Optimalizálási eljárások MSc hallgatók számára. 11. Előadás
|
|
- Árpád Fekete
- 5 évvel ezelőtt
- Látták:
Átírás
1 Optimalizálási eljárások MSc hallgatók számára. Előadás Előadó: Hajnal Péter Jegyzetelő: Bajusz Barbara 203. április 24.. Vektorerelációk és SDP.. A maximális vágás probléma Adott egy w : E(G) R + elsúlyozott gráf. Keressünk olyan V = (S, T) vágást, amelyre w(v ) = w(e(v )) = w(e), ahol E(V ) = {e = xy E(G) : x S, e E(V ) y T vagy x T, y S} A lehető legnagyobb értéket veszi fel. Ismert, hogy a rpobléma N P-nehéz, a hatékony megoldás reménytelen két triviális közelítő algoritmust ismertetünk. Mindkettő Erdős Pál nevéhez köthető. ) Mohó algoritmus: e = xy maximális súlyú él, x-et tegyük S-be y-t T-be. A maradék csúcsokat v 3, v 4,...,v n sorban vizsgáljuk: v i S?, v i T? : v i abba a halmazba kerül, ahol nagyobb növelést ér el. Észrevétel. A mohó algoritmus által kialakított V = (S, T) vágásra w(v) 2 w(e) 2 w(e). Valóban. Minden csúcs besorolása az egyik partra w(v) és w(e(g) E(V)) súlyösszegeket módosítja. A mohó algoritmus ügyel arra, hogy w(v) > w(e(g) E(V)) a kezdetben fennálljon és továbbra is fennmaradjon. 2) Véletlen algoritmus: Minden x V csúcsra valószínűséggel x S, valószínűséggel x T (különböző csúcsokra a döntésünk független). Legyen V az így 2 2 kialakult vágás (valószínűségi változó) Legyen {, ha e két végpontja különböző partra esik, ξ e = 0, különben. Ekkor és E(w(V)) = e E w(v) = ξ e w e, w(e)eξ e = w e. 2 e E A másik oldalról a következő " negatív" eredmény ismert:. Tétel (Hastad). Ha létezik polinomiális algoritmus ami kiszámol egy vágást ((G, w) V), amelyre w(v) 6 7 w(v opt), akkor P = NP -
2 Ezután a nyilvánvaló (Erdős-féle) algoritmusok minden javítása jelentős eredmény: 2. Tétel (Goemans-Williamson, 994). Megadható olyan véletlen algoritmus ((G, w) V), amelyre E(w(V)) = 0,8789w(V opt ). A tétel bizonyítása egy algoritmus leírása és annak analízise. Először lássuk a vázlatos algoritmust: Goemans Williamson-algoritmus: () Válasszunk csúcsaink egy ρ : V (G) B n R n vektorreprezentációját (ahol n = V (G), B n = {x R n : x T x = }). (2) Válasszunk egy véletlen ν S n vektort. (3) Output: S = {v : ν T ρ(v) < 0}, T = {v : ν T ρ(v) > 0}. // valószínűséggel V (G) = S T. A fenti leírás több kérdést felvet: A (2) lépés megvalósítása egy sztochasztika probléma. Megoldása jól ismert: ν n darab komponensét függetlenül, 0 várható értékű, szórású normális eloszlású valószínúségi változóként generáljuk, majd normáljuk egységvektorrá. (): Hogy válasszuk ρ-t? Három lehetőséget kiemelünk. Ha ismernénk az optimális (S, T) vágást, akkor ρ S : x e, ρ T : x e kiszámíthatatlan" vektorreprezentáció optimális szétvágáshoz vezetne. " Ha ρ véletlen, akkor visszakapjuk Erdős véletlen algoritmusát. " Kiszámítható" algoritmussal határozzunk meg egy " ügyes" vektorreprezentációt. Nyilvánvaló a harmadik út a járható út. Ennek megvalósítása a Goemans Williamson-algoritmus lelke". " Ahhoz, hogy ezt meghatározzuk nézzük meg mit várunk eljárásunk outputjától: Legyen e = xy E {, x és y nem ugyanabba az osztályba esik, S e = 0, különben. 3. Következmény. Eξ e = P(ξ e = ) = 2α 2 = α = arccosρt xρ y. Ew(V) = e=xy E arccos ρ T w xρ y e. Egy olyan ρ meghatározása, ahol ez a várható érték a lehető legnagyobb, az túl nehéz probléma. -2
3 4. Lemma. arccosx 0,87856 ( x). 2 A lemma egy egyszerű kalkulusbeli gyakorlat. Ellenőrzését, kiszámítását az érdeklődő hallgatóra bízzuk. 