDOMÁNYEGYETEM T ERMÉSZETTUDOMÁNYI K AR. Témavezeto : Mádi - Nagy Gergely

Matematikai geodéziai számítások 6.

1 Határidős szerződések és opciók. Options, Futures, and Other Derivatives, 8th Edition, Copyright John C. Hull

egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk

Mikroökonómia II. B. ELTE TáTK Közgazdaságtudományi Tanszék. 8. hét AZ INFORMÁCIÓ ÉS KOCKÁZAT KÖZGAZDASÁGTANA, 1. rész

Regressziós vizsgálatok

Pénzügyi számítások 1. ÁFA december 2.

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

4. Az A és B események egymást kizáró eseményeknek vagy idegen (diszjunkt)eseményeknek nevezzük, ha AB=O

3. Egy szabályos dobókockával háromszor dobunk egymás után. Legyen A az az esemény, hogy

BetBulls Opciós Portfolió Manager

matematikai statisztika október 24.

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak!

Valószínűségszámítás összefoglaló

CHT& NSZT Hoeffding NET mom. stabilis november 9.

Certifikátok a Budapesti Értéktızsdén

8. javított határidôs ügylet (boosted forward)

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

8. javított határidôs ügylet (boosted forward)

Matematikai geodéziai számítások 5.

15. LINEÁRIS EGYENLETRENDSZEREK

Valószín ségelmélet házi feladatok

DEVIZAÁRFOLYAM OPCIÓ I. A TERMÉK LÉNYEGE

Kategóriák Fedezeti követelmények

Függvények határértéke, folytonossága

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma:

A KroneckerCapelli-tételb l következik, hogy egy Bx = 0 homogén lineáris egyenletrendszernek

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

ZÉRÓ KÖLTSÉGŰ OPCIÓ I. A TERMÉK LÉNYEGE

Valószínűségi változók. Várható érték és szórás

Egyes logisztikai feladatok megoldása lineáris programozás segítségével. - bútorgyári termelési probléma - szállítási probléma

Dualitás Dualitási tételek Általános LP feladat Komplementáris lazaság 2017/ Szegedi Tudományegyetem Informatikai Intézet

Átírás:

OPERÁCIÓKUTATÁS No.1. Nagy Tamás Klafszky Emil SZTOCHASZTIKUS JELENSÉGEK Budapest 00

Nagy Tamás Klafszky Emil SZTOCHASZTIKUS JELENSÉGEK OPERÁCIÓKUTATÁS No.1 Szerkeszti: Komáromi Éva Megjelenik a Budapesti Corvinus Egyetem Operációkutatás Tanszéke gondozásában Budapest, 00

Nagy Tamás Klafszky Emil SZTOCHASZTIKUS JELENSÉGEK Lektorálta: Medvegyev Péter Készült az Aula Kiadó Digitális Gyorsnyomdájában. Nyomdavezető: Dobozi Erika

Tartalomjegyzék 1. Valószín½uségszámítási összefoglaló 5 1.1. A valószín½uségi változó várható értéke és szórása............... 5 1.. Nevezetes eloszlások.............................. 8 1..1. Karakterisztikus vagy Bernoulli eloszlás................ 9 1... Binomiális eloszlás:........................... 9 1..3. Normális eloszlás............................ 9 1..4. Lognormális eloszlás.......................... 11 1.3. Központi határeloszlás tétel.......................... 1 1.4. Kovariancia és korreláció............................ 14. Geometriai Brown-mozgás 19.1. A geometriai Brown-mozgás de níciója.................... 19.. A geometriai Brown-mozgás paraméterei................... 1.3. A geometriai Brown-mozgás egy egyszer½u modellel való közelítése......4. A Brown-mozgás................................ 3 3. Opciók 7 3.1. Az opciók alapvet½o típusai........................... 7 3.. Opciós stratégiák................................ 30 3..1. Egy opciót és egy részvényt tartalmazó stratégia........... 30 3... Különbözeti stratégiák......................... 3 3..3. Kombinációs stratégiák......................... 34 3.3. A Put-Call paritás............................... 36 3.4. Egzotikus opciók................................ 39 3.5. Az opciók értékének lehetséges tartományai................. 39 3.5.1. Alsó korlátok.............................. 40 3.5.. Fels½o korlátok.............................. 40 3.6. Az opciók árazása................................ 41 3.6.1. Binomiális opcióárazási modell..................... 41 3.6.. A részvényárfolyam-változás mértékének meghatározása....... 48 3.6.3. A részvényárfolyam volatilitásának mérése.............. 50 3.7. Black-Scholes formula.............................. 50 3.8. Az opciós ár tulajdonságai........................... 56 4. Felhasznált irodalom 59 3

