Evolúciós algoritmusok
|
|
- Péter Veres
- 6 évvel ezelőtt
- Látták:
Átírás
1 Evolúciós algoritmusok
2 Evolúció, mint kereső rendszer A problémára adható néhány lehetséges választ, azaz a problématér több egyedét tároljuk egyszerre. Ez a populáció. Kezdetben egy többnyire véletlen populációt választunk. A cél egy bizonyos célegyed vagy egy jó populáció előállítása. Az egyedeket egy rátermettségi függvény alapján hasonlítjuk össze. A populációt lépésről lépésre javítjuk úgy, hogy a kevésbé rátermett egyedek egy részét a rátermettebbekhez hasonló egyedekre cseréljük le. Ez a változtatás visszavonhatatlan. Ez tehát egy nemmódosítható stratégiájú keresés.
3 Szelekció: Kiválasztunk néhány (lehetőleg rátermett) egyedet szülőnek. Rekombináció (keresztezés): Szülőkből utódok készülnek úgy, hogy a szülők tulajdonságait örököljék az utódok. Mutáció: Az utódok tulajdonságait kismértékben módosítjuk. Visszahelyezés: Új populációt alakítunk ki az utódokból és a régi populációból. Terminálási feltétel: Evolúciós operátorok és a terminálási feltétel ha a célegyed megjelenik a populációban ha a populáció egyesített rátermettségi függvény értéke egy ideje nem változik.
4 ADAT := kezdeti érték while terminálási feltétel(adat) loop SELECT SZ FROM alkalmazható szabályok ADAT := SZ(ADAT) endloop Procedure EA populáció := kezdeti populáció while terminálási feltétel nem igaz loop szülők := szelekció(populáció) utódok := rekombináció( szülők ) utódok := mutáció(utódok) populáció := visszahelyezés(populáció, utódok) endloop Evolúció alapalgoritmusa
5 n-királynő probléma 1. Egyed: a királynők olyan elrendezése, ahol minden oszlop pontosan egy királynőt tartalmaz rátermettségi érték: 23 Reprezentáció: oszloponként a királynők sorpozícióit tartalmazó sorozat Rátermettségi függvény: ütésben nem levő királynő párok száma
6 Evolúciós ciklus szelekció >15 lehetőleg a jobbakat 15-nél jobbak közül ~ ~ ~ ~ 11 rekombináció
7 Keresztezés
8 Evolúciós ciklus szelekció >15 rekombináció lehetőleg a jobbakat 15-nél jobbak közül ~ ~ ~ ~ lehetőleg a jobbakat a rosszabbak helyére visszahelyezés ~ ~ ~ ~ 20 értékek módosítása mutáció
9 n-királynő probléma rátermettségi érték: 23 Egyed: a királynők olyan elrendezése, ahol minden sor és oszlop pontosan egy királynőt tartalmaz Reprezentáció: oszloponként a királynők sorpozícióit tartalmazó permutáció Rátermettségi függvény: ütésben nem levő királynő párok száma
10 Evolúciós ciklus szelekció rekombináció mindet ~ ~ ~ ~ 26 javítás lehetőleg a jobbakat a rosszabbak helyére visszahelyezés ~ ~ ~ ~ 27 mutáció párok cseréje
11 Kielégíthetőségi probléma (SAT) Adott egy n változós Boolean formula KNF alakban. A változók milyen igazság kiértékelése mellett lesz formula igaz? E.g.: (x 1 x 2 x 5 ) (x 1 x 3 ) ( x 1 x 4 ) ( x 2 x 5 ) egy megoldás: x 1 = true, x 2 = false, x 3 = false, x 4 = true, x 5 = true Egyed: Reprezentáció: Rátermettségi függvény: egy lehetséges igazság kiértékelés logikai érték (bitek) sorozata Az adott formula igazra értékelt klózainak száma
12 Rulett kerék Evolúciós ciklus (x 1 x 2 x 5 ) (x 1 x 3 ) ( x 1 x 4 ) ( x 2 x 5 ) szelekció rekombináció ~ ~ ~ ~ ~ ~ ~ ~ 3 mutáció
13 Evolúciós algoritmus elemei problématér egyedeinek reprezentációja: kódolás rátermettségi függvény (fitnesz függvény) kapcsolat a kódolással és a céllal evolúciós operátorok szelekció, rekombináció, mutáció, visszahelyezés kezdő populáció, megállási feltétel (cél) stratégiai paraméterek populáció mérete, mutáció valószínűsége, utódképzési ráta, visszahelyezési ráta, stb.