5. Következmény. E(w(V)) 0,87856 e=xy E w(e) 2 ( ρt xρ y ). Vegyünk olyan ρ-t, ahol a fenti alsó becslésben szereplő szumma a lehető legnagyobb. Ez a rész a ρ vektorok G belső szorzat mátrixa/gram-mátrixa alapján felírható. Ez egy pozitív szemidefinit mátrix. A kívánt optimalizálási feladat egy szemidefinit optimalizálási feladat, kezelhető: Maximalizáljuk W, ( G) -et 2 Feltéve, hogy G vv =, minden v V esetén G 0, ahol W a súlyokat leíró (szimmetrikus) mátrix, azaz a szomszédsági mátrixban az -eseket kicseréljük a megfelelő él súlyára. Ez az optimalizálási feladat megoldása egy G Gram-mátrixot ad. Ebből kiszámolható egy ehhez tartozó {ρ v } v V egységvektorok rendszere, azaz egy vektorreprezentáció gráfunk csúcsainak. Ez adja a Goemans Williamson-algoritmus () lépésében szereplő ρ függvényt. Ezzel az algoritmus leírása teljes. A fentiek alapján analízise is egyszerűen összerakható korábbi észrevételeinkből: 6. Tétel. V GW az algoritmus által kiszámolt vágás. Ekkor Bizonyítás. E(w(V GW )) 0,87856 w(v opt ). E(w(V )) = arccosρ T w xρ y e 0,87856 w(e) 2 ( ρt x ρ y) e E =0,87856 p 0,878556w(V opt ), ahol V a Goemans Williamson-választás, V opt pedig az (ismeretlen) optimális vágás, de egy lehetséges megoldása az általunk vizsgált optimalizálási problémának színezhető gráfok színezése Emlékeztető. Adott egy G gráf. Két-színezhető-e? Ha igen, akkor színezzük ki két színnel (jól). Ez a probléma BSc Kombinatorika kurzus alapján könnyen megoldható. Adott G gráf 3-szenezhető-e? Ez a probléma N P-teljes. A tudomány jelenlegi állása szerint reménytelenül nehéz kérdés. -3
4 Vegyünk egy relaxált problémát: Adott G gráf, tudjuk hogy χ(g) = 3, azaz garantáltan 3-színezhető. Színezzük ki minél kevesebb színnel. A relaxált probléma is nehéznek bizonyul. Mind a mai napig a kutatás középpontjában áll. Nézzük az alapalgoritmust, ahonnan minden elindul. Wigderson-algoritmus:. eset: Ha minden x csúcsra d(x) τ = n, akkor mohó algoritmussal kiszínezzük. // Minden fok n, így a színigény legfeljebb n eset: Ha van olyan x csúcs, hogy d(x) > τ = n, akkor // x szomszédjainak halmazát jelölje N. // G N páros, hiszen G 3-színezhető. G N -et 2 színnel jól kiszínezhetjük. G G N // N-et leharapjuk. Vissza az algoritmus elejére. Az algoritmus analízise egyszerű: 7. Lemma. A Wigderson-algoritmus színigénye legfeljebb 3 n +. Valóban minden harapás legalább n-nel csökkenti a csúcsok számát. Azaz legfeljebb n harapás lehet, amelyek mindegyike két-két új színt használ. A harapások után minden kiszíneződik legfeljebb n + színnel. Könnyű látni, hogy a két lényegesen különböző eset közötti megkülönböztető τ paramétert lehet ügyesebben választani, de nagyságrendileg n optimális. A későbbi algoritmusunk hasonló struktúrát használ. A mohó színezésnél okosabb módszert használ. Így jobb τ megkülönböztető paraméterrel dolgozunk, jobb lesz algoritmusunk (várható) színigénye. A mohó algoritmust pótoló színezési algoritmus paramétereit az alábbi tétel foglalja össze. Igazából ez egy lépést ír le a teljes színezés kialakítása felé. Egy fészínezést számol ki, azaz egy olyan parciális színezést, ahol legalább a opontok fele kap szín (jól színezett módon), de van lehetőség egy csúcs színezetlen hagyására is (nem több mint a csúcsok felénél). Egy jó színezéshez ezt iterálni kell a színezetlen maradt csúcsokon. log n iteráció után egy jól színezett gráfhoz jutunk, amely színezésénél a színigény a tételbeli színigény log n-szerese. 8. Tétel (Karger Motwani Sudan). Létezik egy véletlen algoritmus, amely a következőket " tudja": Ha adott egy 3-színezhető G gráf, amelynek nincs τ-nál nagyobb foka, akkor az algoritmus kiszámol egy " jó fél-színezést", amely színigénye O(τ 0,632 ). Az algoritmus futási idejének várható értéke polinomiális. A bizonyítás egy algoritmus. Ismét csúcsokhoz színek rendelése helyett vektorokat rendelünk hozzájuk. -4
5 Karger Motwani Sudan-fél félszínezési algoritmus: () Választunk V egy " okos" vektorreprezentációját: ρ V S n. (2) Válasszunk függetlenül ν, ν 2,...,ν e S n véletlen független egységvektorokat/irányokat. (2a) Legyen v (sign(νi Tρ(v))l i=, ahol, ha x > 0, sign(x) = 0, ha x = 0,, ha x < 0. // 2 l db lehetséges kimenetel " szín", a 0 komponens valószínűsége 0. (2b) Kiválasztjuk a rosszul színezett éleket és egyik végpontjáról eltávolítjuk a színt. És így egy jó parciális színezést kapunk. (2c) Ha legalább a csúcsok fele színezett, akkor STOP. Ha a csúcsok kevesebb, mint fele marad színezett, akkor vissza (2)-höz. A lényegi