4 TARTALOMJEGYZÉK

1. fejezet Valószín½uségszámítási összefoglaló E rövid összefoglaló nem terjed ki a valószín½uségszámítás alapvet½o fogalmainak, mint az eseménytér, elemi esemény, valószín½uség, valószín½uségi változó, eloszlásfüggvény, s½ur½uségfüggvény valamint az alapvet½oen fontos sztochasztikus függetlenség fogalmának ismertetésére. Feltételezzük, hogy az olvasó ezeket jól ismeri. Célszer½unek láttuk azonban, hogy ezen fogalmakkal kapcsolatos és a kés½obbiekben s½urün használt formulákat megismételjük és példákkal is illusztráljuk ½oket. 1.1. A valószín½uségi változó várható értéke és szórása A gyakorlati alkalmazásoknál gyakran el½ofordul, hogy egyetlen vagy néhány számadattal kell jellemezni a valószín½uségi változót ill. annak eloszlását. A legfontosabb jellemz½ok a várható érték és a szórás (ill. variancia). A várható érték fogalma: Ha az X diszkrét valószín½uségi változó lehetséges értékei x 1 ; x ; x 3 : : : és ezeket rendre p 1 ; p ; p 3 : : : valószín½uséggel veszi, akkor az X várható értéke E(X) = X i p i x i, ha X folytonos valószín½uségi változó és s½ur½uségfüggvénye f(x), akkor az X várható érték E(X) = Z 1 xf(x)dx: 1 A variancia és a szórás fogalma: Ha az X E(X) valószín½uségi változó négyzetének létezik várható értéke, akkor ezt az X varianciájának nevezzük, azaz V ar(x) = E([X E(X)] ); ennek négyzetgyöke az X valószín½uségi változó szórása. A variancia számítható az X és az X valószín½uségi változók várható értékének segítségével is, azaz V ar(x) = E(X ) [E(X)] : Míg a várható érték az X valószín½uségi változó eloszlásának centrumát adja meg, addig a variancia ill. a szórás az eloszlásnak a centrum körüli ingadozását méri. 5

6 1. FEJEZET: VALÓSZÍN ½USÉGSZÁMÍTÁSI ÖSSZEFOGLALÓ Az alábbiakban a várható érték és a variancia néhány fontos, az alkalmazásokban hasznos tulajdonságát ismertetjük: 1. Ha az X valószín½uségi változónak létezik várható értéke és szórása, akkor E(aX + b) = ae(x) + b; V ar(ax + b) = a V ar(x):. Legyenek X 1 ; X ; : : : ; X n tetsz½oleges valószín½uségi változók, amelyeknek létezik a várható értékük, ekkor az összegük várható értéke megegyezik a várható értékük összegével, azaz! E X i = E(X i ): 3. Legyenek X 1 ; X ; : : : ; X n független valószín½uségi változók, amelyeknek létezik a várható értékük, ekkor a szorzatuk várható értéke megegyezik a várható értékük szorzatával, azaz! ny ny E X i = E(X i ): 4. Legyenek X 1 ; X ; : : : ; X n független valószín½uségi változók, amelyeknek létezik a szórásuk, ekkor az összegük varianciája megegyezik a varianciájuk összegével, azaz V ar! X i = V ar(x i ): Példa: Az alábbi példa jól illusztrálja a várható értékkel és a varianciával (szórással) kapcsolatos összefüggéseket. Legyenek X 1 ; X ; : : : ; X n független, azonos eloszlású valószín½uségi változók, a közös várható érték és variancia legyen E(X i ) = m és V ar(x i ) = minden i-re. Legyen Y valószín½uségi változó ezeknek a valószín½uségi változóknak a számtani átlaga, amelyet mintaátlagnak hívunk, legyen továbbá s valószín½uségi változó a minta varianciája. A mintaátlag és a minta variancia az alábbi képletekkel adottak: Y = np X i n ; s = a) Mutassuk meg, hogy E (Y ) = m: b) Mutassuk meg, hogy V ar (Y ) = =n: c) Mutassuk meg, hogy E (s ) = : np (X i Y ) n 1 Megoldás: A várható értékre és a varianciára vonatkozó tulajdonságokat alkalmazzuk. a) 0 1 np X! i E (Y ) = E B C @ n A = 1 n E X i = 1 E(X i ) = 1 n n nm = m :

1.1. A VALÓSZÍN ½USÉGI VÁLTOZÓ VÁRHATÓ ÉRTÉKE ÉS SZÓRÁSA 7 b) 0 np V ar (Y ) = V ar B @ n X i 1 C A = 1 n V ar! X i = 1 n V ar(x i ) = 1 n n = n c) E kérdés megválaszolását több lépésben végezzük. 0 1 np (X i Y )! E(s ) = E B C @ n 1 A = 1 n 1 E (X i Y ) Most az összeget írjuk át más alakra (X i Y ) = = (Xi X i Y + Y ) = Xi Y ny + ny = X i Xi ny Y X i + ny = Ennek a várható értékét a várható értékre vonatkozó addiciós összefüggés felhasználásával számítjuk ki. E! (X i Y )! = E Xi ny = E = E(Xi ) ne(y )! Xi ne(y ) = A következ½o lépésben az Y valószín½uségi változó négyzetének várható értékét számítjuk ki, felhasználva többek között a független valószín½uségi változók szorzatára vonatkozó

8 1. FEJEZET: VALÓSZÍN ½USÉGSZÁMÍTÁSI ÖSSZEFOGLALÓ összefüggést. E(Y ) = 0 np E B6 @ 4 n X i 31 7 5 C A = 1 n E 0" @ # 1 X i A = " # " #! = 1 n E X i X j = 1 n E j=1! = 1 n E X X i + X i X j = = 1 n "E X i! = 1 n " E(X i ) + = 1 n " E(X i ) + + E j6=i! X i X j = j=1!# X X i X j = j6=i # X E(X i X j ) = j6=i # X E(X i )E(X j ) Legutoljára pedig a varianciára megismert j6=i V ar(x) = E(X ) [E(X)] ) összefüggést alkalmazzuk az E(Xi ) számítására.! E(s 1 ) = E(Xi ) ne(y ) = n 1 " 1 #! = E(Xi ) n 1 X E(X n 1 n i ) + E(X i )E(X j ) = j6=i! = 1 E(X 1 X i ) E(X i )E(X j ) = n n(n 1) j6=i! = 1 V ar(x i ) + (E(X i )) n! 1 X E(X i )E(X j ) n(n 1) j6=i = 1 n (n + nm 1 ) n(n 1) (n n)m = = + m m = 1.. Nevezetes eloszlások Az alábbiakban négy eloszlást ismertetünk, ezek az eloszlások játszák a legnagyobb szerepet a további vizsgálódásainkban.