14 Kódolás Egy egyedet egy jelsorozattal (kromoszómával) kódolunk. A jelsorozatnak ki kell elégítenie a kód-invariánst. Az egyedeket az őket reprezentáló kódjukon keresztül változtatjuk meg. Egy jel vagy jelcsoport, azaz a gén írja le az egyed egy tulajdonságát (attribútum-érték párját). Sokszor egy génnek a kódsorozatban elfoglalt pozíciója (lókusza) jelöli ki a gén által leírt attribútumot, amelynek értéke maga a gén (allél). A kód ekkor tulajdonságonként feldarabolható: egy rövid kódszakasz megváltoztatása kis mértékben változtat az egyeden. Gyakori megoldások: Vektor: valós vagy egész számok rögzített hosszú tömbje Bináris kód: bitek rögzített hosszú tömbje Véges sok elem permutációja
15 Gráf színezési probléma kódolása és rátermettségi függvénye Adott egy véges egyszerű gráf, amelynek a csúcsait négy szín felhasználásával kell úgy kiszínezni, hogy a szomszédos csúcsok eltérő színűek legyenek. Direkt kódolás Az x[i] az i-dik csúcs színe. 3 4 f a jó élek száma. f = 10 Indirekt kódolás Az i-dik lépésben az x[i]-dik csúcsot színezzük ki a lehető legvilágosabb 2 színnel a szomszédjaihoz igazodva, ha lehet. f a kiszínezett csúcsok száma 1 3 f =
16 A kő-papír-olló játék stratégiájának kódolása és rátermettségi függvénye Alakítsunk ki jó stratégiát egy kő-papír-olló világbajnokságra! Olyan függvényre van szükségünk, amelyik a korábbi csaták kimenetele alapján javaslatot tesz a soron következő lépésünkre. Például két korábbi csata alapján: Előzmény: Én: K P Javaslat: K Ő: O O Ez még nem a teljes stratégia, mert nem csak a fenti előzményre, hanem az összes lehetséges előzményre kell soron következő lépést javasolni.
17 Kódolás Egy stratégia (egyed) kódja: {0,1,2} Az összes lehetséges stratégia száma: 3 81 Signal K ~ 0 P ~ 1 O ~ 2 Előzmény (ÉnŐÉnŐ) KKKK ~ 0000 ~ 0 KKKP ~ 0001 ~ 1 KKKO ~ 0002 ~ 2 KKPK ~ 0010 ~ 3 OOOP ~ 2221 ~ 79 OOOO ~ 2222 ~ 80 A stratégia: Válasz P ~ 1 O ~ 2 K ~ 0 P ~ 1 O ~ 2 K ~ 0
18 Rátermettség kiértékelése Stratégia: Mintajáték: Én: Ő: Jel K ~ 0 P ~ 1 O ~ 2 Eset Javaslat Ellenfél Érték Vereség Győzelem Döntetlen Győzelem Döntetlen 0
19 Szelekció Célja: a rátermett egyedek kiválasztása úgy, hogy a rosszabbak kiválasztása is kapjon esélyt. Rátermettség arányos (rulett kerék algoritmus): minél jobb a rátermettségi függvényértéke egy elemnek, annál nagyobb valószínűséggel választja ki Rangsorolásos: rátermettség alapján sorba rendezett egyedek közül a kisebb sorszámúakat nagyobb valószínűséggel választja ki Versengő: véletlenül kiválasztott egyedcsoportok (pl. párok) legjobb egyedét választja ki. Csonkolásos v. selejtezős: a rátermettség szerint legjobb (adott küszöbérték feletti) valahány egyedből véletlenszerűen választ néhányat.
20 Rekombináció A feladata az, hogy adott szülő-egyedekből olyan utódokat hozzon létre, amelyek a szüleik tulajdonságait "öröklik". Keresztezés: véletlen kiválasztott pozíción jelcsoportok (gének) vagy jelek cseréje Rekombináció: a szülő egyedek megfelelő jeleinek kombinálásával kapjuk az utód megfelelő jelét Ügyelni kell a kód-invariáns megtartására: vizsgálni kell, hogy az új kód értelmes lesz-e (permutáció)
21 Keresztezés Egy- illetve többpontos keresztezés Kódszakaszokat cserélünk Egyenletes keresztezés Jeleket cserélünk
22 Permutációk keresztezése 1. Parciálisan illesztett keresztezés Egy szakasz cseréje után párba állítja és kicseréli azokat a szakaszon kívüli elemeket, amelyek megsértik a permutáció tulajdonságot
23 Permutációk keresztezése 2. Ciklikus keresztezés 1. Választ egy véletlen i [1..length] -t 2. a i b i 3. Keres olyan j [1..length] -t (j i), amelyre a j =a i, 4. Ha nem talál, akkor vége, különben i:=j 5. goto
24 Rekombináció vektorokra x Köztes rekombináció y A szülők (x, y) által kifeszített hipertégla környezetében lesz az utód (u). i=1 n : u i = a i x i + (1-a i )y i a i [-h, 1+h] véletlen Lineáris rekombináció A szülők (x, y) által kifeszített egyenesen a szülők környezetében vagy x a szülők között lesz az utód (u). y i=1 n : u i = ax i + (1-a)y i a [-h, 1+h] véletlen
25 Mutáció A mutáció egy egyed (utód) kis mértékű véletlen változtatását végzi. Valós tömbbel való kódolásnál kis p valószínűséggel: i=1 n : z i = x i range i * (1-2*p) Bináris tömbbel való kódolásnál kis p valószínűséggel: i=1 n : z i = 1 - x i if random[0..1]<p Permutáció esetén egy jelpár cseréje egy kódszakaszon a jelek ciklikus léptetése vagy megfordítása vagy átrendezése.