kérdés ismét (), a jó/okos vektorreprezentáció megválasztása. Legyen {, ha e = xy él rosszul színezett, ξ e = 0, különben. Mennyi a várható értéke a rosszul színezett éleknek? ( Eξ e = P(xy rosszul színezett) = arccosρt x ρ ) l y. Cél: olyan ρ választása, ahol minden xy élre ( arccosρt x f ) y " kicsi", azaz arccos ρ T y ρ y " nagy", azaz ρ T x ρ y " kicsi". Az algoritmus () pontjának pontosítása: ρ választása legyen a következő SDP feladat egy optimiális G R V V megoldásmátrixából eredő vektorrendszer lesz: Minimalizáljuk µ-et Feltéve, hogy G 0, G uu = minden u csúcsra, G uv µ minden uv E élre. -5
6 Ennek megoldása ad egy p optimális értéket és G optimális helyet. Ebből kiolvasható egységvektorok (G uu = ) egy rendszere, gráfunk csúcsainak egy vektorreprezentációja. Ez a Karger Motwani Sudan-fél félszínezési algoritmus () lépésének pontos leírása. Ezekután az algoritmus analízise egyszerű: Először becsüljük meg p értékét. Ehhez vegyünk egy lehetségés megoldását optimalizálási feladatunknak: G gráfunk egy jó c : V (G) {, 2, 3}-színezésére legyen ρ v = e c(v), ahol e, e 2, e 3 egy 2-dimenziós síkban lévő, origó súlypontú szabályos háromszög csúcsaiba mutató három egységvektor. Ekkor a célfüggvény értéke 2/3, tehát p /2, azaz arccosp arccos( /2) = 2/3. Ebből a rosszul színezés mértékének várható értékére vonatkozó becslésünket pontosíthatjuk: P(ξ e ) = ( arccos(ρt u ρ v)) l ( ) l = 3 9τ, amennyiben l-et úgy választjuk, hogy (/3) l = /9τ legyen. Legyen E rossz az első véletlen színezés által rosszul színezett élek száma. Ekkor E(E rossz ) 9τ E V τ 9τ 2 = V 8. Azaz a Markov egyenlőtlenség alapján kicsi a valószínűsége, hogy egy színezéssel nem találjuk meg az outputot. Általában színezések ismétlésének számának várható értéke könnyen becsülhető. l választásával a 2 l színigény O(τ 0,632 ), a tétel adódik. A továbbiakat csak vázlatosan ismertetjük: A félszínezési algoritmus iterációja ad egy jó színezési algoritmust, aminek τ-tól való függése jobb mint a mohó algoritmusé. Így a Wigderson-sémában ezzel dolgozva a mohó algoritmus helyett egy jobb eljárást kapunk. Csak a végső eredményt mondjuk ki. 9. Tétel (Karger Motwani Sudan színezési algoritmusa). A fent vázolt Las Vegas algoritmus egy adott n pontú 3-színezhető gráfot O(n 0.39 log n) színnel jól színez. További élesítések is vannak, időnkből ennyire futotta. -6
10. Előadás. 1. Feltétel nélküli optimalizálás: Az eljárás alapjai
Optimalizálási eljárások MSc hallgatók számára 10. Előadás Előadó: Hajnal Péter Jegyzetelő: T. Szabó Tamás 2011. április 20. 1. Feltétel nélküli optimalizálás: Az eljárás alapjai A feltétel nélküli optimalizálásnál
11. Előadás. 1. Lineáris egyenlőség feltételek melletti minimalizálás
Optimalizálási eljárások MSc hallgatók számára 11. Előadás Előadó: Hajnal Péter Jegyzetelő: Hajnal Péter 2011. április 27. 1. Lineáris egyenlőség feltételek melletti minimalizálás Múlt héten nem szerepeltek
Gráfok csúcsszínezései
Gráfelmélet/Diszkrét Matematika MSc hallgatók számára Gráfok csúcsszínezései 2012. október 1. Előadó: Hajnal Péter 1. (Csúcs)színezések alapfogalmai Emlékeztetőként idézzünk fel néhány korábban tanult
Gráfelmélet/Diszkrét Matematika MSc hallgatók számára. 13. Előadás
Gráfelmélet/Diszkrét Matematika MSc hallgatók számára 13. Előadás Előadó: Hajnal Péter Jegyzetelő: Hajnal Péter 2009. december 7. Gráfok sajátértékei Definíció. Egy G egyszerű gráf sajátértékei az A G
10. Előadás P[M E ] = H
HALMAZRENDSZEREK 10. Előadás Matematika MSc hallgatók számára Előadó: Hajnal Péter Jegyzetelő: Hajnal Péter 2010. április 20. Halmazrendszerek színezése Egy halmazrendszer csúcshalmazának színezése jó
Optimalizálási eljárások/operációkutatás MSc hallgatók számára
Optimalizálási eljárások/operációkutatás MSc hallgatók számára 7. Előadás: MP(G) tesztelése, Gomory Hu-fák Előadó: Hajnal Péter 2018. tavasz 1. Egy vektor MP(G)-be esésének tesztelése A MP(G) Edmonds-tételbeli
Hadamard-mátrixok Előadó: Hajnal Péter február 23.