1.. NEVEZETES ELOSZLÁSOK 9 1..1. Karakterisztikus vagy Bernoulli eloszlás Legyen A tetsz½oleges esemény, amelynek bekövetkezési valószín½usége p (0 p 1). Ha az X valószín½uségi változó csak a 0 és az 1 értékeket veheti fel az alábbiak szerint 1; ha az A esemény bekövetkezik, X = 0; ha az A esemény nem következik be, akkor az A esemény X karakterisztikus valószín½uségi változójáról beszélünk. Tehát a P (X = 1) = p és a P (X = 0) = 1 p számok alkotják a karakterisztikus eloszlást. Jellemz½oi: 1... Binomiális eloszlás: E(X) = p; V ar(x) = p(1 p): Tekintsünk n független kísérletet az A esemény meg gyelésére és jelölje X valószín½uségi változó a kísérletsorozat során az A esemény bekövetkezéseinek számát. Ha X i az i- edik kísérletre vonatkozó karakterisztikus valószín½uségi változó, akkor a kísérletsorozatra jellemz½o X valószín½uségi változót az alábbiak szerint írhatjuk X = X i : Legyen p az A esemény bekövetkezésének valószín½usége, ekkor felhasználva a karakterisztikus eloszlás jellemz½oit és az összegre vonatkozó összefüggéseket, az X valószín½uségi változó várható értéke E(X) = np; szórása pedig a függetlenség miatt V ar(x) = np(1 p): A binomiális eloszlás valószín½uségeloszlása n P (X = k) = p k (1 p) n k ; (k = 0; 1; ; : : : ; n): k 1..3. Normális eloszlás A normális eloszlásnak központi szerepe van az eloszlások között, az egyik leggyakrabban alkalmazott eloszlás. A X valószín½uségi változót normális eloszlásúnak nevezünk, jele N(m; ), ha s½ur½uségfüggvénye a következ½o alakú f(x) = 1 p e (x m) ; ( 1 < x < 1) ahol m valós, pedig pozitív állandó. Az eloszlásfüggvényt az alábbiak szerint számíthatjuk ki F (x) = Z x 1 f(t)dt:

10 1. FEJEZET: VALÓSZÍN ½USÉGSZÁMÍTÁSI ÖSSZEFOGLALÓ A normális eloszlású X valószín½uségi változó várható értéke és varianciája E(X) = m; V ar(x) = : Kitüntetett szerepe van annak a normális eloszlásnak, amelynek várható értéke 0, szórása pedig 1, azaz m = 0; = 1. Az ilyen eloszlást standard normális eloszlásnak nevezzük, jele N(0; 1). Ha X normális eloszlású valószín½uségi változó, akkor az ax + b valószín½uségi változó is normális eloszlású. Ezt a tényt felhasználva minden N(m; ) eloszlást a Z = X m transzformációval N(0; 1) eloszlásba vihetünk. A két eloszlás eloszlásfüggvénye között az alábbi a kapcsolat x m F (x) = ; ahol (z) az N(0; 1) ún. standard normális eloszlás eloszlásfüggvénye, azaz (z) = Z z 1 1 p e t dt: Így elegend½o a standard normális eloszlás (x) eloszlásfüggvény értékeit táblázatba foglalni, mert erre visszavezethet½o tetsz½oleges paraméter½u normális eloszlás. S½ot elegend½o csupán a pozitív x-ekre közölni a táblázatokat, mivel igaz, hogy ( x) = 1 (x): A normális eloszlás alkalmazásakor táblázatot kell használnunk a (x) standard normális eloszlásfüggvény értékének meghatározására. Táblázat hiányában az alábbi, nagy pontosságú közelít½o képletet szokták használni (x) számítására. Ez az összefüggés van beépítve számos statisztikai programcsomagba is: (x) 1 1 p e x = (a 1 y + a y + a 3 y 3 + a 4 y 4 + a 5 y 5 ); ahol y = 1 1 + 0:316419x ; a 1 = 0:319381530; a = 0:35656378; a 3 = 1:781477937; a 4 = 1:8155978; a 5 = 1:3307449: Végül egy fontos összefüggést ismertetünk a független, normális eloszlású valószín½uségi változók összegére vonatkozóan.

