A mesterséges intelligencia alapjai, alapelvek
|
|
- Dénes Vass
- 6 évvel ezelőtt
- Látták:
Átírás
1 Források: Stanford University Artifical Intelligence course: Alison Cawsey: Mesterséges Intelligencia, Panem könyvkiadó 2002, ISBN Stuart Russel és Peter Norvig: Mesterséges Intelligencia, Panem könyvkiadó 2005, ISBN Az előadás 1-20 slidejait a források alapján szerkesztette: Dr. Esztergár-Kiss Domokos A mesterséges intelligencia alapjai, alapelvek
2 Intelligens, aki többet tud, mint amit tanult! (Gyenes Károly) egy rendszer eléri a kitűzött célokat a környezeti változások ellenére (adaptivitás) az emberi intelligencia egyes komponenseinek számítási modellekkel történő megvalósítása 1990-es évek: neurális hálók, valószínűségi hálók, business intelligence, machine learning
3 Intelligens rendszerek modellje Ágensek Szenzorok: érzékelők Aktuátorok: beavatkozók megfigyelés racionális: adott célok elérésére irányuló cselekvés cél: környezet egy kívánatos állapota állapot elérésének módja: legmagasabb hasznosság alapján ágens környezet beavatkozás megfigyelés robot diszpécsert segítő döntés-támogató eszköz utca, helyiség forgalomirányító központ gyorsítás, lassítás, elfordulás ajánlott döntések kamera, mikrofon, gyorsulásmérő forgalmi helyzet beavatkozás
4 Ágensek típusai: Reflexszerű ágens: HA-AKKOR szabály: HA állapot, AKKOR cselekvés, pl: HA az előző autó fékez, AKKOR lassíts! implementálás: keresőtábla (feltétel-cselekvés szabályok) jól működik, ha a helyes döntés meghozható az aktuális észlelés alapján Probléma: fejlesztés komplexitása merevség megfigyelés beavatkozás
5 Cél-orientált ágens: a környezet jelenlegi állapotának ismerete nem elég a döntéshez több cselekvés feltétele egyszerre teljesül cél: a környezet egy kívánatos állapota modell: összeveti a lehetséges cselekvések eredményeit meghatározza, hogy melyik az a legjobb cselekvés, ami a céljához vezet megfigyelés beavatkozás
6 Átszállás management Racionális ágens működésének feltételei: teljesítmény-mérőszám idő, költség (eddig megfigyelt) észlelési sorozat utasok korábbi döntései információ környezetről átszállóhely mikrokörnyezete végrehajtató cselekvések mozgások, létesítmények látogatása Aktuális forgalmi helyzet Cél: dinamikus (real-time), előre jelzett és személyre szabott információk szolgáltatása Egyéni célok Döntési tartomány Közlekedési szabályok
7 Átszállás management Forrás: Lukács Gábor: Átszállás Menedzser - a mesterséges intelligencia alkalmazása a személyek mozgási folyamatainál, TDK dolgozat 2011 Környezet átszállás management teljesen / részben determinisztikus / diszkrét / statikus / epizódszerű / kooperatív / egyágenses / megfigyelhető sztochasztikus folytonos dinamikus folyamatos versengő többágenses teljesen sztochasztikus folytonos dinamikus folyamatos kooperatív többágenses
8 Tudásreprezentálás mennyiségek reprezentálása adatszerkezetek manipulálási procedúrák algoritmusok Kérdések: Mi a tudás? Hogyan lehet a tudást reprezentálni? Hogyan lehet a tudást manipulálni? Tudásszervezés tudásbázis építése Miről beszélünk? objektumok, tények, relációk Hogyan kódoljuk a tudást? logikai állítások (axiómák) Probléma probléma olyan része, amely az adott tudásábrázolással nem írható le probléma olyan része, amely az adott tudásábrázolással leírható tudásábrázolás olyan része, ami az adott problémában nem található és így fölösleges, de nem hagyható ki reprezentáció redukálása egy manipulálható formára, amely lehetővé teszi a célok elérését egy alkalmas következtetési mechanizmus révén Tudásreprezentáció
9
10 Döntéshozatal bizonytalan ismeretek mellett sok esetben a logikai szabályok szükségszerűen hiányosak, mert túl sok feltételt kellene figyelembe venni bizonyos feltételeket egyszerűen lehetetlen ismertnek feltételezni Mennyi idő alatt lehet kiérni a Liszt Ferenc repülőtérre? 90p-terv a check-in előtt 90 perccel elindulni a kötelező sebességkorlátot betartani 90p-terv helyes, kijutunk a reptérre, HACSAK: a kocsival nem történik valami nem fogy ki a benzin nem lesz baleset útközben a gép nem indul korábban nem lesz földrengés Helyes a 90p-terv megválasztása? helyes, ha A1 Λ A2 Λ A3 Λ A4 Λ Λ A998 Λ A999 Λ A p logikai állítás bebizonyítható kizáró információ hiányában, nagy az esély, hogy egy ilyen döntés helyesnek bizonyul
11 Baleset példa: Elsőrendű logika: minden balesetnek ittas vezetés az oka DE lehet: figyelmetlenség járműhiba ÉS lehet, hogy az ittas vezetésből nem lesz baleset! ittas vezetés nem ittas vezetés baleset 0,04 0,06 nem baleset 0,01 0,89 baleset és ittas vezetés közötti kapcsolat egyik irányban sem feltétlen logikai következmény! Bayes-tétel a világból kiolvasható tudás
12 Valószínűségi hálók Autónkba egy új riasztót szereltünk fel. Ez megbízhatóan észleli a lopási kísérleteket, de kisebb földrengések esetén is jelez. Egy szomszédunk, János megígérte, hogy felhív, ha meghallja a riasztónkat. János mindig felhív minket, ha szól a riasztó, de néha összekeveri a telefoncsörgést a riasztó csengésével és ekkor is telefonál. Van egy GPRS modul is az autóban, ami üzenetet küld a telefonunkra a riasztó megszólalása esetén. Autóriasztó példa valószínűségi változók Azonban a nem jó a lefedettség arra felé, így néha nem tudja elküldeni az üzenetet. A hívások bekövetkezte vagy hiánya alapján szeretnénk megbecsülni a lopás valószínűségét.