Szimmetrikus kombinatorikus struktúrák MSc hallgatók számára Hadamard-mátrixok Előadó: Hajnal Péter 2012. február 23. 1. Hadamard-mátrixok Ezen az előadáson látásra a blokkrendszerektől független kombinatorikus
Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )
Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:
Diszkrét Matematika MSc hallgatók számára. 4. Előadás
Diszkrét Matematika MSc hallgatók számára 4. Előadás Előadó: Hajnal Péter Jegyzetelő: Szarvák Gábor 2012. február 28. Emlékeztető. A primál feladat optimális értékét p -gal, a feladat optimális értékét
Totális Unimodularitás és LP dualitás. Tapolcai János
Totális Unimodularitás és LP dualitás Tapolcai János tapolcai@tmit.bme.hu 1 Optimalizálási feladat kezelése NP-nehéz Hatékony megoldás vélhetően nem létezik Jó esetben hatékony algoritmussal közelíteni
4. Előadás: Erős dualitás
Optimalizálási eljárások/operációkutatás MSc hallgatók számára 4. Előadás: Erős dualitás Előadó: Hajnal Péter 2018. Emlékeztető. A primál feladat optimális értékét p -gal, a feladat optimális értékét d
Gráf csúcsainak színezése. The Four-Color Theorem 4 szín tétel Appel és Haken bebizonyították, hogy minden térkép legfeljebb 4 színnel kiszínezhető.
Gráf csúcsainak színezése Kromatikus szám 2018. Április 18. χ(g) az ún. kromatikus szám az a szám, ahány szín kell a G gráf csúcsainak olyan kiszínezéséhez, hogy a szomszédok más színűek legyenek. 2 The
1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak
1. Generátorrendszer Generátorrendszer. Tétel (Freud, 4.3.4. Tétel) Legyen V vektortér a T test fölött és v 1,v 2,...,v m V. Ekkor a λ 1 v 1 + λ 2 v 2 +... + λ m v m alakú vektorok, ahol λ 1,λ 2,...,λ
Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek
Az november 23-i szeminárium témája Rövid összefoglaló Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek felfrissítése? Tekintsünk ξ 1,..., ξ k valószínűségi változókat,
KOMBINATORIKA ElŐADÁS Matematika BSc hallgatók számára. Klikkek gráfokban-1. Definíció. Egy G gráfban egy K V(G) csúcshalmazt klikknek nevezünk, ha K
KOMBINATORIKA ElŐADÁS Matematika BSc hallgatók számára Klikkek gráfokban Előadó: Hajnal Péter 2017 1. Az alapkérdés Emlékeztetünk egy a gráfok színezésénél tárgyalt fontos fogalomra: Definíció. Egy G gráfban
ALGORITMUSOK ÉS BONYOLULTSÁGELMÉLET Matematika MSc hallgatók számára. 6. Előadás
ALGORITMUSOK ÉS BONYOLULTSÁGELMÉLET Matematika MSc hallgatók számára 6. Előadás Előadó: Hajnal Péter Jegyzetelő: Szarvák Gábor 2011. március 8. 1. További példák Példa. Legyen L = 3-SZÍNEZHETŐSÉG = { G
Diszkrét Matematika MSc hallgatók számára 7. Előadás Párosítási tételek Előadó: Hajnal Péter Jegyzetelő: Kovácsházi Anna
Diszkrét Matematika MSc hallgatók számára 7. Előadás Párosítási tételek Előadó: Hajnal Péter Jegyzetelő: Kovácsházi Anna 2010. 10. 18. 2 7. Párosítási tételek.nb 7. Előadás Emlékeztető: Javító út, Javító
Gráfalgoritmusok ismétlés ősz
Gráfalgoritmusok ismétlés 2017. ősz Gráfok ábrázolása Egy G = (V, E) gráf ábrázolására alapvetően két módszert szoktak használni: szomszédsági listákat, illetve szomszédsági mátrixot. A G = (V, E) gráf
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 13.