1.. NEVEZETES ELOSZLÁSOK 11 Legyenek X 1 ; X ; : : : ; X n független, normális eloszlású valószín½uségi változók, amelyeknek várható értéke és varianciája legyen E(X i ) = m i és V ar(x i ) = i. Az X 1 + X + : : : + X n összeg szintén normális eloszlású valószín½uségi változó, amelynek várható értéke és varianciája E(X 1 + X + : : : + X n ) = m 1 + m + + m n ; V ar(x 1 + X + : : : + X n ) = 1 + + + n: 1..4. Lognormális eloszlás A X valószín½uségi változót m és paraméter½u lognormális eloszlásúnak nevezünk, ha az Y = log X valószín½uségi változó normális eloszlású m várható értékkel és szórással. A lognormális eloszlás s½ur½uségfüggvénye f(x) = 1 p x e (log x m) ; (x > 0): A lognormális eloszlású X valószín½uségi változó várható értéke és varianciája m+ E(X) = e ; V ar(x) = e m+ (e 1): Az alábbiakban a normális és a lognormális eloszlás alkalmazására egy példát mutatunk be. Példa: Legyen egy bizonyos részvény ára az n-edik hét végén S(n); ahol n 1. Tegyük fel, hogy az S(n)=S(n 1) árarány minden n 1 értékre független és azonos eloszlású lognormális valószín½uségi változó. Legyen a szóbanforgó lognormális valószín½uségi változó két paramétere m = 0:0165 és = 0:0730. a) Mi a valószín½usége, hogy a részvény ára egyik hétr½ol a másikra növekedik? b) Mi a valószín½usége, hogy a részvény ára három héttel kés½obb nagyobb lesz, mint az induló ár? Megoldás: a) A keresett valószín½uség P (S(n) > S(n 1)) bármely n 1 értékre. Mivel a feladatban megfogalmazott feltevés minden n-re azonos, így elegend½o az n = 1 esetre elvégezni a számítást, azaz a keresett valószín½uség P (S(1) > S(0)). Mivel a részvény ára pozitív, ezért az S(1) > S(0) egyenl½otlenség ekvivalens a log S(1) > log S(0) ill. a log S(1) S(1) > 0 egyenl½otlenséggel. Ezt felhasználva, és tudva, hogy az X=log S(0) S(0) valószín½uségi változó m = 0:0165 várható érték½u és = 0:0730 szórású normális eloszlású valószín½uségi változó, valamint a Z = X m valószín½uségi változó m = 0 várható érték½u és

1 1. FEJEZET: VALÓSZÍN ½USÉGSZÁMÍTÁSI ÖSSZEFOGLALÓ = 1 szórású standard normális eloszlású valószín½uségi változó, így a keresett valószín½uség P (S(1) > S(0)) = P = P log S(1) S(0) > 0 = P Z > 0:0165 0:0730 = 1 P (Z < 0:60) log S(1) S(0) m = P (Z > 0:60) = 1 ( 0:60) = 1 (1 ( 0:60)) = (0:60) = 0:5894:! > 0 m b) A keresett valószín½uség P (S(n + ) > S(n 1)) bármely n 1 értékre. A feltevés szerint minden n-re azonosak a viszonyok, így az n = 1 esetre végezzük el a számítást, azaz a keresett valószín½uség P (S(3) > S(0)). Mivel a részvény ára pozitív, ezért az S(3) > S(0) egyenl½otlenség ekvivalens a log S(3) > log S(0) ill. a log S(3) S(0) > 0 egyenl½otlenséggel. Ez utóbbi további alakítással log S(3) 0 és ebb½ol a számunkra már használható log S(3) S() adódik. A Z=log S(3) S() S(1) + log + log S() S(1) S(0) S() S(1) > S() S(1) S(0) S() S(1) + log + log > 0 egyenl½otlenség S(1) S(0) valószín½uségi változó három darab független normális eloszlású valószín½uségi változó összege, amelyr½ol tudjuk, hogy szintén normális eloszlású valószín½uségi változó. A Z várható értéke 3m; azaz 3 0:0165 = 0:0495, varianciája pedig 3, így szórása p 3, azaz p 3 0:0730 = 0:1644. Hasonlóan az a) részbeni megoldáshoz, a keresett valószín½uség P (S(3) > S(0)) = P log S(3) S() S(1) + log + log S() S(1) S(0) > 0 Z 3m = P p > 0 3m 3 p 3 = P Z > 0:0495 = P (Z > 0:39149) = 0:1644 = (0:39149) = 0:6517: 1.3. Központi határeloszlás tétel Legyenek X 1 ; X ; ::: azonos eloszlású, független valószín½uségi változók, m közös várható értékkel és közös szórással és legyen S n valószín½uségi változó az els½o n darab X i valószín½uségi változó összege S n = X i : Mint tudjuk az S n valószín½uségi változó várható értéke nm, szórása pedig p n. A központi határeloszlás azt montja ki, hogy bármely x valós számra lim P Sn nm n!1 p x = (x): n Szavakban ez azt jelenti, hogy elég nagy n esetén az Sn közel standard normális eloszlás. nm p n valószín½uségi változó eloszlása