26 Visszahelyezés A visszahelyezés a populációnak az utódokkal történő frissítése: Kiválasztja a populációnak a lecserélendő egyedeit, és azok helyére a kiválasztott utódokat teszi. utódok száma utódképzési ráta (u) = populáció száma lecserélendő egyedek száma visszahelyezési ráta (v) = populáció száma ha u=v, akkor feltétlen cseréről van szó további szelekció ha u<v, akkor egy utód több példánya is bekerülhet további szelekció ha u>v, akkor az utódok közül szelektál két szelekció is kell
Számítógépes döntéstámogatás. Genetikus algoritmusok
BLSZM-10 p. 1/18 Számítógépes döntéstámogatás Genetikus algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu BLSZM-10 p. 2/18 Bevezetés 1950-60-as
2. Visszalépéses keresés
2. Visszalépéses keresés Visszalépéses keresés A visszalépéses keresés egy olyan KR, amely globális munkaterülete: egy út a startcsúcsból az aktuális csúcsba (az útról leágazó még ki nem próbált élekkel
Algoritmusok Tervezése. 9. Előadás Genetikus Algoritmusok Dr. Bécsi Tamás
Algoritmusok Tervezése 9. Előadás Genetikus Algoritmusok Dr. Bécsi Tamás Biológiai háttér (nagyvonalúan) A sejt genetikai információit hordozó DNS általában kromoszómának nevezett makromolekulákba van
1. Milyen hatással van a heurisztika általában a keresõ rendszerek mûködésére?
2012. 06. 20. 1. Milyen hatással van a heurisztika általában a keresõ rendszerek mûködésére? A heurisztika olyan, a feladathoz kapcsolódó ötlet, amelyet közvetlenül építünk be egy algoritmusba, azért,
Képrekonstrukció 9. előadás
Képrekonstrukció 9. előadás Balázs Péter Képfeldolgozás és Számítógépes Grafika Tanszék Szegedi Tudományegyetem hv-konvex összefüggő halmazok Mag-burok-szerű rekonstrukció: S. Brunetti, A. Del Lungo, F.
értékel függvény: rátermettségi függvény (tness function)
Genetikus algoritmusok globális optimalizálás sok lehetséges megoldás közül keressük a legjobbat értékel függvény: rátermettségi függvény (tness function) populáció kiválasztjuk a legrátermettebb egyedeket
Keresések Gregorics Tibor Mesterséges intelligencia
Keresések ADAT := kezdeti érték while terminálási feltétel(adat) loop SELECT SZ FROM alkalmazható szabályok ADAT := SZ(ADAT) endloop KR vezérlési szintjei vezérlési stratégia általános modellfüggő heurisztikus
Genetikus algoritmusok
Genetikus algoritmusok Zsolnai Károly - BME CS zsolnai@cs.bme.hu Keresőalgoritmusok osztályai Véletlent használó algoritmusok Keresőalgoritmusok Kimerítő algoritmusok Dinamikus programozás BFS DFS Tabu
Universität M Mis is k k olol cic, F Eg a y kultä etem t, für Wi Gazda rts ságcha tudfts o w máis n s yen i scha Kar, ften,
8. Előadás Speciális optimalizációs eljárások Genetikus algoritmusok OPTIMALIZÁLÁSI ELJÁRÁSOK Gradiens alapú módszerek Véletlent használó módszerek Kimerítő keresésen alapuló módszerek Direkt módszerek
Képrekonstrukció 6. előadás
Képrekonstrukció 6. előadás Balázs Péter Képfeldolgozás és Számítógépes Grafika Tanszék Szegedi Tudományegyetem Diszkrét tomográfia (DT) A CT-hez több száz vetület szükséges időigényes költséges károsíthatja
Intelligens Rendszerek Elmélete. Párhuzamos keresés genetikus algoritmusokkal
Intelligens Rendszerek Elmélete Dr. Kutor László Párhuzamos keresés genetikus algoritmusokkal http://mobil.nik.bmf.hu/tantargyak/ire.html login: ire jelszó: IRE0 IRE / A természet általános kereső algoritmusa:
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Problémamegoldás kereséssel - csak lokális információra alapozva Pataki Béla BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Lokálisan
Mesterséges intelligencia
Mesterséges intelligencia Problémák és az útkeresések kapcsolata Az MI problémái, hogy a megoldandó feladatai nehezek, hatalmas a lehetséges válaszok tere (problématér), a helyes válaszok megtalálása intuíciót,
A genetikus algoritmus, mint a részletes modell többszempontú és többérdekű "optimálásának" általános és robosztus módszere
A genetikus algoritmus, mint a részletes modell többszempontú és többérdekű "optimálásának" általános és robosztus módszere Kaposvári Egyetem, Informatika Tanszék I. Kaposvári Gazdaságtudományi Konferencia
értékel függvény: rátermettségi függvény (tness function)
Genetikus algoritmusok globális optimalizálás sok lehetséges megoldás közül keressük a legjobbat értékel függvény: rátermettségi függvény (tness function) populáció kiválasztjuk a legrátermettebb egyedeket
