. Árakör száítás ódszerek, egyenáraú körök A vllaos ára A vllaos töltések áralása (ozgása) a fellépő erők hatására. Az áralás ránya a poztív töltéshordozók áralásának ránya, aelyek a nagyobb potencálú helyről az alacsonyabb potencálú felé haladnak a vezetőkben. A töltések valalyen vllaos vezetőben áralanak (fé, folyadék, gáz), a vezető határa egyben az áralás tér határa. A vllaos ára az egységny dő alatt átáraló töltésennység, jelölése:. Q Ha T dő alatt Q töltés áralk át egy adott keresztetszeten, az ára átlagértéke =, T dq() t vagy általánosan t () =, S értékegysége Apère tszteletére: [] = A = aper. dt Defnícó Ha két párhuzaos, egyástól távolságra levő vezetőben A ára folyk, akkor a vezetők - -es szakaszára ható erő F= 0-7 N. Azonos áraránynál vonzó, ellentétes árarány esetén taszító erő lép fel. Az állandósult áralás lehet egyrányú, állandó- vagy változó sebességű (pl. egyenára) és lehet változó rányú, változó sebességű (pl. perodkus váltakozó ára). Az állandósult (staconárus) állapot elérése átenet (tranzens) folyaaton keresztül történk. A vllaos tér által egy Q nagyságú töltés l távolságra ozgatásakor végzett unka: W = Fdl = QEdl = Q = T, általános esetben W = u()() t t dt. l l A unka S vllaos értékegysége: [W]= Ws=VAs=J=N. Az dőegység alatt végzett unka a teljesítény: P W T = =, a teljesítény pllanatértéke: () () () A teljesítény S vllaos értékegysége: [P]= W=watt=VA= J s pt = ut t. t N =. s Oh törvénye Valaely vezető szakaszon a fellépő feszültség arányos a vezető szakaszon átfolyó áraal. Az arányosság tényező az ellenállás, jelölése:. =, =. Az ellenállás S értékegysége Oh tszteletére: []= Ω=oh = V A. Az ellenállás általában ne állandó, függhet az áratól, a feszültségtől, a hőérséklettől, a ágneses ndukcótól stb. =f(, τ,, B,...). Fées vezetőknél az ellenállás állandó hőérsékleten rendszernt állandó, vagy állandónak teknthető. Apère, Andrè-Mare (775-836) franca fzkus, ateatkus, vegyész Oh, Georg Son (789-854) néet fzkus
GEENTTET Elektrotechnka 03 Oh törvénye ás egfogalazásban: valaely vezető szakaszon az átfolyó ára arányos a vezető szakaszra kapcsolt feszültséggel. Az arányosság tényező a vezetés, jelölése: G. =G, G = =. A vezetés S értékegysége Seens 3 tszteletére: [G]=S = seens = A V (=ho). Az ellenállás hőfokfüggése A féek többségének ellenállása a hőérséklet függvényében lneársan változk. ϑ ϑ =, aből kr = ϑkr ϑ ϑkr ϑ ϑ ϑ. kr ϑ kr ϑ ϑ τ(k) ϑ(c ) Fé vezető ellenállásának tpkus hőérséklet-függése ϑ kr anyagjellező, az a hőérséklet, aelynél az (ϑ) egyenes etsz a vízszntes tengelyt. A hőérséklet hvatalos S értékegysége Kelvn 4 tszteletére: [τ]= K= kelvn, az ellenállás hőfokfüggését gyakran Celsus 5 fokban skálázzák. A hőérséklet együttható Az ellenállás hőérséklet függésének összefüggéséből: ϑkr ϑ ϑ ϑ ϑ ϑ = = ϑkr ϑ ϑkr ϑ. Az α = értéket a ϑ hőérséklethez tartozó hőérséklet együtthatónak (vagy hőfoktényezőnek) nevezk, rendszernt 0 C vagy 75 C hőérsékletre adják eg. A hőér- ϑkr ϑ séklet együttható anyagjellező, tulajdonképpen az egységny hőérséklet-változás hatására bekövetkező ellenállás-változás. Ezzel az ellenállás hőfokfüggése: = (α ϑ). A poztív hőérséklet együtthatójú anyagok (általában a féek) ellenállása a hőérséklet növekedésével nő, a negatív hőérséklet együtthatójú anyagoké (egyes félvezetők, elektroltok, vllaos ív) pedg csökken. 