1.3. KÖZPONTI HATÁRELOSZLÁS TÉTEL 13 A normális eloszlásnak a tétel adja meg a valószín½uségszámításban játszott központi szerepét. Példa: Tekintsük egy részvény ármozgására az alábbi modellt. Ha egy adott id½oben a részvény ára s, akkor egy id½operiódus után a részvény ára vagy p valószín½uséggel us vagy pedig (1 p) valószín½uséggel ds (u > 1, 0 < d < 1). Tegyük fel, hogy az egymás utáni id½operiódusokban az ármozgás független. Határozzuk meg közelít½oleg annak a valószín½uségét, hogy a következ½o 1000 id½operiódus után a részvény ára legalább 30 %-kal nagyobb lesz, mint az induló ár! Megoldás: Jelölje az S i valószín½uségi változó a részvény árát az i-edik periódusban. keresett valószín½uség S1000 P 1:30 : S 0 Elemi számolással a keresett valószín½uséget átalakítva kapjuk, hogy S1000 P 1:30 = P log S 1000 log 1:3 = S 0 S 0 = P log S 1000 S 999 S S 1 log 1:3 = S 999 S 998 S 1 S 0! X1000 = P log S i log 1:3 : S i 1 Ekkor a Legyen X i = log S i S i 1 valószín½uségi változó az i-edik és a közvetlen megel½oz½o periódusbeli ár hányadosának logaritmusa. El½oször határozzuk meg X i várható értékét és varianciáját. Az X i lehetséges értékei: log u ill. log d. m = E(X i ) = p log u + (1 p) log d = p log u d + log d; = V ar(x i ) = p (log u) + (1 p)(log d) [p log u + (1 p) log d] = = p(1 p) log u : d Ha u = 1:1; d = 0:9; p = 0:55, akkor m = 0:005 ill. = 0:1: A keresett valószín½uség kiszámítására most a központi határeloszlás tételt alkalmazzuk. Mivel n = 1000 elég nagy és az összegben szerepl½o X i valószín½uségi változók azonos eloszlásúak és függetlenek, így a tétel feltételei fennállnak, a keresett valószín½uség közelít½o értékét az alábbi szerint határozhatjuk meg P! X1000 X i log 1:3 = P 0 B @ 1000 P X i p 1000 1000m log 1:3 1000m = 1 p 1000 = 0:93 96 : log 1:3 1000m p 1000 1 C A

14 1. FEJEZET: VALÓSZÍN ½USÉGSZÁMÍTÁSI ÖSSZEFOGLALÓ Példa: Egy bizonyos részvény minden id½operiódusban vagy 0.39 valószín½uséggel 1-el csökken, vagy 0.0 valószín½uséggel nem változik, vagy pedig 0.41 valószín½uséggel 1-el növekszik. Feltéve az egymás utáni id½operiódusok árváltozásainak függetlenségét, mennyi annak a valószín½usége, hogy a következ½o 700 id½operiódus után a részvény ára legalább 10-el nagyobb lesz az induló árnál? Megoldás: Jelölje az X i valószín½uségi változó a részvény árának megváltozását az i-edik periódusban. El½oször határozzuk meg X i várható értékét és varianciáját. E(X i ) = ( 1) 0:39 + 0 0: + 1 0:41 = 0:0; V ar(x i ) = [( 1) 0:39 + 0 0: + 1 0:41] 0:0 = 0:7996; amelyb½ol a közös várható érték m = 0:0 és a szórás = 0:894: A kezd½o és a 700 id½operiódus utáni árváltozást az X i valószín½uségi változók összege adja, így a keresett valószín½uség! X700 P X i 10 : Ennek kiszámítására alkalmazhatjuk a központi határeloszlás tételt, mivel n = 700 elég nagy és az összegben szerepl½o X i valószín½uségi változók azonos eloszlásúak és függetlenek. A tétel szerint 0 700 1! P X700 X i 700 0:0 P X i 10 = P B @ 0:894 p 10 700 0:0 700 0:894 p C 700 A = 0 700 1 P X i 700 0:0 = P B @ 0:894 p 0:16907C 700 A = = (0:16907) = 0:5675 : 1.4. Kovariancia és korreláció A gyakorlatban nagyon sokszor kell két valószín½uségi változó egymástól való függ½oségét, kapcsolatának szorosságát vizsgálni. Azt vizsgáljuk, hogy a saját várható értékeik körüli ingadozásuk milyen kapcsolatban van egymással. Ennek az ún. sztochasztikus kapcsolatnak a mérésére két mutatót is szokás használni, egyik a kovariancia, másik a korrelációs együttható. Az X és az Y valószín½uségi változók kovarianciája alatt az alábbi várható értéket értjük Cov(X; Y ) = E ([X E(X)][Y E(Y )]) : Az X és az Y valószín½uségi változók korrelációs együtthatója alatt a kovariancia és a szórások hányadosát értjük, azaz (X; Y ) = Cov(X; Y ) p V ar(x)v ar(y ) :

1.4. KOVARIANCIA ÉS KORRELÁCIÓ 15 Az alábbiakban a fogalmakra vonatkozó néhány fontos tulajdonságot ismertetünk. 1. Cov(X; Y ) = E(XY ) E(X)E(Y ). Cov(X; Y ) = Cov(Y; X), szimmetria 3. Cov(X; X) = V ar(x) 4. Cov(aX; Y ) = acov(x; Y ) 5. Cov(a; Y ) = 0 6. Cov(X 1 + X ; Y ) = Cov(X 1 ; Y ) + Cov(X ; Y ), linearitás 7. Cov(X 1 + X ; Y 1 + Y ) = Cov(X 1 ; Y 1 ) + Cov(X ; Y 1 ) +Cov(X 1 ; Y ) + Cov(X ; Y ) 8. Cov(aX + b; Y ) = acov(x; Y ) 8. 1 (X; Y ) 1 9. Ha lineáris a kapcsolat X és Y között, azaz Y = ax + b, akkor (X; Y ) = sgn(a), vagyis 1, ha a > 0 és 1, ha a < 0. Most néhány fontos általánosítást ismertetünk: 10. A 7. tulajdonság általánosításai több valószín½uségi változó összegére Cov! mx X i ; Y j = j=1 mx Cov (X i ; Y j ) ; j=1! mx mx Cov a i X i + b i ; c j Y j + d j = a i c j Cov (X i ; Y j ) : j=1 j=1 11. A 3. tulajdonság általánosításai n darab valószín½uségi változóra!! V ar X i = Cov X i ; X j = Cov (X i ; X j ) = = = j=1 Cov (X i ; X i ) + V ar (X i ) + j=1 X Cov (X i ; X j ) j6=i j6=i X Cov (X i ; X j ) : V ar! a i X i + b i! = Cov a i X i + b i ; a j X j + b j = = = = j=1 a i a j Cov (X i ; X j ) = j=1 a i Cov (X i ; X i ) + a i V ar (X i ) + X a i a j Cov (X i ; X j ) j6=i j6=i X a i a j Cov (X i ; X j ) : Ha Cov(X; Y ) = 0; akkor azt mondjuk, hogy az X és az Y valószín½uségi változók korrelálatlanok. A korrelálatlanságot nem szabad összekeverni a függetlenséggel.

