Keresések Gregorics Tibor Mesterséges intelligencia
|
|
- Amanda Oroszné
- 5 évvel ezelőtt
- Látták:
Átírás
1 Keresések
2 ADAT := kezdeti érték while terminálási feltétel(adat) loop SELECT SZ FROM alkalmazható szabályok ADAT := SZ(ADAT) endloop KR vezérlési szintjei vezérlési stratégia általános modellfüggő heurisztikus független a feladattól és annak modelljétől: nem merít sem a feladat ismereteiből, sem a modell sajátosságaiból. nem függ a feladat ismereteitől, de épít a feladat modelljének általános elemeire. a feladattól származó, annak modelljében nem rögzített, a megoldást segítő speciális ismeret
3 Általános vezérlési stratégiák általános stratégiák nemmódosítható lokális keresések evolúciós algoritmus rezolúció módosítható visszalépéses keresések gráfkeresések szabályalapú köv.
4 1. Lokális keresések A lokális keresés olyan KR, amely a probléma reprezentációs gráfjának egyetlen csúcsát (aktuális csúcs) és annak szűk környezetét tárolja (a globális munkaterületén). Kezdetben az aktuális csúcs a startcsúcs, és a keresés akkor áll le, ha az aktuális csúcs a célcsúcs lesz. Az aktuális csúcsot minden lépésben annak környezetéből vett jobb csúccsal cseréli le (keresési szabály). A jobbság eldöntéséhez (vezérlési stratégia) egy kiértékelő (cél-, rátermettségi-, heurisztikus) függvényt használ, amely reményeink szerint annál jobb értéket ad egy csúcsra, minél közelebb esik az a célhoz.
5 ADAT := kezdeti érték while terminálási feltétel(adat) loop SELECT SZ FROM alkalmazható szabályok ADAT := SZ(ADAT) endloop Hegymászó algoritmus Mindig az aktuális (akt) csúcs legjobb gyermekére lép, amelyik lehetőleg nem a szülője. 1. akt := start. while akt T loop. akt := arg opt f ( (akt) (akt) ). endloop. return akt A bejárt út megadásához az akt egymás után felvett értékeit össze kell gyűjteni. if (akt) = then return nem talált megoldást if (akt) ={ (akt)} then akt := (akt) else akt := arg opt f ( (akt) (akt)) (akt) ~ akt gyermekei (akt) ~ akt egy szülője Megjegyzés: Az eredeti hegymászó algoritmus nem zárja ki a szülőre való lépést, viszont nem engedi meg, hogy az aktuális csúcsot egy rosszabb értékű csúcsra cseréljük (ilyenkor a keresés inkább leáll).
6 [,,] [,1,] [,,] [1,,] Hanoi tornyai [1,,] [,1,] [1,1,] [1,1,] [,1,] [,,] [,1,] [1,,1] [,,] [,,1] [,,1] [,,] [,,] [1,,1] [,1,1] [,,] [1,,] [1,,] [,,] [,,1] [,,1] [,1,1] [1,1,1]
7 a Hogyan látja egy keresés a reprezentációs gráfot? Egy keresés fokozatosan fedezi fel a reprezentációs gráfot: bizonyos részeihez soha nem jut el, de a felfedezett részt sem feltétlenül tárolja el teljesen, sőt, sokszor torzultan látja azt: ha például egy csúcshoz érve nem vizsgálja meg, hogy ezt korábban már felfedezte-e, hanem új csúcsként regisztrálja, akkor az eredeti gráf helyett egy fát fog látni. eredeti gráf: keresés által látott gráf: start a b c b b d c e g f d a b
8 Reprezentációs gráf fává egyenesítése Ha a keresés nem vizsgálja meg egy csúcsról, hogy korábban már felfedezte-e, akkor az eredeti reprezentációs gráf helyett annak fává kiegyenesített változatában keres. Előny: eltűnnek a körök, de a megoldási utak megmaradnak Hátrány: duplikátumok jelennek meg, sőt a körök kiegyenesítése végtelen hosszú utakat eredményez A kétirányú (oda-vissza) élek drasztikusan megnövelik a kiegyenesítéssel kapott fa méretét. Olcsóbb, ha eltárolhatjuk egy csúcsnak azt a szülőcsúcsát, amelyik felől a csúcsot elértük (lokális kereséseknél ez egyetlen csúcs tárolását jelenti). Így egy csúcsból a szülőjébe visszavezető él könnyen felismerhető és figyelmen kívül hagyható.
9 Előny: könnyű implementálni Hátrányok: o o Megjegyzés a hegymászó algoritmushoz Csak erős heurisztika esetén lesz sikeres: különben eltéved (nem talál megoldást), sőt zsákutcában beragad (leáll). Segíthet, ha: véletlenül választott startcsúcsból újra- és újra elindítjuk random restart local search k darab aktuális csúcs legjobb k darab gyerekére lépünk local beam search gyengítjük a mohó stratégiáját simulated annealing Lokális optimum hely körül vagy ekvidisztans felületen (azonos értékű szomszédos csúcsok között) található körön, végtelen működésbe eshet. Segíthet, ha: növeljük a memóriát tabu search
10 Tabu keresés A globális munkaterületén az aktuális csúcson (akt) kívül nyilvántartja még az utolsó néhány érintett csúcsot: Tabu halmaz az eddigi legjobb csúcsot: optimális csúcs (opt) Egy keresési szabály minden lépésben az aktuális csúcsnak a legjobb, de nem a Tabu halmazban levő, gyerekére lép ha akt jobb, mint az opt, akkor opt az akt lesz frissíti akt-tal a sorszerkezetű Tabu halmazt Terminálási feltételek: ha az opt a célcsúcs ha az opt sokáig nem változik.
