Chimera állapotok az evolúciós játékelméletben Szabó György MTA EK MFA H-1525 Budapest, POB. 49. Honlap:

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Chimera állapotok az evolúciós játékelméletben Szabó György MTA EK MFA H-1525 Budapest, POB. 49. Honlap:"

Átírás

1 Chimera állapotok az evolúciós játékelméletben Szabó György MTA EK MFA H-1525 Budapest, POB. 49. Honlap: ELFT Vándorgyűlés, Szeged, augusztus 27. Kivonat: Chimera állapot a fizikai rendszerekben Evolúciós játékelmélet rácson Chimera állapot ciklikus dominanciánál (érmepárosítás és kő-papír-olló játék) További szörnyek: - kő-papír-olló-gyík-spock model - baktériumok vegyi háborúja - Főnix madár effektus Anizotrop invázió következményei Összegzés

2 Chimera állapotok a fizikában chimera: háromfejű szörny a görög mitológiában Óramodell rácson A rácspontokon elhelyezett vektorok (óramutatók) forognak és a szomszédok befolyásolják egymást Chimera állapot: - Polidomén mintázat, - Doménokon belül szinkronizált a forgás (határciklus) Kő-papír-olló játék négyzetrácson - A négyzetrácson elhelyezkedő játékosok kő-papír-olló játékot játszanak a szomszédaikkal - Diszkrét (t=0,1,2, ) időpontokban egyszerre módosítják stratégiájukat (R,P,S) - Mindegyik játékos azt feltételezi, hogy játékostársai nem választanak új stratégiát - Kétféle határciklus: - Rendezett, homogén háromállapotú határciklus (R P S R) - Alrács rendezett határciklus (RP SP SR PR PS RS RP) - Kevés hibázás nem rombolja szét a hatásciklusokat - Az önszervező mintázatképződést a határciklusok körbeverése tartja fent - mintázatképződés lépésenként hatlépésenként RSP1 RSP6

3 Chimera állapot a kő-papír-olló játékban Ez egy sztochasztikus sejtautomata. Kétféle ciklus: A térbeli határciklusok kölcsönhatása - körbeverés - új határciklusok születnek a határok mentén

4 Kő-papír-olló-gyík-Spock model Ciklikus dominancia öt stratégiával Mindegyik stratégiának van két ragadozója és két zsákmánya A táplálékháló: Feng & Qiang, Physica A 392 (2013) 4675 Ötfajos ragadozó zsákmány modell négyzetrácson Paraméterek: q=p 1 /p 2 és p m (helycsere vsz.) Kihalási jelenség, ha q mozi p p 2 5 qc Átlagtér közelítés: oszcillálás hasonlóan a rácsrezgésekhez q c -nél ω=0 módusok Következmény: divergálás a fluktuációkban

5 Baktériumok vegyi háborúja két méreggel ha egy méreg, akkor három fajta baktérium létezik: T : toxikus (toxin- és anti-toxin előállítás) R : ellenálló (csak anti-toxin) S : érzékeny T S R T Kő-papír-olló jellegű ciklikus dominancia Ha két toxin van, akkor 9 faj: TT, TS, TR, ST, SS, SR, RT, RS, RR mindegyik fajnak három-három ragadozója és zsákmánya van Sok ciklus irányított hurok a táplálékhálóban Vastag háromszögek: 3 ciklikus védelmi szövetség

6 Ragadozó-zsákmány modell keveredéssel négyzetrácson Lassú keveredés (kis X) Gyors keveredés Növekvő doménok: jól elkevert semleges tripletek Ciklikus védelmi szővetségek térbeli Kő-Papír-Olló játéka X=0 X=0.2

7 Numerikus eredmények a keveredés (X) függvényében Semleges ( ) és ragadozó-zsákmány ( ) párok vsz.-ének X-függése Három állapot: X<X c1 : ciklikus védelmi szövetség X c1 =0.056 X>X c2 : három, jól elkevert semleges pár önszervező mintázata X c1 <X<X c2 : még összetettebb mintázat X c2 =0.072 lavinaszerű katasztrófák, hatalmas fluktuációk

8 Pillanatfelvétel a közbenső állapotban (méret): 500x500 X=0.066 L=2000 t=10,000 MCS Ciklikus és semleges tripletek (véd. szöv.) Kétfajos kevert állapot felnövekszik, majd kihal. Katasztrófális lavinák Főnix madár effektus

9 Anizotróp invázió és következményei 2 2-es evolúciós játékoknál négyzetrácson A nyereménymátrix (párkölcsönhatás az első szomszédok között): A koordinációs önfüggő társfüggő (nyeremények a játékelméletben) Ising csatolás mágn. tér --- (kölcsönhatás a fizikában) Sztochasztikus dinamika: x átveszi a szomszédos y stratégiáját w( s x s y 1 ) 1 exp[( U U x ) / K] nyereményfüggő vsz.-gel. Köralakú doménok fejlődése, ha δ=0.5, ε=-0.03, K=0.3, és r=90: A fekete és fehér színek az 1-es ill. 2-es stratégiákat jelzik y 1 1 fehér fekete A jelenség oka: az inváziós frontok sebessége ellentétes, ha a dőlésszög vízszintes vagy függőleges, illetve ±45º-os

10 Az inváziós sebességek ε-függése MC szimuláció szalagdoménos kezdőállapotból (δ=0.5, K=0.3, L=1000, átlagolás 100 futásra) A szimbólumok oldalai az inváziós frontok elhelyezkedését jelzik. Létezik egy (szürke) paraméter tartomány, amin belül az inváziós sebességek ellentétesek. Itt mind a két homogén állapot kialakulhat. A jelenség robusztus. A végső homogén (abszorbáló) állapot kiválasztódása perkolációs probléma, és függ a kezdőállapottól. Az esetlegesség mértéke méretfüggő.