16 1. FEJEZET: VALÓSZÍN ½USÉGSZÁMÍTÁSI ÖSSZEFOGLALÓ Mint korábbról tudjuk, ha X és Y valószín½uségi változók függetlenek, akkor E(XY ) = E(X)E(Y ): E fontos összefüggést felhasználva állítható, hogy ha X és Y valószín½uségi változók függetlenek, akkor Cov(X; Y ) = (X; Y ) = 0; vagyis a függetlenségb½ol következik a korrelálatlanság, fordítva nem. Több valószín½uségi változó esetén ezek páronkénti kovarianciáit és korrelációs együtthatóit a tömörebb leírás végett egy-egy mátrixba foglalhatjuk össze. Legyen X 1 ; X ; : : : ; X n n darab valószín½uségi változó és legyen c ij = Cov(X i ; X j ) és r ij = (X i ; X j ). A c ij ill. r ij számokból alkotott C ill. R mátrixot kovariancia-mátrixnak ill. korreláció mátrixnak nevezzük. A C és az R mátrixok szimmetrikusak és pozitív szemide nit mátrixok, továbbá c ii = V ar(x i ) = i és r ii = 1. Független valószín½uségi változók esetén a C egy diagonális mátrix, az R pedig egységmátrix. Ha bevezetjük az S diagonális mátrixot, amelynek f½oátlójában az egyes valószín½uségi változók szórása szerepel, akkor az ismert c ij = i r ij j összefüggés a C = SRS; ill. R = S 1 CS 1 alakban írható. Gyakran van szükségünk arra, hogy több valószín½uségi változó súlyozott számtani átlagát vizsgáljuk. Legyenek X 1 ; X ; : : : ; X n valószín½uségi változók és legyenek w 1 ; w ; : : : ; w n súlyok ( P w i = 1 és w i 0 minden i-re). Jelölje Y valószín½uségi változó a súlyozott számtani átlagot, azaz Y = w i X i ; ennek várható értéke és varianciája a korábban megismert összefüggésekb½ol E(Y ) = V ar(y ) = w i E (X i ) ; j=1 w i w j Cov (X i ; X j ) : Ha a súlyokat és a várható értékeket egy-egy vektorba foglaljuk úgy, hogy m = (E (X 1 ) ; E (X ) ; : : : ; E (X n )) és w = (w 1 ; w ; : : : ; w n ), akkor a fentieket vektor-mátrix m½uveletek segítségével tömörebb formában is írhatjuk. E(Y ) = w T m; V ar(y ) = w T Cw = w T SRSw: Ha a valószín½uségi változók függetlenek, akkor ahol T a transzponálás jele. V ar(y ) = w T SSw = (Sw) T (Sw);

1.4. KOVARIANCIA ÉS KORRELÁCIÓ 17 Példa: Tegyük fel, hogy egy adott id½operiódusban egy bizonyos részvény ára egyenl½o valószín½uséggel n½o vagy csökken 1 egységgel és különböz½o id½operiódusok kimenetele egymástól független. Jelölje az X valószín½uségi változó az els½o periódusbeli változást, az Y valószín½uségi változó pedig az els½o három periódusbeli változás összegét. Határozzuk meg az X és Y valószín½uségi változók közötti kovarianciát és a korrelációs együtthatót! Megoldás: Az egyszer½ubb számolás kedvéért készítsünk egy táblázatot a lehetséges esetek vizsgálatára. A +; jelekkel az értékpapír árának növekedését ill. csökkenését jeleztük. A. oszlopban az X valószín½uségi változó, a. sorban pedig az Y valószín½uségi változó lehetséges értékeit tüntettük fel. A táblázat belseje az XY szorzat valószín½uségi változó valószín½uség eloszlását mutatja. Az utolsó sor és oszlop az X és az Y valószín½uségi változó lehetséges értékeihez tartozó valószín½uségeket mutatja. + + + + + - + - + + - - - + + - + - XY 3 1 1-1 1-1 -1-3 + 1 1/8 1/8 1/8 1/8 0 0 0 0 1/ - -1 0 0 0 0 1/8 1/8 1/8 1/8 1/ 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1 - - + - - - E(X) = 1 1 + ( 1) 1 = 0; E(Y ) = 3 1 8 + 1 1 8 + 1 1 8 + ( 1) 1 8 + 1 1 8 + ( 1) 1 8 + ( 1) 1 8 + ( 3) 1 8 = 0; E(XY ) = 1 3 1 8 + 1 1 1 8 + 1 1 1 8 + 1( 1) 1 8 + +( 1)1 1 8 + ( 1)( 1) 1 8 + ( 1)( 1) 1 8 + ( 1)( 3) 1 8 = 1; V ar(x) = E(X ) [E(X)] = 1 1 + ( 1) 1 0 = 1; V ar(y ) = E(Y ) [E(Y )] = 1 8 [3 + 1 + 1 + ( 1) + +1 + ( 1) + ( 1) + ( 3) ] 0 = 3: A kovariancia és a korrelációs együttható Cov(X; Y ) = E(XY ) E(X)E(Y ) = 1; (X; Y ) = Cov(X; Y ) p = p 1 = 0:577. V ar(x)v ar(y ) 1 3 Bemutatunk egy másik megoldási módot is. Jelöljék az X 1 ; X ; X 3 valószín½uségi változók az 1., a. és a 3. periódusbeli változást. (Az X 1 azonos az el½oz½o megoldásban szerepl½o X-el.) Ezek a valószín½uségi változók függetlenek. A feladat értelmében az X 1 és az X 1 + X + X 3 valószín½uségi változók