11 ADAT := kezdeti érték while terminálási feltétel(adat) loop SELECT SZ FROM alkalmazható szabályok ADAT := SZ(ADAT) endloop Tabu keresés algoritmusa 1. akt, opt, Tabu := start, start,. while not (opt T or opt régóta nem változik) loop. akt := arg opt f ( (akt) Tabu ). Tabu := Módosít(akt,Tabu). if f(akt) jobb, mint f(opt) then opt := akt 6. endloop 7. return akt if (akt) = then return nem talált megoldást else if (akt) Tabu) then akt := arg opt f ( (akt)) else akt := arg opt f ( (akt) Tabu)
12 [,,] [,1,] [,,] [1,,] Hanoi tornyai [1,,] [1,1,] [1,1,] [,1,] [,1,] [,,] [,1,] [1,,1] [,,] [,,1] [,,1] [,,] [,,] [1,,1] [,1,1] [,,] [1,,] [1,,] [,,] [,,1] [,,1] [,1,1] [1,1,1]
13 Megjegyzés Előnyök: tabu méreténél rövidebb köröket észleli, és ez segíthet a lokális optimum hely illetve az ekvidisztans felület körüli körök leküzdésében. Hátrányok: a Tabu halmaz méretét kísérletezéssel kell belőni zsákutcába futva a nem-módosítható stratégia miatt beragad
14 Szimulált hűtés A keresési szabály a következő csúcsot véletlenszerűen választja ki az aktuális (akt) csúcs gyermekei közül. Ha az így kiválasztott új csúcs kiértékelő függvény-értéke nem rosszabb, mint az akt csúcsé (itt f(új) f(akt)), akkor elfogadjuk aktuális csúcsnak Ha az új csúcs függvényértéke rosszabb (itt f(új) > f(akt)), akkor egy olyan véletlenített módszert alkalmazunk, ahol az új csúcs elfogadásának valószínűsége fordítottan arányos az f(akt) f(új) különbséggel: e f(akt) f(új) T random [ 0, 1]
15 Hűtési ütemterv Egy csúcs elfogadásának valószínűségét az elfogadási képlet kitevőjének T együtthatójával szabályozhatjuk. Ezt egy (T k, L k ) k=1,, ütemterv vezérli, amely L 1 lépésen keresztül T 1, majd L lépésen keresztül T, stb. lesz. f current f(new) e T k > rand[0,1] Ha T 1, T, szigorúan monoton csökken, akkor egy ugyanannyival rosszabb függvényértékű új csúcsot kezdetben nagyobb valószínűséggel fogad el a keresés, mint később. f(új)=10, f(akt)=107 T exp(-1/t)
16 ADAT := kezdeti érték while terminálási feltétel(adat) loop SELECT SZ FROM alkalmazható szabályok ADAT := SZ(ADAT) endloop 1. akt := start ; k := 1 ; i := 1. while not(akt T or f(akt) régóta nem változik) loop. if i > L k then k := k+1; i := 1. új := select( (akt) (akt) ). if f(új) f(akt) or f(új)>f(akt) and 6. then akt := új 7. i := i+1 8. endloop 9. return akt Szimulált hűtés algoritmusa e f(akt) f(új) T k rand[ 0, 1] if (akt) = then return nem talált megoldást if (akt) ={ (akt)} then új := (akt) else új := select( (akt) (akt))
17 Lokális kereséssel megoldható feladatok Erős heurisztika nélkül nincs sok esély a cél megtalálására. Jó heurisztikára épített kiértékelő függvénnyel elkerülhetőek a zsákutcák, a körök. A sikerhez az kell, hogy egy lokálisan hozott rossz döntés ne zárja ki a cél megtalálását! Ez például egy erősen összefüggő reprezentációs-gráfban automatikusan teljesül, de kifejezetten előnytelen, ha a reprezentációs-gráf egy irányított fa. (Például az n- királynő problémát csak tökéletes kiértékelő függvény esetén lehetne lokális kereséssel megoldani.)
18 A heurisztika hatása a KR működésére A heurisztika olyan, a feladathoz kapcsolódó ötlet, amelyet közvetlenül építünk be egy algoritmusba azért, hogy annak eredményessége és hatékonysága javuljon (egyszerre képes javítani a futási időt és a memóriaigényt), habár erre általában semmiféle garanciát sem ad. heurisztika eredményesség hatékonyság futási idő memóriaigény
19 ADAT := kezdeti érték while terminálási feltétel(adat) loop SELECT SZ FROM alkalmazható szabályok ADAT := SZ(ADAT) endloop Heurisztika és KR hatékonysága költség számítási költség szabály alkalmazások száma (iterációk száma) egy szabály kiválasztásának költsége (egy iterációs lépés) informáltság Forrás: Nilsson: Princ. of AI, pp.. teljes
20 Heurisztikák a 8-as (1-ös) tologató játékra Rossz helyen levő lapkák száma (W): Manhattan (P): a lapkák célbeli helyüktől vett minimális távolságainak (függőleges és vízszintes mozgatásai számának) összege Keret (F): büntető pontokat ad +1 minden olyan lapkára a szélen, amelyet nem a célbeli szomszédja követ az óra járásával megegyező irányban, + minden olyan sarokra, ahol nem a cél szerinti lapka áll.
