Példák ekvivalencia relációra (TÉTELként kell tudni ezeket zárthelyin, vizsgán):

Hasonló dokumentumok
Relációk. Vázlat. Példák direkt szorzatra

Vázlat. Relációk. Példák direkt szorzatra

BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai

Diszkrét matematika I.

d(f(x), f(y)) q d(x, y), ahol 0 q < 1.

Hatványozás. A hatványozás azonosságai

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor compalg.inf.elte.hu/ nagy

A valós számok halmaza

Diszkrét matematika 2. estis képzés

Nagy Gábor compalg.inf.elte.hu/ nagy

Egy negyedrendű rekurzív sorozatcsaládról

KOVÁCS BÉLA, MATEMATIKA I.

DISZKRÉT MATEMATIKA RENDEZETT HALMAZOKKAL KAPCSOLATOS PÉLDÁK. Rendezett halmaz. (a, b) R a R b 1. Reflexív 2. Antiszimmetrikus 3.

Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

Diszkrét matematika I.

Klasszikus algebra előadás. Waldhauser Tamás április 28.

Diszkrét matematika I.

1. előadás: Halmazelmélet, számfogalom, teljes

A Bevezetés a matematikába című tárgy 3. félévével kapcsolatos tudnivalók

Nagy Gábor compalg.inf.elte.hu/ nagy

Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) Egy halmaz akkor adott, ha minden objektumról eldönthető, hogy

Gonda János VÉGES TESTEK

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Minden egész szám osztója önmagának, azaz a a minden egész a-ra.

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé.

Frank András MATROIDELMÉLET május 20.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Diszkrét matematika I.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

1. Mondjon legalább három példát predikátumra. 4. Mikor van egy változó egy kvantor hatáskörében?

Nagy Gábor compalg.inf.elte.hu/ nagy

3. Venn-diagrammok használata nélkül bizonyítsuk be az alábbi összefüggéseket!

RE 1. Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

Számelméleti alapfogalmak

Analízis előadás és gyakorlat vázlat

I. Egyenlet fogalma, algebrai megoldása

OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk.

3. Évközi ellenőrzés módja: 2 zárhelyi dolgozat íratása. 4. A tárgy előírt külső szakmai gyakorlatai: -

Diszkrét matematika 1. középszint

Minden x > 0 és y 0 valós számpárhoz létezik olyan n természetes szám, hogy y nx.

Az entrópia statisztikus értelmezése

minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének.

Számelmélet (2017. február 8.) Bogya Norbert, Kátai-Urbán Kamilla

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1

Halmazelmélet. 1. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Halmazelmélet p. 1/1

SZÁMÍTÁSTUDOMÁNY ALAPJAI

2014. szeptember 24. és 26. Dr. Vincze Szilvia

KOVÁCS BÉLA, MATEMATIKA I.

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

MM CSOPORTELMÉLET GYAKORLAT ( )

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Szakács Lili Kata megoldása

Funkcionálanalízis. n=1. n=1. x n y n. n=1

Algoritmusok és adatszerkezetek gyakorlat 09 Rendezések

Analízis I. Vizsgatételsor

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Halmazelmélet. 1. Jelenítsük meg Venn-diagrammon az alábbi halmazokat: a) b) c) 2. Milyen halmazokat határoznak meg az alábbi Venn-diagrammok?

Itt és a továbbiakban a számhalmazokra az alábbi jelöléseket használjuk:

KOVÁCS BÉLA, MATEMATIKA I.

Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján

Analízis I. beugró vizsgakérdések

Számelmélet, műveletek, egyenletek, algebrai kifejezések, egyéb

Halmazelméleti alapfogalmak

Analízis elo adások. Vajda István szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Mikor van egy változó egy kvantor hatáskörében? Milyen tulajdonságokkal rendelkezik a,,részhalmaz fogalom?

Intergrált Intenzív Matematika Érettségi

7. Számelmélet. 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel?

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex

Egész számok. pozitív egész számok: 1; 2; 3; 4;... negatív egész számok: 1; 2; 3; 4;...

1. fogalom. Add meg az összeadásban szereplő számok elnevezéseit! Milyen tulajdonságai vannak az összeadásnak? Hogyan ellenőrizzük az összeadást?

5. A kiterjesztési elv, nyelvi változók

A relációelmélet alapjai

Diszkrét matematika gyakorlat 1. ZH október 10. α csoport

Matematikai logika és halmazelmélet

2016/2017. Matematika 9.Kny

Bevezetés az algebrába az egész számok 2

2016/2017. Matematika 9.Kny

1. Absztrakt terek 1. (x, y) x + y X és (λ, x) λx X. műveletek értelmezve vannak, és amelyekre teljesülnek a következő axiómák:

1. A polinom fogalma. Számolás formális kifejezésekkel. Feladat Oldjuk meg az x2 + x + 1 x + 1. = x egyenletet.

A valós számok halmaza 5. I. rész MATEMATIKAI ANALÍZIS

Bevezetés a matematikába (2009. ősz) 1. röpdolgozat

2016, Diszkrét matematika

1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy b = ax. Ennek jelölése a b.