13 Fuzzy logika egy elem halmazba tartozása nem állapítható meg egyértelműen mennyire tartozik bele a halmazba Példa: emberek magassága: E = {130,131,132,, 183,, 250} magas emberek: M = {170,171,, 250} alacsony emberek: A = {130,131, 169} körülbelül 155 cm magas illető, nagyjából alacsonynak mondható A = {130 (1), 140 (1), 150 (1), 160 (0.8), 170 (0.5), 180 (0.1), 190 (0) } M = {130 (0), 140 (0), 150 (0), 160 (0.2), 170 (0.5), 180 (0.9), 190 (1) } nem minden fekete és fehér
14
15 Gépi tanulás definíciója környezetéből nyert ismeretek alapján javítja a teljesítőképességét alkalmazhatóság: minták állnak rendelkezésre direkt megoldás nem ismert vagy túl bonyolult a környezet változásaira adaptív módon kell reagálni típusai: felügyelt tanulás: az ágens bemenetét és kimenetét is észlelni tudjuk megerősítéses tanulás: az ágens az általa végrehajtott tevékenység bizonyos értékelését kapja meg felügyelet nélküli tanulás: semmilyen utalás sem áll rendelkezésünkre a helyes kimenetről
16 Felügyelt tanulás cselekvés = f(észlelések, régebbi cselekvések, tudásbázis) cél: f(x) felállítása a bemenetek és a kimenetek ismerete alapján Helyes döntés tanulása: True Positive: az autót meg kell javítani és ezt felismerjük True Negative: az autónak nincs baja és ezt felismerjük False Negative: az autót meg kell javítani és ezt nem ismerjük fel False Positive: az autónak nincs baja és ezt nem ismerjük fel predikció f(x) aktuális érték x Positive Negative P True Positive False Positive N False Negative True Negative tanító halmaz és teszt halmaz f(x)=x
17 Neurális hálók induktív tanulási algoritmussal tanítható matematikai struktúra ahol: W..súlyok
18 Példa: a 5 = g( W 3,5 a 3 + W 4,5 a 4 ) = g( W 3,5 g( W 1,3 a 1 + W 2,3 a 2 ) + W 4,5 g( W 1,4 a 1 + W 2,4 a 2 )) Hálózati struktúrák: visszacsatolt egy rétegű több rétegű rejtett rétegek
19 Megerősítéses tanulás ágens sohasem tudja, hogy mik a jó lépések, és azt sem, melyik jutalom melyik cselekvésből ered ágens tudása: induláskor tudja a környezetet és cselekvéseinek hatását induláskor nem tudja (ezt a modellt is meg kell hogy tanulja) megerősítés: csak a végállapotban bármelyik állapotban ágens aktivitása: passzív tanuló: egyszerűen figyeli a világ alakulását, és a különböző állapotok hasznosságát tanulja aktív tanuló: a megtanult információ birtokában cselekszik (információt cselekvéssel gyűjt) környezet/ágens modell megléte esetén: az ágens az állapotok U(i) hasznosság függvényét tanulja ennek alapján választja ki cselekvéseit hogy az elérhető hasznosság várható értékét maximalizálja
20 Passzív tanulás ismert környezetben: az ágens észleli az állapotváltozásokat (tudja, melyik állapotban van) tanító szekvencia: az ágens az (1,1) állapotból indul az állapotátmenetek valamilyen sorozatát észleli amíg el nem érkezik a (4,2), illetve a (4,3) végállapotba ahol egy megerősítést kap cél: a jutalomról kapott információ alapján U(i) várható hasznosság (az egyes állapotokban) megtanulása
21 Principles Asimov s Three Laws of Robotic (1942) 1. A robot may not injure a human being or allow a human being to come to harm 2. A robot must obey the orders given it by human beings except where such orders would conflict with the First Law 3. A robot must protect its own existence as long as such protection does not conflict with the First or Second Laws Isaac Asimov ( ): American writer and professor of biochemistry
22 Objectives for Artificial Intelligence (AI) applications of Google (2018): 1. Be socially beneficial 2. Avoid creating or reinforcing unfair bias 3. Be built and tested for safety 4. Be accountable to people 5. Incorporate privacy design principles 6. Uphold high standards of scientific excellence 7. Be made available for uses that accord with these principles Avoiding technologies that cause or likely to cause harm weapons or technologies which cause or facilitate injury to people technologies that gather or use sensitive information technologies whose purpose is break the law or human rights
Intelligens ágensek. Mesterséges intelligencia február 28.