21 W Hegymászó keresés Tie-breaking rule: csúcsok sorrendjére < left, up, right, down > l:, u:, r:, d:- l:, u:, r:, d: l:-, u:, r:, d: l:, u:, r:, d: l:, u:-, r:, d: l:-, u:-, r:, d: l:-, u:, r:, d: l:-, u:-, r:1, d: l:, u:-, r:, d:
22 P Hegymászó keresés l:6, u:, r:6, d:- l:, u:, r:, d: W: l:, u:, r:, d: l:-, u:-, r:, d: l:, u:-, r:, d: l:-, u:, r:0, d:
23 F Hegymászó keresés l:8, u:, r:8, d:- l:, u:, r:6, d: W: l:, u:, r:, d: l:-, u:-, r:, d: l:, u:-, r:, d: l:-, u:, r:0, d:
24 start Keresés által érzékelt állapot-gráf cél cél duplikátum duplikátum
25 Darab: C(this) = i=1..n 1 this[i] 1 Heurisztikák a Hanoi tornyai problémára Súlyozott darab: Összeg: WC(this) = i=1..n i this[i] 1 S(this) = i=1..n this[i] Súlyozott összeg: WS(this) = i=1..n i this[i] Módosított összeg: EWS(this) = WS(this) i=..n 1 + i=..n 1 this[i 1]>this[i] this[i 1]=this[i+1] this[i] this[i 1]
26 Inverziószám: Heurisztikák a Fekete-fehér kirakóra I(this)= minimálisan hány csere kell ahhoz, hogy minden fehér minden feketét megelőzzön Módosított inverziószám: M(this)= I(this) (1, ha this-nek része vagy )
27 Inv *Inv -?1 start cél cél 0 0 cél 0 0 cél
2. Visszalépéses keresés
2. Visszalépéses keresés Visszalépéses keresés A visszalépéses keresés egy olyan KR, amely globális munkaterülete: egy út a startcsúcsból az aktuális csúcsba (az útról leágazó még ki nem próbált élekkel
Részletesebben2. Visszalépéses stratégia
2. Visszalépéses stratégia A visszalépéses keres rendszer olyan KR, amely globális munkaterülete: út a startcsúcsból az aktuális csúcsba (ezen kívül a még ki nem próbált élek nyilvántartása) keresés szabályai:
RészletesebbenMesterséges intelligencia. Gregorics Tibor people.inf.elte.hu/gt/mi
people.inf.elte.hu/gt/mi Szakirodalom Könyvek Fekete István - - Nagy Sára: Bevezetés a mesterséges intelligenciába, LSI Kiadó, Budapest, 1990, 1999. ELTE-Eötvös Kiadó, Budapest, 2006. Russel, J. S., Norvig,
RészletesebbenMesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008
Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 007/008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció i stratégiák Szemantikus hálók / Keretrendszerek
RészletesebbenV. Kétszemélyes játékok
Teljes információjú, véges, zéró összegű kétszemélyes játékok V. Kétszemélyes játékok Két játékos lép felváltva adott szabályok szerint. Mindkét játékos ismeri a maga és az ellenfele összes választási
RészletesebbenMesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008
Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák Szemantikus hálók
RészletesebbenMesterséges intelligencia 2. laborgyakorlat
Mesterséges intelligencia 2. laborgyakorlat Keresési módszerek A legtöbb feladatot meg lehet határozni keresési feladatként: egy ún. állapottérben, amely tartalmazza az összes lehetséges állapotot fogjuk
RészletesebbenEvolúciós algoritmusok
Evolúciós algoritmusok Evolúció, mint kereső rendszer A problémára adható néhány lehetséges választ, azaz a problématér több egyedét tároljuk egyszerre. Ez a populáció. Kezdetben egy többnyire véletlen
RészletesebbenSzámítógép és programozás 2
Számítógép és programozás 2 11. Előadás Halmazkeresések, dinamikus programozás http://digitus.itk.ppke.hu/~flugi/ A keresési feladat megoldása Legyen a lehetséges megoldások halmaza M ciklus { X legyen
Részletesebben1. Milyen hatással van a heurisztika általában a keresõ rendszerek mûködésére?
2012. 06. 20. 1. Milyen hatással van a heurisztika általában a keresõ rendszerek mûködésére? A heurisztika olyan, a feladathoz kapcsolódó ötlet, amelyet közvetlenül építünk be egy algoritmusba, azért,
RészletesebbenMesterséges Intelligencia MI
Mesterséges Intelligencia MI Problémamegoldás kereséssel - csak lokális információra alapozva Pataki Béla BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Lokálisan
RészletesebbenKereső algoritmusok a diszkrét optimalizálás problémájához
Kereső algoritmusok a diszkrét optimalizálás problémájához A. Grama, A. Gupta, G. Karypis és V. Kumar: Introduction to Parallel Computing, Addison Wesley, 2003. könyv anyaga alapján A kereső eljárások
RészletesebbenKétszemélyes játékok Gregorics Tibor Mesterséges intelligencia
Kétszemélyes játékok Kétszemélyes, teljes információjú, véges, determinisztikus,zéró összegű játékok Két játékos lép felváltva adott szabályok szerint, amíg a játszma véget nem ér. Mindkét játékos ismeri
RészletesebbenSzámítógép és programozás 2
Számítógép és programozás 2 6. Előadás Problémaosztályok http://digitus.itk.ppke.hu/~flugi/ Emlékeztető A specifikáció egy előfeltételből és utófeltételből álló leírása a feladatnak Léteznek olyan feladatok,
RészletesebbenMesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363
1/6 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái 46/6 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció stratégiák Szemantikus hálók
RészletesebbenMiskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék 2016/17 2. félév 8. Előadás Dr. Kulcsár Gyula egyetemi docens Kereső algoritmusok alkalmazása
RészletesebbenMesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008
Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció stratégiák Szemantikus hálók / Keretrendszerek
RészletesebbenKereső algoritmusok a diszkrét optimalizálás problémájához
Kereső algoritmusok a diszkrét optimalizálás problémájához A. Grama, A. Gupta, G. Karypis és V. Kumar: Introduction to Parallel Computing, Addison Wesley, 2003. könyv anyaga alapján A kereső eljárások
RészletesebbenÖSSZEFOGLALÁS a Bsc záróvizsga mesterséges intelligenciáról szóló témaköréhez
ÖSSZEFOGLALÁS a Bsc záróvizsga mesterséges intelligenciáról szóló témaköréhez Az MI az informatikának az a területe, amelyik az intelligens gondolkodás számítógépes reprodukálása szempontjából hasznos
RészletesebbenMesterséges intelligencia
Mesterséges intelligencia Problémák és az útkeresések kapcsolata Az MI problémái, hogy a megoldandó feladatai nehezek, hatalmas a lehetséges válaszok tere (problématér), a helyes válaszok megtalálása intuíciót,
RészletesebbenMesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363
1/363 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái 69/363 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák
Részletesebbenangolul: greedy algorithms, románul: algoritmi greedy
Mohó algoritmusok angolul: greedy algorithms, románul: algoritmi greedy 1. feladat. Gazdaságos telefonhálózat építése Bizonyos városok között lehet direkt telefonkapcsolatot kiépíteni, pl. x és y város
RészletesebbenMesterséges Intelligencia MI
Mesterséges Intelligencia MI Problémamegoldás kereséssel - lokális információval Pataki Béla Bolgár Bence BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Rugó tervezése
RészletesebbenAlgoritmuselmélet. Gráfok megadása, szélességi bejárás, összefüggőség, párosítás. Katona Gyula Y.
Algoritmuselmélet Gráfok megadása, szélességi bejárás, összefüggőség, párosítás Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 2. előadás
RészletesebbenGráfkeresések A globális munkaterületén a startcsúcsból kiinduló már feltárt utak találhatók (ez az ún. kereső gráf), külön megjelölve az utak azon
ÖSSZEFOGLALÁS Az MI az intelligens gondolkodás számítógépes reprodukálása szempontjából hasznos elveket, módszereket, technikákat kutatja, fejleszti, rendszerezi. Miről ismerhető fel az MI? Megoldandó
RészletesebbenSzámítógépes döntéstámogatás. Genetikus algoritmusok
BLSZM-10 p. 1/18 Számítógépes döntéstámogatás Genetikus algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu BLSZM-10 p. 2/18 Bevezetés 1950-60-as
RészletesebbenMesterséges Intelligencia I. (I602, IB602)
Dr. Jelasity Márk Mesterséges Intelligencia I. (I602, IB602) harmadik (2008. szeptember 15-i) előadásának jegyzete Készítette: Papp Tamás PATLACT.SZE KPM V. HEURISZTIKUS FÜGGVÉNYEK ELŐÁLLÍTÁSA Nagyon fontos
RészletesebbenSapientia - Erdélyi Magyar TudományEgyetem (EMTE) Csíkszereda IRT- 4. kurzus. 3. Előadás: A mohó algoritmus
Csíkszereda IRT-. kurzus 3. Előadás: A mohó algoritmus 1 Csíkszereda IRT. kurzus Bevezetés Az eddig tanult algoritmus tipúsok nem alkalmazhatók: A valós problémák nem tiszta klasszikus problémák A problémák
RészletesebbenProgramozási módszertan. Mohó algoritmusok
PM-08 p. 1/17 Programozási módszertan Mohó algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu PM-08 p. 2/17 Bevezetés Dinamikus programozás
RészletesebbenBevezetés az informatikába
Bevezetés az informatikába 9. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.
RészletesebbenKözösség detektálás gráfokban
Közösség detektálás gráfokban Önszervező rendszerek Hegedűs István Célkitűzés: valamilyen objektumok halmaza felett minták, csoportok detektálása csakis az egyedek közötti kapcsolatok struktúrájának a
Részletesebben1. AZ MI FOGALMA. I. Bevezetés. Ers mesterséges intelligencia (EMI) Gyenge mesterséges intelligencia. MI története. Els szakasz (60-as évek)
1. AZ MI FOGALMA I. Bevezetés 1. A mesterséges intelligencia (MI) fogalma 2. Probléma modellezés 3. Keres rendszerek az MI-ben 1956 nyár. Darthmouth College-i konferencia Kezdeti cél: Az emberi gondolkodás
RészletesebbenIntelligens Rendszerek Elmélete IRE 4/32/1
Intelligens Rendszerek Elmélete 4 IRE 4/32/1 Problémamegoldás kereséssel http://nik.uni-obuda.hu/mobil IRE 4/32/2 Egyszerű lények intelligenciája? http://www.youtube.com/watch?v=tlo2n3ymcxw&nr=1 IRE 4/32/3
RészletesebbenDiszkrét Irányítások tervezése. Heurisztika Dr. Bécsi Tamás
Diszkrét Irányítások tervezése Heurisztika Dr. Bécsi Tamás Algoritmusok futásideje Az algoritmus futásideje függ az N bemenő paramétertől. Azonos feladat különböző N értékek esetén más futásidőt igényelnek.
