15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a k1 x 1 + a k2 x 2 + + a kn x n = egyenletrendszert, ahol a ij, b i (i = 1,, k; j = 1,, n) adott valós (vagy komplex) számok, x i (i = 1,, k) ismeretlen valós (vagy komplex) számok Az a ij számokat az (1) rendszer együtthatóinak nevezzük (pontosabban a ij a rendszer i-edik egyenletében az x j ismeretlen együtthatója, a b i az i-edik egyenlet szabad tagja Az (1) egyenletrendszert homogénnek nevezzük, ha b 1 = = b k = 0, ellenkező esetben inhomogénnek mondjuk Azt mondjuk, hogy a c 1,, c n számok (1) egy megoldását adják, ha az ismeretlenek helyére helyettesítve őket a rendszer minden egyes egyenletében egyenlőség áll Az (1) egyenletrendszert szabályosnak nevezzük, ha k = n, azaz ha az egyenletek és ismeretlenek száma egyenlő Bevezetve az együtthatómátrixot, és az A = x = a 11 a 12 a 1n a 21 a 22 a 2n a k1 a k2 a kn x 1 x 2 x n b 1, b = b 2 oszlopmátrixokat (oszlopvektorokat) az (1) rendszer tömören az (2) A x = b alakba írható Egyenletek ill egyenletrendszerek esetén két alapvető kérdést vizsgálunk: Van-e az egyenletrendszernek megoldása, és ha igen akkor egyértelmű-e? Hogyan határozhatjuk meg a megoldást ill az összes megoldást? Egy (lineáris) egyenletrendszert megoldhatónak nevezünk, ha van megoldása, ellenkező esetben ellentmondásosnak mondjuk Ha pontosan egy megoldás létezik, akkor a rendszert határozottnak nevezzük, ha több megoldás van akkor határozatlannak mondjuk Két egyenletrendszert ekvivalensnek nevezünk, ha megoldásaik halmaza egyenlő Lineáris egyenletrendszerek esetén (nyilvánvaló módon) az alábbi átalakítások eredményeznek ekvivalens rendszereket (ezeket ekvivalens átalakításoknak mondjuk): 1 b k b k
2 az egyenletek sorrendjének megváltoztatása, az egyenletekben szereplő tagok sorrendjének megváltoztatása, a rendszer bármelyik egyenletének szorzása (minden tag szorzása) egy nemzérus számmal, a rendszer bármelyik egyenletének hozzáadása egy másik egyenletéhez A Gauss elimináció az ismeretlenek szukcesszív kiküszöbölése Ennek során az egyenletrendszert un trapéz alakra hozzuk Az (1) rendszert akkor nevezzük trapéz alakúnak, ha van olyan 1 r n szám, hogy a 11 0, a 22 0,, a rr 0 de a ij = 0, ha i = 1, 2,, r, j < i, továbbá a ij = 0, ha i > r, j = 1, 2,, n Ha r = n, akkor a rendszert háromszögalakúnak nevezzük A Gauss elimináció lépései: Tegyük fel, hogy a 11 0 Az első egyenlet a i1 -szeresét az i-edik egyenlethez hozzáadva i = a 11 2, 3,, k esetén, az x 1 ismeretlen eltűnik a második, harmadik, k-adik egyenletből Ha a 11 = 0, akkor az első egyenletben keresünk egy ismeretlent melynek együtthatója 0 és ez veszi át x 1 szerepét Ezután a második egyenlet alkalmas konstanszorosainak a harmadik k-adik egyenlethez való hozzádásával kiküszöböljük a harmadik ismeretlent a negyedik, k-adik egyenletből Az eljárást hasonlóan folytatjuk, míg van mit kiküszöbölni Íly módon egy trapéz alakú egyenletrendszerhez jutunk A trapéz alakú egyenletrendszer akkor és csakis akkor megoldható, ha a trapéz alakban az r + 1-edik egyenlettől kezdve a szabad tagok mind nullák A