Tanári kézikönyv. a évfolyamokhoz. Szerkesztette: június 13.
|
|
- Szebasztián Somogyi
- 8 évvel ezelőtt
- Látták:
Átírás
1 Tanári kézikönyv a évfolyamokhoz Szerkesztette: június 13.
2 Technikai munkák (MatKönyv project, TEX programozás, PHP programozás, tördelés...) Dénes Balázs, Grósz Dániel, Hraskó András, Kalló Bernát, Szabó Péter, Szoldatics József Budapesti Fazekas Mihály Gyakorló Általános Iskola és Gimnázium 1082 Budapest, Horváh Miháy tér / 2015
3 Tartalomjegyzék Alkalmazott rövidítések 3 Könyvek neveinek rövidítései Segítség és megoldás jelzése Hivatkozás jelzése Algebra 5 1. Komplex számok Lianeáris algebra Vegyes feladatok Analízis 7 1. Topológiai alapfogalmak Függvények 9 1. Harmadfokú függvények Az érintő Függvényvizsgálat Szélsőérték Egyenlőtlenségek Alapvető integrálok Görbék Furcsa függvények Vegyes feladatok Geometria Geometriai szerkeszthetőség Tömegközéppont Inverzió Komplex számok a geometriában Projektív geometria A gömb geometriája A hiperbolikus sík Poincaré-modellje Speciális görbék Vegyes feladatok Kombinatorika Statisztika A Pascal háromszög Páros gráfok Kombinatorikus geometria Binomiális eloszlás
4
5 Alkalmazott rövidítések Könyvek neveinek rövidítései A.I A.II A.III ALG.II ANAL.III F.I F.III G.I G.II G.III GR.II K.I K.II K.III SZ.I SZ.II V.II VV.III ZARUB Algebra, 7 8. évfolyam Algebra, évfolyam Algebra, évfolyam Algoritmusok, évfolyam Analízis, évfolyam Függvények, 7 8. évfolyam Függvények, évfolyam Geometria, 7 8. évfolyam Geometria, évfolyam Geometria, évfolyam Speciális gráfelméleti példák, évfolyam Kombinatorika, 7 8. évfolyam Kombinatorika, évfolyam Kombinatorika, évfolyam Számelmélet, 7 8. évfolyam Számelmélet, évfolyam Valószínűségszmítás és statisztika, évfolyam Városok viadala, évfolyam Nemzeti versenyek, évfolyam Segítség és megoldás jelzése A feladatok sorszámánál kerek zárójelben M és S jelzi, ha a feladathoz (M)egoldás vagy (S)egítség található. Például 5. (M) Oldjuk meg a... vagy 5. (MS) Oldjuk meg a... Hivatkozás jelzése A feladatok sorszámánál szögletes zárójelben zárójelben szám jelzi a feladat származását vagy kapcsolatát mutató hivatkozást az Ajánlott irodalom részben. Például: 4. [20.] Oldjuk meg a... 3
6 Alkalmazott rövidítések 4
7 Algebra 1. Komplex számok 2. Lianeáris algebra 3. Vegyes feladatok 5
8 Algebra 3. Vegyes feladatok 6
9 Analízis 1. Topológiai alapfogalmak 7
10 Analízis 1. Topológiai alapfogalmak 8
11 Függvények 1. Harmadfokú függvények 2. Az érintő 3. Függvényvizsgálat 4. Szélsőérték 5. Egyenlőtlenségek 6. Alapvető integrálok 7. Görbék 8. Furcsa függvények 9. Vegyes feladatok 9
12 Függvények 9. Vegyes feladatok 10
13 Geometria 1. Geometriai szerkeszthetőség 1.1. b) megoldását az általános esetben részletezzük, l. a?? d) részének a megoldását a) Ez a számtest nem különbözik a Q( 2) számtesttől. b) és c) megoldása következik d) megoldásából. d) Azt állítjuk, hogy T ( t) az a + b t alakú számokból áll, ahol a és b eleme T -nek. Könnyen látható, hogy az ilyen számok zártak az összeadásra és kivonásra és egyszerű számolással igazolható, hogy a szorzásra is zártak. Azt állítjuk, hogy az osztásra is zártak, ha nem nullával kell osztani. Ehhez elég belátni, hogy a nullától különböző a + b t szám reciproka is ilyen alakú. Ez a gyöktelenítésből" következik: 1 a+b = a b t t a 2 tb = a 2 a 2 tb 2 b a 2 tb 2 t, és itt a nevező nem nulla. Ez következik abból, hogy egyrészt a kikötésünk szerint a+b t nem nulla, másrészt a b t sem nulla, mert különben t maga is eleme volna T -nek, amit szintén kizártunk b) Megfelel például u = u nyilván eleme a keresett számtestnek, tehát vele bővítve nem kaphatunk a keresettnél bővebbet. Másrészt u 1 u = 3 2. Ezt összeadva u-val és osztva kettővel megkapjuk 3-at, és hasonlóan kivonással kapjuk 2-t is. Tehát az u-val bővített számtest nem is szűkebb a keresettnél. Hasonlóan belátható, hogy ha ab nem nulla, akkor megfelel az u = a 2 + b 3 szám is. c) Az ötleteknél szereplő állítás kijön a?? d) részéből. De kijön gyöktelenítéssel" is. L. a?? feladatot Mindenképp el kell jutni ennél a feladatnál odáig, hogy ha a és b egész (racionális), c nem egy egész (racionális) szám négyzete, akkor (a + b c) n (n pozitív egész) A n + B n c alakú, ahol A n és B n egész (racionális) számok, (a b c) n pedig A n B n c alakú. Lásd a?? és a?? feladatokat is. 2. didaktikai javaslat. A feladat szorosan kapcsolódik a másodrendű rekurziók és a Pellegyenletek elméletéhez is, de ennek tárgyalására célszerű máskor visszatérni, itt más a cél, és ahhoz is sokat kell még dolgozni a) Elég bebizonyítanunk a következőt: ha 3 2 nem eleme a T testnek, akkor T másodfokú bővítésének sem eleme. b) T másodfokú bővítésének elemei a + b t alakúak valamely T -beli a, b, t számokra. (Itt t > 0 és t nem eleme T -nek.) Azt kell tehát belátni, hogy ezekre a számokra nem teljesülhet (a + b t) 3 = 2. A köbre emelést elvégezve az (3a 2 + tb 2 )b t = 2 a 3 3ab 2 t egyenlőséghez jutunk. Mivel t nem eleme T -nek, de együtthatója is, a jobb oldalon álló kifejezés is T -beli, ezért ez az egyenlőség csak úgy állhat fent, ha (3a 2 + tb 2 )b = 0. Mivel t > > 0, ez csak úgy lehetséges, ha b = 0. Ez viszont azt jelentené, hogy a = 3 2 T -ben van, amit kizártunk. 11