3 von Seens, Ernst Werner (86-89) néet érnök, kutató 4 Lord Kelvn - Thoson, Wlla (84-907) brt fzkus, ateatkus 5 Celsus, Anders (70-744) svéd csllagász, eteorológus
. Árakör száítás ódszerek, egyenáraú körök Vannak specáls ötvözetek (pl. angann, konstantán), aelyek bzonyos hőérséklet tartoányban terkusan stablsak, ellenállásuk konstans. Ezeket alkalazzák pl. éréstechnka célra. Állandó és változó ellenállás Állandó ellenállás esetén az () kapcsolat lneárs, változó ellenállás esetén nelneárs. A nelneárs függvénykapcsolat jeltorzító hatású. x(t) y=f(x) y(t) (t) u(t) Az () összefüggés nt függvénykapcsolat llusztrálása Általában, egy lneárs y=f(x) átvtel függvénnyel jellezett ele, eszköz alakhű jelátvtelt bztosít, a nelneárs pedg torzítja a jelalakot. A konkrét esetben x(t)=(t) és y(t)=u(t). y y x t t t 3 t 4 t 5 t t t t 3 t 4 t 5 t Lneárs x(t) y(t) jelátvtel lneárs y=f(x) függvény esetén 3
GEENTTET Elektrotechnka 03 y y x t t t 3 t 4 t 5 t t t t 3 t 4 t 5 t Nelneárs x(t) y(t) jelátvtel nelneárs y=f(x) függvény esetén A fajlagos ellenállás Egy vezető ellenállása függ a geoetra kalakításától, egyenesen arányos annak hosszával és fordítottan arányos a keresztetszetével. Az arányosság tényező az egységny hosszúságú és egységny keresztetszetű vezető ellenállása a fajlagos ellenállás, a anyagállandó, jelölése: ρ. = ρ l, aből ρ = A A l. A fajlagos ellenállás értékegysége: [ρ]= Ω, a gyakorlat értékegysége: [ρ]= Ω, Ω 6 Ω = 0 Ω, vagy Ω = 0 6. A fajlagos ellenállást rendszernt 0 C vagy 75 C hőérsékletre adják eg, hőfokfüggése az ellenállás hőfokfüggésének egfelelő és hasonlóan ábrázolható. Joule 6 törvénye Adott = állandó ára hatására egy ellenálláson t dő alatt W= t nagyságú hő(veszteség) keletkezk. Tovább alakja Oh törvényének felhasználásával: W = t = t. dőben változó ennységek esetén: 6 Joule, Jaes Prescott (88-889) angol fzkus 4
. Árakör száítás ódszerek, egyenáraú körök t t t () ()() W= t dt= uttdt= 0 0 0 () ut dt A különböző vllaos és ne vllaos folyaatok vllaos hálózattal történő odellezésénél a súrlódás veszteséget és a echanka unkát ellenálláson keletkező hőenergával képezk. Veszteség, hatásfok Az árakör veszteség a ne hasznosított, általában eleggé alakuló teljesítény vagy energa. Ha W - bevezetett (felvett) energa, P - bevezetett (felvett) teljesítény, W - leadott (hasznosított) energa, P - leadott (hasznosított) teljesítény, akkor a veszteség energa: W veszt =W -W, a veszteség teljesítény: P veszt =P -P. A hatásfokot rendszernt a teljesítényekből száítják: P P P Pveszt Pveszt η = = = =. P P Pveszt P P dőben változó ennységek esetén az átlagos hatásfok eltérhet a pllanatny