Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék. Megerősítéses tanulás
|
|
- Teréz Molnárné
- 5 évvel ezelőtt
- Látták:
Átírás
1 Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Megerősítéses tanulás Előadó: Előadás anyaga: Hullám Gábor Dobrowiecki Tadeusz
2 Szekvenciális döntési problémából indulunk Markov döntési folyamat (MDF) i 1 s' i a S0 T(s, a, s ) R(s), v. R(s, a, s ) U( s) = R( s) + γ max Σs ' T( s, a, s') U( s') a π( s) U( s) U + ( s) R( s) + γ max Σ T( s, a, s') U ( s') π( s) U ( s) Optimális eljárásmód i Megerősítéses tanulás Kezdőállapot: Állapotátmenet-modell: Jutalomfüggvény: Optimális eljárásmód ismert nem ismert, legfeljebb a tapasztalat nem ismert, legfeljebb ahogy jön megtanulni, mindennek ellenére?!
3 Megerősítéses tanulás Pl. sakkjáték: tanító nélkül is van visszacsatolás a játék végén: nyert vagy vesztett = +/- jutalom, azaz megerősítés.... a játék végén = a cselekvés szekvencia végén Megerősítés: milyen gyakran? milyen erős? milyen értékű? A feladat: (ritka) jutalmakból megtanulni egy sikeres ágens-függvényt (optimális eljárásmód: melyik állapot, melyik cselekvés hasznos). Nehéz: az információhiány miatt az ágens sohasem tudja, hogy mik a jó lépések, azt sem, melyik jutalom melyik cselekvésből ered.
4
5 Ágens tudása: induláskor tudja már a környezetet és a cselekvéseinek hatását, vagy pedig még ezt is meg kell tanulnia. Megerősítés: csak a végállapotban, vagy menet közben bármelyikben. Ágens: passzív tanuló: figyeli a világ alakulását és tanul. aktív tanuló: a megtanult információ birtokában cselekednie is kell. felfedező Ágens kialakítása: megerősítés hasznosság leképezés U(s) hasznosság függvény tanulása, ennek alapján a cselekvések eldöntése, hogy az elérhető hasznosság várható értéke max legyen (környezet/ágens modellje szükséges) Q(a, s) cselekvés érték függvény (állapot-cselekvés párok) tanulása, valamilyen várható hasznot tulajdonítva egy adott helyzetben egy adott cselekvésnek (környezet/ágens modell nem szükséges, közben tanult) Q tanulás (model-free)
6
7 Fontos egyszerűsítés (ld. a MDF): a sorozat hasznossága = a sorozat állapotaihoz rendelt hasznosságok összege. = a hasznosság additív Az állapot hátralevő-jutalma (reward-to-go): azon jutalmak összege, amelyet akkor kapunk, ha az adott állapotból valamelyik végállapotig eljutunk. Egy állapot várható hasznossága = a hátralevő-jutalom várható értéke π t U ( s) = E[ Σ γ R( s ) π, s = s] t t 0 π π U ( s) = R( s) + γ Σ T( s, π( s), s') U ( s') s'
8 Adaptív Dinamikus Programozás Az állapotátmeneti valószínűségek Tij a megfigyelt gyakoriságokkal becsülhetők. Amint az ágens megfigyelte az összes állapothoz tartozó jutalom értéket, a hasznosság-értékek a következő egyenletrendszer megoldásával kaphatók meg: megfigyelt π π U ( s) = R( s) + γ Σ T( s, π( s), s') U ( s') s' megtanult 1 U = R+ γ TU U = ( I γt) R és ha nem megy?
9
10 Az időbeli különbség (IK) tanulás (TD Time Difference) o U( s) U( s) + α ( R ( s) U( s)) Monte Carlo mintavétel: használjuk fel a megfigyelt állapotátmeneteket a megfigyelt visszaterjesztett megerősítésekkel - ki kell várni az epizód végét. Alapötlet: használjuk fel a megfigyelt állapotátmeneteknél a jutalom becsült értékét: TD(0)-különbség (a jutalom becslése) TD(0) -hiba: U( s) (1 α) U( s) + αδ( s) = U( s) + α ( R( s) + γu( s') U( s)) α - bátorsági faktor, tanulási tényező γ - leszámoltatási tényező (ld. MDF) Az egymást követő állapotok hasznosság-különbsége időbeli különbség (IK) (temporal difference, TD). R( s) + γu( s') δ( s) = R( s) + γu( s') U( s)
11 Az összes időbeli különbség eljárásmód alapötlete 1. korrekt hasznosság-értékek esetén lokálisan fennálló feltételek rendszere: π π U ( s) = R( s) + γ Σ T( s, π( s), s') U ( s') 2. módosító egyenlet, amely a becsléseinket ezen egyensúlyi" egyenlet irányába módosítja: U( s) U( s) + α ( R( s) + γu( s') U( s)) 3. Csak a (A)DP módszer használta fel a modell teljes ismeretét. Az IK az állapotok közt fennálló kapcsolatokra vonatkozó információt használja, de csak azt, amely az aktuális tanulási sorozatból származik. Az IK változatlanul működik előzetesen ismeretlen környezet esetén is. s'
12 Ismeretlen környezetben végzett aktív tanulás Döntés: melyik cselekvés? a cselekvésnek mik a kimeneteleik? hogyan hatnak az elért jutalomra? A környezeti modell: a többi állapotba való átmenet valószínűsége egy adott cselekvés esetén. U( s) = R( s) + γ max Σ T( s, a, s') U( s') Az állapottér felderítése - milyen cselekvést válasszunk? Nehéz probléma Helyes-e azt a cselekvést választani, amelynek a jelenlegi hasznosságbecslés alapján legnagyobb a várható hasznossága? Ez figyelmen kívül hagyja a cselekvésnek a tanulásra gyakorolt hatását. a s' Döntésnek kétféle hatása van: 1. Jutalmat eredményez a jelenlegi szekvenciában. 2. Befolyásolja az észleléseket, és ezáltal az ágens tanulási képességét így jutalmat eredményezhet a jövőbeni szekvenciákban.