Dr. Vincze Szilvia;

Kongruenciák. Waldhauser Tamás

Lineáris algebra I. Vektorok és szorzataik

Méréselmélet: 5. előadás,

HHF0CX. k darab halmaz sorbarendezésének a lehetősége k! Így adódik az alábbi képlet:

Számelmélet Megoldások

illetve a n 3 illetve a 2n 5

17. előadás: Vektorok a térben

Gauss elimináció, LU felbontás

f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva

1. Részcsoportok (1) C + R + Q + Z +. (2) C R Q. (3) Q nem részcsoportja C + -nak, mert más a művelet!

Automaták és formális nyelvek

A fontosabb definíciók

METROLÓGIA ÉS HIBASZÁMíTÁS

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2

Átírás:

F NIK INÁRIS RLÁIÓK INÁRIS RLÁIÓK (és hasonló mátrxok s tt!) Defnícó: z R bnárs relácó, ha R {( a, b) a, b } nárs relácók lehetséges tuladonsága:. Reflexív ha ( x,.(a). Szmmetrkus ha ( x, y) ( y,.(b). ntszmmetrkus ha ( x, y) és ( y, csak úgy lehet ha x y 3. Tranztív ha ( x, y ) és ( y, ( x, Pl: - Oszthatóság - Háromszög hasonlóság kvvalenca relácó: Reflexív: ( a, a) Szmmetrkus: ( a, b) ( b, a) Tranztív: ( a, b ) és ( b, c) ( a, c) Rendezés relácó: Reflexív : ( x, ntszmmetrkus: ( x, y) és ( y, csak úgy lehet ha x y Tranztív: ( x, y ) és ( y, ( x, Példák ekvvalenca relácóra (TÉTLként kell tudn ezeket zárthelyn, vzsgán): Defnícó: az négyzetes mátrx hasonló a négyzetes mátrxhoz, ha Jelölés: ércesné Novák Ágnes

F NIK INÁRIS RLÁIÓK ércesné Novák Ágnes Volt a következő tétel s az előadáson: Tétel: Hasonló mátrxok saátértéke egyenlők. zonyítás: a ermnánsok szorzás tételét felhasználva (ezt nem bzonyítuk. z előadáson lehangzott egy másk bzonyítás, amelyben ezt nem használtuk fel. ): ( ) ( ) ( ) ( ) ( ) } ( ) ( ) ( ) ( ) ( ) Tétel : mátrxok hasonlósága ekvvalenca relácó. zonyítás: zt kell bzonyítan, hogy a relácó reflexív, szmmetrkus és tranztív. Reflexív:, tehát nek az n x n es egységmátrxot választuk. Szmmetrkus: [ ] / -vel balról és -gyel obbról szorozva Tranztív: ( ) ( ) ( ) D F F F D F F D F Felhasználtuk a következőt: Állítás: mátrxok szorzatának nverze a fordított sorrendben felírt tényezők nverzénel szorzatával egyenlő. ( ) ( ) ( ) ( ) ( )

F NIK INÁRIS RLÁIÓK z utolsó egyenlőség abból fakad, hogy az nverz egyértelmű (mnden asszocatív műveletnél). ércesné Novák Ágnes 3

F NIK INÁRIS RLÁIÓK Tétel : odulo k maradékosztályok R N N ( a, b) a n k + m, b nk + m, ahol n, n, m N (vagys, ha a azt a maradékot ada k-val való osztáskor, mnt b), { } Jelölés: a b mod(k). zt így kell olvasn: a kongruens b modulo k 3 6 3k 4 5 7 8 3k + 3k + (,3) (3,) ( 3,6) (,) (,7 ) (, )... ( aradék osztályok) N U Partícó: H halmaz olyan részhalmaz rendszere, amelyre H H és H H Példa: z előző példában a maradékosztályok a természetes számok egy partícóát adák Tétel: Ha R H H ekvvalenca relácó, akkor a H azon részhalmaza, amelyek az egymással relácóban álló elemeket tartalmazzák, azok a H halmaz egy partícóát adák. zonyítás: n U Ha akkor H H H H a H H lenne akkor a H bk H a H cl H szmm.: b ~ a a ~ b a ~ c Tranztív b ~ c H H, egyetlen halmaz lenne, a H. n U H H H tetszőleges eleme valamelyk H -ben van. vel a ~ a a H ércesné Novák Ágnes 4