11 Perkolációs jelenségek Mivel a szigetek kihalnak, ezért az a stratégia fogja uralni a végső állapotot, amelyik először perkolál mindkét irányban. Véletlen kezdőállapotok esetében ez a többségi stratégia lesz egy gyors átmeneti tartomány után, mert kezdetben átlagtér körülmények uralják a rendszer viselkedését. 1-es stratégia gyakoriságának időfüggése változó kezdeti összetételeknél, δ=0.5, ε=-0.03,k=0.3 ρ 1 (0)=0.7, 0.6, 0.55, 0.54, 0.53, és 0.5 ρ 1 (t) 0 vagy 1, ha t (átlagolás 1000 futtatásra) Az 1-es és 2-es stratégiák kihalási valószínűségének méretfüggése, ha ρ 1 (0)=0.54 (átlagolás 1000 futtatásra)

12 Összegzés Az evolúciós játékelmélet számos olyan jelenséget képes leírni, amelyek hiányoznak a termodinamikai rendszerekből, de a nem-egyensúlyi statisztikus fizika számára izgalmas kihívásokat jelentenek. Köszönöm a figyelmet!

Zárójelentés Evolúciós játékok statisztikus fizikája OTKA K ( )

Zárójelentés Evolúciós játékok statisztikus fizikája OTKA K ( ) Zárójelentés Evolúciós játékok statisztikus fizikája OTKA K-47003 (2004-2007) A kutatási program keretén belül evolúciós játékelméleti modelleket vizsgáltunk rácsokon és gráfokon. A matematikai modellek

Részletesebben

Nagy Péter: Fortuna szekerén...

Nagy Péter: Fortuna szekerén... Nagy Péter: Fortuna szekerén... tudni: az ész rövid, az akarat gyenge, hogy rá vagyok bízva a vak véletlenre. És makacs reménnyel mégis, mégis hinni, hogy amit csinálok, az nem lehet semmi. (Teller Ede)

Részletesebben

VERSENGÔ TÁRSULÁSOK. Szabó György MTA MFA

VERSENGÔ TÁRSULÁSOK. Szabó György MTA MFA adott radonszinteket meghaladó lakások száma 1000000 100000 10000 1000 100 10 0 200 400 600 800 1000 1200 1400 3 radonszint (Bq/m ) 4. ábra. A földszinti lakások radonszintjeinek becsült, félempirikus,

Részletesebben

Evolúciós fogolydilemma játék különböző gráfokon

Evolúciós fogolydilemma játék különböző gráfokon Evolúciós fogolydilemma játék különböző gráfokon A doktori értekezés tézisei Vukov Jeromos Pál Fizika doktori iskola A doktori iskola vezetője: Prof. Horváth Zalán, akadémikus Statisztikus fizika, biológiai

Részletesebben

Univerzalitási osztályok nemegyensúlyi rendszerekben, Ódor Géza

Univerzalitási osztályok nemegyensúlyi rendszerekben, Ódor Géza Univerzalitási osztályok nemegyensúlyi rendszerekben, Ódor Géza odor@mfa.kfki.hu 1. Bevezetõ, dinamikus skálázás, kritikus exponensek, térelmélet formalizmus, renormalizáció, topológius fázis diagrammok,

Részletesebben

Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás

Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás Démon algoritmus az ideális gázra időátlag fizikai mennyiségek átlagértéke sokaságátlag E, V, N pl. molekuláris dinamika Monte

Részletesebben

Kémiai reakciók mechanizmusa számítógépes szimulációval

Kémiai reakciók mechanizmusa számítógépes szimulációval Kémiai reakciók mechanizmusa számítógépes szimulációval Stirling András stirling@chemres.hu Elméleti Kémiai Osztály Budapest Stirling A. (MTA Kémiai Kutatóközpont) Reakciómechanizmus szimulációból 2007.

Részletesebben

Rasmusen, Eric: Games and Information (Third Edition, Blackwell, 2001)

Rasmusen, Eric: Games and Information (Third Edition, Blackwell, 2001) Játékelmélet szociológusoknak J-1 Bevezetés a játékelméletbe szociológusok számára Ajánlott irodalom: Mészáros József: Játékelmélet (Gondolat, 2003) Filep László: Játékelmélet (Filum, 2001) Csontos László

Részletesebben

JÁTÉKELMÉLETTEL KAPCSOLATOS FELADATOK

JÁTÉKELMÉLETTEL KAPCSOLATOS FELADATOK 1.Feladat JÁTÉKELMÉLETTEL KAPCSOLATOS FELADATOK Az alábbi kifizetőmátrixok három különböző kétszemélyes konstans összegű játék sorjátékosának eredményeit mutatják: 2 1 0 2 2 4 2 3 2 4 0 0 1 0 1 5 3 4 3

Részletesebben

r rt t é t t t r r q rs té P r s P t é r t r rs té r é

r rt t é t t t r r q rs té P r s P t é r t r rs té r é r rt t é t t t r r q rs té P r s P t é r t r rs té r é t r és é t é r é q r s rt s r è s q s t à ét r r t t t à r r s r s s t tés s P r r rté r t q s è s é ss t t îtr t 1 r s st t t tr r é t P r r rs à

Részletesebben

Evolúciós fogolydilemma játék különböző gráfokon

Evolúciós fogolydilemma játék különböző gráfokon Evolúciós fogolydilemma játék különböző gráfokon Vukov Jeromos Pál Fizika doktori iskola A doktori iskola vezetője: Prof. Horváth Zalán, akadémikus Statisztikus fizika, biológiai fizika és kvantumrendszerek

Részletesebben

Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás

Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás PI KISZÁMOLÁSI JÁTÉKOK A TENGERPARTON egy kört és köré egy négyzetet rajzolunk véletlenszerűen kavicsokat dobálunk megszámoljuk:

Részletesebben

Példa sejtautomatákra. Homokdomb modellek.

Példa sejtautomatákra. Homokdomb modellek. Példa sejtautomatákra. Homokdomb modellek. Automaták egyszerű eszközök tulajdonságok: véges számú állapota van átmenet egyik állapotból a másikba érzékeli a környezetet esetleg megváltoztatja a környezetet

Részletesebben

Döntési rendszerek I.