13 Az állapottér felderítése Kompromisszum: a jelenlegi jutalom, amit a pillanatnyi hasznosságbecslés tükröz, és a hosszú távú előnyök közt. Két megközelítés a cselekvés kiválasztásában: Hóbortos, Felfedező : véletlen módon cselekszik, annak reményében, hogy végül is felfedezi az egész környezetet Mohó : a jelenlegi becslésre alapozva maximalizálja a hasznot. Hóbortos: képes jó hasznosság-becsléseket megtanulni az összes állapotra. Sohasem sikerül fejlődnie az optimális jutalom elérésében. Mohó: gyakran talál egy jó utat. Utána ragaszkodik hozzá, és soha nem tanulja meg a többi állapot hasznosságát. Ágens addig legyen hóbortos, amíg kevés fogalma van a környezetről, és legyen mohó, amikor a valósághoz közeli modellel rendelkezik. Létezik-e optimális felfedezési stratégia? Ágens súlyt kell adjon azoknak a cselekvéseknek, amelyeket még nem nagyon gyakran próbált, a kis hasznosságúnak gondolt cselekvéseket elkerülje.
14 felfedezési függvény f ( u, n) = + R ha n < N u különben + + s' a mohóság kíváncsiság f(u,n) u-ban monoton növekvő, n-ben monoton csökkenő U ( s) R( s) + γ max f ( Σ T( s, a, s') U ( s'), N( a, s)) U + (i): az i állapothoz rendelt hasznosság optimista becslése N(a,i): az i állapotban hányszor próbálkoztunk az a cselekvéssel R + a tetszőleges állapotban elérhető legnagyobb jutalom optimista becslése Az a cselekvés, amely felderítetlen területek felé vezet, nagyobb súlyt kap. ε-mohóság: az ágens ε valószínűséggel véletlen cselekvést választ, ill. 1-ε valószínűséggel mohó Boltzmann-felfedezési modell egy a cselekvés megválasztásának valószínűsége egy s állapotban: a T hőmérséklet a két véglet között szabályoz. a' Ha T, akkor a választás tisztán (egyenletesen) véletlen, ha T 0, akkor a választás mohó. e e P( a, s) = Σ e hasznosság ( a, s)/ T hasznosság ( a', s)/ T
15 A cselekvés-érték függvény tanulása A cselekvés-érték függvény egy adott állapotban választott adott cselekvéshez egy várható hasznosságot rendel: Q-érték U( s) = max Q( a, s) A Q-értékek fontossága: a a feltétel-cselekvés szabályokhoz hasonlóan lehetővé teszik a döntést modell használata nélkül, ellentétben a feltétel-cselekvés szabályokkal, közvetlenül a jutalom visszacsatolásával tanulhatók. Mint a hasznosság-értékeknél, felírhatunk egy kényszer egyenletet, amely egyensúlyi állapotban, amikor a Q-értékek korrektek, fenn kell álljon: Q( a, s) = R( s) + γ Σ T( s, a, s')max Q( a', s') s' a'
16 A cselekvés-érték függvény tanulása Ezt az egyenletet közvetlenül felhasználhatjuk egy olyan iterációs folyamat módosítási egyenleteként, amely egy adott modell esetén a pontos Q-értékek számítását végzi. Az időbeli különbség viszont nem igényli a modell ismeretét. Az IK módszer Q-tanulásának módosítási egyenlete: Q( a, s) Q( a, s) + α ( R( s) + γ max Q( a ', s ') Q( a, s)) a' SARSA Q-tanulás (State-Action-Reward-State-Action) Q( a, s) Q( a, s) + α [ R( s) + γ Q( a ', s ') Q( a, s)] (a' megválasztása pl. Boltzmann felfedezési modellből)
17 Folyópart B Kő 2. Hosszú Előre Rövid Előre Mély víz Kő 1. Folyópart A Tanuló szekvencia: RE HE RE +1 (száraz lábbal át) RE HE HH HE HH RH HE -1 RE HE RH -1 (megfürdött) Ágens Rövid Hátra Hosszú Hátra
18 Part B Kő 2. Q( a, s) Q( a, s) + α ( R( s) + γ max Q( a ', s ') Q( a, s)) a' Kő 1. Part A Állapot Part A Kő 1. Kő 2. Cselekvés HH RH RE HE
19 Part B Kő 2. Kő 1. Part A Part A Kő 1. Kő 2. HH RH RE HE
20 Part B Kő 2. Kő 1. Part A Part A Kő 1. Kő 2. HH RH RE HE
21 Part B Kő 2. Kő 1. Part A Part A Kő 1. Kő 2. HH RH RE HE
22 A megerősítéses tanulás általánosító képessége Eddig: ágens által tanult hasznosság: táblázatos formában reprezentált = explicit reprezentáció Kis állapotterek: elfogadható, de a konvergencia idő és (ADP esetén) az iterációnkénti idő gyorsan nő a tér méretével. Gondosan vezérelt közelítő ADP: 10000, vagy ennél is több. De a való világhoz közelebb álló környezetek szóba se jöhetnek. (a sakk stb. - állapottere nagyságrendű) (az összes állapotot látni, hogy megtanuljunk játszani?!) Egyetlen lehetőség: a függvény implicit reprezentációja: Pl. egy játékban a táblaállás tulajdonságainak valamilyen halmaza f 1, f n. Az állás becsült hasznosság-függvénye: U ˆ ( s ) f ( s ) f ( s )... f ( s ) θ = θ + θ + θ C. Shannon, Programming a Computer for Playing Chess, Philosophical Magazine, 7th series, 41, no. 314 (March 1950): A.L. Samuel, Some Studies in Machine Learning Using the Game of Checkers. B.II-Recent Progress, IBM. J. 3, (1959), kb. 20 tulajdonság Deep Blue (Feng-Hsiung Hsu) kb tulajdonság, spec. sakk-csip n n