megoldható esetben rendszerünk akkor és csakis akkor lesz határozott, ha r = n, azaz ha rendszerünk hároszögalakú Ugyanis, ekkor az utolsó egyenletből azonnal kiszámítható x n egyetlen lehetséges értéke, ezt az előző egyenletbe helyettesítve számolhatjuk ki x n 1 egyetlen értékét, és hasonlóan folytatva kapjuk a rendszer egyetlen megoldását adó, x 3, x 2, x 1 értékeket Ha r < n akkor a rendszer határozatlan, ugyanis az x r+1, x r+2,, x n "szabad ismeretleneknek" tetszőleges értéket adva, ezek segítségével a fennt leírt módon az x r, x r 1,, x 2, x 1 ismeretlenek (egyértelűen) kiszámíthatók Így ebben az esetben a rendszer határozatlan, és végtelen sok megoldása van (a megoldások egy n r paraméteres sereget alkotnak 152 Lineáris egyenletrendszer megoldása 1 Tétel (lin egyenletrendszer megoldhatósága) Az a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a k1 x 1 + a k2 x 2 + + a kn x n = lineáris egyenletrendszer akkor is csakis akkor oldható meg, ha a rga = rg(a b) rangfeltétel teljesül, ahol A a rendszer mátrixa, (A b) a bővített mátrix, melyet az A mátrixból úgy kapunk, hogy az A mátrixhoz n + 1-edik oszlopként hozzáírjuk a szabad tagok b oszlopvektorát b k
Bizonyítás Legyenek o j = a 1j a 2j a kj az A mátrix oszlopvektorai, akkor rendszerünk (j = 1, 2,, n) (3) x 1 o 1 + x 2 o 2 + + x n o n = b alakba is írható (a baloldali összeg első tagja az o 1 vektor x 1 skalárral való szorzata sit) Innen látható, hogy ha rendszerünk megoldható, akkor (3) alapján b L(o 1,, o n ) így L(o 1,, o n ) = L(o 1,, o n, b), így az utóbbi két altér rangja egyenlő, azaz (3) teljesül Fordítva, ha (3) teljesül, akkor L(o 1,, o n, b) L(o 1,, o n ) és (3) miatt L(o 1,, o n, b) = L(o 1,, o n ) így b L(o 1,, o n ) Ezért a b oszlopvektor az o 1,, o n oszlopvektorok lineáris kombinációja, azaz vannak olyan x 1, x 2,, x n számok, melyekre teljesül, azaz x 1, x 2,, x n a rendszer megoldása b = x 1 o 1 + x 2 o 2 + + x n o n Foglalkozzunk most a homogén rendszerrel, (amikor b 1 = = b k = 0) Ekkor az előző tételben szereplő rangfeltétel biztosan teljesül, így mindig van megoldás Ez a rangfeltételre való hívatkozás nélkül is azonnal látható, hiszen x 1 = x 2 = = x n = 0 megoldása a homogén rendszernek Ezt a megoldást triviális megoldásnak nevezzük Mikor van a homogén rendszernek triviálistól különböző megoldása? Erre ad választ a 2 Tétel Az Ax = 0 (A M k n, x = (x 1,, x n ) T M n 1 ) homogén lineáris egyenletrendszernek akkor is csakis akkor van triviálistól különböző megoldása, ha rg A < n (azaz a rendszer A mátrixának rangja kisebb mint az ismeretlenek száma) homogén rendszer összes megoldásai K n -nek egy dimenziós alterét alkotják n rg A 3 Ha ez teljesül, akkor a Bizonyítás Az, hogy a homogén rendszer megoldásai alteret alkotnak szinte nyilvánvaló, ha ugyanis, az x, y (oszlop)vektorok megoldások akkor Ax = 0, Ay = 0 így A(x + y) = Ax + Ay = 0 és A(cx) = cax = 0 azaz x + y és cx is megoldás (c K)