Párhuzamos genetikus algoritmus
Párhuzamos genetikus algoritmus Szimuláció Készítette: Eperjesi Alfréd epaeaat.elte 2 1. Bevezetés A GRID rendszerek megjelenésével lehetővé vált a személyi számítógépek, a szuperszámítógépek, a számítógépes
2. Visszalépéses stratégia
2. Visszalépéses stratégia A visszalépéses keres rendszer olyan KR, amely globális munkaterülete: út a startcsúcsból az aktuális csúcsba (ezen kívül a még ki nem próbált élek nyilvántartása) keresés szabályai:
Dr. habil. Maróti György
infokommunikációs technológiák III.8. MÓDSZER KIDOLGOZÁSA ALGORITMUSOK ÁTÜLTETÉSÉRE KIS SZÁMÍTÁSI TELJESÍTMÉNYŰ ESZKÖZÖKBŐL ÁLLÓ NÉPES HETEROGÉN INFRASTRUKTÚRA Dr. habil. Maróti György maroti@dcs.uni-pannon.hu
Intelligens Rendszerek Elmélete. Párhuzamos keresés genetikus algoritmusokkal. A genetikus algoritmus működése. Az élet információ tárolói
Intelligens Rendszerek Elmélete dr. Kutor László Párhuzamos keresés genetikus algoritmusokkal http://mobil.nik.bmf.hu/tantargyak/ire.html login: ire jelszó: IRE07 IRE 5/ Természetes és mesterséges genetikus
Véletlen sorozatok ellenőrzésének módszerei. dolgozat
Eötvös Loránd Tudományegyetem Informatikai Kar Komputeralgebra Tanszék Véletlen sorozatok ellenőrzésének módszerei dolgozat Témavezető: Dr. Iványi Antal Miklós egyetemi tanár Készítette: Potempski Dániel
Bevezetés az informatikába
Bevezetés az informatikába 9. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.
Függvények. Programozás alapjai C nyelv 7. gyakorlat. LNKO függvény. Függvények(2) LNKO függvény (2) LNKO függvény (3)
Programozás alapjai C nyelv 7. gyakorlat Szeberényi Imre BME IIT Függvények C program egymás mellé rendelt függvényekből áll. A függvény (alprogram) jó absztrakciós eszköz a programok
Programozás alapjai C nyelv 7. gyakorlat. Függvények. Függvények(2)
Programozás alapjai C nyelv 7. gyakorlat Szeberényi Imre BME IIT Programozás alapjai I. (C nyelv, gyakorlat) BME-IIT Sz.I. 2005.11.05. -1- Függvények C program egymás mellé rendelt függvényekből
Kétszemélyes játékok Gregorics Tibor Mesterséges intelligencia
Kétszemélyes játékok Kétszemélyes, teljes információjú, véges, determinisztikus,zéró összegű játékok Két játékos lép felváltva adott szabályok szerint, amíg a játszma véget nem ér. Mindkét játékos ismeri
Genetikus algoritmusok az L- rendszereken alapuló. Werner Ágnes
Genetikus algoritmusok az L- rendszereken alapuló növénymodellezésben Werner Ágnes Motiváció: Procedurális modellek a növénymodellezésben: sok tervezési munka a felhasználónak ismerni kell az eljárás részleteit
Informatikai Rendszerek Tervezése
Sapientia - Erdélyi Magyar TudományEgyetem (EMTE) Csíkszereda IRT.- 5. kurzus 1 Informatikai Rendszerek Tervezése 4. Előadás: Genetikus algoritmusok Illyés László 1 Tartalom Bevezető A kanonikus genetikus
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Problémamegoldás kereséssel - lokális információval Pataki Béla Bolgár Bence BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Rugó tervezése
Modellezés Gregorics Tibor Mesterséges intelligencia
Modellezés 1. Állapottér-reprezentáció Állapottér: a probléma leírásához szükséges adatok által felvett érték-együttesek (azaz állapotok) halmaza az állapot többnyire egy összetett szerkezetű érték gyakran
V. Kétszemélyes játékok
Teljes információjú, véges, zéró összegű kétszemélyes játékok V. Kétszemélyes játékok Két játékos lép felváltva adott szabályok szerint. Mindkét játékos ismeri a maga és az ellenfele összes választási
Alkalmazott modul: Programozás. Programozási tételek, rendezések. Programozási tételek Algoritmusok és programozási tételek
Eötvös Loránd Tudományegyetem Informatikai Kar Alkalmazott modul: Programozás, rendezések 2015 Giachetta Roberto groberto@inf.elte.hu http://people.inf.elte.hu/groberto Algoritmusok és programozási tételek
end function Az A vektorban elõforduló legnagyobb és legkisebb értékek indexeinek különbségét.. (1.5 pont) Ha üres a vektor, akkor 0-t..
A Név: l 2014.04.09 Neptun kód: Gyakorlat vezető: HG BP MN l 1. Adott egy (12 nem nulla értékû elemmel rendelkezõ) 6x7 méretû ritka mátrix hiányos 4+2 soros reprezentációja. SOR: 1 1 2 2 2 3 3 4 4 5 6
INFORMATIKA javítókulcs 2016
INFORMATIKA javítókulcs 2016 ELMÉLETI TÉTEL: Járd körbe a tömb fogalmát (Pascal vagy C/C++): definíció, egy-, két-, több-dimenziós tömbök, kezdőértékadás definíciókor, tömb típusú paraméterek átadása alprogramoknak.