23 A hasznosság-függvény n értékkel jellemezhető, pl érték helyett. Egy átlagos sakk kiértékelő függvény kb. 10 súllyal épül fel, tehát hatalmas tömörítést értünk el. Az implicit reprezentáció által elért tömörítés teszi lehetővé, hogy a tanuló ágens általánosítani tudjon a már látott állapotokról az eddigiekben nem látottakra. Az implicit reprezentáció legfontosabb aspektusa nem az, hogy kevesebb helyet foglal, hanem az, hogy lehetővé teszi a bemeneti állapotok induktív általánosítását. Az olyan módszerekről, amelyek ilyen reprezentációt tanulnak, azt mondjuk, hogy bemeneti általánosítást végeznek.
24 4 x 3 világ U ˆ θ ( x, y) = θ + θ x + θ y E ( ) ˆ j s = U ( s) u ( s) 2 ( ) 2 θ j Jósolt és kísérleti tényleges E ( ) ˆ j s ( ˆ ) Uθ ( s) θi θi α = θi + α u j ( s) Uθ ( s) θ θ i ( u ( ) ˆ ( ) ) j s Uθ s θ θ + α ( ( ) ˆ ( ) ) j θ θ θ + α u s U s x ( ( ) ˆ ( ) ) j θ θ θ + α u s U s y i
25 Az IK (időbeli különbség) módszer szintén alkalmazható induktív tanulásra, ha az U, vagy Q táblázatot implicit reprezentációra cseréltük (pl. neurális háló). s állapot U régi (s) IK tanulás U új (s) U/Q tanuló gradiensek θ régi (s) példa? ˆ ˆ ˆ Uθ ( s ) θi θi + α R( s) γuθ ( s ') Uθ ( s) + θ θ új (s) ˆ ˆ ˆ Qθ ( a, s ) θi θi + α R( s) + γ max Qθ ( a ', s ') Qθ ( a, s) a' θ i i
Megerősítéses tanulás
Gépi tanulás (Szekvenciális döntési probléma) Megerősítéses tanulás Pataki Béla BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Az egész világot nem tudjuk modellezni,
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Megerősítéses tanulás Pataki Béla BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Ágens tudása: Induláskor: vagy ismeri már a környezetet
Megerősítéses tanulási módszerek és alkalmazásaik
MISKOLCI EGYETEM GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Megerősítéses tanulási módszerek és alkalmazásaik Tompa Tamás tanársegéd Általános Informatikai Intézeti Tanszék Miskolc, 2017. szeptember 15. Tartalom
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Gépi tanulás elemei Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade Egy intelligens rendszer
Megerősítéses tanulás 7. előadás
Megerősítéses tanulás 7. előadás 1 Ismétlés: TD becslés s t -ben stratégia szerint lépek! a t, r t, s t+1 TD becslés: tulajdonképpen ezt mintavételezzük: 2 Akcióértékelő függvény számolása TD-vel még mindig
Adaptív menetrendezés ADP algoritmus alkalmazásával
Adaptív menetrendezés ADP algoritmus alkalmazásával Alcím III. Mechwart András Ifjúsági Találkozó Mátraháza, 2013. szeptember 10. Divényi Dániel Villamos Energetika Tanszék Villamos Művek és Környezet
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Keresés ellenséges környezetben Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade Ellenség
Stratégiák tanulása az agyban
Statisztikai tanulás az idegrendszerben, 2019. Stratégiák tanulása az agyban Bányai Mihály banyai.mihaly@wigner.mta.hu http://golab.wigner.mta.hu/people/mihaly-banyai/ Kortárs MI thispersondoesnotexist.com
Megerősítéses tanulás
Megerősítéses tanulás elméleti kognitív neurális Introduction Knowledge representation Probabilistic models Bayesian behaviour Approximate inference I (computer lab) Vision I Approximate inference II:
FELÜGYELT ÉS MEGERŐSÍTÉSES TANULÓ RENDSZEREK FEJLESZTÉSE
FELÜGYELT ÉS MEGERŐSÍTÉSES TANULÓ RENDSZEREK FEJLESZTÉSE Dr. Aradi Szilárd, Fehér Árpád Mesterséges intelligencia kialakulása 1956 Dartmouth-i konferencián egy maroknyi tudós megalapította a MI területét
Korszerű információs technológiák
MISKOLCI EGYETEM GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Korszerű információs technológiák Megerősítéses tanulási módszerek és alkalmazásaik Tompa Tamás tanársegéd Általános Informatikai Intézeti Tanszék Miskolc,
Tanulás elosztott rendszerekben/3
Tanulás elosztott rendszerekben/3 MARL Multi Agent Reinforcement Learning Többágenses megerősítéses tanulás Kezdjük egy ágenssel. Legyenek a környezeti állapotai s-ek, cselekvései a-k, az ágens cselekvéseit
Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )
Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:
Megerősítéses tanulás 2. előadás