18 1. FEJEZET: VALÓSZÍN ½USÉGSZÁMÍTÁSI ÖSSZEFOGLALÓ kovarianciáját kell meghatározni, amelyet az alábbiak szerint végezhetünk, felhasználva a kovariancia additivitását és a függetlenséget Cov(X 1 ; X 1 + X + X 3 ) = Cov(X 1 ; X 1 ) + Cov(X 1 ; X ) + Cov(X 1 ; X 3 ) = = Cov(X 1 ; X 1 ) = V ar(x 1 ) = 1: A korrelációs együttható számításához szükségünk van a három független valószín½uségi változó összegének varianciájára, amely az alábbiak szerint számítható V ar(x 1 + X + X 3 ) = V ar(x 1 ) + V ar(x ) + V ar(x 3 ) = (X 1 ; X 1 + X + X 3 ) = = 3V ar(x 1 ) = 3; Cov(X 1 ; X 1 + X + X 3 ) p V ar(x1 )V ar(x 1 + X + X 3 ) = 1 p 3 = 0:577.

. fejezet Geometriai Brown-mozgás.1. A geometriai Brown-mozgás de níciója Jelölje S(y) egy értékpapír árát y id½o elteltével a jelent½ol. Az S(y); 0 y < 1 értékpapír árak együttese m és paraméter½u geometriai Brown-mozgást követ az alábbi két feltétel fennállása esetén: 1. ha minden nemnegatív y és t értékre az S(t + y) S(y) valószín½uségi változó független az y id½opont el½otti áraktól,. a S(t + y) log S(y) valószín½uségi változó mt várható érték½u és t varianciájú ( p t szórású) normális eloszlású valószín½uségi változó. Más szavakkal: az árak sorozata akkor követ geometriai Brown-mozgást, ha az árak hányadosa nem függ a múltbeli áraktól és lognormális valószín½uség-eloszlású mt és p t paraméterekkel. A geometriai Brown-mozgást tehát két paraméter meghatározza. Az m paramétert drift (növekedési) paraméternek, a paramétert pedig volatilitási (változékonysági) paraméternek szokás nevezni. A feltevés szerint egy adott t hosszúságú id½oszakban az árak hányadosa ugyanolyan eloszlást követ, függetlenül attól, hogy mi az id½oszak kezdete. Eszerint tehát egy értékpapír árának pl. egy hónap alatti megduplázódása ugyanakkora valószín½uség½u mintha 10-r½ol vagy 5-r½ol duplázódott volna meg. Ha a kezd½o ár S(0), akkor a t id½obeli ár várható értéke és varianciája a lognormális eloszlásra megismert összefüggések alapján E [S(t)] = S(0)e t(m+ =) ; V ar [S(t)] = [S(0)] e t(m+ =) (e t 1): Példa: Tegyük fel, hogy egy értékpapír S(y); y 0 ára geometriai Brown mozgást követ, m=0.01 és =0. paraméterekkel. Ha S(0) = 100, akkor t = 10 esetén a) E [S(10)] =?; V ar [S(10)] =?; b) P (S(10) > 100) =?; 19

0. FEJEZET: GEOMETRIAI BROWN-MOZGÁS c) P (S(10) < 10) =? Megoldás: a) A várható értékre és a varianciára adott képletekbe behelyettesítve kapjuk, hogy E [S(10)] = 100e 10(0:01+0: =) = 134:99; V ar [S(10)] = 100 e 10(0:01+0: =) (e 100: 1) = 8961:6. b) A keresett valószín½uséget áralakítva kapjuk, hogy P (S(10) > 100) = P (S(10) > S(0)) = P (log S(10) > log S(0)) = P log S(10) S(0) > 0 : Az X = log S(10) S(0) valószín½uségi változó tm várható érték½u és t varianciájú normális valószín½uségi változó, azaz a várható érték = 0:1, a szórás = 0:6346. A keresett valószín½uség X 0:1 P (S(10) > 100) = P (X > 0) = P 0:6346 > 0:1 0:6346 X 0:1 = P 0:6346 > 0:15811 = (0:15811) = 0:5636. c) A keresett valószín½uséget átalakítva kapjuk, hogy P (S(10) < 10) = P S(10) < S(0) 10 = P log S(10) < log S(0) = P log S(10) < log S(0) + log 10 S(0) = P log S(10) 10 < log : S(0) 100 S(0) 10 S(0) Az X = log S(10) valószín½uségi változó 0:1 várható érték½u és 0:6346 szórású normális S(0) valószín½uségi változó, így a keresett valószín½uség P (S(10) < 10) = P X < log 10 = P (X < 0:183) 100 X 0:1 0:183 0:1 = P < 0:6346 0:6346 X 0:1 = P 0:6346 < 0:13016 = (0:13016) = 0:5517.