Algoritmuselmélet NP-teljes problémák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 13. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet
Algoritmusok bonyolultsága
Algoritmusok bonyolultsága 9. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 18 Közelítő algoritmusok ládapakolás (bin packing) Adott n tárgy (s i tömeggel) és végtelen sok 1 kapacitású láda
Algoritmuselmélet 18. előadás
Algoritmuselmélet 18. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Május 7. ALGORITMUSELMÉLET 18. ELŐADÁS 1 Közelítő algoritmusok
Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1
Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában
Algoritmusok bonyolultsága
Algoritmusok bonyolultsága 5. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 27 Gazdaságos faváz Kruskal-algoritmus Joseph Kruskal (1928 2010) Legyen V = {v 1, v 2,..., v n }, E = {e 1, e 2,...,
Szimmetrikus kombinatorikus struktúrák MSc hallgatók számára. Ramsey-gráfok
Szimmetrikus kombinatorikus struktúrák MSc hallgatók számára Ramsey-gráfok Előadó: Hajnal Péter 1.hét 1. Ramsey-számok Definíció. Legyen Ram(G) = max{ω(g), α(g)} = max{ω(g), ω(g)}, azaz a legnagyobb halmaz
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2015. ősz 1. Diszkrét matematika 2.C szakirány 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2015.
egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk
Valószínűségszámítás 8. feladatsor 2015. november 26. 1. Bizonyítsuk be, hogy az alábbi folyamatok mindegyike martingál. a S n, Sn 2 n, Y n = t n 1+ 1 t 2 Sn, t Fn = σ S 1,..., S n, 0 < t < 1 rögzített,
A szimplex algoritmus
A szimplex algoritmus Ismétlés: reprezentációs tétel, az optimális megoldás és az extrém pontok kapcsolata Alapfogalmak: bázisok, bázismegoldások, megengedett bázismegoldások, degenerált bázismegoldás
Algoritmuselmélet. Bonyolultságelmélet. Katona Gyula Y.
Algoritmuselmélet Bonyolultságelmélet Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 12. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,
Gráfelmélet. I. Előadás jegyzet (2010.szeptember 9.) 1.A gráf fogalma
Készítette: Laczik Sándor János Gráfelmélet I. Előadás jegyzet (2010.szeptember 9.) 1.A gráf fogalma Definíció: a G=(V,E) párt egyszerű gráfnak nevezzük, (V elemeit a gráf csúcsainak/pontjainak,e elemeit
Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz
Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.
További forgalomirányítási és szervezési játékok. 1. Nematomi forgalomirányítási játék
További forgalomirányítási és szervezési játékok 1. Nematomi forgalomirányítási játék A forgalomirányítási játékban adott egy hálózat, ami egy irányított G = (V, E) gráf. A gráfban megengedjük, hogy két
Matematika (mesterképzés)
Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,
Példa Hajtsuk végre az 1 pontból a Dijkstra algoritmust az alábbi gráfra. (A mátrixban a c i j érték az (i, j) él hossza, ha nincs él.
Legrövidebb utak súlyozott gráfokban A feladat egy súlyozott gráfban egy adott pontból kiinduló legrövidebb utak megkeresése. Az input a súlyozott gráf és a kiindulási s pont. Outputként egy legrövidebb
5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus.
5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus. Optimalis feszítőfák Egy összefüggő, irányítatlan
Sapientia - Erdélyi Magyar TudományEgyetem (EMTE) Csíkszereda IRT- 4. kurzus. 3. Előadás: A mohó algoritmus
Csíkszereda IRT-. kurzus 3. Előadás: A mohó algoritmus 1 Csíkszereda IRT. kurzus Bevezetés Az eddig tanult algoritmus tipúsok nem alkalmazhatók: A valós problémák nem tiszta klasszikus problémák A problémák
Gráfelmélet/Diszkrét Matematika MSc hallgatók számára. 3. Előadás
Gráfelmélet/Diszkrét Matematika MSc hallgatók számára 3. Előadás Előadó: Hajnal Péter Jegyzetelő: Pék Máté 2009. szeptember 21. 1. Folyamok 1.1. Definíció. G = (V, E, K, B) irányított gráf, ha e! v : ekv
Logika és számításelmélet. 11. előadás
Logika és számításelmélet 11. előadás NP-teljesség Emlékeztetőül: NP-teljes nyelv Egy L probléma NP-teljes (a polinom idejű visszavezetésre nézve), ha L NP L NP-nehéz, azaz minden L NP esetén L p L. Azaz
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2016. tavasz 1. Diszkrét matematika 2. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
A maximum likelihood becslésről
A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának
GRÁFELMÉLET. 7. előadás. Javító utak, javító utak keresése, Edmonds-algoritmus
GRÁFELMÉLET 7. előadás Javító utak, javító utak keresése, Edmonds-algoritmus Definíció: egy P utat javító útnak nevezünk egy M párosításra nézve, ha az út páratlan hosszú, kezdő- és végpontjai nem párosítottak,
Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla
Kvadratikus alakok és euklideszi terek (előadásvázlat, 0. október 5.) Maróti Miklós, Kátai-Urbán Kamilla Az előadáshoz ajánlott jegyzet: Szabó László: Bevezetés a lineáris algebrába, Polygon Kiadó, Szeged,
1. Oldja meg a z 3 (5 + 3j) (8 + 2j) 2. Adottak az A(1,4,3), B(3,1, 1), C( 5,2,4) pontok a térben.
Szak: Műszaki menedzser I. Dátum: 006. június. MEGOLDÓKULCS Tárgy: Matematika szigorlat Idő: 0 perc Neptun kód: Előadó: Berta Gábor szig 06 06 0 Pontszám: /00p. Oldja meg a z (5 + j (8 + j + = (+5j (7
Általános algoritmustervezési módszerek
Általános algoritmustervezési módszerek Ebben a részben arra mutatunk példát, hogy miként használhatóak olyan általános algoritmustervezési módszerek mint a dinamikus programozás és a korlátozás és szétválasztás
Kiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely.