értéktől. Egyenáraú hálózatok Egyenletes áralás hosszú, ks keresztetszetű vezetőkből álló, lneárs eleeket tartalazó hálózatokban.. - csoópont - ág az ágak zárt lánca a hurok Az árakör része Az árakör száítás feladata: az egyes ágak áraának, a csoópontok között feszültségeknek és az árakör eleek teljesítényének eghatározása. Egyszerű energaforrások Az deáls feszültségforrás (feszültséggenerátor) jellezője a terheléstől (áratól) független feszültség. övdrezárt állapota ne értelezhető. Az deáls áraforrás (áragenerátor) jellezője a terheléstől (lezáró ellenállástól) független ára. Terheletlen, nytott állapota ne értelezhető. A rajzon g - az deáls feszültséggenerátor (belső) feszültsége, g - az deáls áragenerátor (belső) áraa, 5
GEENTTET Elektrotechnka 03 E - elektrootoros erő - tulajdonképpen a belső töltés-szétválasztó térerősség, - a terhelő ellenállás (fogyasztó) feszültsége. E - g - g - g g g g =állandó g =állandó deáls feszültség- és áragenerátor, jelölések Poztív rányok Az elektrotechnkában általában a fogyasztó poztív rányokat használják, a fogyasztott energa poztív előjelű. Az egyenleteket a poztív rányok fgyelebevételével kell felírn. Mvel az ára ránya a defnícó szernt a poztív töltések áralás rányával egyezk eg, tulajdonképpen az ára a agasabb potencálú ponttól az alacsonyabb potencálú felé folyk. Az energaforrás teljesíténye a felvett fogyasztó poztív rányokkal negatív előjelű, a fogyasztott teljesítény poztív. P forrás =- g, P fogyasztó =. ( Terelő poztív rányokkal a terelt energa poztív előjelű.) A valóságos feszültségforrás k kapocsfeszültsége eltér az deálsétól (az áraentes állapot kvételével), a valóságos áraforrás áraa eltér az deálsétól (a rövdrezárt állapot kvételével): - b g k A B g b b A B k = g - b = g - b Valóságos feszültség- és áragenerátor, b - a belső ellenállás Vllaos energát előállító feszültség (energa) források: - echanka energából: egyenáraú generátor, dnaó, - kéa energából: akkuulátor, galvánele, - fényenergából: fotocella, napele, - vllaos energából (a vllaos energa különböző forá és paraétere között átalakítás): egyenrányító árakör, elektronkus átalakító. Az árakörszáítás legfontosabb szabálya Csoópont törvény (Krchhoff 7. törvénye) A töltésegaradás elve szernt egy csoópontba beáraló és az onnan káraló töltések ennysége azonos, a csoópontban töltés ne keletkezk, ne vész el, ne halozódk fel. 7 Krchhoff, Gustav obert (84-887) néet fzkus, ateatkus 6
. Árakör száítás ódszerek, egyenáraú körök Ebből következk, hogy egy csoópontba befutó ágak áraának (előjeles) összege nden pllanatban zérus, Σ=0. Poztív rányok endszernt a csoópontba befolyó vagy onnan elfolyó áraot tekntk poztívnak, de terészetesen nden ágra külön-külön s előírható a poztív árarány (a bonyolítja a száítást). poztív rány valóságos rány 3 3 4 4 3 4 =0 3 4 =0 A csoópont törvény llusztrálása Az egyenlet és annak egoldása csak a felvett poztív rányok seretében értelezhető. Ha egy hálózatban n cs -száú csoópont van, akkor (n cs -) száú független csoópont egyenlet írható fel. Huroktörvény (Krchhoff. törvénye) Az Oh-törvény, nt egyetlen ellenállásból álló hálózatra vonatkozó törvény általánosítása. b3 3 4 4 b A huroktörvény llusztrálása Zárt hurokban az ellenállásokon eső feszültségek és a forrásfeszültségek együttes összege zérus. Ez akkor s gaz, ha az egyes ágak áraa eltérő. b = b = 0. Az összefüggés ebben az alakban csak egyenáraú körök állandósult állapotára érvényes, váltakozó ára esetén k kell egészíten az nduktív és a kapactív feszültségekkel, vagys a huroktörvény szernt az egy hurokban lévő összes feszültség eredője zérus: h = 0. h A poztív rányt tt az ún. "körüljárás" rány jelöl. A huroktörvény nytott árakörben s alkalazható, ha a nytott pontok közé feszültségérő űszert képzelünk. 7
GEENTTET Elektrotechnka 03 Ha egy hálózatban n h -száú hurok van, akkor (n h -) száú független hurokegyenlet írható fel. Néhány árakör száítás ódszer Hurokáraok ódszere A hurokára egy feltételezett (fktív) ára, avel felírható a hurokegyenlet. Egy hálózatban (n h -) száú független hurokára defnálható olyan ódon, hogy nden ágon legalább egy hurokára legyen, valaenny ág feszültsége legalább egy egyenletben szerepeljen. Mvel a szuperpozícó elvét alkalazza (közös ágban a hurokáraok összegeződnek), ezért a hurokáraok ódszere csak lneárs árakörök száítására használható. deáls áragenerátort tartalazó hurokban a hurokára ne térhet el a generátor áraától. Csoópont potencálok ódszere Egy referenca ponthoz (0 potencálú csoópont) vszonyított feszültség eghatározása (n cs -) száú csoópontra, lneársan független csoópont egyenletekkel. Nelneárs áraköröknél s használható, ert a szuperpozícó elvét ne alkalazza. Ha egy csoópont és a referencapont között ágban csak deáls feszültséggenerátor van, akkor a csoópont potencálja ne térhet el a generátor feszültségétől. Ellenállások soros kapcsolása e Soros kapcsolású ellenállások eredője A csoópont törvény értelében soros árakörben nden ele áraa azonos. =( )= e, e =, általánosan =. Soros kapcsolású ellenállások (ellenállás lánc) egyk tagjának feszültségét a teljes feszültségből a feszültségosztás képletével határozhatjuk eg. Mvel = és =. e = = = =. Általános esetben a feszültség az x-dk soros ellenálláson: x = x, =, x x =. Alkalazás példa: feszültségérő űszer előtét ellenállása. Az ún. alapűszereket (érőűveket) rendszernt ks éréshatárra készítk. Legelterjedtebb a lengőtekercses, egyenáraot érő (Deprez) alapűszer, pl. 5 A/60 V éréshatárral. Nagyobb ára vagy feszültség érésére külső elenállásokkal teszk alkalassá. Az unverzáls és a több éréshatárú űszerek több külső ellenállást s tartalaznak. 8