.. A GEOMETRIAI BROWN-MOZGÁS PARAMÉTEREI 1.. A geometriai Brown-mozgás paraméterei Az m drift paraméter, a volatilitási paraméter értéke attól függ, hogy milyen mértékegységben mérjük az id½ot. A gyakorlat az id½ot évben mérik, így éves driftr½ol és éves volatilitásról szokás beszélni. Mit fejeznek ki e paraméterek, ezt szeretnénk néhány szóban bemutatni. A részvény két árfolyamának hányadosát Jelöljük X valószín½uségi változóval a de nícióban szerepl½o log valószín½uségi változót, azaz X = log, amelyb½ol S(t+y) S(y) S(t+y) S(y) S(t + y) = S(y)e X : Ezen összefüggés szerint az X valószín½uségi változó a részvény hozamát jelenti t id½otartam alatt, azaz a részvényárfolyam folytonos növekedési üteme X. A de níció szerint tehát a részvény hozama normális eloszlást követ mt várható értékkel és t varianciával (ill. p t szórással). Amennyiben t értékét 1-nek választjuk, úgy az m drift paraméter a részvény várható éves hozamát, a volatilitási paraméter pedig részvény éves hozamának szórását jelenti. A várható hozamot és a szórást százalékosan szokták megadni. Példa: Egy részvény árfolyamának várható éves hozama 16 %, volatilitása évi 30 %. A részvényárfolyam egy adott nap végén 1000 Ft. a) Mennyi a várható részvényárfolyam a következ½o nap végén? b) Mennyi a részvényárfolyam várható szórása a. nap végén? c) Mi a valószín½usége, hogy a részvényárfolyam a 10. nap végén 950 és 1100 között lesz? Megoldás: Az adataink alapján m = 0:16, = 0:30, S(0) = 1000. Az árfolyamoknál keresked½oi napokban számolnak, ami 5 nap, így 1 nap 1 évnek felel meg. 5 a) t = 1 0:004; 5 E [S(0:004)] = 1000e 0:004(0:16+0:3 =) = 1000:8. b) t = 5 0:008; V ar [S(0:008)] = 1000 e 0:008(0:16+0:3 =) (e 0:0080:3 1) = 7:63, szoras = p 7:63 = 6:88. c) t = 10 S(0:04) 0:04; és tudjuk, hogy az X = log 5 S(0) eloszlású, várható értéke és szórása valószín½uségi változó normális E(X) = mt = 0:16 0:04 = 0:0064; p V ar(x) = p t = 0:3 p 0:04 = 0:06.

. FEJEZET: GEOMETRIAI BROWN-MOZGÁS A keresett valószín½uség 950 P (950 < S(0:04) < 1100) = P S(0) < S(0:04) < 1100 S(0) S(0) = P log 950 S(0:04) < log < log 1100 1000 S(0) 1000 = P ( 0:0513 < X < 0:0953) = P 0:9617 < X 0:0064 < 1:4817 0:06 = (1:4817) ( 0:9617) = 0:7669..3. A geometriai Brown-mozgás egy egyszer½u modellel való közelítése Az alábbiakban egy egyszer½u modellt mutatunk be, amely ugyan pontatlanul, de elfogadható interpretálását adja a geometriai Brown-mozgásnak. Tekintsünk egy t hosszúságú id½otartamot, amelynek a kezd½o ideje y, befejez½o ideje t + y: Legyen egy bizonyos részvény ára a két id½opontban S(y) ill. S(t + y). Osszuk fel a t id½otartamot n egyenl½o részre és tegyük fel, hogy a részvény ára csak a részintervallumok végén változik. Minden részintervallum végén a részvény ára vagy p valószín½uséggel u-szorosára változik (u > 1, tehát növekszik), vagy (1 p) valószín½uséggel d-szorosára változik (0 < d < 1, tehát csökken), ahol u = e p p t t n ; d = e p = 1 1 + m r! t : n Legyen X i egy Bernoulli valószín½uségi változó, amelynek értéke 1, ha az árfolyam növekszik és 0, ha az árfolyam csökken az i-edik részintervallumban. Az X i valószín½uségi változók mindegyikének ugyanaz a várható értéke és varianciája, mégpedig E(X i ) = p; V ar(x i ) = p(1 p): Ekkor az Y = P X i valószín½uségi változó mutatja, hogy a lejárati id½o alatt hányszor növekedett a részvény árfolyama. Az n Y valószín½uségi változó pedig a lejárati id½o alatt a részvényárfolyam csökkenéseinek számát mutatja. Ezt gyelembevéve az id½otartam alatt a részvény árfolyama u Y d n Y szorosára változik, azaz S(t + y) = S(y)u Y d n Y : Most számítsuk ki a két árfolyam hányadosának a logaritmusát, felhasználva u és d faktorokra adott összefüggést, kapjuk, hogy S(t + y) log = Y log u r t S(y) d + n log d = n Y p nt: Az Y = P X i valószín½uségi változó, mint ismeretes, binomiális eloszlású E(Y ) = np várható értékkel és V ar(y ) = np(1 p) varianciával. A centrális határeloszlástétel értelmében elég nagy n esetén az Y valószín½uségi változó ún. standardizáltja (az p Y E(Y ) V ar(y) valószín½uségi változó) standard normális eloszláshoz közelít p = 1 esetén vagy amennyiben n ;