Megerősítéses tanulás 2. előadás 1 Technikai dolgok Email szityu@eotvoscollegium.hu Annai levlista http://nipglab04.inf.elte.hu/cgi-bin/mailman/listinfo/annai/ Olvasnivaló: Sutton, Barto: Reinforcement
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék. Neurális hálók. Pataki Béla
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Neurális hálók Előadó: Előadás anyaga: Hullám Gábor Pataki Béla Dobrowiecki Tadeusz BME I.E. 414, 463-26-79
Elővizsga, dec. 15. Szívhez szóló megjegyzések és megoldások Adja meg a kontrollált természetes nyelv definícióját (vendégelőadás)
Elővizsga, 2015. dec. 15. Szívhez szóló megjegyzések és megoldások Tisztelt Hallgatók! Az elővizsga meglepően rossz eredménye késztet néhány megjegyzés megtételére. A félév elején hangsúlyoztam, hogy a
Bonyolult jelenség, aminek nincs jó modellje, sok empirikus adat, intelligens (ember)ágens képessége, hogy ilyen problémákkal mégis megbirkozzék.
Vizsga, 2015. dec. 22. B cs. B1. Hogyan jellemezhetők a tanulást igénylő feladatok? (vendégelőadás) Bonyolult jelenség, aminek nincs jó modellje, sok empirikus adat, intelligens (ember)ágens képessége,
Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function
Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Tanulás pszichológiai szinten Classical conditioning Hebb ötlete: "Ha az A sejt axonja elég közel van a B sejthez,
Gépi tanulás a gyakorlatban. Lineáris regresszió
Gépi tanulás a gyakorlatban Lineáris regresszió Lineáris Regresszió Legyen adott egy tanuló adatbázis: Rendelkezésünkre áll egy olyan előfeldolgozott adathalmaz, aminek sorai az egyes ingatlanokat írják
Mit látnak a robotok? Bányai Mihály Matemorfózis, 2017.
Mit látnak a robotok? Bányai Mihály Matemorfózis, 2017. Vizuális feldolgozórendszerek feladatai Mesterséges intelligencia és idegtudomány Mesterséges intelligencia és idegtudomány Párhuzamos problémák
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Racionalitás: a hasznosság és a döntés Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade
Mérés és modellezés Méréstechnika VM, GM, MM 1
Mérés és modellezés 2008.02.04. 1 Mérés és modellezés A mérnöki tevékenység alapeleme a mérés. A mérés célja valamely jelenség megismerése, vizsgálata. A mérés tervszerűen végzett tevékenység: azaz rögzíteni
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék. Neurális hálók 2. Pataki Béla
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Neurális hálók 2. Előadó: Hullám Gábor Pataki Béla BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki
NGB_IN040_1 SZIMULÁCIÓS TECHNIKÁK dr. Pozna Claudio Radu, Horváth Ernő
SZÉCHENYI ISTVÁN EGYETEM Műszaki Tudományi Kar Informatika Tanszék BSC FOKOZATÚ MÉRNÖK INFORMATIKUS SZAK NGB_IN040_1 SZIMULÁCIÓS TECHNIKÁK dr. Pozna Claudio Radu, Horváth Ernő Fejlesztői dokumentáció GROUP#6
Gépi tanulás Gregorics Tibor Mesterséges intelligencia
Gépi tanulás Tanulás fogalma Egy algoritmus akkor tanul, ha egy feladat megoldása során olyan változások következnek be a működésében, hogy később ugyanazt a feladatot vagy ahhoz hasonló más feladatokat
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Problémamegoldás kereséssel ha sötétben tapogatózunk Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade
Méréselmélet MI BSc 1
Mérés és s modellezés 2008.02.15. 1 Méréselmélet - bevezetés a mérnöki problémamegoldás menete 1. A probléma kitűzése 2. A hipotézis felállítása 3. Kísérlettervezés 4. Megfigyelések elvégzése 5. Adatok
Megerősítéses tanulás 9. előadás
Megerősítéses tanulás 9. előadás 1 Backgammon (vagy Ostábla) 2 3 TD-Gammon 0.0 TD() tanulás (azaz időbeli differencia-módszer felelősségnyomokkal) függvényapproximátor: neuronháló 40 rejtett (belső) neuron
Gépi tanulás a gyakorlatban. Kiértékelés és Klaszterezés
Gépi tanulás a gyakorlatban Kiértékelés és Klaszterezés Hogyan alkalmazzuk sikeresen a gépi tanuló módszereket? Hogyan válasszuk az algoritmusokat? Hogyan hangoljuk a paramétereiket? Precízebben: Tegyük
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008
Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 007/008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció i stratégiák Szemantikus hálók / Keretrendszerek
2. A példahalmazban n = 3 negatív és p = 3 pozitív példa van, azaz a példahalmazt képviselő döntési fa információtartalma: I = I(1/2, 1/2) = 1 bit.