F NIK INÁRIS RLÁIÓK Tétel (az előző megfordítása): Ha a H halmazrendszer a H halmaz egy partícóa, akkor ezek a H -n egy ekvvalenca relácót defnálnak. zonyítás: Konstruktív, megaduk az ekvvalenca relácót. kvvalenca relácó defnícóa: a ~ b a H és b H Reflexív mert a ~ a ha a H és a H Szmmetrkus mert a ~ b b ~ a ha a H és b H Tranztív mert a ~ b és b ~ c a ~ c ha a H és b H Tétel: a vektorterek körében az zomorfa ekvvalenca relácó. és c H Reflexív: denttás: V V ε (mátrxra egységmátr Szmmetrkus: V V V V V V V Tranztív: V V V 3 : : V V V V 3 o értelmű nverze ércesné Novák Ágnes 5

F NIK INÁRIS RLÁIÓK (Részben) rendezett halmazok Defnícó: H halmaz részben rendezett, ha rendezés relácó van megadva a H elemen. zt a szokás a relácóellel elöln, mvel a valós számok körében megszokott ksebbegyenlő relácó s rendezés relácó. Rendezés relácó: Reflexív : ( x, ( x x ) ntszmmetrkus: ( x, y) és ( y, csak úgy lehet ha x y, ( x y és y x csak úgy lehetséges, ha x y ) Tranztív: ( x, y ) és ( y, ( x, ( x y és y z, akkor x z ) lnevezés oka: Nem bztos, hogy mndegyk elem mndegyk elemmel összehasonlítható. Vannak olyan elem a halmaznak, amelyek összehasonlíthatók e rendezés szernt, vagys a belőlük képzett rendezett párok eleme a relácónak, de vannak, amelyek nem. Defnícó: Teles a rendezés relácó, ha relácó adott H-n és x y és y x közül legalább egyk telesül. (ármely két elem összehasonlítható). kkor H telesen rendezett halmaz. ércesné Novák Ágnes 6

F NIK INÁRIS RLÁIÓK Példák:. Tetszőleges H halmaz hatványhalmaza a halmaz-tartalmazás szernt részben rendezés: H:{,,3}, H {{}{}{}{3}{,}{,3}{,3}{,,3}} Például: {} {,,3} {} {,} {} {,3} D például {} és {,3} nem összehasonlítható Hasse-dagram: x y, akkor y-t felebb razolva összekötük x-szel, de nem kötük őssze a tranztvtás matt fennálló párokat (pl. {} nncsen összekötve az {,,3}-mal): {,,3} {,} {,3} {,3} {} {} {3} {} Példák (folyt.):. Valós számok és a szokásos teles rendezés, mnden szám öszehasonlítható. 3. Komplex számokra pl. a következő relácó defnálható: z R z, ha abszolút értékük egyenlő (k van messzebb a számtól?). z nem részben rendezés relácó, mert nem szmmetrkus, vszont pl. a nem negatív számokra rendezést ad. ércesné Novák Ágnes 7

F NIK INÁRIS RLÁIÓK Legnagyobb és maxmáls, legksebb és mnmáls elem fogalma Legnagyobb elem LN, ha mnden h H-ra h LN (és LN különbözk h-tól) (mndegyk elemmel összehasonlítható!) axmáls elem, ha nncsen olyan h H, hogy h telesülne. (Nem bztos, hogy mndegyk elemmel összehasonlítható) Legksebb elem lk, ha mnden h H-ra lk h (és lk különbözk h-tól) (mndegyk elemmel összehasonlítható!) nmáls elem m, ha nncsen olyan h H, hogy h m telesülne. (Nem bztos, hogy mndegyk elemmel összehasonlítható) Tétel: Ha van legnagyobb (legksebb elem), akkor az egyértelmű. z.: Tfh., és legnagyobb elemek. kkor és a def. szernt. rendezés relácó def. szernt ekkor ércesné Novák Ágnes 8

F NIK INÁRIS RLÁIÓK Legnagyobb és maxmáls, legksebb és mnmáls elem fogalma Példák:. H: {,3, 4, 5, 6}, és a b, ha a osztóa b-nek. kkor nmáls elemek:,3,5 axmáls elemek: 4, 5, 6 (egyknek sncsen többszöröse e halmazban) rendezésben nncsen sem legksebb, sem legnagyobb elem.. Hatványhalmaz és tartalmazás: legnagyobb elem H, legksebb elem. 4. természetes számok a szokásos rendezésre: a legksebb és egyben mnmáls elem, maxmáls és legnagyobb nncsen. Feladat: Razola fel az, példa Hesse dagrammát! ércesné Novák Ágnes 9

F NIK INÁRIS RLÁIÓK Korlátos halmazok részben rendezett H halmaz valamely H részhalmazának a K H felső korláta (az adott rendezés és H szernt!) ha mnden h H-re h K részben rendezett H halmaz valamely H részhalmazának a k H alsó korláta (az adott rendezés és H szernt!) ha mnden h H-re k h. H korlátos, ha van alsó és felső korláta. Ha van a korlátok között legksebb felső korlát, akkor azt felső határnak (supremum-nak), ha van a korlátok között legnagyobb alsó korlát, akkor azt alsó határnak (nfmum-nak), nevezzük. ércesné Novák Ágnes