Döntési rendszerek I. Döntési rendszerek I. SZTE Informatikai Intézet Számítógépes Optimalizálás Tanszék Készítette: London András 8 Gyakorlat Alapfogalmak A terület alapfogalmai megtalálhatók Pluhár András Döntési rendszerek

Részletesebben

Automaták. bemenet: pénz, kiválasztó gombok stb. állapot: standby, pénz van behelyezve stb. kimenet: cola, sprite, visszajáró

Automaták. bemenet: pénz, kiválasztó gombok stb. állapot: standby, pénz van behelyezve stb. kimenet: cola, sprite, visszajáró 12. előadás Automaták egyszerű eszközök tulajdonságok: véges számú állapota van átmenet egyik állapotból a másikba érzékeli a környezetet esetleg megváltoztatja a környezetet új állapotba megy át kóla

Részletesebben

Predáció populációdinamikai hatása

Predáció populációdinamikai hatása Predáció populációdinamikai hatása Def.: olyan szervezet, amely a zsákmányát, annak elfogása után, megöli és elfogyasztja. (Ellentétben: herbivor, parazitoid, ahol késleltetett a hatás, de ezekre is a

Részletesebben

Evolúciós társadalmi dilemma játékok négyzetrácson egy harmadik kevert stratégiával

Evolúciós társadalmi dilemma játékok négyzetrácson egy harmadik kevert stratégiával Evolúciós társadalmi dilemma játékok négyzetrácson egy harmadik kevert stratégiával TDK-dolgozat Hódsági Kristóf BME TTK Fizika BSc III. évf. Konzulens: Szabó György MTA EK MFA Komplex rendszerek 25. Tartalomjegyzék

Részletesebben

Önszervezően kritikus rendszerek: Bevezetés, alapfogalmak. Self-organized criticality. Homokdomb Biológiai evolúció. Példák és modellek

Önszervezően kritikus rendszerek: Bevezetés, alapfogalmak. Self-organized criticality. Homokdomb Biológiai evolúció. Példák és modellek : Példák és modellek Bevezetés Alapfogalmak ismétlése Mi a fázisátalakulás? Alapfogalmak ismétlése Mi a fázisátalakulás? A statisztikus fizikában (termodinamikában): Az anyag átalakulása két különböző

Részletesebben

Szilárdtestek mágnessége. Mágnesesen rendezett szilárdtestek

Szilárdtestek mágnessége. Mágnesesen rendezett szilárdtestek Szilárdtestek mágnessége Mágnesesen rendezett szilárdtestek 2 Mágneses anyagok Permanens atomi mágneses momentumok: irány A kétféle spin-beállású elektronok betöltöttsége különbözik (spin-polarizáció)

Részletesebben

BKT fázisátalakulás és a funkcionális renormálási csoport módszer

BKT fázisátalakulás és a funkcionális renormálási csoport módszer BKT fázisátalakulás és a funkcionális renormálási csoport módszer Nándori István MTA-DE Részecskefizikai Kutatócsoport, Debreceni Egyetem MTA-Atomki, Debrecen Wigner FK zilárdtestfizikai és Optikai Intézet,

Részletesebben

PIACI SZERKEZETEK BMEGT30A hét, 1. óra: Differenciált termékes Bertrand-oligopólium

PIACI SZERKEZETEK BMEGT30A hét, 1. óra: Differenciált termékes Bertrand-oligopólium PIACI SZERKEZETEK BMEGT30A104 8. hét, 1. óra: Differenciált termékes Bertrand-oligopólium PRN: 10. fejezet 2019.04.01. 10:15 QAF14 Kupcsik Réka (kupcsikr@kgt.bme.hu) Emlékeztető Bertrand-modell: árverseny

Részletesebben

X Physique MP 2013 Énoncé 2/7

X Physique MP 2013 Énoncé 2/7 X Physique MP 2013 Énoncé 1/7 P P P P P ré r s t s t s tr s st s t r sé r tt é r s t t r r q r s t 1 rés t ts s t s ér q s q s s ts t r t t r t rô rt t s r 1 s2stè s 2s q s t q s t s q s s s s 3 é tr s

Részletesebben

KÖZGAZDASÁGTAN I. Készítette: Bíró Anikó, K hegyi Gergely, Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június

KÖZGAZDASÁGTAN I. Készítette: Bíró Anikó, K hegyi Gergely, Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június KÖZGAZDASÁGTAN I. Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben

Universität M Mis is k k olol ci c, F Eg a y kultä etem t, für Wi Gazda rts ságcha tudft o sw máis n s yen i scha Kar, ften,

Universität M Mis is k k olol ci c, F Eg a y kultä etem t, für Wi Gazda rts ságcha tudft o sw máis n s yen i scha Kar, ften, 6. Előadás Piaci stratégiai cselekvések leírása játékelméleti modellek segítségével 1994: Neumann János és Oskar Morgenstern Theory of Games and Economic Behavior. A játékelmélet segítségével egzakt matematikai

Részletesebben

Zárójelentés Evolúciós játékok gráfokon OTKA K-73449 (2008-2012)

Zárójelentés Evolúciós játékok gráfokon OTKA K-73449 (2008-2012) Zárójelentés Evolúciós játékok gráfokon OTKA K-73449 (2008-2012) A kutatási program keretén belül evolúciós játékelméleti modelleket vizsgáltunk különbözı hálózatokon. A matematikai modellek közös tulajdonsága,

Részletesebben

Mikroökonómia I. B. ELTE TáTK Közgazdaságtudományi Tanszék. 12. hét STRATÉGIAI VISELKEDÉS ELEMZÉSE JÁTÉKELMÉLET

Mikroökonómia I. B. ELTE TáTK Közgazdaságtudományi Tanszék. 12. hét STRATÉGIAI VISELKEDÉS ELEMZÉSE JÁTÉKELMÉLET MIKROÖKONÓMIA I. B ELTE TáTK Közgazdaságtudományi Tanszék Mikroökonómia I. B STRATÉGIAI VISELKEDÉS ELEMZÉSE JÁTÉKELMÉLET K hegyi Gergely, Horn Dániel, Major Klára Szakmai felel s: K hegyi Gergely 2010.

Részletesebben

Az éghajlati modellek eredményeinek alkalmazhatósága hatásvizsgálatokban

Az éghajlati modellek eredményeinek alkalmazhatósága hatásvizsgálatokban Az éghajlati modellek eredményeinek alkalmazhatósága hatásvizsgálatokban Szépszó Gabriella Országos Meteorológiai Szolgálat, szepszo.g@met.hu RCMTéR hatásvizsgálói konzultációs workshop 2015. június 23.