. Árakör száítás ódszerek, egyenáraú körök Az =5 A és a =60 V összetartozó, a űszer végktéréséhez tartozó értékek, ezekből száítható a űszer belső ellenállása: 60 V = = = Ω. 5 A e Előtét ellenállás alkalazása a éréshatár kbővítésére > feszültség éréséhez a űszerrel sorosan kapcsolt ún. előtét ellenálást alkalaznak. A feszültésgosztó láncot úgy kell éretezn, hogy a érendő legnagyobb feszültség esetén a űszerre legfeljebb csak feszültség jusson. =, ebből e = =. Ellenállások párhuzaos kapcsolása e e Párhuzaos kapcsolású ellenállások eredője A huroktörvény értelében párhuzaos árakörökben nden ág feszültsége azonos. = = e = = = =. e e Általánosan: =. e vagy a vezetésekkel felírva: G = G. e Párhuzaos kapcsolású ellenállások egykének áraát a teljes áraból az áraosztás képletével határozhatjuk eg: =(- ) = - =. A vezetésekkel felírva: =, G G 9
GEENTTET Elektrotechnka 03 G = G G G G Általánosan, az x-dk ágra: x G = = G G G Gx =. G Alkalazás példa: áraérő űszer sönt ellenállása.. s Sönt ellenállás alkalazása a éréshatár kbővítésére > ára éréséhez a űszerrel párhuzaosan kapcsolt ún. sönt ellenálást alkalaznak. Az áraosztó láncot úgy kell éretezn, hogy a érendő legnagyobb ára esetén a űszeren legfeljebb csak ára folyjon át. s =, ebből s =. s A szuperpozícó elve Csak lneárs rendszerekben alkalazható. Lneárs rendszerekben a különböző nagyságú hatások eredőjének következénye egegyezk az egyes hatások következényenek eredőjével: f(a)f(b)=f(ab). A lneartás feltételének egfelelő vllaos árakörök száítása során külön-külön vzsgálhatjuk az egyes energaforrások hatását, ajd ezeket a hatásokat (feszültségeket, áraokat) összegezzük. A rész-száítás során fgyelen kívül hagyott feszültség-generátort rövdzárral, az ára-generátort szakadással kell kktatn, a generátorok belső ellenállása aradnak a hálózatban. Teljesítény ne száítható szuperpozícóval, ert pl. az függvény nelneárs. Kétpólus Kétpólusnak nevezzük egy tetszőleges hálózat tetszőleges száú eleből álló, két kapocspont között részét. Az eleek elrendezésére nncs előírás. A helyettesítő feszültség-generátor tétele Bárlyen bonyolult hálózat egy tetszőleges ága száára helyettesíthető egyetlen b feszültségű deáls generátorból és egy vele sorosan kapcsolt b belső ellenállásból álló kétpólussal. 0
. Árakör száítás ódszerek, egyenáraú körök AB A B AB A B b b - Összetett árakör feszülség generátoros helyettesítése b - a szóban forgó ág csatlakozó pontja között érhető (üresjárás) feszültség ( 0 ), b - az ugyanezen pontok között - a források kktatása után - érhető ellenállás. A helyettesítendő árakör feszütségforrásanak kktatása azok rövdre zárásával, az áragenerátorok kktatása szakadással való helyettesítéssel történk. A helyettesítő ára-generátor tétele Bárlyen bonyolult hálózat egy tetszőleges ága száára helyettesíthető egyetlen b áraú deáls generátorból és egy vele párhuzaosan kapcsolt b belső ellenállásból álló kétpólussal. A A AB AB b b B B Összetett árakör ára-generátoros helyettesítése b - a szóban forgó ág csatlakozó pontja között érhető rövdzárás ára ( z ), b - az ugyanezen pontok között - a források kktatása után - érhető ellenállás. A két helyettesítő kapcsolás átalakítható egyásba: feszültség-generátor ára-generátor átalakítás b z = b = b = b, b ára-generátor feszültség-generátor átalakítás 0 = b = b b b = b.