Felvételi vizsga mintatételsor Informatika írásbeli vizsga
BABEȘ BOLYAI TUDOMÁNYEGYETEM MATEMATIKA ÉS INFORMATIKA KAR A. tételsor (30 pont) Felvételi vizsga mintatételsor Informatika írásbeli vizsga 1. (5p) Egy x biten tárolt egész adattípus (x szigorúan pozitív
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Gépi tanulás. Neurális hálók, genetikus algoritmus. Közlekedési informatika MSc. Földes Dávid St. 405.
Gépi tanulás Neurális hálók, genetikus algoritmus Közlekedési informatika MSc Földes Dávid foldes.david@mail.bme.hu St. 405. Tartalom Mesterséges intelligencia - bevezetés Neurális hálózatok Evolúciós
BACKTRACKING Visszalépéses keresés
BACKTRACKING Visszalépéses keresés I. rész A wiki.prog.hu weboldal az alábbi leírással vezeti fel a visszalépéses keresés algoritmus bemutatását: A visszalépéses keresés (Backtracking) olyan esetekben
Kétszemélyes játékok
Mesterséges Intelligencia alapjai, gyakorlat Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék 2010 / udapest Kétszemélyes teljes információjú játékok két
ÖSSZEFOGLALÁS a Bsc záróvizsga mesterséges intelligenciáról szóló témaköréhez
ÖSSZEFOGLALÁS a Bsc záróvizsga mesterséges intelligenciáról szóló témaköréhez Az MI az informatikának az a területe, amelyik az intelligens gondolkodás számítógépes reprodukálása szempontjából hasznos
Számítógép és programozás 2
Számítógép és programozás 2 6. Előadás Problémaosztályok http://digitus.itk.ppke.hu/~flugi/ Emlékeztető A specifikáció egy előfeltételből és utófeltételből álló leírása a feladatnak Léteznek olyan feladatok,
Algoritmusok bonyolultsága
Algoritmusok bonyolultsága 9. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 18 Közelítő algoritmusok ládapakolás (bin packing) Adott n tárgy (s i tömeggel) és végtelen sok 1 kapacitású láda
Evolúció. Dr. Szemethy László egyetemi docens Szent István Egyetem VadVilág Megőrzési Intézet
Evolúció Dr. Szemethy László egyetemi docens Szent István Egyetem VadVilág Megőrzési Intézet Mi az evolúció? Egy folyamat: az élőlények tulajdonságainak változása a környezethez való alkalmazkodásra Egy
Alkalmazott modul: Programozás. Programozási tételek, rendezések Giachetta Roberto
Eötvös Loránd Tudományegyetem Informatikai Kar Alkalmazott modul: Programozás Programozási tételek, rendezések 2015 Giachetta Roberto groberto@inf.elte.hu http://people.inf.elte.hu/groberto Algoritmusok
Algoritmuselmélet 2. előadás
Algoritmuselmélet 2. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Február 12. ALGORITMUSELMÉLET 2. ELŐADÁS 1 Buborék-rendezés
Logika és számításelmélet. 11. előadás
Logika és számításelmélet 11. előadás NP-teljesség Emlékeztetőül: NP-teljes nyelv Egy L probléma NP-teljes (a polinom idejű visszavezetésre nézve), ha L NP L NP-nehéz, azaz minden L NP esetén L p L. Azaz
Fájlszervezés. Adatbázisok tervezése, megvalósítása és menedzselése
Fájlszervezés Adatbázisok tervezése, megvalósítása és menedzselése Célok: gyors lekérdezés, gyors adatmódosítás, minél kisebb tárolási terület. Kezdetek Nincs általánosan legjobb optimalizáció. Az egyik
Algoritmusok helyességének bizonyítása. A Floyd-módszer
Algoritmusok helyességének bizonyítása A Floyd-módszer Algoritmusok végrehajtása Egy A algoritmus esetében a változókat három változótípusról beszélhetünk, melyeket az X, Y és Z vektorokba csoportosítjuk
Mesterséges intelligencia. Gregorics Tibor people.inf.elte.hu/gt/mi
people.inf.elte.hu/gt/mi Szakirodalom Könyvek Fekete István - - Nagy Sára: Bevezetés a mesterséges intelligenciába, LSI Kiadó, Budapest, 1990, 1999. ELTE-Eötvös Kiadó, Budapest, 2006. Russel, J. S., Norvig,
Konjugált gradiens módszer
Közelítő és szimbolikus számítások 12. gyakorlat Konjugált gradiens módszer Készítette: Gelle Kitti Csendes Tibor Vinkó Tamás Faragó István Horváth Róbert jegyzetei alapján 1 LINEÁRIS EGYENLETRENDSZEREK
Felvételi tematika INFORMATIKA
Felvételi tematika INFORMATIKA 2016 FEJEZETEK 1. Természetes számok feldolgozása számjegyenként. 2. Számsorozatok feldolgozása elemenként. Egydimenziós tömbök. 3. Mátrixok feldolgozása elemenként/soronként/oszloponként.