Kiválasztás A változó szerint Egymintás t-próba Mann-Whitney U-test paraméteres nem-paraméteres Varianciaanalízis De melyiket válasszam? Kétmintás t-próba Fontos, hogy mindig a kérdésnek és a változónak
Az impulzusnyomatékok általános elmélete
Az impulzusnyomatékok általános elmélete November 27, 2006 Az elemi kvantummechanika keretében tárgyaltuk már az impulzusnyomatékot. A továbbiakban általánosítjuk az impulzusnyomaték fogalmát a kvantummechanikában
Régebbi Matek M1 zh-k. sztochasztikus folyamatokkal kapcsolatos feladatai.
Régebbi Matek M1 zh-k Folyamfeladatokkal, többszörös összef ggőséggel, párosításokkal, Nagy szḿok törvényével, Centrális Határeloszlás tétellel, sztochasztikus folyamatokkal kapcsolatos feladatai. Gráfok
Diszkrét Matematika MSc hallgatók számára. 14. Előadás
Diszkrét Matematika MSc hallgatók számára 14. Előadás Előadó: Hajnal Péter Jegyzetelő: Hajnal Péter 2012. Nem maradt rá idő 1. Feltétel nélküli optimalizálás 1.1. Az eljárások alapjai A feltétel nélküli
Gazdasági matematika II. vizsgadolgozat, megoldással,
Gazdasági matematika II. vizsgadolgozat, megoldással, levelező képzés Definiálja az alábbi fogalmakat! 1. Kvadratikus mátrix invertálhatósága és inverze. (4 pont) Egy A kvadratikus mátrixot invertálhatónak
Diszkrét Matematika MSc hallgatók számára. 11. Előadás. Előadó: Hajnal Péter Jegyzetelő: Szarvák Gábor november 29.
Diszkrét Matematika MSc hallgatók számára 11. Előadás Előadó: Hajnal Péter Jegyzetelő: Szarvák Gábor 2010. november 29. 1. Gráfok metszési száma z előadás a metszési szám nevű gráfparaméterről szól. Ez
Dualitás Dualitási tételek Általános LP feladat Komplementáris lazaság 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 7. Előadás Árazási interpretáció Tekintsük újra az erőforrás allokációs problémát (vonat
5. előadás - Regressziószámítás
5. előadás - Regressziószámítás 2016. október 3. 5. előadás 1 / 18 Kétváltozós eset A modell: Y i = α + βx i + u i, i = 1,..., T, ahol X i független u i -től minden i esetén, (u i ) pedig i.i.d. sorozat
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:
8. Előadás. Megyesi László: Lineáris algebra, , oldal. 8. előadás Mátrix rangja, Homogén lineáris egyenletrendszer
8. Előadás Megyesi László: Lineáris algebra, 51. 56., 70. 74. oldal. Gondolkodnivalók Elemi bázistranszformáció 1. Gondolkodnivaló Most ne vegyük figyelembe, hogy az elemi bázistranszformáció során ez
Számítógépes Grafika mintafeladatok
Számítógépes Grafika mintafeladatok Feladat: Forgassunk a 3D-s pontokat 45 fokkal a X tengely körül, majd nyújtsuk az eredményt minden koordinátájában kétszeresére az origóhoz képest, utána forgassunk
Diverzifikáció Markowitz-modell MAD modell CAPM modell 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 11. Előadás Portfólió probléma Portfólió probléma Portfólió probléma Adott részvények (kötvények,tevékenységek,
e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma:
Normális eloszlás ξ valószínűségi változó normális eloszlású. ξ N ( µ, σ 2) Paraméterei: µ: várható érték, σ 2 : szórásnégyzet (µ tetszőleges, σ 2 tetszőleges pozitív valós szám) Normális eloszlás sűrűségfüggvénye:
Infobionika ROBOTIKA. X. Előadás. Robot manipulátorok II. Direkt és inverz kinematika. Készült a HEFOP P /1.0 projekt keretében
Infobionika ROBOTIKA X. Előadás Robot manipulátorok II. Direkt és inverz kinematika Készült a HEFOP-3.3.1-P.-2004-06-0018/1.0 projekt keretében Tartalom Direkt kinematikai probléma Denavit-Hartenberg konvenció
Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 9. Előadás Az optimalizálás alapfeladata Keressük f függvény maximumát ahol f : R n R és
Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra:
Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: C(T ) = (u,v) T c(u,v) Az F = (V,T) gráf minimális feszitőfája G-nek,
11. Előadás. 11. előadás Bevezetés a lineáris programozásba
11. Előadás Gondolkodnivalók Sajátérték, Kvadratikus alak 1. Gondolkodnivaló Adjuk meg, hogy az alábbi A mátrixnak mely α értékekre lesz sajátértéke a 5. Ezen α-ák esetén határozzuk meg a 5 sajátértékhez
Közösségek keresése nagy gráfokban
Közösségek keresése nagy gráfokban Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 2011. április 14. Katona Gyula Y. (BME SZIT) Közösségek