Példa 1. Döntési fa számítása/1 1. Legyen a felhasználandó példahalmaz: Példa sz. Nagy(x) Fekete(x) Ugat(x) JóKutya(x) X1 Igen Igen Igen Nem X2 Igen Igen Nem Igen X3 Nem Nem Igen Nem X4 Nem Igen Igen Igen
Tartalom. 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció)
Tartalom 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció) 2015 1 Állapotgyenletek megoldása Tekintsük az ẋ(t) = ax(t), x(0) = 1 differenciálegyenletet. Ismert, hogy a megoldás
Gépi tanulás. Hány tanítómintára van szükség? VKH. Pataki Béla (Bolgár Bence)
Gépi tanulás Hány tanítómintára van szükség? VKH Pataki Béla (Bolgár Bence) BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Induktív tanulás A tanítás folyamata: Kiinduló
Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function
Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Tanulás pszichológiai szinten Classical conditioning Hebb ötlete: "Ha az A sejt axonja elég közel van a B sejthez,
Keresés képi jellemzők alapján. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék
Keresés képi jellemzők alapján Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Lusta gépi tanulási algoritmusok Osztályozás: k=1: piros k=5: kék k-legközelebbi szomszéd (k=1,3,5,7)
Programozási módszertan. Mohó algoritmusok
PM-08 p. 1/17 Programozási módszertan Mohó algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu PM-08 p. 2/17 Bevezetés Dinamikus programozás
A megerősítéses tanulás alkalmazása az Othello játékban
Debreceni Egyetem Informatikai Kar A megerősítéses tanulás alkalmazása az Othello játékban Témavezető: Dr. Várterész Magda Egyetemi docens Készítette: Andorkó Gábor Programtervező informatikus (B.Sc.)
Számítógépes képelemzés 7. előadás. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék
Számítógépes képelemzés 7. előadás Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Momentumok Momentum-alapú jellemzők Tömegközéppont Irányultáság 1 2 tan 2 1 2,0 1,1 0, 2 Befoglaló
DOKTORANDUSZ FÓRUM, 1999 Miskolc, 1999. november. Megerősítő tanulási módszerek alkalmazása az informatikában
DOKTORANDUSZ FÓRUM, 1999 Miskolc, 1999. november Megerősítő tanulási módszerek alkalmazása az informatikában STEFÁN PÉTER Miskolci Egyetem, Alkalmazott Informatikai Tanszék 3515 Miskolc-Egyetemváros 1.
Sapientia - Erdélyi Magyar TudományEgyetem (EMTE) Csíkszereda IRT- 4. kurzus. 3. Előadás: A mohó algoritmus
Csíkszereda IRT-. kurzus 3. Előadás: A mohó algoritmus 1 Csíkszereda IRT. kurzus Bevezetés Az eddig tanult algoritmus tipúsok nem alkalmazhatók: A valós problémák nem tiszta klasszikus problémák A problémák
KÖZELÍTŐ INFERENCIA II.
STATISZTIKAI TANULÁS AZ IDEGRENDSZERBEN KÖZELÍTŐ INFERENCIA II. MONTE CARLO MÓDSZEREK ISMÉTLÉS Egy valószínűségi modellben a következtetéseinket a látensek vagy a paraméterek fölötti poszterior írja le.
Dunaújvárosi Főiskola Informatikai Intézet. Intelligens ágensek. Dr. Seebauer Márta. főiskolai tanár
Dunaújvárosi Főiskola Informatikai Intézet Intelligens ágensek Dr. Seebauer Márta főiskolai tanár seebauer.marta@szgti.bmf.hu Ágens Ágens (agent) bármi lehet, amit úgy tekinthetünk, hogy érzékelők (sensors)
E.4 Markov-láncok E.4 Markov-láncok. Sok sorbanállási hálózat viselkedése leírható "folytonos idejű Markovláncok " segítségével.