1. Alapfogalmak Algoritmus Számítási probléma Specifikáció Algoritmusok futási ideje
1. Alapfogalmak 1.1. Algoritmus Az algoritmus olyan elemi műveletekből kompozíciós szabályok szerint felépített összetett művelet, amelyet megadott feltételt teljesítő bemeneti adatra végrehajtva, a megkívánt
Tartalomjegyzék. Tartalomjegyzék... 3 Előszó... 9
... 3 Előszó... 9 I. Rész: Evolúciós számítások technikái, módszerei...11 1. Bevezetés... 13 1.1 Evolúciós számítások... 13 1.2 Evolúciós algoritmus alapfogalmak... 14 1.3 EC alkalmazásokról általában...
Amortizációs költségelemzés
Amortizációs költségelemzés Amennyiben műveleteknek egy M 1,...,M m sorozatának a futási idejét akarjuk meghatározni, akkor egy lehetőség, hogy külön-külön minden egyes művelet futási idejét kifejezzük
Bánsághi Anna 2014 Bánsághi Anna 1 of 68
IMPERATÍV PROGRAMOZÁS Bánsághi Anna anna.bansaghi@mamikon.net 3. ELŐADÁS - PROGRAMOZÁSI TÉTELEK 2014 Bánsághi Anna 1 of 68 TEMATIKA I. ALAPFOGALMAK, TUDOMÁNYTÖRTÉNET II. IMPERATÍV PROGRAMOZÁS Imperatív
Algoritmusok bonyolultsága
Algoritmusok bonyolultsága 11. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm () 1 / 1 NP-telesség Egy L nyelv NP-teles, ha L NP és minden L NP-re L L. Egy Π döntési feladat NP-teles, ha Π NP és
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék 2016/17 2. félév 8. Előadás Dr. Kulcsár Gyula egyetemi docens Kereső algoritmusok alkalmazása
Sodródás Evolúció neutrális elmélete
Sodródás Evolúció neutrális elmélete Egy kísérlet Drosophila Drosophila pseudoobscura 8 hím + 8 nőstény/tenyészet 107 darab tenyészet Minden tenyészet csak heterozigóta egyedekkel indul a neutrális szemszín
Programozási segédlet
Programozási segédlet Programozási tételek Az alábbiakban leírtam néhány alap algoritmust, amit ismernie kell annak, aki programozásra adja a fejét. A lista korántsem teljes, ám ennyi elég kell legyen
Összetett programozási tételek Rendezések Keresések PT egymásra építése. 10. előadás. Programozás-elmélet. Programozás-elmélet 10.
Összetett programozási tételek Sorozathoz sorozatot relő feladatokkal foglalkozunk. A bemenő sorozatot le kell másolni, s közben az elemekre vonatkozó átalakításokat lehet végezni rajta: Input : n N 0,
Shannon és Huffman kód konstrukció tetszőleges. véges test felett
1 Shannon és Huffman kód konstrukció tetszőleges véges test felett Mire is jók ezek a kódolások? A szabványos karakterkódolások (pl. UTF-8, ISO-8859 ) általában 8 biten tárolnak egy-egy karaktert. Ha tudjuk,
1. Jelölje meg az összes igaz állítást a következők közül!
1. Jelölje meg az összes igaz állítást a következők közül! a) A while ciklusban a feltétel teljesülése esetén végrehajtódik a ciklusmag. b) A do while ciklusban a ciklusmag után egy kilépési feltétel van.
Véletlenszám generátorok és tesztelésük. Tossenberger Tamás
Véletlenszám generátorok és tesztelésük Tossenberger Tamás Érdekességek Pénzérme feldobó gép: $0,25-os érme 1/6000 valószínűséggel esik az élére 51% eséllyel érkezik a felfelé mutató oldalára Pörgetésnél
Bonyolultságelmélet. Thursday 1 st December, 2016, 22:21
Bonyolultságelmélet Thursday 1 st December, 2016, 22:21 Tárbonyolultság A futásidő mellett a felhasznált tárterület a másik fontos erőforrás. Ismét igaz, hogy egy Ram-program esetében ha csak a használt
Algoritmizálás. Horváth Gyula Szegedi Tudományegyetem Természettudományi és Informatikai Kar
Algoritmizálás Horváth Gyula Szegedi Tudományegyetem Természettudományi és Informatikai Kar horvath@inf.u-szeged.hu 0.1. Az algoritmikus tudás szintjei Ismeri (a megoldó algoritmust) Érti Le tudja pontosan
Programozás alapjai. 5. előadás
5. előadás Wagner György Általános Informatikai Tanszék Cserélve kiválasztásos rendezés (1) A minimum-maximum keresés elvére épül. Ismétlés: minimum keresés A halmazból egy tetszőleges elemet kinevezünk
Komputeralgebra Rendszerek
Komputeralgebra Rendszerek Programozás Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék 2014. február 23. TARTALOMJEGYZÉK 1 of 28 TARTALOMJEGYZÉK I 1 TARTALOMJEGYZÉK 2 Értékadás MAPLE -ben SAGE -ben 3
Populációgenetikai. alapok
Populációgenetikai alapok Populáció = egyedek egy adott csoportja Az egyedek eltérnek egymástól morfológiailag, de viselkedésüket tekintve is = genetikai különbségek Fenotípus = külső jellegek morfológia,
Gráfelméleti feladatok. c f
Gráfelméleti feladatok d e c f a b gráf, csúcsok, élek séta: a, b, c, d, e, c, a, b, f vonal: c, d, e, c, b, a út: f, b, a, e, d (walk, lanţ) (trail, lanţ simplu) (path, lanţ elementar) 1 irányított gráf,
Zenegenerálás, majdnem természetes zene. Bernád Kinga és Roth Róbert
Zenegenerálás, majdnem természetes zene Bernád Kinga és Roth Róbert Tartalom 1. Bevezető 2. Eddigi próbálkozások 3. Módszerek 4. Algoritmus bemutatása 5. Összefoglaló (C) Bernád Kinga, Roth Róbert 2 1.