Részletesebben

Szén nanoszerkezetek grafén nanolitográfiai szimulációja

Szén nanoszerkezetek grafén nanolitográfiai szimulációja GYŐR Szén nanoszerkezetek grafén nanolitográfiai szimulációja Dr. László István, Dr. Zsoldos Ibolya BMGE Elméleti Fizika Tanszék, SZE Anyagtudomány és Technológia Tanszék GYŐR Motiváció, előzmény: Grafén

Részletesebben

Játékelméleti alapvetés - I

Játékelméleti alapvetés - I Játékelméleti alapvetés - I Fáth Gábor (SZFKI) ELTE 2005. június 1. Alkalmazások pszichológia biológia nyelvészet közgazdaságtan számítástudomány Játékelmélet filozófia politika tudomány etika kulturális

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

HÍDTARTÓK ELLENÁLLÁSTÉNYEZŐJE

HÍDTARTÓK ELLENÁLLÁSTÉNYEZŐJE HÍDTARTÓK ELLENÁLLÁSTÉNYEZŐJE Csécs Ákos * - Dr. Lajos Tamás ** RÖVID KIVONAT A Budapesti Műszaki és Gazdaságtudományi Egyetem Hidak és Szerkezetek Tanszéke megbízta a BME Áramlástan Tanszékét az M8-as

Részletesebben

ó ó ó ó ó ó ó ŕ ŕ ó ąň ą ą ą Ő ó Ź ń ó ó ę Ę ó ô ó ó ŕ ŕ É ŕ ó ó Ü ŕ ó ŕ ŕ ŕ ó ä ó ó ó ó ó ô Ĺ Đ đ ä Đ ä ąä ę ä ä ą Ĺ ä ä Ý ä ä Đ Đ Ę đ Ĺ ą ä ä Đ ä ä ę Đ Ĺ ę ä ą Ü Đ ä ÝĐ ę Ĺ ä Đ Đ Đ Đ Ý Đ Đ ó ä ó Ü ą

Részletesebben

Evans-Searles fluktuációs tétel Crooks fluktuációs tétel Jarzynski egyenlőség

Evans-Searles fluktuációs tétel Crooks fluktuációs tétel Jarzynski egyenlőség Evans-Searles fluktuációs tétel Crooks fluktuációs tétel Jarzynski egyenlőség Osváth Szabolcs Evans-Searles fluktuációs tétel Denis J Evans, Ezechiel DG Cohen, Gary P Morriss (1993) Denis J Evans, Debra

Részletesebben

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény; Abszorpciós spektroszkópia

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény;   Abszorpciós spektroszkópia Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2016 március 1.) Az abszorpció mérése;

Részletesebben

Ipari kemencék PID irányítása

Ipari kemencék PID irányítása Ipari kemencék PID irányítása 1. A gyakorlat célja: Az ellenállással melegített ipari kemencék modelljének meghatározása. A Opelt PID tervezési módszer alkalmazása ipari kemencék irányítására. Az ipari

Részletesebben

Dekoherencia Markovi Dinamika Diósi Lajos. Elméleti Fizikai Iskola Tihany, augusztus szeptember 3.

Dekoherencia Markovi Dinamika Diósi Lajos. Elméleti Fizikai Iskola Tihany, augusztus szeptember 3. Dekoherencia Markovi Dinamika Diósi Lajos Elméleti Fizikai Iskola Tihany, 2010. augusztus 30. - szeptember 3. Tartalomjegyzék 1 Projektív dekoherencia 2 Nyitott rendszer - Lindblad egy. 3 Dekoherencia

Részletesebben

Számítógépes döntéstámogatás. Genetikus algoritmusok

Számítógépes döntéstámogatás. Genetikus algoritmusok BLSZM-10 p. 1/18 Számítógépes döntéstámogatás Genetikus algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu BLSZM-10 p. 2/18 Bevezetés 1950-60-as

Részletesebben

A mikroskálájú modellek turbulencia peremfeltételeiről

A mikroskálájú modellek turbulencia peremfeltételeiről A mikroskálájú modellek turbulencia peremfeltételeiről Adjunktus Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Áramlástan Tanszék 27..23. 27..23. / 7 Általános célú CFD megoldók alkalmazása

Részletesebben

A MATEMATIKA NÉHÁNY KIHÍVÁSA

A MATEMATIKA NÉHÁNY KIHÍVÁSA A MATEMATIKA NÉHÁNY KIHÍVÁSA NAPJAINKBAN Simon L. Péter ELTE, Matematikai Intézet Alkalmazott Analízis és Számításmatematikai Tsz. 1 / 20 MATEMATIKA AZ ÉLET KÜLÖNBÖZŐ TERÜLETEIN Kaotikus sorozatok és differenciálegyenletek,

Részletesebben

r tr r r t s t s② t t ① t r ② tr s r

r tr r r t s t s② t t ① t r ② tr s r r tr r r t s t s② t t ① t r ② tr s r r ás③ r s r r r á s r ② s ss rt t s s tt r t r t r P s ② Pá③ á ② Pét r t rs t② t② r t ② s s ás t r s ② st s t t r t t r s t s t t t t s s s str t r r t r t ① r t r

Részletesebben

Fourier-sorfejtés vizsgálata Négyszögjel sorfejtése, átviteli vizsgálata

Fourier-sorfejtés vizsgálata Négyszögjel sorfejtése, átviteli vizsgálata Fourier-sorfejtés vizsgálata Négyszögjel sorfejtése, átviteli vizsgálata Reichardt, András 27. szeptember 2. 2 / 5 NDSM Komplex alak U C k = T (T ) ahol ω = 2π T, k módusindex. Időfüggvény előállítása

Részletesebben

12. előadás - Markov-láncok I.

12. előadás - Markov-láncok I. 12. előadás - Markov-láncok I. 2016. november 21. 12. előadás 1 / 15 Markov-lánc - definíció Az X n, n N valószínűségi változók sorozatát diszkrét idejű sztochasztikus folyamatnak nevezzük. Legyen S R

Részletesebben

Foton-visszhang alapú optikai kvantum-memóriák: koherens kontroll optikailag sűrű közegben

Foton-visszhang alapú optikai kvantum-memóriák: koherens kontroll optikailag sűrű közegben Foton-visszhang alapú optikai kvantum-memóriák: koherens kontroll optikailag sűrű közegben Demeter Gábor MTA Wigner Fizikai Kutatóközpont, RMI Demeter Gábor (MTA Wigner RCP... / 4 Bevezetés / Motiváció

Részletesebben

Agrárstratégiai irányok játékelméleti alapokon

Agrárstratégiai irányok játékelméleti alapokon fejlesztés,felzárkózás Agrárstratégiai irányok játékelméleti alapokon Dr. Zöldréti Attila Miskolc 2015.09.04. Mit értünk stratégia fogalma alatt? Ne tévedjünk el! Egy irányba kell haladni! Azért nem ilyen