GEENTTET Elektrotechnka 03 Ellenőrző kérdések. Hogyan száítják a vllaos unkát (energát), a értékegysége?. Hogyan száítják a vllaos teljesítényt, a értékegysége? 3. Mlyen kapcsolat van a vllaos ellenállás és a vllaos vezetés között, ezek értékegysége? 4. Írja fel és ábrázolja fées anyagok ellenállásának hőérséklet-függését. 5. M a fajlagos ellenállás, a értékegysége? 6. Mlyen a lneárs és a nelneárs ellenállás? 7. Hogyan határozza eg Joule törvénye az ellenállás veszteségét? 8. Mt fejez k Krchhoff csoópont törvénye? 9. Mt fejez k Krchhoff hurok törvénye? 0. M a hurokáraok ódszere, hogyan alkalazzák?. M a csoópont potencálok ódszere, hogyan alkalazzák?. Hogyan száítja k sorosan kapcsolt ellenállások eredőjét? 3. Hogyan száítja k párhuzaosan kapcsolt ellenállások eredőjét? 4. Hogyan alkalazza a feszültség osztás összefüggését? 5. Hogyan alkalazza az áraosztás összefüggését? 6. Mlyen éréstechnka célt szolgál az előtét ellenállás? 7. Mlyen éréstechnka célt szolgál a sönt ellenállás? 8. Hogyan alkalazható vllaos árakörben a szuperpozícó tétele? 9. M a helyettesítő feszültséggenerátoros kétpólus, hogyan határozza eg paraéteret? 0. M a helyettesítő áragenerátoros kétpólus, hogyan határozza eg paraéteret? Összeállította: Kádár stván 03. szepteber
. Árakör száítás ódszerek, egyenáraú körök Példák, feladatok. Száítsa k az ábrán látható árakör A és B pontja között feszültségkülönbséget. =Ω A 3 =4V =V { A-B = 3,7 V} =4V =3Ω 3 =3Ω 4 =5Ω B. Az ábrán látható árakörben =4 V, =36 V, = = 3 =0 Ω. Száítsa k az 3 ellenállás teljesítényét. {P 3 = 40 W} 3 3. Az ábrán látható árakörben =5 V, = Ω, = 8 Ω, 3 = 5 Ω, az eredő ára = 4 A. Száítsa k az 4 ellenállás valant az és ágáraok értékét. Mekkora az ellenállásokon keletkező összes veszteség teljesítény? { 4 = Ω, =,5 A, =,5 A, ΣP= 60 W} 3 4 3
GEENTTET Elektrotechnka 03 4. Az ábrán látható árakörben =5 V, b =0,6 Ω, =, Ω, b =4 Ω, 3 =6 Ω, 4 =, Ω. Száítsa k az egyes ellenállások 3 áraát és teljesítényét, valant az k feszültség értékét. { b = 0 A, P b = 60 W, = 7,5 A, P = 67,5 W, k 4 =,5 A, P = 9 W, 3 = A, P 3 = 6 W, 4 =,5 A, P 4 = 7,5 W, k = 9 V} 5. Az ábrán látható árakörben =50 V, 3 =4 A, b =0, Ω, = b b Ω, =5 Ω, 4 =4 Ω. Száítsa k az egyes ellenállások áraát, teljesítényét és az k feszültség értékét. { b = 48 A, P b = 30,4 W, = 45, A, P = 043,04 W, = 6,8 A, P = 3, W, k 3 4 4 4 =,8 A, P 4 = 3,36 W, k = 45, V, P =-400 W, P 3 =-36 W} 6. Az ábrán látható árakörben = V, =6 Ω, =3 Ω, 3= Ω. Mekkora legyen 3, hogy az ellenálláson 6 W veszteség teljesítény keletkezzen? Száítsa k az 3 ellenállás eredő veszteség teljesítényét. {A veszteség teljesítény ne függ az ára rányától, ezért két egoldás van: a) 3 = -4 V, P 3 = 9 W b) 3 = -6 V, P 3 = 00 W} 3 3 7. Az ábra árakörében =0 A, =5 V, b=0,6 Ω, =, Ω, 3=6 Ω, 4=, Ω. Száítsa k az k feszültség és az ellenállás értékét, valant és az egyes ellenállásokon érhető feszültséget. { k = 9V, = 4 Ω, b = 6 V, = 9 V, = 3 =6 V, 4 =3 V} b k 3 4 4
. Árakör száítás ódszerek, egyenáraú körök 8. Az ábrán látható árakörben =46 V, =3 V, =5 Ω, =40 Ω, 3=0 Ω. Száítsa k az 3 ellenállás áraát és veszteség teljesítényét. { 3 =,3 A, P 3 = 6,9 W} 3 9. Az ábrán látható árakörben g= A, g=7 V, ==3=6 Ω. Száítsa k az egyes ellenállások áraát és veszteség teljesítényét, valant az ára- és a feszültséggenerátor teljesítényét. { = 0, P = 0, = 0, P = 0, 3 = A, P 3 = 864 W, P g = 0, P g = -864 W} g 3 g 5