14 Geometria 1. Geometriai szerkeszthetőség A megoldás most is ugyanígy működik mindhárom esetben. Általában is működik, tetszőleges u + v alakú számra, ahol u és v racionális számok. Az egyetlen kikötés, hogy v ne legyen egy racionális szám négyzete. 2. didaktikai javaslat. A megoldás persze működne például a számra is, itt azonban egy másfajta problémába ütközünk. Ezért ezeket a feladatokat később vesszük sorra. Természetesen ha a diákok maguktól előhozakodnak vele, akkor fel lehet adni már itt is a feladatot, de érdemes meggondolni, hogy nem célszerű-e elhalasztani a megbeszélését Ez a feladat nemcsak annak a tudatosítására jó, hogy a gyökök és együtthatók közötti összefüggésnél használjuk, hogy a polinomnak annyi gyöke van, ahanyadfokú, hanem arra is, hogy ha egy harmadfokú polinomnak van két gyöke, akkor könnyen tudjuk bizonyítani, hogy van egy harmadik gyöke is. Érdemes megemlíteni azt is, hogy ez a harmadik gyök megegyezhet valamelyik előzővel is, de a gyökök és együtthatók közötti összefüggést ez nem zavarja". (A feladatban persze mindhárom gyök külöböző.) A feladatot megoldhatjuk úgy is, hogy behelyettesítjük a megadott megoldást és A?? megoldásához hasonlóan megmutatjuk, hogy is megoldás, majd kiemeljük az (x 3) 2 6 = x 2 6x + 3 polinomot és a maradó x + 12 polinom gyöke 12. Egyszerűbbnek látszik a gyökök és együtthatók módszere, amit már A?? feladat megoldásánál is használtunk. Ha már a két gyököt ismerjük, akkor azok összegét, 6-ot levonva a gyökök összegéből, 6-ból gyorsabban is megkapjuk, hogy a harmadik megoldás a 12. Itt azonban felmerül a kérdés, hogy honnan lehetünk biztosak a harmadik megoldás létezésében. Valójában ez a megoldás sem egyszerűbb, hiszen mint az említett feladatnál láttuk, ennek a bizonyítása talán legegyszerűbben megint csak a két gyöktényező kiemelésével történik. De eljárhatunk úgy is, hogy megpróbáljuk racionális gyökkereséssel megkeresni a második gyököt, ez csak 36 osztói közül kerülhet ki. Aránylag hamar megtalálható tehát a 12 megoldás és ekkor gyökök és együtthatók összegével kapjuk a harmadik megoldásként ot. (Amihez ismét tudnunk kell, hogy VAN harmadik megoldás.) Ha ezt az utat követjük, akkor viszont a végén visszakérdezhetünk", hogy biztosak lehettünk-e az elején, hogy lesz racionális gyöke az egyenletünknek? A A?? feladat megoldásához hasonlóan most is egy E + F 7 = 0 alakú egyenletet kapunk, ahol E és F egész, tehát mindkettő nulla. Ebből most is következik, hogy az egyenletnek megoldása a 2 7 szám is. Innen többféleképpen is továbbmehetünk. 1. A gyöktényezők kiemelhetőségét használva azt kapjuk, hogy a harmadfokú polinomból kiemelhető az (x 2 7)(x 2 + 7) = (x 2) 2 7 = x 2 4x 3 polinom. Minthogy ennek a polinomnak az együtthatói egészek és főegyütthatója, így a kiemelés után is egy egész együtthatós, elsőfokú polinom marad. Ennek a gyöke racionális. Azt kapjuk, hogy az egyenlet harmadik gyöke racionális. 2. A gyökök és együtthatók közötti összefüggést alkalmazva azt kapjuk, hogy a három gyök összege B A, ami racionális. Másrészt a már ismert két gyök összege 4, így a harmadik gyök is biztosan racionális. (Ismét használtuk a?? feladat megoldásánál mondottakat a harmadik megoldás létezéséről.) Ezt a feladatot azért érdemes előre venni, mert a diákok az eddigi tapasztalatok alapján" könnyen azt fogják tippelni, hogy a harmadik megoldás egész lesz Érdemes a gyöktényezők kiemelését is végigkövetni. 12
15 2. Tömegközéppont Geometria Ez a feladat a?? feladattal együtt lényegében általánosan összefoglalja mindazt, amit ez az alfejezet tartalmaz. 