Adatszerkezetek. Nevezetes algoritmusok (Keresések, rendezések)
Adatszerkezetek Nevezetes algoritmusok (Keresések, rendezések) Keresések A probléma általános megfogalmazása: Adott egy N elemű sorozat, keressük meg azt az elemet (határozzuk meg a helyét a sorozatban),
Hatékonyság 1. előadás
Hatékonyság 1. előadás Mi a hatékonyság Bevezetés A hatékonyság helye a programkészítés folyamatában: csak HELYES programra Erőforrásigény: a felhasználó és a fejlesztő szempontjából A hatékonyság mérése
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.
EGYSZERŰ, NEM IRÁNYÍTOTT (IRÁNYÍTATLAN) GRÁF
Összefoglaló Gráfok / EGYSZERŰ, NEM IRÁNYÍTOTT (IRÁNYÍTATLAN) GRÁF Adott a G = (V, E) gráf ahol a V a csomópontok, E az élek halmaza E = {(x, y) x, y V, x y (nincs hurokél) és (x, y) = (y, x)) Jelölések:
Többgénes jellegek. 1. Klasszikus (poligénes) mennyiségi jellegek. 2.Szinte minden jelleg több gén irányítása alatt áll
Többgénes jellegek Többgénes jellegek 1. 1. Klasszikus (poligénes) mennyiségi jellegek Multifaktoriális jellegek: több gén és a környezet által meghatározott jellegek 2.Szinte minden jelleg több gén irányítása
Gráfkeresések A globális munkaterületén a startcsúcsból kiinduló már feltárt utak találhatók (ez az ún. kereső gráf), külön megjelölve az utak azon
ÖSSZEFOGLALÁS Az MI az intelligens gondolkodás számítógépes reprodukálása szempontjából hasznos elveket, módszereket, technikákat kutatja, fejleszti, rendszerezi. Miről ismerhető fel az MI? Megoldandó
Visszalépéses keresés
Visszalépéses keresés Backtracking előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Alapvető működése Továbbfejlesztési
A félév során előkerülő témakörök
A félév során előkerülő témakörök rekurzív algoritmusok rendező algoritmusok alapvető adattípusok, adatszerkezetek, és kapcsolódó algoritmusok dinamikus programozás mohó algoritmusok gráf algoritmusok
Tartalom Keresés és rendezés. Vektoralgoritmusok. 1. fejezet. Keresés adatvektorban. A programozás alapjai I.
Keresés Rendezés Feladat Keresés Rendezés Feladat Tartalom Keresés és rendezés A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán
Algoritmizálás, adatmodellezés tanítása 7. előadás
Algoritmizálás, adatmodellezés tanítása 7. előadás Oszd meg és uralkodj! Több részfeladatra bontás, amelyek hasonlóan oldhatók meg, lépései: a triviális eset (amikor nincs rekurzív hívás) felosztás (megadjuk
Rendezések. A rendezési probléma: Bemenet: Kimenet: n számot tartalmazó (a 1,a 2,,a n ) sorozat
9. Előadás Rendezések A rendezési probléma: Bemenet: n számot tartalmazó (a 1,a 2,,a n ) sorozat Kimenet: a bemenő sorozat olyan (a 1, a 2,,a n ) permutációja, hogy a 1 a 2 a n 2 Rendezések Általánosabban:
Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás
Matematikai alapok és valószínőségszámítás Valószínőségi eloszlások Binomiális eloszlás Bevezetés A tudományos életben megfigyeléseket teszünk, kísérleteket végzünk. Ezek többféle különbözı eredményre
Keresés és rendezés. A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán
Keresés Rendezés Feladat Keresés és rendezés A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán 2016. november 7. Farkas B., Fiala
Bonyolultságelmélet. Monday 26 th September, 2016, 18:50
Bonyolultságelmélet Monday 26 th September, 2016, 18:50 A kiszámítás modelljei 2 De milyen architektúrán polinom? A kiszámításnak számos (matematikai) modellje létezik: Általános rekurzív függvények λ-kalkulus
HORVÁTH ZSÓFIA 1. Beadandó feladat (HOZSAAI.ELTE) ápr 7. 8-as csoport
10-es Keressünk egy egész számokat tartalmazó négyzetes mátrixban olyan oszlopot, ahol a főátló alatti elemek mind nullák! Megolda si terv: Specifika cio : A = (mat: Z n m,ind: N, l: L) Ef =(mat = mat`)
GROVER-algoritmus. Sinkovicz Péter. ELTE, MSc II dec.15.
