LMeasurement.tex, March, 00 Mérés Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg a mérendő mennyiségben egy másik, a mérendővel egynemű, önkényesen egységnek választott mennyiség. A mérés eredményét tehát két adat fejezi ki: a mértékszám és a mértékegység. A mérést eredményét egy mérőszám és mennyiség dimenziója adja meg. Tegyük fel, hogy egy téglalap alakú asztal egyik oldalát kell megmérnünk. Egy mérőruddal tehetjük ezt meg. Minden mérés esetében meg kell adni a mérés eredményét és azt hogy ezt az eredményt mekkora hibával mértük. A mérés hibája miatt érdemes a mérést többször megismételni és a mértértéknek a középértéket tekinteni. A mérés és hibája Minden mérésnek van hibája. A mérési eredményeket a hibával együtt kell közölni. A mérés hibáját a mérési adatokból kell becsülni. Tegyük fel, hogy egy a mennyiséget mérünk, legyen a mérés eredménye ā, a becsült hiba pedig δa. A hibát úgy kell becsülni, hogy nagy valószínűséggel igaz legyen a következő egyenlőtlenség: ā δa < a < ā + δa. Másrészről a hibát annyira kicsire kell választani, amennyire csak lehet. Legyen egy a mennyiség. Ennek a mennyiségnek legyen ā a mért értéke, b pedig a mérés hibája. Legyen egy másik a mennyiség, amelynek a mért értéke ā, a hibája pedig b. Ekkor a következőt állíthatjuk nagy valószínűséggel: ahol α 3, 4. Azt például azonban, hogy ā α b < a < ā + α b, ā α b < a < ā + α b, a < a, csak akkor állíthatjuk nagy valószínűséggel, ha: A mérés pontossága ā + α b < ā α b. A mérés pontosságának két különböző jelentése van (accyuracy és precision): A mérés pontosságának egyik jelentése azt fejezi ki, hogy a mérés eredménye milyen közel esik a valódi értékhez (accuracy). A mérés pontosságának másik jelentése azt fejezi ki, hogy a mérés mennyire precíz, függetlenül attól, hogy mi a valódi értéke annak a mennyiségnek, amit mérünk (pecision).
A közép érték várható értéke és szórása A mérés pontosságát növelhetjük, hibáját pedig csökkenthetjük, ha a méréshez több mérés középértékét használjuk. Legyen mérési eredményünk. A mérési eredmények legyenek: x, x,..., x. Képezzük a középértéket: x x + x +... + x. Várható érték Fenáll, hogy x ν a, ezért < x > a: Tehát: Szórás < x > < x > + < x > +...+ < x > < x > a. A mérési eredmények egymástól függetlenek: p(x, x,..., x ) p(x )p(x )...p(x ). Mivel < (δx ν ) > σ, X x x + x +... + x. ν,,..., < (δx) > < (δx ν ) > σ. ν Tehát: < (δ x) > ( δx ) σ, σ σ.
Hosszúságmérés Az A és B pont közötti távolságot egy mérőrúddal összehasonlítva mérjük. Az A és B pont közötti távolságot egy fényforrás és egy detektor segítségével is mérhetjük, tudva hogy a fény állandó sebességgel egyenes vonal mentén terjed. Az egyszerűség kedvéért tételezzük fel, hogy a fény kibocsdátásának idejét nagy pontossággal ismerjük és ezért ezzel a mérés kiértékelésekor nem kell törődni. Tételezzük fel, hogy a detektált fotonok eloszlása Gauss-eloszlást követ: f(t; µ, σ) (t µ) e σ. πσ Ha a fotonok kibocsátása is Gauss-eloszlás szerint történik, akkor a két Gausseloszlás esetén, ha x és y egymástól független valószínűségi változó és az eloszlások paraméterei µ x és σx, illetve µ y és σy, akkor a két eloszlás együttes eloszlása szintén Gauss-eloszlású µ z µ x + µ y és σz σx + σy paraméterekkel. Legyen mérési eredményünk: t, t,..., t. A maximum-likelihood függvény: LF πσ e (t i µ) σ. A függvény logaritmusának a maximuma, ugyanazon a helyen található mint a függvény maximuma: ln LF ( ln f(t i ; µ, σ) ln σ π (t i µ) ) σ ln σ π (t i µ) (x i µ) (ln σ + ln π) σ σ Így a szorzás helyett az egyszerübb összeadást használjuk. E függvény maximumának kell megtalálni a helyét. µ [ µ σ π (t i µ) ] σ (t i µ)( ) (t i µ) (t i µ)( ) σ t i µ 0 És így: A várható érték hibája: t i µ ˆµ t i. ln LF µ σ σ µ σ σ. Gauss eloszlás esetében, vagy más f(t; µ, ā) eloszlás esetében is, eljárhatunk úgy is, hogy keressük az eloszlás µ várható értékét, azt az értéket, amelynél a LF 3
likelihood függvénynek maximuma van. Az így kapott µ értéket tekintjül a probléma megoldásának. Az extremum a várható érték meghatározásához az egyenletrendszer a következő: µ x i µ σ 0 és (σ ) σ + (x i µ) 0. σ 4 A megoldása ennek az egyenletrendszernek a várható érték becsült értéke és hibája: ˆµ x i x és ˆσ (x i ˆµ) s. a) Ha σ ismert, akkor σ µ µ hibája: ln LF σ and so σ µ σ µ b) Ha µ ismert, akkor a σ szórásnégyzet hibája σ σ : σ. (σ ) σ + (x i µ) σ 4 ln LF (σ ) + σ 4 σ 6 + σ ˆσ 4 σ 6 (x i µ) + σ 4 σ 6 + σ 4 σ 4 σ 4 (x i µ) és így: σ σ σ. Ezt a módszert terjesztettem ki a 3D esetre. 4