RészletesebbenGráfkeresések A globális munkaterületén a startcsúcsból kiinduló már feltárt utak találhatók (ez az ún. kereső gráf), külön megjelölve az utak azon
ÖSSZEFOGLALÁS Az MI az intelligens gondolkodás számítógépes reprodukálása szempontjából hasznos elveket, módszereket, technikákat kutatja, fejleszti, rendszerezi. Miről ismerhető fel az MI? Megoldandó
Részletesebben1. AZ MI FOGALMA. I. Bevezetés. Tulajdonságok. Kezdet ELIZA. Első szakasz (60-as évek)
1. AZ MI FOGALMA I. Bevezetés Nincs pontos definíció Emberi gondolkodás számítógépes reprodukálása Intelligens viselkedésű programok Az ember számára is nehéz problémák számítógépes megoldása Intellektuálisan
RészletesebbenBranch-and-Bound. 1. Az egészértéketű programozás. a korlátozás és szétválasztás módszere Bevezető Definíció. 11.
11. gyakorlat Branch-and-Bound a korlátozás és szétválasztás módszere 1. Az egészértéketű programozás 1.1. Bevezető Bizonyos feladatok modellezése kapcsán előfordulhat olyan eset, hogy a megoldás során
RészletesebbenA sz.ot.ag. III. Magyar Számítógépes Nyelvészeti Konferencia december 8. Bíró Tamás, ELTE, Budapest / RUG, Groningen, NL 1/ 16
A sz.ot.ag Optimalitáselmélet szimulált hőkezeléssel Bíró Tamás Humanities Computing, CLCG University of Groningen, Hollandia valamint Eötvös Loránd Tudományegyetem, Budapest birot@let.rug.nl, birot@nytud.hu
RészletesebbenBonyolultságelmélet. Thursday 1 st December, 2016, 22:21
Bonyolultságelmélet Thursday 1 st December, 2016, 22:21 Tárbonyolultság A futásidő mellett a felhasznált tárterület a másik fontos erőforrás. Ismét igaz, hogy egy Ram-program esetében ha csak a használt
RészletesebbenKéprekonstrukció 9. előadás
Képrekonstrukció 9. előadás Balázs Péter Képfeldolgozás és Számítógépes Grafika Tanszék Szegedi Tudományegyetem hv-konvex összefüggő halmazok Mag-burok-szerű rekonstrukció: S. Brunetti, A. Del Lungo, F.
Részletesebben3. Gráfkeres stratégia
3. Gráfkeres stratégia A gráfkeres rendszer olyan KR, amelynek globális munkaterülete a startcsúcsból kiinduló már feltárt utakat (részgráfot) tárolja kiinduló értéke: a startcsúcs, terminálási feltétel:
RészletesebbenAlgoritmizálás, adatmodellezés tanítása 7. előadás
Algoritmizálás, adatmodellezés tanítása 7. előadás Oszd meg és uralkodj! Több részfeladatra bontás, amelyek hasonlóan oldhatók meg, lépései: a triviális eset (amikor nincs rekurzív hívás) felosztás (megadjuk
RészletesebbenProblémamegoldás kereséssel. Mesterséges intelligencia március 7.
Problémamegoldás kereséssel Mesterséges intelligencia 2014. március 7. Bevezetés Problémamegoldó ágens Kívánt állapotba vezető cselekvéseket keres Probléma megfogalmazása Megoldás megfogalmazása Keresési
RészletesebbenAlgoritmusok és adatszerkezetek gyakorlat 07
Algoritmusok és adatszerkezetek gyakorlat 0 Keresőfák Fák Fa: összefüggő, körmentes gráf, melyre igaz, hogy: - (Általában) egy gyökér csúcsa van, melynek 0 vagy több részfája van - Pontosan egy út vezet
RészletesebbenModellezés Gregorics Tibor Mesterséges intelligencia
Modellezés 1. Állapottér-reprezentáció Állapottér: a probléma leírásához szükséges adatok által felvett érték-együttesek (azaz állapotok) halmaza az állapot többnyire egy összetett szerkezetű érték gyakran
Részletesebbenend function Az A vektorban elõforduló legnagyobb és legkisebb értékek indexeinek különbségét.. (1.5 pont) Ha üres a vektor, akkor 0-t..
A Név: l 2014.04.09 Neptun kód: Gyakorlat vezető: HG BP MN l 1. Adott egy (12 nem nulla értékû elemmel rendelkezõ) 6x7 méretû ritka mátrix hiányos 4+2 soros reprezentációja. SOR: 1 1 2 2 2 3 3 4 4 5 6
Részletesebbenértékel függvény: rátermettségi függvény (tness function)
Genetikus algoritmusok globális optimalizálás sok lehetséges megoldás közül keressük a legjobbat értékel függvény: rátermettségi függvény (tness function) populáció kiválasztjuk a legrátermettebb egyedeket
RészletesebbenNavigáci. stervezés. Algoritmusok és alkalmazásaik. Osváth Róbert Sorbán Sámuel
Navigáci ció és s mozgástervez stervezés Algoritmusok és alkalmazásaik Osváth Róbert Sorbán Sámuel Feladat Adottak: pálya (C), játékos, játékos ismerethalmaza, kezdőpont, célpont. Pálya szerkezete: akadályokkal
Részletesebbenértékel függvény: rátermettségi függvény (tness function)
Genetikus algoritmusok globális optimalizálás sok lehetséges megoldás közül keressük a legjobbat értékel függvény: rátermettségi függvény (tness function) populáció kiválasztjuk a legrátermettebb egyedeket
RészletesebbenAmortizációs költségelemzés
Amortizációs költségelemzés Amennyiben műveleteknek egy M 1,...,M m sorozatának a futási idejét akarjuk meghatározni, akkor egy lehetőség, hogy külön-külön minden egyes művelet futási idejét kifejezzük
RészletesebbenMŰSZAKKIOSZTÁSI PROBLÉMÁK A KÖZÖSSÉGI KÖZLEKEDÉSBEN
infokommunikációs technológiák MŰSZAKKIOSZTÁSI PROBLÉMÁK A KÖZÖSSÉGI KÖZLEKEDÉSBEN Készítette: Árgilán Viktor, Dr. Balogh János, Dr. Békési József, Dávid Balázs, Hajdu László, Dr. Galambos Gábor, Dr. Krész
RészletesebbenSzámítógép és programozás 2
Számítógép és programozás 2 8. Előadás Megoldhatóság, hatékonyság http://digitus.itk.ppke.hu/~flugi/ Elméleti áttekintés a SzámProg 1 tárgyból Algoritmikus eldönthetőség kérdése Bizonyíthatóság kérdése,
RészletesebbenHÁZI FELADAT PROGRAMOZÁS I. évf. Fizikus BSc. 2009/2010. I. félév
1. feladat (nehézsége:*****). Készíts C programot, mely a felhasználó által megadott függvényt integrálja (numerikusan). Gondosan tervezd meg az adatstruktúrát! Tervezz egy megfelelő bemeneti nyelvet.