2. Tömegközéppont 2.9. Fordítsuk meg a kérdést! Adott az ABC háromszög és legyenek d A, d B, d C tetszőleges valós számok, amelyek között van zérustól különböző. Igaz-e, hogy a (??) összefüggést kielégítő (A α, B β, C γ ) súlyozásokhoz tartozó tömegközéppontok egy egyenesen vannak? A válasz igenlő, itt nem indokoljuk. Azonban abban a speciális esetben, amikor d A = d B = d C, akkor mégsem valódi egyenest, hanem a sík idális egyenesét kapjuk. Ez a pontok tekintetében éppen az α + β + γ = 0 esetnek felel meg, ekkor ugyanis az A α B β C γ rendszer súlypontja nem valódi pont, hanem az egymással párhuzamos AA 1, BB 1, CC 1 egyenesek közös ideális pontja A feladat megoldható az AF C, BF C háromszögek AC, BC oldalaira felírt koszinusztételekkel is, felhasználva, hogy cos AFC + cos BFC = Machó Bónis Ha csak azt akarjuk igazolni, hogy a külső szögfelezőknek a velük szemközti oldalegyenessel való metszéspontjaik egy egyenesen vannak, akkor hivatkozhatunk arra, hogy három kör páronkénti külső hasonlósági pontjai egy egyenesen vannak. Valóban, az AC oldalhoz hozzáírt körnek és az AB oldalhoz hozzáírt körnek a külső hasonlósági pontja a közös érintőjük a BC oldalegyenes és a centrálisuk az A-nál fekvő szög külső szögfelezője metszéspontja A b) feladatrész elején említett általános összefüggés a Desargues nevezetes tételéből is következik. Az ABC, A 1 B 1 C 1 háromszögek ugyanis pontra nézve a P pontra nézve perspektívek, így egyenesre nézve is azok, és ez épp a bizonyítandó állítást jelenti Érdemes elolvasni a fenti Kömal A feladat Brianchon tételt használó frappáns megoldását a Kömal honlapján: 3. Inverzió Zavarbaejtő kérdések diákoknak: tegyük fel, hogy az adott körök egymás külsejében helyezkednek el, igaz-e ebben az esetben, hogy a négy kör középpontja által meghatározott négyszög 1. érintőnégyszög? 2. beírt köre a P 12 P 23 P 34 P 41 négyszög körülírt köre? Az 1. kérdésre igen a válasz, a sugarak alapján látható, hogy a szemköztes oldalak hosszának összege egyenlő, de a 2. kérdés csak speciális elrendezéseknél igaz. 4. Komplex számok a geometriában a?? 13
16 Geometria 5. Projektív geometria Ha az egyik négyszögoldal egy ponttá zsugorodik akkor egy háromszögre vonatkozó eredményt kapunk. Két háromszögoldalra emelt négyzet középpontját összekötő szakasz merőleges és egyenlő a harmadik oldalra emelt négyzet középpontját a szemközti csúccsal összekötő szakasszal. Ebből az is következik, hogy a négyzetek középpontjait a szemközti csúccsal összekötő szakaszok egy pontban metszik egymást, hiszen ezek éppen a négyzet- középpontok által meghatározott háromszög magasságvonalai lesznek. 5. Projektív geometria 6. A gömb geometriája 7. A hiperbolikus sík Poincaré-modellje 8. Speciális görbék 9. Vegyes feladatok 14
17 Kombinatorika 1. Statisztika 2. A Pascal háromszög 3. Páros gráfok 4. Kombinatorikus geometria 5. Binomiális eloszlás 15
A döntő feladatai. valós számok!
OKTV 006/007. A döntő feladatai. Legyenek az x ( a + d ) x + ad bc 0 egyenlet gyökei az x és x valós számok! Bizonyítsa be, hogy ekkor az y ( a + d + abc + bcd ) y + ( ad bc) 0 egyenlet gyökei az y x és
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria
005-05 MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN
GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN ELTE TáTK Közgazdaságtudományi Tanszék Gazdaságmatematika középhaladó szinten RACIONÁLIS TÖRTFÜGGVÉNYEK INTEGRÁLJA Készítette: Gábor Szakmai felel s: Gábor Vázlat
Koordináta - geometria I.
Koordináta - geometria I. DEFINÍCIÓ: (Helyvektor) A derékszögű koordináta - rendszerben a pont helyvektora az origóból a pontba mutató vektor. TÉTEL: Ha i az (1; 0) és j a (0; 1) pont helyvektora, akkor
Ha a síkot egyenes vagy görbe vonalakkal feldaraboljuk, akkor síkidomokat kapunk.
Síkidomok Ha a síkot egyenes vagy görbe vonalakkal feldaraboljuk, akkor síkidomokat kapunk. A határoló vonalak által bezárt síkrész a síkidom területe. A síkidomok határoló vonalak szerint lehetnek szabályos
3. KÖRGEOMETRIA. 3.1. Körrel kapcsolatos alapismeretek
3. KÖRGEOMETRIA Hajós György: Bevezetés a geometriába, Tankönyvkiadó, Budapest, 89 109. és 121. oldal. Pelle Béla: Geometria, Tankönyvkiadó, Budapest, 86 97. és 117 121. oldal. Kovács Zoltán: Geometria,
Osztályozó és Javító vizsga témakörei matematikából 9. osztály 2. félév
Osztályozó és Javító vizsga témakörei matematikából 9. osztály 2. félév IV. Háromszögek, négyszögek, sokszögek Pontok, egyenesek, síkok és ezek kölcsönös helyzete Néhány alapvető geometriai fogalom A háromszögekről.
BOLYAI MATEMATIKA CSAPATVERSENY DÖNTŐ 2004. 5. osztály
5. osztály Ha egy négyzetet az ábrán látható módon feldarabolunk, akkor a tangram nevű ősi kínai játékot kapjuk. Mekkora a nagy négyzet területe, ha a kicsié 8 cm 2? (A kis négyzet egyik csúcsa a nagy
Országos Középiskolai Tanulmányi Verseny 2011/2012 Matematika I. kategória (SZAKKÖZÉPISKOLA) Döntő. x 3x 2 <
Oktatási Hivatal Országos Középiskolai Tanulmányi Verseny 011/01 Matematika I. kategória (SZKKÖZÉPISKOL) Döntő 1. Határozza meg az összes olyan egész számot, amely eleget tesz az egyenlőtlenségnek! log
BOLYAI MATEMATIKA CSAPATVERSENY FŐVÁROSI DÖNTŐ SZÓBELI (2005. NOVEMBER 26.) 5. osztály
5. osztály Írd be az ábrán látható hat üres körbe a 10, 30, 40, 60, 70 és 90 számokat úgy, hogy a háromszög mindhárom oldala mentén a számok összege 200 legyen! 50 20 80 Egy dobozban háromféle színű: piros,
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria IV.