Részletesebben

A TERÜLETI EGYENLŐTLENSÉGEK

A TERÜLETI EGYENLŐTLENSÉGEK A TERÜLETI EGYENLŐTLENSÉGEK KIALAKULÁSA Áldorfainé Czabadai Lilla tanársegéd SZIE-GTK RGVI aldorfaine.czabadai.lilla@gtk.szie.hu FOGALMI HÁTTÉR Területi egyenlőtlenség = regionális egyenlőtlenség? A tér

Részletesebben

Biológiai evolúció SOC modellje

Biológiai evolúció SOC modellje Biológiai evolúció SOC modellje Punctuated equilibrium model of evolution Megfigyelés: rendszertani nemzetségek élettartam eloszlása hatványfüggvény Biológiai evolúció SOC modellje Punctuated equilibrium

Részletesebben

ÉPÍTŐANYAGOK REOLÓGIAI TULAJDONSÁGAINAK VIZSGÁLATA A DE-ATC-MFK MÉLY- ÉS SZERKEZETÉPÍTÉSI TANSZÉKÉN

ÉPÍTŐANYAGOK REOLÓGIAI TULAJDONSÁGAINAK VIZSGÁLATA A DE-ATC-MFK MÉLY- ÉS SZERKEZETÉPÍTÉSI TANSZÉKÉN ÉPÍTŐANYAGOK REOLÓGIAI TULAJDONSÁGAINAK VIZSGÁLATA A DE-ATC-MK MÉLY- ÉS SZERKEZETÉPÍTÉSI TANSZÉKÉN Dr. Kovács Imre PhD. tanszékvezető főiskolai docens 1 Vizsgálataink szintjei Numerikus szimuláció lineáris,

Részletesebben

9. Fényhullámhossz és diszperzió mérése jegyzőkönyv

9. Fényhullámhossz és diszperzió mérése jegyzőkönyv 9. Fényhullámhossz és diszperzió mérése jegyzőkönyv Zsigmond Anna Fizika Bsc II. Mérés dátuma: 008. 11. 1. Leadás dátuma: 008. 11. 19. 1 1. A mérési összeállítás A méréseket speciális szögmérő eszközzel

Részletesebben

Fluktuáló terű transzverz Ising-lánc dinamikája

Fluktuáló terű transzverz Ising-lánc dinamikája 2016. szeptember 8. Phys. Rev. B 93, 134305 Modell H(t) = 1 2 L 1 σi x σi+1 x h(t) 2 i=1 h(t)-fluktuáló mágneses tér. Hogyan terjednek jelek a zajos rendszerben? L σi z, i=1 Zajok típusai 1 fehér zaj 2

Részletesebben

Csillapított rezgés. a fékező erő miatt a mozgás energiája (mechanikai energia) disszipálódik. kváziperiódikus mozgás

Csillapított rezgés. a fékező erő miatt a mozgás energiája (mechanikai energia) disszipálódik. kváziperiódikus mozgás Csillapított rezgés Csillapított rezgés: A valóságban a rezgések lassan vagy gyorsan, de csillapodnak. A rugalmas erőn kívül, még egy sebességgel arányos fékező erőt figyelembe véve: a fékező erő miatt

Részletesebben

1000 forintos adósságunkat, de csak 600 forintunk van. Egyetlen lehetőségünk, hogy a

1000 forintos adósságunkat, de csak 600 forintunk van. Egyetlen lehetőségünk, hogy a A merész játékok stratégiája A következő problémával foglalkozunk: Tegyük fel, hogy feltétlenül ki kell fizetnünk 000 forintos adósságunkat, de csak 600 forintunk van. Egyetlen lehetőségünk, hogy a még

Részletesebben

REGIONÁLIS KLÍMAMODELLEZÉS AZ OMSZ-NÁL. Magyar Tudományos Akadémia szeptember 15. 1

REGIONÁLIS KLÍMAMODELLEZÉS AZ OMSZ-NÁL. Magyar Tudományos Akadémia szeptember 15. 1 Regionális klímamodellezés az Országos Meteorológiai Szolgálatnál HORÁNYI ANDRÁS (horanyi.a@met.hu) Csima Gabriella, Szabó Péter, Szépszó Gabriella Országos Meteorológiai Szolgálat Numerikus Modellező

Részletesebben

Molekuláris dinamika I. 10. előadás

Molekuláris dinamika I. 10. előadás Molekuláris dinamika I. 10. előadás Miről is szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten minden részecske mozgását szimuláljuk? Hogyan tudjuk megérteni a folyadékok,

Részletesebben

folyamatrendszerek modellezése

folyamatrendszerek modellezése Diszkrét eseményű folyamatrendszerek modellezése Hangos Katalin Számítástudomány Alkalmazása Tanszék Veszprémi Egyetem Haladó Folyamatmodellezés és modell analízis PhD kurzus p. 1/36 Tartalom Diszkrét

Részletesebben

Fejezetek az evolúciós játékelméletből

Fejezetek az evolúciós játékelméletből Fejezetek az evolúciós játékelméletből Vizsgadolgozat az Elméleti evolúcióbiológia című kurzushoz Pipek Orsolya Anna X9L24X Bevezetés A klasszikus játékelmélet atyjának hagyományosan Neumann Jánost tekinti

Részletesebben

Közgazdaságtan I. 11. alkalom

Közgazdaságtan I. 11. alkalom Közgazdaságtan I. 11. alkalom 2018-2019/II. 2019. Április 24. Tóth-Bozó Brigitta Tóth-Bozó Brigitta Általános információk Fogadóóra szerda 13-14, előzetes bejelentkezés szükséges e-mailben! QA218-as szoba

Részletesebben

4. Kartell két vállalat esetén

4. Kartell két vállalat esetén 4. Kartell két vállalat esetén 34 4. Kartell két vállalat esetén Ebben a fejezetben azzal az esettel foglalkozunk, amikor a piacot két vállalat uralja és ezek összejátszanak. A vállalatok együttműködését

Részletesebben

http://www.nature.com 1) Magerő-sugár: a magközéppontból mért távolság, ameddig a magerők hatótávolsága terjed. Rutherford-szórásból határozható meg. R=1,4 x 10-13 A 1/3 cm Az atommag terének potenciálja

Részletesebben

Mit tanulhatunk a madarak csoportos és s egyéni repüléséből?