4 Legyen rg A = r és írjuk a rendszert (4) x 1 o 1 + x 2 o 2 + + x n o n = 0 alakba Ha van nemtriviális x = (x 1,, x n ) T megoldás, akkor (4) teljesül, amiből látható, hogy o 1, o 2,, o n lineárisan függő, így az L(o 1, o 2,, o n ) altér dimenziója (ami éppen rg A) kisebb mint n Fordítva, ha r < n akkor vegyük az L(o 1, o 2,, o n ) altér egy bázisát, az egyszerűség kedvéert legyen ez a rendszer sorrendben első r db vektora, azaz o 1, o 2,, o r Ekkor az o r+1,, o n vektorok a bázisvektorok lineáris kombinációi, azaz (5) o i = α i1 o 1 + α i2 o 2 + + α ir o r (i = r + 1,, n) alkalmas, nem csupa zérusból álló α i1, α i2,, α ir számok esetén Ezt átírhatjuk alakba is, ami viszont azt jelenti, hogy az α i1 o 1 α i2 o 2 α ir + 1 o i = 0 u i = ( α i1, α i2,, α ir, 0,, 1,, 0) T (i = r + 1,, n) (oszlop)vektorok a homogén rendszer nemtriviális megoldásai (az 1 a i edik helyen áll) Ezek a vektorok lineárisan függetlenek, mert (az u r+1,, u n oszlopvektorokat egymás után egy) mátrixként írva, a kapott mátrix tartalmazza az n r dimenziós egységmátrixot Így a megoldások altere legalább n r dimenziós Később megmutatjuk, hogy a megoldások alterének dimenziója pontosan n r 3 Tétel Az () Ax = b (A M k n, x M n 1, b M k 1 ) inhomogén lineáris egyenletrendszer bármely x megoldása x = x + x h alakba írható, ahol x az inhomogén egyenlet egy rögzített (partikuláris) megoldása, x h pedig a ()-nak megfelelő (7) Ax = 0 homogén egyenlet egy tetszőleges megoldása Így a megoldások halmaza a (7) megoldásalterének az x vektorral való eltoltja Bizonyítás Ugyanis, ha x () egy tetszőleges megoldása, x () egy megoldása, akkor amiből x h = x x -vel következik állításunk A szabályos egyenletrendszerekre vonatkozik a Ax = b, Ax = b amiből A(x x ) = 0 4 Tétel (Cramer szabály) Legyen A egy n-edrendű kvadratikus mátrix A (8) Ax = b (A M n n, x, b M n 1 ) (szabályos) lineáris egyenletrendszer akkor és csakis akkor határozott (egyértelműen megoldható), ha 0
Ha ez teljesül akkor a rendszer egyetlen megoldása x i = A i (i = 1, 2,, n) ahol A i az a mátrix melyet az A mátrixból úgy kapunk, hogy annak i-edik oszlopát a szabad tagok b (oszlop)vektorára cseréljük ki Bizonyítás Ha rendszerünk határozott akkor az A mátrix o 1,, o n oszlopvektorai lineárisan függetlenek (ti csak ekkor lehet b-t az oszlopvektorok lineáris kombinációjaként egyértelműen felírni) Ekkor viszont 0 Fordítva, ha 0 akkor A invertálható, megszorozva az Ax = b egyenletet balról az A 1 inverz mátrixszal ( ) A 1 Ax = Ex = x amiből az inverz mátrix A 1 Aji = alakját, felhasználva x i = n j=1 A ji b i = 1 n j=1 A ji b i = A i mivel jobboldalon az utolsó összeg éppen az A i determinánsnak az i-edik oszlop szerinti kifejtése A szabályos homogén egyenletrendszerekre vonatkozik a 5 Tétel Legyen A egy n-edrendű kvadratikus mátrix A Ax = 0 (A M n n, x M n 1 ) (szabályos) homogén lineáris egyenletrendszernek akkor és csakis akkor van nemtriviális megoldása, ha = 0 Bizonyítás Ugyanis, ha = 0 akkor az előző tétel miatt az egyetlen megoldás (b i = 0 (i = 1,, n) miatt) az x i = 0 (i = 1,, n) triviális megoldás Ha viszont = 0, akkor a homogén rendszer megoldásainak altere (a 2 Tétel miatt) legalább egy dimenziós, így van benne nemzérus vektor A Cramer