Geometria IV. 1. Szerkessz egy adott körhöz egy adott külső ponton átmenő érintőket! Jelöljük az adott kört k val, a kör középpontját O val, az adott külső pontot pedig P vel. A szerkesztéshez azt használjuk
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 15 XV DIFFERENCIÁLSZÁmÍTÁS 1 DERIVÁLT, deriválás Az f függvény deriváltján az (1) határértéket értjük (feltéve, hogy az létezik és véges) Az függvény deriváltjának jelölései:,,,,,
Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Szászné Simon Judit; dátum: 2005. november. I. rész
Szászné Simon Judit, 005. november Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Szászné Simon Judit; dátum: 005. november. feladat I. rész Oldjuk meg a valós számok halmazán a x 5x
Javítóvizsga témakörei matematika tantárgyból
9.osztály Halmazok: - ismerje és használja a halmazok megadásának különböző módjait, a halmaz elemének fogalmát - halmazműveletek : ismerje és alkalmazza gyakorlati és matematikai feladatokban a következő
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!
Arany Dániel Matematikai Tanulóverseny 2011/2012-es tanév első (iskolai) forduló haladók I. kategória
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 011/01-es tanév első (iskolai) forduló haladók I. kategória Megoldások és javítási útmutató 1. Az ábrán látható ABC derékszögű háromszög
MAGISTER GIMNÁZIUM TANMENET 2012-2013 11. OSZTÁLY
MAGISTER GIMNÁZIUM TANMENET 2012-2013 11. OSZTÁLY Heti 3 óra Évi 111 óra Készítette: Ellenőrizte: Literáti Márta matematika tanár.. igazgató Másodfokú egyenletek. Ismétlés 1. óra: Másodfokú egyenletek,
Analízis. 11 12. évfolyam. Szerkesztette: Surányi László. 2015. július 5.
Analízis 11 12. évfolyam Szerkesztette: Surányi László 2015. július 5. Technikai munkák (MatKönyv project, TEX programozás, PHP programozás, tördelés...) Dénes Balázs, Grósz Dániel, Hraskó András, Kalló
A skatulya-elv alkalmazásai
1 A skatulya-elv alkalmazásai Számelmélet 1. Az első 4n darab pozitív egész számot beosztjuk n számú halmazba. Igazoljuk, hogy mindig lesz három olyan szám, amelyek ugyanabban a halmazban vannak és valamely
Vektorok összeadása, kivonása, szorzás számmal, koordináták, lineáris függetlenség
Vektoralgebra Vektorok összeadása, kivonása, szorzás számmal, koordináták, lineáris függetlenség Feladatok: 1) A koordinátarendszerben úgy helyezzük el az egységkockát, hogy az origó az egyik csúcsba essék,
Lineáris algebra gyakorlat
Lineáris algebra gyakorlat 3 gyakorlat Gyakorlatvezet : Bogya Norbert 2012 február 27 Bogya Norbert Lineáris algebra gyakorlat (3 gyakorlat) Tartalom Egyenletrendszerek Cramer-szabály 1 Egyenletrendszerek
Nemzeti versenyek 11 12. évfolyam
Nemzeti versenyek 11 12. évfolyam Szerkesztette: I. N. Szergejeva 2015. február 2. Technikai munkák (MatKönyv project, TEX programozás, PHP programozás, tördelés...) Dénes Balázs, Grósz Dániel, Hraskó
ELLENÁLLÁSOK PÁRHUZAMOS KAPCSOLÁSA, KIRCHHOFF I. TÖRVÉNYE, A CSOMÓPONTI TÖRVÉNY ELLENÁLLÁSOK PÁRHUZAMOS KAPCSOLÁSA. 1. ábra
ELLENÁLLÁSOK PÁRHUZAMOS KAPCSOLÁSA Három háztartási fogyasztót kapcsoltunk egy feszültségforrásra (hálózati feszültségre: 230V), vagyis közös kapocspárra, tehát párhuzamosan. A PÁRHUZAMOS KAPCSOLÁS ISMÉRVE:
Trigonometria és koordináta geometria
Tantárgy neve Trigonometria és koordináta geometria Tantárgy kódja MTB1001 Meghirdetés féléve I. Kreditpont 4k Összóraszám (elm+gyak) 30+30 Számonkérés módja Gyakorlati jegy (2 zárthelyi dolgozat) Előfeltétel
Azonosító jel: Matematika emelt szint
I. 1. Hatjegyű pozitív egész számokat képezünk úgy, hogy a képzett számban szereplő számjegy annyiszor fordul elő, amekkora a számjegy. Hány ilyen hatjegyű szám képezhető? 11 pont írásbeli vizsga 1012
Geometria. 11 12. évfolyam. Szerkesztette: Dobos Sándor, Hraskó András, Kiss Géza, Surányi László. 2016. június 13.