RészletesebbenFelvételi vizsga mintatételsor Informatika írásbeli vizsga
BABEȘ BOLYAI TUDOMÁNYEGYETEM MATEMATIKA ÉS INFORMATIKA KAR A. tételsor (30 pont) Felvételi vizsga mintatételsor Informatika írásbeli vizsga 1. (5p) Egy x biten tárolt egész adattípus (x szigorúan pozitív
Részletesebben1. feladat Az egyensúly algoritmus viselkedése: Tekintsük a kétdimenziós Euklideszi teret, mint metrikus teret. A pontok
1. feladat Az egyensúly algoritmus viselkedése: Tekintsük a kétdimenziós Euklideszi teret, mint metrikus teret. A pontok (x, y) valós számpárokból állnak, két (a, b) és (c, d) pontnak a távolsága (a c)
RészletesebbenAdatszerkezetek II. 1. előadás
Adatszerkezetek II. 1. előadás Gráfok A gráf fogalma: Gráf(P,E): P pontok (csúcsok) és E P P élek halmaza Fogalmak: Irányított gráf : (p 1,p 2 ) E-ből nem következik, hogy (p 2,p 1 ) E Irányítatlan gráf
RészletesebbenAutomatikus következtetés
Automatikus következtetés 1. Rezolúció Feladat: A 1 : Ha süt a nap, akkor Péter strandra megy. A 2 : Ha Péter strandra megy, akkor úszik. A 3 : Péternek nincs lehetősége otthon úszni. Lássuk be, hogy ezekből
RészletesebbenKeresési algoritmusok, optimalizáció
Keresési algoritmusok, optimalizáció Az eddig tanultakból a mostani részben gyakran használt (emiatt szükséges az ismeretük) programozási ismeretek: függvények létrehozása, meghívása (ld. 3. óra anyagában)
RészletesebbenApproximációs algoritmusok
Approximációs algoritmusok Nehéz (pl. NP teljes) problémák optimális megoldásának meghatározására nem tudunk (garantáltan) polinom idejű algoritmust adni. Lehetőségek: -exponenciális futási idejű algoritmus
RészletesebbenAlgoritmusok bonyolultsága
Algoritmusok bonyolultsága 9. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 18 Közelítő algoritmusok ládapakolás (bin packing) Adott n tárgy (s i tömeggel) és végtelen sok 1 kapacitású láda
RészletesebbenGyakori elemhalmazok kinyerése
Gyakori elemhalmazok kinyerése Balambér Dávid Budapesti M szaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Számítástudomány szakirány 2011 március 11. Balambér Dávid (BME) Gyakori
Részletesebben22. GRÁFOK ÁBRÁZOLÁSA
22. GRÁFOK ÁBRÁZOLÁSA A megoldandó feladatok, problémák modellezése során sokszor gráfokat alkalmazunk. A gráf fogalmát a matematikából ismertnek vehetjük. A modellezés során a gráfok több változata is
RészletesebbenA félév során előkerülő témakörök
A félév során előkerülő témakörök rekurzív algoritmusok rendező algoritmusok alapvető adattípusok, adatszerkezetek, és kapcsolódó algoritmusok dinamikus programozás mohó algoritmusok gráf algoritmusok
RészletesebbenMegerősítéses tanulás 7. előadás
Megerősítéses tanulás 7. előadás 1 Ismétlés: TD becslés s t -ben stratégia szerint lépek! a t, r t, s t+1 TD becslés: tulajdonképpen ezt mintavételezzük: 2 Akcióértékelő függvény számolása TD-vel még mindig
RészletesebbenAlgoritmuselmélet. Legrövidebb utak, Bellmann-Ford, Dijkstra. Katona Gyula Y.
Algoritmuselmélet Legrövidebb utak, Bellmann-Ford, Dijkstra Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 3. előadás Katona Gyula Y. (BME
Részletesebben1. Alapfogalmak Algoritmus Számítási probléma Specifikáció Algoritmusok futási ideje
1. Alapfogalmak 1.1. Algoritmus Az algoritmus olyan elemi műveletekből kompozíciós szabályok szerint felépített összetett művelet, amelyet megadott feltételt teljesítő bemeneti adatra végrehajtva, a megkívánt
RészletesebbenAdatbázis rendszerek Gy: Algoritmusok C-ben
Adatbázis rendszerek 1. 1. Gy: Algoritmusok C-ben 53/1 B ITv: MAN 2015.09.08 Alapalgoritmusok Összegzés Megszámlálás Kiválasztás Kiválasztásos rendezés Összefésülés Szétválogatás Gyorsrendezés 53/2 Összegzés
Részletesebben5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus.