szabály segítségével tetszőleges lineáris egyenletrendszert is megoldhatunk az alábbi módon Tekintsük a Ax = b (A M k n, x M n 1, b M k 1 ) k egyenletből álló n ismeretlent tartalmazó rendszert, mely megoldható, azaz a jelölje az itt szereplő rangok közös értékét r, akkor rga = rg(a b), r min{k, n} Keressük meg A rangmeghatározó aldeterminánsát, azaz válasszuk ki a mátrix r sorát és r oszlopát, úgy, hogy az ezekből alkotott determináns nem zérus Vegyük azokat az egyenleteket melyek a kiválasztott soroknak felelnek meg, ezek baloldalán csak azokat az ismeretleneket hagyjuk meg, melyeknek megfelelő oszlopokat kiválasztottuk (a többi ismeretlent az egyenlet jobboldalára vigyük át) A rangfeltétel miatt az elhagyott egyenletek a kiválasztott r darab egyenletből (lineárisan) kombinálhatók így azok elhagyhatók A kapott szabályos egyenletrendszerre (r egyenlet, r ismeretlen) a Cramer szabály alkalmazható, a rendszerünkben szereplő ismeretleneket 5
a jobboldalon szereplő, tetszőlegesnek vehető ismeretlenek, és a megfelelő szabad tagok lineáris kombinációjaként kapjuk meg a Cramer szabály által Ebből az eljárásból az is következik, hogy ha a rendszerünk homogén és r < n akkor a megoldások n r dimenziós alteret alkotnak, ugyanis minden x M n 1 megoldás n r darab (lineárisan független) u 1, u n r oszlopvektor lineáris kombinációja, ahol mindegyik u j vektor olyan, hogy a kiválasztott r darab sorban (a Cramer szabály által kiszámolt) meghatározott konstansok állnak, a ki nem választott n r darab sorban pedig a 0 vagy 1 számok, úgy, hogy mindegyik vektorban egyetlen 1 van a többi érték 0 Példák 1 Itt a rendszer determinánsa x 1 +x 2 +2x 3 = b 1 2x 1 x 2 +2x 3 = b 2 4x 1 +x 2 +4x 3 = b 3 1 1 2 2 1 2 4 1 4 = 0, így egyértelműen megoldható, és a megoldások x 1 = 1 b 1 1 2 b 2 1 2 b 3 1 4 = b 1 2b 2 + 4b 3 x 2 = 1 x 3 = 1 1 b 1 2 2 b 2 2 4 b 3 4 1 1 b 1 2 1 b 2 4 1 b 3 = 4b 2 + 2b 3 = b 1 + 3b 2 3b 3 2 Egyenletrendszerünk most A rendszer mátrixa, és a bővített mátrix 1 1 2 1 2 1 2 2 A = 4 1 4 2 7 1 8 5 8 2 10 a rangok x 1 +x 2 +2x 3 +x 4 = 1 2x 1 x 2 +2x 3 +2x 4 = 4 4x 1 +x 2 +4x 3 +2x 4 = 2 7x 1 +x 2 +8x 3 +5x 4 = 7 8x 1 +2x 2 +10x 3 +x 4 = 8 (A b) = rg A = 3, rg (A b) = 3, 1 1 2 1 1 2 1 2 2 4 4 1 4 2 2 7 1 8 5 7 8 2 10 8
így rendszerünk megoldható Rangmeghatározó determinánsnak a bal felső 3 3 sarokdeterminánst vehetjük Az utolsó két egyenlet elhagyható (könnyű látni, hogy a negyedik egyenlet az előző három egyenlet összege, az ötödik egyenlet az első egyenlet kétszerese plusz a második és harmadik egyenlet) A rangmeghatározó determinánsban nem szereplő x 4 ismeretlent a jobboldalra rendezve kapjuk, hogy x 1 +x 2 +2x 3 = 1 x 4 2x 1 x 2 +2x 3 = 4 2x 4 4x 1 +x 2 +4x 3 = 2 2x 4 Ezt a Cramer szabállyal megoldva (felhasználva az előző példa eredményét b 1 = 1 x 4, b 2 = 4 2x 4, b 3 = 2 2x 4 -szel) kapjuk, hogy rendszerünk minden megoldása x 1 = ( 1 x 4 ) 1 3 ( 4 2x 4) + 2 3 ( 2 2x 4) = 1 + 1 3 x 4, 7 x 2 = 2 3 ( 4 2x 4) + 1 3 ( 2 2x 4) = 2 + 2 3 x 4, alakú, ahol x 4 tetszőleges x 3 = ( 1 x 4 ) + 1 2 ( 4 2x 4) 1 2 ( 2 2x 4) = 2 x 4