Mit tanulhatunk a madarak csoportos és s egyéni repüléséből? Mit tanulhatunk a madarak csoportos és s egyéni repüléséből? l? Nagy MátéM - ELTE Biológiai Fizika Tanszék http://angel.elte.hu/~nagymate 2009. 03. 12. Nagy Máté 1 Munkatársak: Ákos Zsuzsa, Szabó Péter,

Részletesebben

További forgalomirányítási és szervezési játékok. 1. Nematomi forgalomirányítási játék

További forgalomirányítási és szervezési játékok. 1. Nematomi forgalomirányítási játék További forgalomirányítási és szervezési játékok 1. Nematomi forgalomirányítási játék A forgalomirányítási játékban adott egy hálózat, ami egy irányított G = (V, E) gráf. A gráfban megengedjük, hogy két

Részletesebben

Molekuláris dinamika. 10. előadás

Molekuláris dinamika. 10. előadás Molekuláris dinamika 10. előadás Mirőlis szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten? Hogyan tudjuk megérteni a folyadékok, gázok, szilárdtestek makroszkópikus

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:

Részletesebben

A diplomaterv keretében megvalósítandó feladatok összefoglalása

A diplomaterv keretében megvalósítandó feladatok összefoglalása A diplomaterv keretében megvalósítandó feladatok összefoglalása Diplomaterv céljai: 1 Sclieren résoptikai módszer numerikus szimulációk validálására való felhasználhatóságának vizsgálata 2 Lamináris előkevert

Részletesebben

fi*ggrfifi*rfi # qüt4t aas g gg E.H EüI Í,* El gql ühe Hfi {l ajr s<t ñrli 3il Éd ; I.e! Ffd 'á ru ;Én 5c'ri n ír^ -Ei =: t^ úu o 4

fi*ggrfifi*rfi # qüt4t aas g gg E.H EüI Í,* El gql ühe Hfi {l ajr s<t ñrli 3il Éd ; I.e! Ffd 'á ru ;Én 5c'ri n ír^ -Ei =: t^ úu o 4 r < 7, 3t f. 3il d ; &2 t^ u l)", 1l' t, ; t ) * {l: r,ü d,. ti ó. n ír^ ;n.e! 5r fd 'á \D *N 5'ri ñrli -i : N:, i! l f,. (, u.r f p C,) ] i'{ p t..l rl) in f ü,! () r s

Részletesebben

MELLÉKLET. a következőhöz: A BIZOTTSÁG (EU) /... FELHATALMAZÁSON ALAPULÓ RENDELETE

MELLÉKLET. a következőhöz: A BIZOTTSÁG (EU) /... FELHATALMAZÁSON ALAPULÓ RENDELETE EURÓPAI BIZOTTSÁG Brüsszel, 2018.4.30. C(2018) 2526 final ANNEX 1 MELLÉKLET a következőhöz: A BIZOTTSÁG (EU) /... FELHATALMAZÁSON ALAPULÓ RENDELETE az 1143/2014/EU európai parlamenti és tanácsi rendeletnek

Részletesebben

VESZÉLYES LÉGKÖRI JELENSÉGEK KÜLÖNBÖZŐ METEOROLÓGIAI SKÁLÁKON TASNÁDI PÉTER ÉS FEJŐS ÁDÁM ELTE TTK METEOROLÓGIA TANSZÉK 2013

VESZÉLYES LÉGKÖRI JELENSÉGEK KÜLÖNBÖZŐ METEOROLÓGIAI SKÁLÁKON TASNÁDI PÉTER ÉS FEJŐS ÁDÁM ELTE TTK METEOROLÓGIA TANSZÉK 2013 VESZÉLYES LÉGKÖRI JELENSÉGEK KÜLÖNBÖZŐ METEOROLÓGIAI SKÁLÁKON TASNÁDI PÉTER ÉS FEJŐS ÁDÁM ELTE TTK METEOROLÓGIA TANSZÉK 2013 VÁZLAT Veszélyes és extrém jelenségek A veszélyes definíciója Az extrém és ritka

Részletesebben

Számítógépes szimulációk: molekuláris dinamika és Monte Carlo

Számítógépes szimulációk: molekuláris dinamika és Monte Carlo Számítógépes szimulációk: molekuláris dinamika és Monte Carlo Boda Dezső Fizikai Kémiai Tanszék Pannon Egyetem boda@almos.vein.hu 2014. március 21. Boda Dezső (Pannon Egyetem) Habilitációs előadás 2014.

Részletesebben

θ & új típusú differenciálegyenlet: vektormező egy körön lehetségesek PERIODIKUS MEGOLDÁSOK példa: legalapvetőbb modell az oszcillátorokra fixpont:

θ & új típusú differenciálegyenlet: vektormező egy körön lehetségesek PERIODIKUS MEGOLDÁSOK példa: legalapvetőbb modell az oszcillátorokra fixpont: 3. előadás & θ új típusú differenciálegyenlet: vektormező egy körön f ( θ ) lehetségesek PERIODIKUS MEGOLDÁSOK legalapvetőbb modell az oszcillátorokra példa: & θ sinθ θ & fixpont: θ & 0 θ θ & > 0 nyilak:

Részletesebben

Játékelmélet. előadás jegyzet. Kátai-Urbán Kamilla. Tudnivalók Honlap: http://www.math.u-szeged.hu/~katai Vizsga: írásbeli.