E.4 Markov-láncok Sok sorbanállási hálózat viselkedése leírható "folytonos idejű Markovláncok " segítségével. Egy Markov-láncot (MC) meghatároznak az alapját adó sorbanállási hálózat állapotai és az ezek
KÖZELÍTŐ INFERENCIA II.
STATISZTIKAI TANULÁS AZ IDEGRENDSZERBEN KÖZELÍTŐ INFERENCIA II. MONTE CARLO MÓDSZEREK ISMÉTLÉS Egy valószínűségi modellben a következtetéseinket a látensek vagy a paraméterek fölötti poszterior írja le.
Intelligens adatelemzés
Antal Péter, Antos András, Horváth Gábor, Hullám Gábor, Kocsis Imre, Marx Péter, Millinghoffer András, Pataricza András, Salánki Ágnes Intelligens adatelemzés Szerkesztette: Antal Péter A jegyzetben az
Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 9. Előadás Az optimalizálás alapfeladata Keressük f függvény maximumát ahol f : R n R és
Programozási módszertan. A gépi tanulás alapmódszerei
SZDT-12 p. 1/24 Programozási módszertan A gépi tanulás alapmódszerei Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu SZDT-12 p. 2/24 Ágensek Az új
The nontrivial extraction of implicit, previously unknown, and potentially useful information from data.
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Adatelemzés intelligens módszerekkel Hullám Gábor Adatelemzés hagyományos megközelítésben I. Megválaszolandó
Mérés és modellezés 1
Mérés és modellezés 1 Mérés és modellezés A mérnöki tevékenység alapeleme a mérés. A mérés célja valamely jelenség megismerése, vizsgálata. A mérés tervszerűen végzett tevékenység: azaz rögzíteni kell
Elérhetőségi probléma egyszerűsítése: Állapottér és struktúra redukció Petri-háló alosztályok
Elérhetőségi probléma egyszerűsítése: Állapottér és struktúra redukció Petri-háló alosztályok dr. Bartha Tamás Dr. Pataricza András BME Méréstechnika és Információs Rendszerek Tanszék Elérhetőségi probléma
Szekvenciális hálózatok és automaták
Szekvenciális hálózatok a kombinációs hálózatokból jöhetnek létre tárolási tulajdonságok hozzáadásával. A tárolás megvalósítása történhet a kapcsolás logikáját képező kombinációs hálózat kimeneteinek visszacsatolásával
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:
Kísérlettervezés alapfogalmak
Kísérlettervezés alapfogalmak Rendszermodellezés Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Kísérlettervezés Cél: a modell paraméterezése a valóság alapján
Csercsik Dávid ITK PPKE. Csercsik Dávid (ITK PPKE) Játékelmélet és hálózati alkalmazásai 4. ea 1 / 21
Játékelmélet és hálózati alkalmazásai 4. ea Csercsik Dávid ITK PPKE Csercsik Dávid (ITK PPKE) Játékelmélet és hálózati alkalmazásai 4. ea 1 / 21 1 Nash bargaining 2 Kooperatív játékok TU CFF játékok tulajdonságai
Irányításelmélet és technika II.
Irányításelmélet és technika II. Legkisebb négyzetek módszere Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 200 november
Dinamikus modellek szerkezete, SDG modellek
Diagnosztika - 3. p. 1/2 Modell Alapú Diagnosztika Diszkrét Módszerekkel Dinamikus modellek szerkezete, SDG modellek Hangos Katalin PE Villamosmérnöki és Információs Rendszerek Tanszék Diagnosztika - 3.
Visszacsatolt (mély) neurális hálózatok
Visszacsatolt (mély) neurális hálózatok Visszacsatolt hálózatok kimenet rejtett rétegek bemenet Sima előrecsatolt neurális hálózat Visszacsatolt hálózatok kimenet rejtett rétegek bemenet Pl.: kép feliratozás,
Bevezetés az informatikába
Bevezetés az informatikába 6. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.
Bevezetés az informatikába
Bevezetés az informatikába 9. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.
Modellkiválasztás és struktúrák tanulása
Modellkiválasztás és struktúrák tanulása Szervezőelvek keresése Az unsupervised learning egyik fő célja Optimális reprezentációk Magyarázatok Predikciók Az emberi tanulás alapja Általános strukturális
Sorozatok. 5. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Sorozatok p. 1/2
Sorozatok 5. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Sorozatok p. 1/2 A sorozat definíciója Definíció. A természetes számok halmazán értelmezett valós értékű a: N R függvényt
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,
Kiterjesztések sek szemantikája
Kiterjesztések sek szemantikája Példa D Integer = {..., -1,0,1,... }; D Boolean = { true, false } D T1... T n T = D T 1... D Tn D T Az összes függvf ggvény halmaza, amelyek a D T1,..., D Tn halmazokból
Számítógép és programozás 2
Számítógép és programozás 2 11. Előadás Halmazkeresések, dinamikus programozás http://digitus.itk.ppke.hu/~flugi/ A keresési feladat megoldása Legyen a lehetséges megoldások halmaza M ciklus { X legyen
Számítógépes döntéstámogatás. Genetikus algoritmusok
BLSZM-10 p. 1/18 Számítógépes döntéstámogatás Genetikus algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu BLSZM-10 p. 2/18 Bevezetés 1950-60-as
9. előadás. Programozás-elmélet. Programozási tételek Elemi prog. Sorozatszámítás Eldöntés Kiválasztás Lin. keresés Megszámolás Maximum.