5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus. Optimalis feszítőfák Egy összefüggő, irányítatlan
Részletesebben24. MINIMÁLIS KÖLTSÉGŰ UTAK I.
24. MINIMÁLIS KÖLTSÉGŰ UTAK I. Az útvonaltervezés az egyik leggyakrabban végrehajtott eljárása a gráfok alkalmazásai körében. A feladat például a közlekedésben jelentkezik. A gráfot itt az a térkép jelenti,
RészletesebbenHasonlósági keresés molekulagráfokon: legnagyobb közös részgráf keresése
Hasonlósági keresés molekulagráfokon: legnagyobb közös részgráf keresése Kovács Péter ChemAxon Kft., ELTE IK kpeter@inf.elte.hu Budapest, 2018.11.06. Bevezetés Feladat: két molekulagráf legnagyobb közös
RészletesebbenGráfok 2. Legrövidebb utak, feszítőfák. Szoftvertervezés és -fejlesztés II. előadás. Szénási Sándor
Gráfok 2. Legrövidebb utak, feszítőfák előadás http://nik.uni-obuda.hu/sztf2 Szénási Sándor Óbudai Egyetem,Neumann János Informatikai Kar Legrövidebb utak keresése Minimális feszítőfa keresése Gráfok 2
RészletesebbenGépi tanulás a gyakorlatban. Lineáris regresszió
Gépi tanulás a gyakorlatban Lineáris regresszió Lineáris Regresszió Legyen adott egy tanuló adatbázis: Rendelkezésünkre áll egy olyan előfeldolgozott adathalmaz, aminek sorai az egyes ingatlanokat írják
RészletesebbenAlgoritmuselmélet 7. előadás
Algoritmuselmélet 7. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Március 11. ALGORITMUSELMÉLET 7. ELŐADÁS 1 Múltkori
RészletesebbenGépi tanulás Gregorics Tibor Mesterséges intelligencia
Gépi tanulás Tanulás fogalma Egy algoritmus akkor tanul, ha egy feladat megoldása során olyan változások következnek be a működésében, hogy később ugyanazt a feladatot vagy ahhoz hasonló más feladatokat
RészletesebbenTervminták a valósidejű gyakorlatban
Tervminták a valósidejű gyakorlatban Forrás Ezeknek a diáknak a forrása a Game Programming Patterns című könyv Online elérhető a szerző oldaláról: http://gameprogrammingpatterns.com/contents.htm Game Loop
RészletesebbenAlgoritmusok bonyolultsága
Algoritmusok bonyolultsága 5. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 27 Gazdaságos faváz Kruskal-algoritmus Joseph Kruskal (1928 2010) Legyen V = {v 1, v 2,..., v n }, E = {e 1, e 2,...,
RészletesebbenTovábbi forgalomirányítási és szervezési játékok. 1. Nematomi forgalomirányítási játék
További forgalomirányítási és szervezési játékok 1. Nematomi forgalomirányítási játék A forgalomirányítási játékban adott egy hálózat, ami egy irányított G = (V, E) gráf. A gráfban megengedjük, hogy két
Részletesebben2. Milyen értéket határoz meg az alábbi algoritmus, ha A egy vektor?. (2 pont)
A Név: l 2017.04.06 Neptun kód: Gyakorlat vezet : HG BP l 1. Az A vektor tartalmát az alábbi KUPACOL eljárással rendezzük át maximum kupaccá. A={28, 87, 96, 65, 55, 32, 51, 69} Mi lesz az értéke az A vektor
RészletesebbenAdatszerkezetek. Nevezetes algoritmusok (Keresések, rendezések)
Adatszerkezetek Nevezetes algoritmusok (Keresések, rendezések) Keresések A probléma általános megfogalmazása: Adott egy N elemű sorozat, keressük meg azt az elemet (határozzuk meg a helyét a sorozatban),
RészletesebbenNeMa: Fast Graph Search with Label Similarity
NeMa: Fast Graph Search with Label Similarity (NeMa: Gyors gráfkeresés címke hasonlóság alapján) Arijit Khan, Yinghui Wu, Charu C. Aggarwal, Xifeng Yan Pillinger János, Németh Bence, Bereczki Gábor November
RészletesebbenULTIMATE TIC TAC TOE. Serfőző Péter
ULTIMATE TIC TAC TOE Serfőző Péter 2016.05.02. ULTIMATE TIC TAC TOE Amőba alapján Két változat, az első könnyű, a második nehéz A játék keletkezéséről nincsenek információk, de a játékelmélet elkezdett
RészletesebbenOptimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 9. Előadás Az optimalizálás alapfeladata Keressük f függvény maximumát ahol f : R n R és
RészletesebbenOnline migrációs ütemezési modellek
Online migrációs ütemezési modellek Az online migrációs modellekben a régebben ütemezett munkák is átütemezhetőek valamilyen korlátozott mértékben az új munka ütemezése mellett. Ez csökkentheti a versenyképességi
RészletesebbenProgramozás alapjai 9. előadás. Wagner György Általános Informatikai Tanszék
9. előadás Wagner György Általános Informatikai Tanszék Leszámoló rendezés Elve: a rendezett listában a j-ik kulcs pontosan j-1 kulcsnál lesz nagyobb. (Ezért ha egy kulcsról tudjuk, hogy 27 másiknál nagyobb,
RészletesebbenRSA algoritmus. P(M) = M e mod n. S(C) = C d mod n. A helyesség igazoláshoz szükséges számelméleti háttér. a φ(n) = 1 mod n, a (a 1,a 2,...