Geometria 11 1. évfolyam Szerkesztette: Dobos Sándor, Hraskó András, Kiss Géza, Surányi László 016. június 13. Technikai munkák (MatKönyv project, TEX programozás, PHP programozás, tördelés...) Dénes Balázs,
EMELT SZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika emelt szint írásbeli
Kombinatorika. 9. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Kombinatorika p. 1/
Kombinatorika 9. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Kombinatorika p. 1/ Permutáció Definíció. Adott n különböző elem. Az elemek egy meghatározott sorrendjét az adott
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 10 X DETERmINÁNSOk 1 DETERmINÁNS ÉRTELmEZÉSE, TULAJdONSÁGAI A másodrendű determináns értelmezése: A harmadrendű determináns értelmezése és annak első sor szerinti kifejtése: A
1. forduló. MEGOLDÁSOK Pontszerző Matematikaverseny 2015/2016-os tanév
MEGOLDÁSOK Pontszerző Matematikaverseny 2015/2016-os tanév 1. forduló 1. feladat: Jancsi és Juliska Matematikai Memory-t játszik. A játék lényege, hogy négyzet alakú kártyákra vagy műveletsorokat írnak
Algebra es sz amelm elet 3 el oad as Rel aci ok Waldhauser Tam as 2014 oszi f el ev
Algebra és számelmélet 3 előadás Relációk Waldhauser Tamás 2014 őszi félév Relációk reláció lat. 1. kapcsolat, viszony; összefüggés vmivel 2. viszonylat, vonatkozás reláció lat. 3. mat halmazok elemei
BOLYAI MATEMATIKA CSAPATVERSENY ORSZÁGOS DÖNTŐ SZÓBELI (2012. NOVEMBER 24.) 3. osztály
3. osztály Két szám összege 33. Mennyi ennek a két számnak a különbsége, ha az egyik kétszerese a másiknak? Hány olyan háromjegyű szám van, amelyben a számjegyek összege legalább 25? 4. osztály A Zimrili
Kombinatorika. 11 12. évfolyam. Szerkesztette: Hraskó András, Surányi László. 2016. június 13.
Kombinatorika 11 12. évfolyam Szerkesztette: Hraskó András, Surányi László 2016. június 13. Technikai munkák (MatKönyv project, TEX programozás, PHP programozás, tördelés...) Dénes Balázs, Grósz Dániel,
2004. december 1. Irodalom
LINEÁRIS LEKÉPEZÉSEK I. 2004. december 1. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják a jegyzetben: Szabó László:
Analízis elo adások. Vajda István. 2012. szeptember 24. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)
Vajda István Neumann János Informatika Kar Óbudai Egyetem 1/8 A halmaz alapfogalom, tehát nem definiáljuk. Jelölés: A halmazokat általában nyomtatott nagybetu vel jelöljük Egy H halmazt akkor tekintünk
Analízis előadások. Vajda István. 2013. február 10. Neumann János Informatika Kar Óbudai Egyetem
Analízis előadások Vajda István Neumann János Informatika Kar Óbudai Egyetem 013. február 10. Vajda István (Óbudai Egyetem) Analízis előadások 013. február 10. 1 / 3 Az elemi függvények csoportosítása
Épületvillamosság laboratórium. Villámvédelemi felfogó-rendszer hatásosságának vizsgálata
Budapesti Műszaki és Gazdaságtudományi Egyetem Villamos Energetika Tanszék Nagyfeszültségű Technika és Berendezések Csoport Épületvillamosság laboratórium Villámvédelemi felfogó-rendszer hatásosságának
Párhuzamos programozás
Párhuzamos programozás Rendezések Készítette: Györkő Péter EHA: GYPMABT.ELTE Nappali tagozat Programtervező matematikus szak Budapest, 2009 május 9. Bevezetés A számítástechnikában felmerülő problémák
MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 12.C ÉS 13.B OSZTÁLY HETI 4 ÓRA 31 HÉT/ ÖSSZ 124 ÓRA
MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség kezdete: 2013.09. 01. Oldal/összes: 1/6 Fájlnév:ME-III.1.1. Tanmenetborító SZK-DC- 2013 MATEMATIKA
2011. március 9. Dr. Vincze Szilvia
. márius 9. Dr. Vinze Szilvia Tartalomjegyzék.) Elemi bázistranszformáió.) Elemi bázistranszformáió alkalmazásai.) Lineáris függőség/függetlenség meghatározása.) Kompatibilitás vizsgálata.) Mátri/vektorrendszer
NT-17112 Az érthető matematika 9. Tanmenetjavaslat
NT-17112 Az érthető matematika 9. Tanmenetjavaslat Ezzel a segédanyaggal szeretnék segítséget nyújtani a középiskolák azon matematikatanárainak, akik a matematikai oktatáshoz és neveléshez Juhász István
Osztályozóvizsga követelményei
Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 5 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási
A parabola és az egyenes, a parabola és kör kölcsönös helyzete
66 A paraola 00 egyen a keresett kör középpontja Az pont koordinátái: ( y) Ekkor felírhatjuk a következô egyenletet: ( - ) + ( y- ) = mert a kör sugara > 0 Innen rendezéssel: ( y- ) = 6 - A mértani hely
1. Írja fel prímszámok szorzataként a 420-at! 2. Bontsa fel a 36 000-et két részre úgy, hogy a részek aránya 5 : 4 legyen!
1. Írja fel prímszámok szorzataként a 40-at! 40 =. Bontsa fel a 36 000-et két részre úgy, hogy a részek aránya 5 : 4 legyen! A részek: 3. Egy sejttenyészetben naponta kétszereződik meg a sejtek száma.
A SZÁMFOGALOM KIALAKÍTÁSA
A SZÁMFOGALOM KIALAKÍTÁSA TERMÉSZETES SZÁMOK ÉRTELMEZÉSE 1-5. OSZTÁLY Számok értelmezése 0-tól 10-ig: Véges halmazok számosságaként Mérőszámként Sorszámként Jelzőszámként A számok fogalmának kiterjesztése
6. modul Egyenesen előre!