ELTE, MSc II. 2011.dec.15. Áttekintés Feladat Algoritmus Kvantum keresési algoritmus áttekintése Input: N = 2 n elemű tömb, Ψ 1 = 0 1 kezdőállapot, f x0 (x) orákulum függvény. Output: x 0 keresett elem
Adatszerkezetek Adatszerkezet fogalma. Az értékhalmaz struktúrája
Adatszerkezetek Összetett adattípus Meghatározói: A felvehető értékek halmaza Az értékhalmaz struktúrája Az ábrázolás módja Műveletei Adatszerkezet fogalma Direkt szorzat Minden eleme a T i halmazokból
1. AZ MI FOGALMA. I. Bevezetés. Tulajdonságok. Kezdet ELIZA. Első szakasz (60-as évek)
1. AZ MI FOGALMA I. Bevezetés Nincs pontos definíció Emberi gondolkodás számítógépes reprodukálása Intelligens viselkedésű programok Az ember számára is nehéz problémák számítógépes megoldása Intellektuálisan
Evolúció. Dr. Szemethy László egyetemi docens Szent István Egyetem VadVilág Megőrzési Intézet
Evolúció Dr. Szemethy László egyetemi docens Szent István Egyetem VadVilág Megőrzési Intézet Mi az evolúció? Egy folyamat: az élőlények tulajdonságainak változása a környezethez való alkalmazkodásra Egy
Mesterséges Intelligencia alapjai
Mesterséges Intelligencia alapjai Evolúciós algoritmusok - neurális hálózatok Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék 2010 / Budapest
Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 13.
Algoritmuselmélet NP-teljes problémák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 13. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet
II. Állapottér-reprezentáció
Állapottér-reprezentáció elemei II. Állapottér-reprezentáció Állapottér: a feladat homlokterében álló adat (objektum) lehetséges értékeinek (állapotainak) halmaza lényegében egyetlen típusérték-halmaz
A 2017/2018 tanévi Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai. INFORMATIKA II. (programozás) kategória
Oktatási Hivatal A 2017/2018 tanévi Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai 1. feladat: Repülők (20 pont) INFORMATIKA II. (programozás) kategória Ismerünk városok közötti repülőjáratokat.
Adatszerkezetek I. 7. előadás. (Horváth Gyula anyagai felhasználásával)
Adatszerkezetek I. 7. előadás (Horváth Gyula anyagai felhasználásával) Bináris fa A fa (bináris fa) rekurzív adatszerkezet: BinFa:= Fa := ÜresFa Rekord(Elem,BinFa,BinFa) ÜresFa Rekord(Elem,Fák) 2/37 Bináris
Specifikáció. B logikai formula, a bemeneti feltétel, K logikai formula, a kimeneti feltétel, A az algoritmus, amelyre az állítás vonatkozik.
Algoritmus Az algoritmus olyan elemi műveletekből kompozíciós szabályok szerint felépített összetett művelet, amelyet megadott feltételt teljesítő bemeneti adatra végrehajtva, a megkívánt kimeneti adatot
Számítógép és programozás 2
Számítógép és programozás 2 11. Előadás Halmazkeresések, dinamikus programozás http://digitus.itk.ppke.hu/~flugi/ A keresési feladat megoldása Legyen a lehetséges megoldások halmaza M ciklus { X legyen
Keresési algoritmusok, optimalizáció
Keresési algoritmusok, optimalizáció Az eddig tanultakból a mostani részben gyakran használt (emiatt szükséges az ismeretük) programozási ismeretek: függvények létrehozása, meghívása (ld. 3. óra anyagában)
Adatszerkezetek 2. Dr. Iványi Péter
Adatszerkezetek 2. Dr. Iványi Péter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér (root) Nincsennek hurkok!!! 2 Bináris fák Azokat
Optimalizálási eljárások MSc hallgatók számára. 11. Előadás
Optimalizálási eljárások MSc hallgatók számára. Előadás Előadó: Hajnal Péter Jegyzetelő: Bajusz Barbara 203. április 24.. Vektorerelációk és SDP.. A maximális vágás probléma Adott egy w : E(G) R + elsúlyozott
A programozás alapjai előadás. Amiről szólesz: A tárgy címe: A programozás alapjai
A programozás alapjai 1 1. előadás Híradástechnikai Tanszék Amiről szólesz: A tárgy címe: A programozás alapjai A számítógép részegységei, alacsony- és magasszintű programnyelvek, az imperatív programozási
Gépi tanulás a gyakorlatban. Lineáris regresszió
Gépi tanulás a gyakorlatban Lineáris regresszió Lineáris Regresszió Legyen adott egy tanuló adatbázis: Rendelkezésünkre áll egy olyan előfeldolgozott adathalmaz, aminek sorai az egyes ingatlanokat írják