Gépi tanulás. Féligellenőrzött tanulás. Pataki Béla (Bolgár Bence)
Gépi tanulás Féligellenőrzött tanulás Pataki Béla (Bolgár Bence) BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Féligellenőrzött tanulás Mindig kevés az adat, de
A Markowitz modell: kvadratikus programozás
A Markowitz modell: kvadratikus programozás Losonczi László Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Debrecen, 2011/12 tanév, II. félév Losonczi László (DE) A Markowitz modell 2011/12 tanév,
Konjugált gradiens módszer
Közelítő és szimbolikus számítások 12. gyakorlat Konjugált gradiens módszer Készítette: Gelle Kitti Csendes Tibor Vinkó Tamás Faragó István Horváth Róbert jegyzetei alapján 1 LINEÁRIS EGYENLETRENDSZEREK
Approximációs algoritmusok
Approximációs algoritmusok Nehéz (pl. NP teljes) problémák optimális megoldásának meghatározására nem tudunk (garantáltan) polinom idejű algoritmust adni. Lehetőségek: -exponenciális futási idejű algoritmus
Gépi tanulás a gyakorlatban. Lineáris regresszió
Gépi tanulás a gyakorlatban Lineáris regresszió Lineáris Regresszió Legyen adott egy tanuló adatbázis: Rendelkezésünkre áll egy olyan előfeldolgozott adathalmaz, aminek sorai az egyes ingatlanokat írják
Sztochasztikus folyamatok alapfogalmak
Matematikai Modellalkotás Szeminárium 2012. szeptember 4. 1 Folytonos idejű Markov láncok 2 3 4 1 Folytonos idejű Markov láncok 2 3 4 Folytonos idejű Markov láncok I Adott egy G = (V, E) gráf Folytonos
Szemidenit optimalizálás és az S-lemma
Szemidenit optimalizálás és az S-lemma Pólik Imre SAS Institute, USA BME Optimalizálás szeminárium 2011. október 6. Outline 1 Egyenl tlenségrendszerek megoldhatósága 2 Az S-lemma 3 Szemidenit kapcsolatok
1. Az euklideszi terek geometriája
1. Az euklideszi terek geometriája Bázishoz tartozó skaláris szorzat Emékeztető Az R n vektortérbeli v = λ 2... és w = λ 1 λ n µ 1 µ 2... µ n λ 1 µ 1 +λ 2 µ 2 +...+λ n µ n. Jele v,w. v,w = v T u, azaz
Algoritmuselmélet 7. előadás
Algoritmuselmélet 7. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Március 11. ALGORITMUSELMÉLET 7. ELŐADÁS 1 Múltkori
Saj at ert ek-probl em ak febru ar 26.
Sajátérték-problémák 2018. február 26. Az alapfeladat Adott a következő egyenlet: Av = λv, (1) ahol A egy ismert mátrix v ismeretlen, nem zérus vektor λ ismeretlen szám Azok a v, λ kombinációk, amikre
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Markov-láncok stacionárius eloszlása
Markov-láncok stacionárius eloszlása Adatbányászat és Keresés Csoport, MTA SZTAKI dms.sztaki.hu Kiss Tamás 2013. április 11. Tartalom Markov láncok definíciója, jellemzése Visszatérési idők Stacionárius
Nagyságrendek. Kiegészítő anyag az Algoritmuselmélet tárgyhoz. Friedl Katalin BME SZIT február 1.
Nagyságrendek Kiegészítő anyag az Algoritmuselmélet tárgyhoz (a Rónyai Ivanyos Szabó: Algoritmusok könyv mellé) Friedl Katalin BME SZIT friedl@cs.bme.hu 018. február 1. Az O, Ω, Θ jelölések Az algoritmusok
Érdemes egy n*n-es táblázatban (sorok-lányok, oszlopok-fiúk) ábrázolni a két színnel, mely éleket húztuk be (pirossal, kékkel)
Kombi/2 Egy bizonyos bulin n lány és n fiú vesz részt. Minden fiú pontosan a darab lányt és minden lány pontosan b darab fiút kedvel. Milyen (a,b) számpárok esetén létezik biztosan olyan fiúlány pár, akik
Szimuláció RICHARD M. KARP és AVI WIGDERSON. (Készítette: Domoszlai László)
Szimuláció RICHARD M. KARP és AVI WIGDERSON A Fast Parallel Algorithm for the Maximal Independent Set Problem című cikke alapján (Készítette: Domoszlai László) 1. Bevezetés A következőkben megadott algoritmus
4. Előadás. A legkisebb négyzetek problémája a következő optimalizálási alapfeladat: Minimalizáljuk
OPTIMALIZÁLÁSI ELJÁRÁSOK 4. Előadás Matematika MSc hallgatók számára Előadó: Hajnal Péter Jegyzetelő: Magyari Nikolett 2011. március 2. 1. A legkisebb négyzetek probléma A legkisebb négyzetek problémája
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
É Ü É ÉÉ Ú ű ű É Á Á Á Á Á Á ű Á Á Á É Ú Ö ű ű É ű É ű Ú ű ű ű ű É Á ű ű Á ű ű ű Ü Ü Ú Ü ű ű ű Ú Ö Ó Ú ű ű ű ű ű ű ű ű ű Ú Ú Ö Á ű ű ű ű Ü ű Ü ű ű Ü ű ű Ü Ú Ú Ö ű Á Á ű ű ű Ú Ü Ü ű ű ű ű Ú Ú Ú ű Ü ű ű
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.