MATEMATIKA C 11 évfolyam 6 modul Egyenesen előre! Készítette: Kovács Károlyné Matematika C 11 évfolyam 6 modul: Egyenesen előre! Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási
Halmazok és függvények
Halmazok és függvények Óraszám: 2+2 Kreditszám: 6 Meghirdető tanszék: Analízis Debrecen, 2005. A tárgy neve: Halmazok és függvények (előadás) A tárgy oktatója: Dr. Gilányi Attila Óraszám/hét: 2 Kreditszám:
Ábrahám Gábor A háromszög és a terület Feladatok. Feladatok
I. Klasszikus, bevezető feladatok Feladatok 1. Az alábbi feladatokban hányad része a satírozott rész területe az eredeti négyszög területének? a) Egy paralelogramma valamely belső pontját összekötjük a
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria II.
Geometria II. Síkidomok, testek: A sík feldarabolásával síkidomokat, a tér feldarabolásával testeket kapunk. Törött vonal: A csatlakozó szakaszok törött vonalat alkotnak. DEFNÍCIÓ: (Sokszögvonal) A záródó
7. előadás. Vektorok alkalmazásai
7. előadás Vektorok alkalmazásai Terület Tétel: Ha egy tetraéder lapjaira merőlegesen olyan kifelé mutató vektorokat állítunk, melyek hossza arányos az adott lap területével, akkor az így kapott 4 vektor
Jelek tanulmányozása
Jelek tanulmányozása A gyakorlat célja A gyakorlat célja a jelekkel való műveletek megismerése, a MATLAB környezet használata a jelek vizsgálatára. Elméleti bevezető Alapműveletek jelekkel Amplitudó módosítás
Feladatok megoldásokkal a negyedik gyakorlathoz (Függvényvizsgálat) f(x) = 2x 2 x 4. 2x 2 x 4 = 0, x 2 (2 x 2 ) = 0.
Feladatok megoldásokkal a negyedik gyakorlathoz (Függvényvizsgálat). Feladat. Végezzük el az f(x) = x x 4 ) Értelmezési tartomány: x R. ) A zérushelyet az f(x) = 0 egyenlet megoldásával kapjuk: amiből
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló gimnáziuma) Térgeometria III.
Térgeometria III. 1. Szabályos háromoldalú gúla alapéle 1 cm, oldaléle 1 cm. Milyen magas a gúla? Tekintsük a következő ábrát: Az alaplap szabályos ABC, így a D csúcs merőleges vetülete a háromszög S súlypontja.
Vektoralgebrai feladatok
Vektoralgebrai feladatok 1. Vektorok összeadása és szorzatai, azok alkalmazása 1.1 a) Írja fel a és vektorokat az és átlóvektorok segítségével! b) Milyen hosszú az + ha =1? 1.2 Fejezze ki az alábbi vektorokat
NT-17102/1 Matematika 9. (Heuréka) Tanmenetjavaslat
NT-17102/1 Matematika 9. (Heuréka) Tanmenetjavaslat A Dr. Fried Katalin Dr. Gerőcs László Számadó László Matematika 9. tankönyvben (Heuréka-sorozat) a középszintű érettségihez találjuk meg a tananyagot,
A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny. MATEMATIKA III. KATEGÓRIA (a speciális tanterv szerint haladó gimnazisták)
A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA III. KATEGÓRIA (a speciális tanterv szerint haladó gimnazisták) Javítási-értékelési útmutató Kérjük a javító tanárokat,
MATEMATIKA ÍRÁSBELI VIZSGA 2012. május 8.
MATEMATIKA ÍRÁSBELI VIZSGA 2012. május 8. I. rész Fontos tudnivalók A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet és bármelyik négyjegyű függvénytáblázatot
MBLK12: Relációk és műveletek (levelező) (előadásvázlat) Maróti Miklós, Kátai-Urbán Kamilla
MBLK12: Relációk és műveletek (levelező) (előadásvázlat) Maróti Miklós, Kátai-Urbán Kamilla Jelölje Z az egész számok halmazát, N a pozitív egészek halmazát, N 0 a nem negatív egészek halmazát, Q a racionális
IV.5. GARÁZS 1. A feladatsor jellemzői
IV.5. GARÁZS 1. Tárgy, téma A feladatsor jellemzői Lineáris egyenlet, egyenletrendszer. Elsőfokú függvény. Többismeretlenes problémák megoldása egyenletrendszerek felírásával algebrai úton, illetve intuitív
Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2011. május 3. 8:00. Az írásbeli vizsga időtartama: 240 perc NEMZETI ERŐFORRÁS MINISZTÉRIUM
ÉRETTSÉGI VIZSGA 2011. május 3. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2011. május 3. 8:00 Az írásbeli vizsga időtartama: 240 perc NEMZETI ERŐFORRÁS MINISZTÉRIUM Pótlapok száma Tisztázati Piszkozati Matematika
Minta 1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR
1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR A feladatok megoldására 240 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II. részben kitűzött
Határozatlan integrál
. fejezet Határozatlan integrál Határozatlan integrál D. Azt mondjuk, hogy az egyváltozós valós f függvénynek a H halmazon primitív függvénye az F függvény, ha a H halmazon f és F értelmezve van, továá
http://www.olcsoweboldal.hu ingyenes tanulmány GOOGLE INSIGHTS FOR SEARCH
2008. augusztus 5-én elindult a Google Insights for Search, ami betekintést nyújt a keresőt használók tömegeinek lelkivilágába, és időben-térben szemlélteti is, amit tud róluk. Az alapja a Google Trends,
Érettségi feladatok Algoritmusok egydimenziós tömbökkel (vektorokkal) 1/6. Alapműveletek
Érettségi feladatok Algoritmusok egydimenziós tömbökkel (vektorokkal) 1/6 A tömbök deklarálásakor Pascal és C/C++ nyelvekben minden esetben meg kell adni az indexelést (Pascal) vagy az elemszámot (C/C++).