Programozási tételek Programozási feladatok megoldásakor a top-down (strukturált) programtervezés esetén három vezérlési szerkezetet használunk: - szekvencia - elágazás - ciklus Eddig megismertük az alábbi
A XXI. SZÁZADRA BECSÜLT KLIMATIKUS TENDENCIÁK VÁRHATÓ HATÁSA A LEFOLYÁS SZÉLSŐSÉGEIRE A FELSŐ-TISZA VÍZGYŰJTŐJÉN
44. Meteorológiai Tudományos Napok Budapest, 2018. november 22 23. A XXI. SZÁZADRA BECSÜLT KLIMATIKUS TENDENCIÁK VÁRHATÓ HATÁSA A LEFOLYÁS SZÉLSŐSÉGEIRE A FELSŐ-TISZA VÍZGYŰJTŐJÉN Kis Anna 1,2, Pongrácz
Hálózati Folyamok Alkalmazásai. Mályusz Levente BME Építéskivitelezési és Szervezési Tanszék
Hálózati Folyamok Alkalmazásai Mályusz Levente BME Építéskivitelezési és Szervezési Tanszék Maximális folyam 7 7 9 3 2 7 source 8 4 7 sink 7 2 9 7 5 7 6 Maximális folyam feladat Adott [N, A] digráf (irányított
Intelligens ágensek. Mesterséges intelligencia február 28.
Intelligens ágensek Mesterséges intelligencia 2014. február 28. Ágens = cselekvő Bevezetés Érzékelői segítségével érzékeli a környezetet Beavatkozói/akciói segítségével megváltoztatja azt Érzékelési sorozat:
Markov-láncok stacionárius eloszlása
Markov-láncok stacionárius eloszlása Adatbányászat és Keresés Csoport, MTA SZTAKI dms.sztaki.hu Kiss Tamás 2013. április 11. Tartalom Markov láncok definíciója, jellemzése Visszatérési idők Stacionárius
Exponenciális kisimítás. Üzleti tervezés statisztikai alapjai
Exponenciális kisimítás Üzleti tervezés statisztikai alapjai Múlt-Jelen-Jövő kapcsolat Egyensúlyi helyzet Teljes konfliktus Részleges konfliktus: 0 < α < 1, folytatódik a múlt, de nem változatlanul módosítás:
Funkcionális konnektivitás vizsgálata fmri adatok alapján
Funkcionális konnektivitás vizsgálata fmri adatok alapján Képalkotási technikák 4 Log Resolution (mm) 3 Brain EEG & MEG fmri TMS PET Lesions 2 Column 1 0 Lamina -1 Neuron -2 Dendrite -3 Synapse -4 Mikrolesions
Előfeltétel: legalább elégséges jegy Diszkrét matematika II. (GEMAK122B) tárgyból
ÜTEMTERV Programozás-elmélet c. tárgyhoz (GEMAK233B, GEMAK233-B) BSc gazdaságinformatikus, programtervező informatikus alapszakok számára Óraszám: heti 2+0, (aláírás+kollokvium, 3 kredit) 2019/20-es tanév
Adaptív dinamikus szegmentálás idősorok indexeléséhez
Adaptív dinamikus szegmentálás idősorok indexeléséhez IPM-08irAREAE kurzus cikkfeldolgozás Balassi Márton 1 Englert Péter 1 Tömösy Péter 1 1 Eötvös Loránd Tudományegyetem Informatikai Kar 2013. november
Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function
Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Tanulás pszichológiai szinten Classical conditioning Hebb ötlete: "Ha az A sejt axonja elég közel van a B sejthez,
VÁLLALATGAZDASÁGTAN II. Döntési Alapfogalmak
Vállalkozási VÁLLALATGAZDASÁGTAN II. Tantárgyfelelős: Prof. Dr. Illés B. Csaba Előadó: Dr. Gyenge Balázs Az ökonómiai döntés fogalma Vállalat Környezet Döntések sorozata Jövő jövőre vonatkozik törekszik
A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel
A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel Majzik István Micskei Zoltán BME Méréstechnika és Információs Rendszerek Tanszék 1 Modell alapú fejlesztési folyamat (részlet)
A mesterséges intelligencia alapjai, alapelvek
Források: Stanford University Artifical Intelligence course: www.ai-class.com Alison Cawsey: Mesterséges Intelligencia, Panem könyvkiadó 2002, ISBN 9635452853 Stuart Russel és Peter Norvig: Mesterséges
Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.
Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,
3. előadás. Programozás-elmélet. A változó fogalma Kiterjesztések A feladat kiterjesztése A program kiterjesztése Kiterjesztési tételek Példa
A változó fogalma Definíció Legyen A = A 1 A 2... A n állapottér. A pr Ai projekciós függvényeket változóknak nevezzük: : A A i pr Ai (a) = a i ( a = (a 1, a 2,..., a n ) A). A változók jelölése: v i =
Elérhetőségi analízis Petri hálók dinamikus tulajdonságai
Elérhetőségi analízis Petri hálók dinamikus tulajdonságai dr. Bartha Tamás Dr. Pataricza András BME Méréstechnika és Információs Rendszerek Tanszék Petri hálók vizsgálata Az elemzés mélysége szerint: Vizsgálati
Support Vector Machines
Support Vector Machnes Ormánd Róbert MA-SZE Mest. Int. Kutatócsoport 2009. február 17. Előadás vázlata Rövd bevezetés a gép tanulásba Bevezetés az SVM tanuló módszerbe Alapötlet Nem szeparálható eset Kernel
Bizonytalan tudás kezelése
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Bizonytalan tudás kezelése Előadó: Előadás anyaga: Hullám Gábor Pataki Béla Dobrowiecki Tadeusz Valószínűségi
Ha ismert (A,b,c T ), akkor
Az eddigiekben feltételeztük, hogy a rendszer állapotát mérni tudjuk. Az állapot ismerete szükséges az állapot-visszacsatolt szabályzó tervezéséhez. Ha nem ismerjük az x(t) állapotvektort, akkor egy olyan
A TERMODINAMIKA II., III. ÉS IV. AXIÓMÁJA. A termodinamika alapproblémája
A TERMODINAMIKA II., III. ÉS IV. AXIÓMÁJA A termodinamika alapproblémája Első észrevétel: U, V és n meghatározza a rendszer egyensúlyi állapotát. Mi történik, ha változás történik a rendszerben? Mi lesz
Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.
Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,
11. Előadás. 11. előadás Bevezetés a lineáris programozásba
11. Előadás Gondolkodnivalók Sajátérték, Kvadratikus alak 1. Gondolkodnivaló Adjuk meg, hogy az alábbi A mátrixnak mely α értékekre lesz sajátértéke a 5. Ezen α-ák esetén határozzuk meg a 5 sajátértékhez
Kereső algoritmusok a diszkrét optimalizálás problémájához
Kereső algoritmusok a diszkrét optimalizálás problémájához A. Grama, A. Gupta, G. Karypis és V. Kumar: Introduction to Parallel Computing, Addison Wesley, 2003. könyv anyaga alapján A kereső eljárások
Online tanulás nemstacionárius Markov döntési folyamatokban
Online tanulás nemstacionárius Markov döntési folyamatokban Neu Gergely Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem PhD értekezés tézisei Témavezető:
Számításelmélet. Második előadás
Számításelmélet Második előadás Többszalagos Turing-gép Turing-gép k (konstans) számú szalaggal A szalagok mindegyike rendelkezik egy független író / olvasó fejjel A bemenet az első szalagra kerül, a többi
Sorozatok határértéke SOROZAT FOGALMA, MEGADÁSA, ÁBRÁZOLÁSA; KORLÁTOS ÉS MONOTON SOROZATOK
Sorozatok határértéke SOROZAT FOGALMA, MEGADÁSA, ÁBRÁZOLÁSA; KORLÁTOS ÉS MONOTON SOROZATOK Sorozat fogalma Definíció: Számsorozaton olyan függvényt értünk, amelynek értelmezési tartománya a pozitív egész
Hódmezővásárhelyi Városi Matematikaverseny április 14. A osztályosok feladatainak javítókulcsa
Hódmezővásárhelyi Városi Matematikaverseny 2003. április 14. A 11-12. osztályosok feladatainak javítókulcsa 1. feladat Egy számtani sorozatot az első eleme és különbsége egyértelműen meghatározza, azt
A kibontakozó új hajtóerő a mesterséges intelligencia
5. Magyar Jövő Internet Konferencia» Okos város a célkeresztben «A kibontakozó új hajtóerő a mesterséges intelligencia Dr. Szűcs Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Távközlési és Médiainformatikai
Információs rendszerek elméleti alapjai. Információelmélet
Információs rendszerek elméleti alapjai Információelmélet Az információ nem növekedés törvénye Adatbázis x (x adatbázis tartalma) Kérdés : y Válasz: a = f(y, x) Mennyi az a információtartalma: 2017. 04.
Rendszermodellezés 1. ZH, A csoport, nagyfeladatok
Rendszermodellezés 1. ZH, A csoport, nagyfeladatok 2017. március 30. Beugró /10 + F1 /13 F2 /12 Szumma /35 1. nagyfeladat Állapot alapú modellezés (13+3 pont) Antropológusok körében nagy népszerűségnek
Konjugált gradiens módszer
Közelítő és szimbolikus számítások 12. gyakorlat Konjugált gradiens módszer Készítette: Gelle Kitti Csendes Tibor Vinkó Tamás Faragó István Horváth Róbert jegyzetei alapján 1 LINEÁRIS EGYENLETRENDSZEREK
biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás
Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani
Tanulás az idegrendszerben
Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Funkcióvezérelt modellezés Abból indulunk ki, hogy milyen feladatot valósít meg a rendszer Horace Barlow: "A