Ú Í Í í í ú Ő ü Ú É í í Ü ű ü ű í í í ű ü ú ü í ű ü ú ü ú ü ü ü ű ü Ú É í ú ü ü ü ú ü ü ú í ü ü ú ü í í ú ű í ú ű ü í í ü í Í í í ü í ú Ü Ú É í í í ü ü ü ú ú ü ü ú ü ü ú ú í í ű ü ü ü ű Á ü ú ű í í ü ü
Gazdasági matematika II. vizsgadolgozat megoldása, június 10
Gazdasági matematika II. vizsgadolgozat megoldása, 204. június 0 A dolgozatírásnál íróeszközön kívül más segédeszköz nem használható. A dolgozat időtartama: 90 perc. Ha a dolgozat első részéből szerzett
ALGORITMUSOK ÉS BONYOLULTSÁGELMÉLET Matematika MSc hallgatók számára. 11. Előadás
ALGORITMUSOK ÉS BONYOLULTSÁGELMÉLET Matematika MSc hallgatók számára 11. Előadás Előadó: Hajnal Péter Jegyzetelő: Hajnal Péter 2011. április 26. 1. Mahaney-tétel bizonyítása Emlékeztető. Mahaney-tétel
Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 12.
Algoritmuselmélet NP-teljes problémák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 12. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet
Kétfázisú szimplex algoritmus és speciális esetei
5. gyakorlat Kétfázisú szimplex algoritmus és speciális esetei. Emlékeztető Standard alak, áttérés Standard alak Minden feltétel et tartalmaz csak. A célfüggvényünket maximalizáljuk. A b vektor (jobb oldalon
λ 1 u 1 + λ 2 v 1 + λ 3 w 1 = 0 λ 1 u 2 + λ 2 v 2 + λ 3 w 2 = 0 λ 1 u 3 + λ 2 v 3 + λ 3 w 3 = 0
Vektorok a térben Egy (v 1,v 2,v 3 ) valós számokból álló hármast vektornak nevezzünk a térben (R 3 -ban). Használni fogjuk a v = (v 1,v 2,v 3 ) jelölést. A v 1,v 2,v 3 -at a v vektor komponenseinek nevezzük.
Diszkrét matematika 1. estis képzés
Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
Algoritmusok bonyolultsága
Algoritmusok bonyolultsága 11. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm () 1 / 1 NP-telesség Egy L nyelv NP-teles, ha L NP és minden L NP-re L L. Egy Π döntési feladat NP-teles, ha Π NP és
Gazdasági matematika II. vizsgadolgozat megoldása A csoport
Gazdasági matematika II. vizsgadolgozat megoldása A csoport Definiálja az alábbi fogalmakat!. Egy eseménynek egy másik eseményre vonatkozó feltételes valószínűsége. ( pont) Az A esemény feltételes valószínűsége
6. Előadás. Megyesi László: Lineáris algebra, oldal. 6. előadás Bázis, dimenzió
6. Előadás Megyesi László: Lineáris algebra, 37. 41. oldal. Gondolkodnivalók Lineáris függetlenség 1. Gondolkodnivaló Legyen V valós számtest feletti vektortér. Igazolja, hogy ha a v 1, v 2,..., v n V
A mérési eredmény megadása
A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a véletlenszerű
Bevezetés a hipotézisvizsgálatokba
Bevezetés a hipotézisvizsgálatokba Nullhipotézis: pl. az átlag egy adott µ becslése : M ( x -µ ) = 0 Alternatív hipotézis: : M ( x -µ ) 0 Szignifikancia: - teljes bizonyosság csak teljes enumerációra -
22. GRÁFOK ÁBRÁZOLÁSA
22. GRÁFOK ÁBRÁZOLÁSA A megoldandó feladatok, problémák modellezése során sokszor gráfokat alkalmazunk. A gráf fogalmát a matematikából ismertnek vehetjük. A modellezés során a gráfok több változata is
Gráfok, definíciók. Gráfok ábrázolása. Az adott probléma megoldásához ténylegesen mely műveletek szükségesek. Ábrázolások. Példa:
Gráfok, definíciók Irányítatlan gráf: G = (V,E), ahol E rendezetlen (a,b),a,b V párok halmaza. Irányított gráf: G = (V,E) E rendezett (a,b) párok halmaza; E V V. Címkézett (súlyozott) gráf: G = (V,E,C)
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát
Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport
Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12,