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Koordináta-geometria
MTEMTIK ÉRETTSÉGI TÍPUSFELDTOK KÖZÉPSZINT Koordináta-gomtria szürkíttt háttrű fladatrzk nm tartoznak az érinttt témakörhöz azonban szolgálhatnak fontos információval az érinttt fladatrzk mgoldásához! 1)
Shared IMAP beállítása magyar nyelvű webmailes felületen
Shared IMAP beállítása magyar nyelvű webmailes felületen A következő ismertető segítséget nyújt a szervezeti cím küldőként való beállításában a caesar Webmailes felületén. Ahhoz, hogy a Shared Imaphoz
Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály, középszint
TÁMOP-.1.4-08/2-2009-0011 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály, középszint Vasvár,
Matematika III. 1. Kombinatorika Prof. Dr. Závoti, József
Matematika III. 1. Kombinatorika Prof. Dr. Závoti, József Matematika III. 1. : Kombinatorika Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027 Tananyagfejlesztéssel
Fazekas Mihály Fővárosi Gyakorló Általános Iskola és Gimnázium
26 Fazekas Mihály Fővárosi Gyakorló Általános Iskola és Gimnázium Az Önök telephelyére vonatkozó egyedi adatok táblázatokban és grafikonokon 1. évfolyam gimnázium szövegértés Előállítás ideje: 27.3.. 12:28:21
Lécgerenda. 1. ábra. 2. ábra
Lécgerenda Egy korábbi dolgozatunkban melynek címe: Karimás csőillesztés már szóltunk arról, hogy a szeezetek számításaiban néha célszerű lehet a diszkrét mennyiségeket folyto - nosan megoszló mennyiségekkel
Operációkutatás. 2. konzultáció: Lineáris programozás (2. rész) Feladattípusok
Operációkutatás NYME KTK, gazdálkodás szak, levelező alapképzés 00/003 tanév, II évf félév Előadó: Dr Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs u 9 GT fszt 3 (99) 58 640
Diszkrét matematika I. gyakorlat
Diszkrét matematika I. gyakorlat 1. Gyakorlat Bogya Norbert Bolyai Intézet 2012. szeptember 4-5. Bogya Norbert (Bolyai Intézet) Diszkrét matematika I. gyakorlat 2012. szeptember 4-5. 1 / 21 Információk
Sz ekelyhidi L aszl o Val osz ın us egsz am ıt as es matematikai statisztika *************** Budapest, 1998
Székelyhidi László Valószínűségszámítás és matematikai statisztika *************** Budapest, 1998 Előszó Ez a jegyzet a valószínűségszámításnak és a matematikai statisztikának azokat a fejezeteit tárgyalja,
EMELT SZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2014. május 6. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2014. május 6. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA
Számelmélet I. 1. A tantárgy általános célja és specifikus célkitűzései
Számelmélet I. Tantárgy neve Számelmélet I. Tantárgy kódja MTB 1011 Meghirdetés féléve 3. félév Kreditpont 3 Összóraszám (elm+gyak) 2+0 Számonkérés módja Kollokvium Előfeltétel (tantárgyi kód) MTB 1003
MATEMATIKA ÍRÁSBELI VIZSGA 2011. május 3.
MATEMATIKA ÍRÁSBELI VIZSGA I. rész Fontos tudnivalók A megoldások sorrendje tetszőleges. A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet és bármelyik
Nagy András. Számelméleti feladatgyűjtemény 2009.
Nagy András Számelméleti feladatgyűjtemény 2009. Tartalomjegyzék Tartalomjegyzék... 1 Bevezetés... 2 1. Feladatok... 3 1.1. Természetes számok... 3 1.2. Oszthatóság... 5 1.3. Legnagyobb közös osztó, legkisebb
XXIV. NEMZETKÖZI MAGYAR MATEMATIKAVERSENY Szabadka, 2015. április 8-12.
XXIV NEMZETKÖZI MAGYAR MATEMATIKAVERSENY Szbdk, 05 április 8- X évfolym A XXIV Nemzetközi Mgyr Mtemtik Verseny tiszteletére Frici rjzolt Szbdk főterére egy 4 oldlú szbályos sokszöget Hány olyn egyenlő
MATEMATIKA 9. osztály Segédanyag 4 óra/hét
MATEMATIKA 9. osztály Segédanyag 4 óra/hét - 1 - Az óraszámok az AROMOBAN követhetőek nyomon! A tananyag feldolgozása a SOKSZÍNŰ MATEMATIKA (Mozaik, 013) tankönyv és a SOKSZÍNŰ MATEMATIKA FELADATGYŰJTEMÉNY
3. Matematikai logika (megoldások)
(megoldások) 1. Hamis, ugyanis P, Q és R logikai értékét behelyettesítve kapjuk: (P Q) R = (1 0) 0 = 0 0 = 0. (Ebben és a további feladatok megoldásában alkalmazzuk a D 3.1 denícióit. A megoldást célszer
Meghirdetés féléve 1 Kreditpont 4 Összóraszám (elm+gyak) 2+2
Tantárgy neve Algebrai alapismeretek Tantárgy kódja MTB1003 Meghirdetés féléve 1 Kreditpont 4 Összóraszám (elm+gyak) 2+2 Számonkérés módja Gyakorlati jegy Előfeltétel (tantárgyi kód) Tantárgyfelelős neve
MATEMATIKA HETI 3 ÓRA
EURÓPAI ÉRETTSÉGI 010 MATEMATIKA HETI 3 ÓRA IDŐPONT : 010. június 4. A VIZSGA IDŐTARTAMA : 3 óra (180 perc) MEGENGEDETT SEGÉDESZKÖZÖK : Európai képletgyűjtemény Nem programozható, nem grafikus kalkulátor
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Térgeometria V.