Játékelmélet. előadás jegyzet. Kátai-Urbán Kamilla. Tudnivalók Honlap: http://www.math.u-szeged.hu/~katai Vizsga: írásbeli. Játékelmélet Kátai-Urbán Kamilla Tudnivalók Honlap: http://www.math.u-szeged.hu/~katai Vizsga: írásbeli Irodalom előadás jegyzet J. D. Williams: Játékelmélet Filep László: Játékelmélet 1. Előadás Történeti

Részletesebben

1. hét. Neptun kód. Összesen. Név

1. hét. Neptun kód. Összesen. Név 1. hét 1 5 1 3 28 1 1 8 1 3 3 44 1 5 1 3 2 3 1 7 5 1 3 1 45 1 5 1 1 1 6 51 1 1 1 1 1 5 1 2 8 1 7 3 4 8 5 8 1 1 41 1 5 8 1 1 3 46 1 8 1 3 2 33 1 7 8 1 3 38 1 5 7 1 7 1 49 1 1 5 1 1 45 1 8 1 3 31 1 8 8 1

Részletesebben

Mátrixjátékok tiszta nyeregponttal

Mátrixjátékok tiszta nyeregponttal 1 Mátrixjátékok tiszta nyeregponttal 1. Példa. Két játékos Aladár és Bendegúz rendelkeznek egy-egy tetraéderrel, melyek lapjaira rendre az 1, 2, 3, 4 számokat írták. Egy megadott jelre egyszerre felmutatják

Részletesebben

Elméleti evolúcióbiológia. Kispál András (EYQ0NP) Fizika BSc. II. évfolyam

Elméleti evolúcióbiológia. Kispál András (EYQ0NP) Fizika BSc. II. évfolyam Elméleti evolúcióbiológia Ciklikus dominancia a háromstratégiás evolúciós játékoknál Beadandó dolgozat Kispál András (EYQ0NP) Fizika BSc. II. évfolyam Budapest, 2014. május 24. Tartalomjegyzék 1. Bevezetés

Részletesebben

Numerikus matematika

Numerikus matematika Numerikus matematika Baran Ágnes Gyakorlat Numerikus integrálás Matlab-bal Baran Ágnes Numerikus matematika 8. Gyakorlat 1 / 20 Anoním függvények, function handle Függvényeket definiálhatunk parancssorban

Részletesebben

Evolúciós algoritmusok

Evolúciós algoritmusok Evolúciós algoritmusok Evolúció, mint kereső rendszer A problémára adható néhány lehetséges választ, azaz a problématér több egyedét tároljuk egyszerre. Ez a populáció. Kezdetben egy többnyire véletlen

Részletesebben

rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika

rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika Fizika mérnm rnök k informatikusoknak 1. FBNxE-1 Mechanika. előadás Dr. Geretovszky Zsolt 1. szeptember 15. Klasszikus mechanika A fizika azon ága, melynek feladata az anyagi testek mozgására vonatkozó

Részletesebben

? ligandum kötés konformációs változás aktiválási energia számítás pka számítás kötési energiák

? ligandum kötés konformációs változás aktiválási energia számítás pka számítás kötési energiák Szabadenergia Definíció:? ligandum kötés konformációs változás aktiválási energia számítás pka számítás kötési energiák Fázistér teljes térfogatára kell számítani! Mennyiség átlagértéke: Sokaság-átlag

Részletesebben

Elektrosztatikus számítások. Elektrosztatikus számítások. Elektrosztatikus számítások. Elektrosztatikus számítások Definíciók

Elektrosztatikus számítások. Elektrosztatikus számítások. Elektrosztatikus számítások. Elektrosztatikus számítások Definíciók Jelentősége szubsztrát kötődés szolvatáció ionizációs állapotok (pka) mechanizmus katalízis ioncsatornák szimulációk (szerkezet) all-atom dipolar fluid dipolar lattice continuum Definíciók töltéseloszlás

Részletesebben

Erős terek leírása a Wigner-formalizmussal

Erős terek leírása a Wigner-formalizmussal Erős terek leírása a Wigner-formalizmussal Berényi Dániel 1, Varró Sándor 1, Vladimir Skokov 2, Lévai Péter 1 1, MTA Wigner FK, Budapest 2, RIKEN/BNL, Upton, USA Wigner 115 2017. November 15. Budapest

Részletesebben

Doktori disszertáció. szerkezete

Doktori disszertáció. szerkezete Doktori disszertáció tézisfüzet Komplex hálózatok szerkezete Szabó Gábor Témavezető Dr. Kertész János Elméleti Fizika Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 2005 Bevezetés A tudományos

Részletesebben

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény; Abszorpciós spektroszkópia

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény;  Abszorpciós spektroszkópia Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2015 január 27.) Az abszorpció mérése;

Részletesebben

2. Alapfeltevések és a logisztikus egyenlet

2. Alapfeltevések és a logisztikus egyenlet Populáció dinamika Szőke Kálmán Benjamin - SZKRADT.ELTE 22. május 2.. Bevezetés A populációdinamika az élőlények egyedszámának és népességviszonyainak térbeli és időbeli változásának menetét adja meg.

Részletesebben

Dr. Kalló Noémi. Termelés- és szolgáltatásmenedzsment. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék. Dr.

Dr. Kalló Noémi. Termelés- és szolgáltatásmenedzsment. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék. Dr. Termelés- és szolgáltatásmenedzsment egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Termelés- és szolgáltatásmenedzsment 13. Ismertesse a legfontosabb előrejelzési módszereket és azok gyakorlati

Részletesebben

Mátrixhatvány-vektor szorzatok hatékony számítása

Mátrixhatvány-vektor szorzatok hatékony számítása Mátrixhatvány-vektor szorzatok hatékony számítása Izsák Ferenc ELTE TTK, Alkalmazott Analízis és Számításmatematikai Tanszék & ELTE-MTA NumNet Kutatócsoport munkatárs: Szekeres Béla János Alkalmazott Analízis

Részletesebben

Elfedett pulzációk vizsgálata a KIC fedési kettősrendszerben

Elfedett pulzációk vizsgálata a KIC fedési kettősrendszerben Elfedett pulzációk vizsgálata a KIC 3858884 fedési kettősrendszerben Bókon András II. éves Fizikus MSc szakos hallgató Témavezető: Dr. Bíró Imre Barna tudományos munkatárs, 216. 11. 25. Csillagok pulzációja

Részletesebben

Conway életjátéka (Conway' s Game of Life)

Conway életjátéka (Conway' s Game of Life) Conway életjátéka (Conway' s Game of Life) készítette : Udvari Balázs, 2008 Bevezetés John Conway (szül. 1937, Liverpool) a XX. század jelentős matematikusa; jelenleg a princetoni egyetem professzora.

Részletesebben

Ejtési teszt modellezése a tervezés fázisában

Ejtési teszt modellezése a tervezés fázisában Antal Dániel, doktorandusz, Miskolci Egyetem Robert Bosch Mechatronikai Tanszék Szabó Tamás, egyetemi docens, Ph.D., Miskolci Egyetem Robert Bosch Mechatronikai Tanszék Szilágyi Attila, egyetemi adjunktus,

Részletesebben

MATEMATIKA HETI 5 ÓRA. IDŐPONT: 2009. június 8.