A maximum-likelihood módszer (A legnagyobb valószínűség módszere) Egy konkrét x, x,..., x n tehát n-elemű minta esetén vizsgáljuk meg az n LF f(x ; a)f(x ; a)... f(x n ; a) f(x i ; a) szorzatot, a likelihood függvényt, mint a függvényét, amely valamilyen, az x, x,..., x n értékektől függő â â(x, x,..., x n ) helyen felveszi a maximumát. A paraméter valódi értékére ez az egyenlőség természetesen általában nem teljesül, mégis az â â(x, x,..., x n ) statisztikát tekintjük a valódi érték becslésének. (Az x, x,..., x n mintabeli változók egy tetszőleges függvényét, statisztikai függvénynek, vagy röviden statisztikának nevezzük. Az a paraméter közelítésére konstruált statisztikát az a paraméter becslésének nevezzük.) Általában egyszerübbé válik a feladat, ha a szorzat helyett ennek logaritmusával dolgozunk. Mivel a logaritmusfüggvény monoton növekvő, a függvény maximumhelyei megegyeznek a megfelelő likelihood-függvénynek a maximumhelyeivel. ln LF ln f(x i ; a). Tehát az a paraméter becslését a egyenlet adja a hibáját pedig a a 0 egyenlet. σa M ( ) M ( ln LF ) ln LF ) a a ) Estimation of Gaussian Parameters The mean µ and the variance σ a of the Gaussian distribution are estimated with the maximum likelihood method from the x, x,..., x n observed values. The function of the parameters, for a given observed x value, is given by The likelihood function is f(x; µ, a) πa e (x µ) a. LF n e (x i µ) a πa 5
n ln LF ln e (x i µ) a n ( ) n (x i µ) ln π + ln a πa a The system of equations for the extremum is given by µ x i µ a 0 and a The solution of the system of equations is given by ˆµ x i x and â n n n n a + (x i µ) 0. a (x i ˆµ) s. a) When a is known, then the error of the estimated mean value σ µ :. ln LF µ n a a σ and so σ µ n n σ. n b) When µ is known, then the error of the estimated variance σ a : a ln LF a a n a + a ( n a a 3 + n a nâ a 3 (x i µ) (x i µ) ) + n a a 3 + n a n a n a (x i µ) and so σ a n a n σ. Estimation of Gaussian Parameters The mean µ and the variance σ of the Gaussian distribution are estimated with the maximum likelihood method from the x, x,..., x observed values. The function of the parameters, for a given observed x value, is given by The likelihood function is f(x; µ, σ) πσ e (x µ) σ. LF n The logarithm of the likelihood function is ln LF ln n πσ e (x i µ) σ. πσ e (x i µ) σ n ( ln π + ln σ ) 6 (x i µ) σ.
The system of equations for the extremum is given by µ x i µ σ 0 and (σ ) n σ + n (x i µ) σ 4 0. The solution of the system of equations is given by ˆµ x i x and ˆσ n n (x i ˆµ) s. a) When σ is known, then the error of the estimated mean value σ µ : ln LF n σ and so σ µ σ µ n σ. n b) When µ is known, then the error of the estimated variance σ σ : (σ ) n σ + n (x i µ) σ 4 ln LF (σ ) + n σ 4 σ 6 + n σ n ˆσ 4 σ 6 (x i µ) + n σ 4 σ 6 + n σ 4 n σ 4 n σ 4 (x i µ) and so σ σ n σ. Estimation of Parameters of Poisson Distribution The mean µ and the variance σ of the Poisson distribution are estimated with the maximum likelihood method from the x, x,..., x observed values. The obseved values are integer numbers. the likelihood function is: f(x; m) mn n! e m. ln LF ln m x i x i! e m ln mx i x i! e m ln m x i ln(x i!) m. m x i 0 m 7 x i ln m ln(x i!) m
and so: and so x i m x. ( ln LF ) ( ) x m m i σ m σ m m m m m x i m. Estimation of Parameters of Binomial Distribution The binomial distribution is given by f(k; n, p) ( ) n p k ( p) (n k). k A likelihood függvény: ln LF p A p paraméter étékét a egyenlet megoldása adja: ( ) n LF p k i ( p) (n ki). k i ( ) n ln + k i ln p + (n k i ) ln( p) ( ). k [ ( p)ki p(n k i ) ] p( p) p( p) ( k i pn). p( p) ( k i pn) 0 ki pn p ki n. Ez a p paraméter maximum-likelihood becslése. A kapott eredmény interpretálásához vegyük figyelembe, hogy a binomiális eloszlás várható értéke < k > pn. Tehát a várható érték n-ed része. p < k > n k n k < k >. 8
A hiba becslése: p LF [ ki pn ] p p( p) [ ki pn ] [ + ki pn] p p( p) p( p) p n p( p). σ p p( p) n, ahol σ p( p). σ p σ n. 9
Spherical Detector x 0 4500 4000 3500 3000 500 000 500 000 500 0 0 0 40 60 80 00 0 40 60 80 00 Figure : Length measurement (photon distribution) 5000 Spherical Detector 4000 3000 000 000 0 95 96 97 98 99 00 0 0 03 04 05 Figure : Length measurement (mean value) 0
Spherical Detector 90000 80000 70000 60000 50000 40000 30000 0000 0000 0 0 4 6 8 0 4 6 8 0 Figure 3: Length measurement (photon distribution) 5000 Spherical Detector 4000 3000 000 000 0 95 96 97 98 99 00 0 0 03 04 05 Figure 4: Length measurement (mean value)