Térgeometria V. 1. Egy 4, 6 dm átmérőjű, 5 dm magasságú, 7, dm sűrűségű hengerből a lehető legnagyobb szabályos nyolcoldalú oszlopot kell készíteni. Mekkora lesz a tömege? Az oszlop magassága a henger
Mágneses szuszceptibilitás vizsgálata
Mágneses szuszceptibilitás vizsgálata Mérést végezte: Gál Veronika I. A mérés elmélete Az anyagok külső mágnesen tér hatására polarizálódnak. Általában az anyagok mágnesezhetőségét az M mágnesezettség
9. modul Szinusz- és koszinusztétel. Készítette: Csákvári Ágnes
9. modul Szinusz- és koszinusztétel Készítette: Csákvári Ágnes Matematika A 11. évfolyam 9. modul: Szinusz- és koszinusztétel Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási
PRÓBAÉRETTSÉGI VIZSGA
MATEMATIKA PRÓBAÉRETTSÉGI VIZSGA 2012. Január 21. EMELT SZINTŰ PRÓBAÉRETTSÉGI VIZSGA 2012. Január 21. Az írásbeli vizsga időtartama: 240 perc Név Tanárok neve Email Pontszám STUDIUM GENERALE MATEMATIKA
I. rész. Pótlapok száma Tisztázati Piszkozati. Név:...osztály:... Matematika kisérettségi. 2012. május 15. Fontos tudnivalók
Matematika kisérettségi 2012. május 15. I. rész Fontos tudnivalók 1. A feladatok megoldására 30 percet fordíthat, az id elteltével a munkát be kell fejeznie. 2. A megoldások sorrendje tetsz leges. 3. A
Lineáris algebra jegyzet
Lineáris algebra jegyzet Készítette: Jezsoviczki Ádám Forrás: Az előadások és a gyakorlatok anyaga Legutóbbi módosítás dátuma: 2011-12-04 A jegyzet nyomokban hibát tartalmazhat, így fentartásokkal olvasandó!
Másodrendű felületek
Azon pontok halmaza a térben, melyek koordinátái kielégítik az egyenletet, ahol feltételezzük, hogy az a, b, c, d, e, f együtthatók egyszerre nem tűnnek el. Minden másodrendű felülethez hozzárendelünk
Fejezetek az abszolút geometriából 6. Merőleges és párhuzamos egyenesek
Fejezetek az abszolút geometriából 6. Merőleges és párhuzamos egyenesek Ebben a fejezetben megadottnak feltételezzük az abszolút tér egy síkját és tételeink mindig ebben a síkban értendők. T1 (merőleges
Fordítóprogramok Készítette: Nagy Krisztián
Fordítóprogramok Készítette: Nagy Krisztián Reguláris kifejezések (FLEX) Alapelemek kiválasztása az x karakter. tetszőleges karakter (kivéve újsor) [xyz] karakterhalmaz; vagy egy x, vagy egy y vagy egy
Dr. Schuster György. 2014. február 21. Real-time operációs rendszerek RTOS
Real-time operációs rendszerek RTOS 2014. február 21. Az ütemező (Scheduler) Az operációs rendszer azon része (kódszelete), mely valamilyen konkurens hozzáférés-elosztási problémát próbál implementálni.
Térgeometria feladatok. 2. Egy négyzetes oszlop magassága háromszor akkora, mint az alapéle, felszíne 504 cm 2. Mekkora a testátlója és a térfogata?
Térgeometria feladatok Téglatest 1. Egy téglatest éleinek aránya 2 : 3 : 5, felszíne 992 cm 2. Mekkora a testátlója és a 2. Egy négyzetes oszlop magassága háromszor akkora, mint az alapéle, felszíne 504
MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS EMELT SZINT
Matematika PRÉ megoldókulcs 0. január. MTEMTIK PRÓBÉRETTSÉGI MEGOLDÓKULCS EMELT SZINT ) dottak a 0; ; ; ; ; ; 5; 7; 7; 8 számjegyek. Hány darab tízjegyű, 5-tel osztható szám készíthető az adott számjegyekből
( ) Schultz János EGYENLŐTLENSÉGEK A HÁROMSZÖG GEOMETRIÁJÁBAN
Shultz János EGYENLŐLENSÉGEK A HÁOMSZÖG GEOMEIÁJÁBAN Igzoljuk hogy egy szályos háromszög első pontját súsokkl összekötő három szkszól mindig szerkeszthető háromszög Egy tégllp elsejéen vegyünk fel egy
BEVEZETÉS AZ ANALÍZISBE
BEVEZETÉS AZ ANALÍZISBE Székelyhidi László A felsőbb matematika kapujában Jelen kiadvány a Palotadoktor Bt. kiadásában készült. A munkát lektorálta: Lovas Rezső (Debreceni Egyetem, Matematikai Intézet)
PRÓBAÉRETTSÉGI MATEMATIKA. 2003. május-június SZÓBELI EMELT SZINT. Tanulói példány. Vizsgafejlesztő Központ
PRÓBAÉRETTSÉGI 2003. május-június MATEMATIKA SZÓBELI EMELT SZINT Tanulói példány Vizsgafejlesztő Központ 1. Halmazok, halmazműveletek Alapfogalmak, halmazműveletek, számosság, számhalmazok, nevezetes ponthalmazok
MATEMATIKA VERSENY --------------------
Vonyarcvashegyi Eötvös Károly Általános Iskola 2014. 8314 Vonyarcvashegy, Fő u. 84/1. 2. osztály MATEMATIKA VERSENY -------------------- név Olvasd el figyelmesen, majd oldd meg a feladatokat! A részeredményeket
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria I.
Geometria I. Alapfogalmak: Az olyan fogalmakat, amelyeket nem tudunk egyszerűbb fogalmakra visszavezetni, alapfogalmaknak nevezzük, s ezeket nem definiáljuk. Pl.: pont, egyenes, sík, tér, illeszkedés.
MATEMATIKA FELADATGYŰJTEMÉNY
Pék Johanna MATEMATIKA FELADATGYŰJTEMÉNY Nem matematika alapszakos hallgatók számára Tartalomjegyzék Előszó iii. Lineáris algebra.. Mátrixok...................................... Lineáris egyenletrendszerek..........................