MATEMATIKA HETI 5 ÓRA. IDŐPONT: 2009. június 8. EURÓPAI ÉRETTSÉGI 2009 MATEMATIKA HETI 5 ÓRA IDŐPONT: 2009. június 8. A VIZSGA IDŐTARTAMA: 4 óra (240 perc) ENGEDÉLYEZETT SEGÉDESZKÖZÖK : Európai képletgyűjtemény Nem programozható, nem grafikus kalkulátor

Részletesebben

Az optika tudományterületei

Az optika tudományterületei Az optika tudományterületei Optika FIZIKA BSc, III/1. 1. / 17 Erdei Gábor Elektromágneses spektrum http://infothread.org/science/physics/electromagnetic%20spectrum.jpg Optika FIZIKA BSc, III/1. 2. / 17

Részletesebben

A napenergia magyarországi hasznosítását támogató új fejlesztések az Országos Meteorológiai Szolgálatnál

A napenergia magyarországi hasznosítását támogató új fejlesztések az Országos Meteorológiai Szolgálatnál A napenergia magyarországi hasznosítását támogató új fejlesztések az Országos Meteorológiai Szolgálatnál Nagy Zoltán, Tóth Zoltán, Morvai Krisztián, Szintai Balázs Országos Meteorológiai Szolgálat A globálsugárzás

Részletesebben

Valószínűségszámítás és statisztika

Valószínűségszámítás és statisztika Valószínűségszámítás és statisztika Programtervező informatikus szak esti képzés Varga László Valószínűségelméleti és Statisztika Tanszék Matematikai Intézet Természettudományi Kar Eötvös Loránd Tudományegyetem

Részletesebben

A talajok összenyomódásának vizsgálata

A talajok összenyomódásának vizsgálata A talajok összenyomódásának vizsgálata Amit már tudni kellene Összenyomódás Konszolidáció Normálisan konszolidált talaj Túlkonszolidált talaj Túlkonszolidáltsági arányszám,ocr Konszolidáció az az időben

Részletesebben

A TISZTESSÉGES MAGATARTÁS KIALAKULÁSA: JÁTÉKELMÉLETI ELEMZÉS

A TISZTESSÉGES MAGATARTÁS KIALAKULÁSA: JÁTÉKELMÉLETI ELEMZÉS Fizikai Szemle honlap Tartalomjegyzék Fizikai Szemle 2009/3. 118.o. A TISZTESSÉGES MAGATARTÁS KIALAKULÁSA: JÁTÉKELMÉLETI ELEMZÉS Szabó György MTA MFA A játék nem játék Az emberek és az állatok jelentős

Részletesebben

Megerősítéses tanulás 7. előadás

Megerősítéses tanulás 7. előadás Megerősítéses tanulás 7. előadás 1 Ismétlés: TD becslés s t -ben stratégia szerint lépek! a t, r t, s t+1 TD becslés: tulajdonképpen ezt mintavételezzük: 2 Akcióértékelő függvény számolása TD-vel még mindig

Részletesebben

Simított részecskedinamika Smoothed Particle Hydrodynamics (SPH)

Simított részecskedinamika Smoothed Particle Hydrodynamics (SPH) Smoothed Particle Hydrodynamics (SPH) Áramlások numerikus modellezése II. Tóth Balázs BME-ÉMK Vízépítési és Vízgazdálkodási Tanszék Numerikus módszerek Osztályozás A numerikus sémák két csoportosítási

Részletesebben

Anyagmozgatás és gépei. 1. témakör. Egyetemi szintű gépészmérnöki szak. MISKOLCI EGYETEM Anyagmozgatási és Logisztikai Tanszék.

Anyagmozgatás és gépei. 1. témakör. Egyetemi szintű gépészmérnöki szak. MISKOLCI EGYETEM Anyagmozgatási és Logisztikai Tanszék. Anyagmozgatás és gépei tantárgy 1. témakör Egyetemi szintű gépészmérnöki szak 2004-05. II. félév MISKOLCI EGYETEM Anyagmozgatási és Logisztikai Tanszék Miskolci Egyetem Anyagmozgatási és Logisztikai Tanszék

Részletesebben

A Morra játék Módosított Morra Blöff és alullicitálás mint racionális stratégiák

A Morra játék Módosított Morra Blöff és alullicitálás mint racionális stratégiák A Morra játék Módosított Morra Blöff és alullicitálás mint racionális stratégiák Előadás felépítése Morra játék háttere, fajtái Módosított Morra Egyszerűsítési stratégiák Blöff és alullicitálás Mi az Morra?

Részletesebben

ÉRZÉKELŐK ÉS BEAVATKOZÓK II. 5. DC MOTOROK SZABÁLYOZÁS FORDULATSZÁM- SZABÁLYOZÁS

ÉRZÉKELŐK ÉS BEAVATKOZÓK II. 5. DC MOTOROK SZABÁLYOZÁS FORDULATSZÁM- SZABÁLYOZÁS ÉRZÉKELŐK ÉS BEAVATKOZÓK II. 5. DC MOTOROK SZABÁLYOZÁS FORDULATSZÁM- SZABÁLYOZÁS Dr. Soumelidis Alexandros 2019.03.13. BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT

Részletesebben

Egyesített funkcionális renormálási csoport egyenlet

Egyesített funkcionális renormálási csoport egyenlet Egyesített funkcionális renormálási csoport egyenlet Nándori István MTA-DE Részecskefizikai Kutatócsoport, MTA-Atomki, Debrecen Magyar Fizikus Vándorgyűles, Debrecen, 2013 Kvantumtérelmélet Részecskefizika

Részletesebben

Lássuk be, hogy nem lehet a három pontot úgy elhelyezni, hogy egy inerciarendszerben

Lássuk be, hogy nem lehet a három pontot úgy elhelyezni, hogy egy inerciarendszerben Feladat: A háromtest probléma speciális megoldásai Arra vagyunk kiváncsiak, hogy a bolygó mozgásnak milyen egyszerű egyensúlyi megoldásai vannak három bolygó esetén. Az így felmerülő három-test probléma

Részletesebben

Követelmények a modern futballban

Követelmények a modern futballban Edzés Tervezés Követelmények a modern futballban A játék olvasása, intelligens helyezkedés, első érintés fontossága Kis terület Magas technikai képzettség,labdabirtoklásnál az ellenfél leszűkíti a területet.

Részletesebben