RSA algoritmus 1. Vegyünk véletlenszerűen két különböző nagy prímszámot, p-t és q-t. 2. Legyen n = pq. 3. Vegyünk egy olyan kis páratlan e számot, amely relatív prím φ(n) = (p 1)(q 1)-hez. 4. Keressünk
RészletesebbenMesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/364
1/364 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái 1 Tudnivalók Bevezető Fejlődés Könyvészet Eredmények 2/364 Bevezető: mi a mesterséges intelligencia...
RészletesebbenAlgoritmuselmélet. Bonyolultságelmélet. Katona Gyula Y.
Algoritmuselmélet Bonyolultságelmélet Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 12. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet
RészletesebbenSzámításelmélet. Második előadás
Számításelmélet Második előadás Többszalagos Turing-gép Turing-gép k (konstans) számú szalaggal A szalagok mindegyike rendelkezik egy független író / olvasó fejjel A bemenet az első szalagra kerül, a többi
RészletesebbenVéletlen sorozatok ellenőrzésének módszerei. dolgozat
Eötvös Loránd Tudományegyetem Informatikai Kar Komputeralgebra Tanszék Véletlen sorozatok ellenőrzésének módszerei dolgozat Témavezető: Dr. Iványi Antal Miklós egyetemi tanár Készítette: Potempski Dániel
RészletesebbenGráfok bejárása. Szlávi Péter, Zsakó László: Gráfok II :17
Gráfok 2. előadás Gráfok bejárása A gráf bejárása = minden elem feldolgozása Probléma: Lineáris elrendezésű sokaság (sorozat) bejárása könnyű, egyetlen ciklussal elvégezhető. Hálós struktúra bejárása nem
RészletesebbenIványi Antal alkotó szerkeszt INFORMATIKAI ALGORITMUSOK
Iványi Antal alkotó szerkeszt INFORMATIKAI ALGORITMUSOK mondat Kiadó Vác, 2013 A könyv a Nemzeti Kulturalis Alap támogatásával készült. Alkotó szerkeszt : Iványi Antal Szerz k: Mira-Cristiana Anisiu (35.
RészletesebbenIonogram releváns területeinek meghatározása és elemzésének automatikus megvalósítása
Ionogram releváns területeinek meghatározása és elemzésének automatikus megvalósítása Előadó: Pieler Gergely, MSc hallgató, Nyugat-magyarországi Egyetem Konzulens: Bencsik Gergely, PhD hallgató, Nyugat-magyarországi
Részletesebben9. előadás. Programozás-elmélet. Programozási tételek Elemi prog. Sorozatszámítás Eldöntés Kiválasztás Lin. keresés Megszámolás Maximum.
Programozási tételek Programozási feladatok megoldásakor a top-down (strukturált) programtervezés esetén három vezérlési szerkezetet használunk: - szekvencia - elágazás - ciklus Eddig megismertük az alábbi
RészletesebbenHÁLÓZATSZERŰEN MŰKÖDŐ LOGISZTIKÁVAL INTEGRÁLT TERMELÉSÜTEMEZÉS MEGOLDÁSA GENETIKUS ALGORITMUS ALKALMAZÁSÁVAL. OLÁH Béla
HÁLÓZATSZERŰEN MŰKÖDŐ LOGISZTIKÁVAL INTEGRÁLT TERMELÉSÜTEMEZÉS MEGOLDÁSA GENETIKUS ALGORITMUS ALKALMAZÁSÁVAL OLÁH Béla A TERMELÉSÜTEMEZÉS MEGFOGALMAZÁSA Flow shop: adott n számú termék, melyeken m számú
RészletesebbenMonoton Engedmény Protokoll N-M multilaterális tárgyalás
Tárgyalások/2 Monoton Engedmény Protokoll N-M multilaterális tárgyalás Fordulók 1. Minden ágens előáll a javaslatával k. Mindegyik ágens vagy ragaszkodik a javaslatához, vagy engedményt tesz. Ismétlés
RészletesebbenGráfalgoritmusok és hatékony adatszerkezetek szemléltetése
Gráfalgoritmusok és hatékony adatszerkezetek szemléltetése Készítette: Bognár Gergő Témavezető: Veszprémi Anna Eötvös Loránd Tudományegyetem Informatikai Kar Algoritmusok és Alkalmazásaik Tanszék Budapest,
RészletesebbenTuesday, March 6, 12. Hasító táblázatok
Hasító táblázatok Halmaz adattípus U (kulcsuniverzum) K (aktuális kulcsok) Függvény adattípus U (univerzum) ÉT (értelmezési tartomány) ÉK (érték készlet) Milyen az univerzum? Közvetlen címzésű táblázatok
RészletesebbenInformatika 1 2. el adás: Absztrakt számítógépek
Informatika 1 2. el adás: Budapesti M szaki és Gazdaságtudományi Egyetem 2015-09-08 1 2 3 A egy M = Q, Γ, b, Σ, δ, q 0, F hetes, ahol Q az 'állapotok' nem üres halmaza, Γ a 'szalag ábécé' véges, nem üres
RészletesebbenKriptográfia 0. A biztonság alapja. Számítás-komplexitási kérdések
Kriptográfia 0 Számítás-komplexitási kérdések A biztonság alapja Komplexitás elméleti modellek független, egyenletes eloszlású véletlen változó értéke számítással nem hozható kapcsolatba más információval
RészletesebbenOsztott jáva programok automatikus tesztelése. Matkó Imre BBTE, Kolozsvár Informatika szak, IV. Év 2007 január
Osztott jáva programok automatikus tesztelése Matkó Imre BBTE, Kolozsvár Informatika szak, IV. Év 2007 január Osztott alkalmazások Automatikus tesztelés Tesztelés heurisztikus zaj keltés Tesztelés genetikus
Részletesebben