Intelligens ágensek Mesterséges intelligencia 2014. február 28. Ágens = cselekvő Bevezetés Érzékelői segítségével érzékeli a környezetet Beavatkozói/akciói segítségével megváltoztatja azt Érzékelési sorozat:
FELÜGYELT ÉS MEGERŐSÍTÉSES TANULÓ RENDSZEREK FEJLESZTÉSE
FELÜGYELT ÉS MEGERŐSÍTÉSES TANULÓ RENDSZEREK FEJLESZTÉSE Dr. Aradi Szilárd, Fehér Árpád Mesterséges intelligencia kialakulása 1956 Dartmouth-i konferencián egy maroknyi tudós megalapította a MI területét
Megerősítéses tanulási módszerek és alkalmazásaik
MISKOLCI EGYETEM GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Megerősítéses tanulási módszerek és alkalmazásaik Tompa Tamás tanársegéd Általános Informatikai Intézeti Tanszék Miskolc, 2017. szeptember 15. Tartalom
Dunaújvárosi Főiskola Informatikai Intézet. Intelligens ágensek. Dr. Seebauer Márta. főiskolai tanár
Dunaújvárosi Főiskola Informatikai Intézet Intelligens ágensek Dr. Seebauer Márta főiskolai tanár seebauer.marta@szgti.bmf.hu Ágens Ágens (agent) bármi lehet, amit úgy tekinthetünk, hogy érzékelők (sensors)
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Valószínűségi hálók - alapok Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade Valószínűségi
Mesterséges Intelligencia Elektronikus Almanach. Konzorciumi partnerek
Mesterséges Intelligencia Elektronikus Almanach Konzorciumi partnerek 1 Konzorcium Budpesti Mőszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Méréstechnika és Információs Rendszerek
Elektronikus Almanach
Mesterséges Intelligencia Elektronikus Almanach Mesterséges intelligencia modern megközel zelítésben 1 Miért éppen ez a könyv? Egy kis történelem BME: 1998-1999 - MI lekerül alapképzés szintjére, hallgatói
A kibontakozó új hajtóerő a mesterséges intelligencia
5. Magyar Jövő Internet Konferencia» Okos város a célkeresztben «A kibontakozó új hajtóerő a mesterséges intelligencia Dr. Szűcs Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Távközlési és Médiainformatikai
TARTALOMJEGYZÉK. TARTALOMJEGYZÉK...vii ELŐSZÓ... xiii BEVEZETÉS A lágy számításról A könyv célkitűzése és felépítése...
TARTALOMJEGYZÉK TARTALOMJEGYZÉK...vii ELŐSZÓ... xiii BEVEZETÉS...1 1. A lágy számításról...2 2. A könyv célkitűzése és felépítése...6 AZ ÖSSZETEVŐ LÁGY RENDSZEREK...9 I. BEVEZETÉS...10 3. Az összetevő
CARE. Biztonságos. otthonok idős embereknek CARE. Biztonságos otthonok idős embereknek 2010-09-02. Dr. Vajda Ferenc Egyetemi docens
CARE Biztonságos CARE Biztonságos otthonok idős embereknek otthonok idős embereknek 2010-09-02 Dr. Vajda Ferenc Egyetemi docens 3D Érzékelés és Mobilrobotika kutatócsoport Budapesti Műszaki és Gazdaságtudományi
Stratégiák tanulása az agyban
Statisztikai tanulás az idegrendszerben, 2019. Stratégiák tanulása az agyban Bányai Mihály banyai.mihaly@wigner.mta.hu http://golab.wigner.mta.hu/people/mihaly-banyai/ Kortárs MI thispersondoesnotexist.com
Keresés képi jellemzők alapján. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék
Keresés képi jellemzők alapján Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Lusta gépi tanulási algoritmusok Osztályozás: k=1: piros k=5: kék k-legközelebbi szomszéd (k=1,3,5,7)
Megerősítéses tanulás
Megerősítéses tanulás elméleti kognitív neurális Introduction Knowledge representation Probabilistic models Bayesian behaviour Approximate inference I (computer lab) Vision I Approximate inference II:
Óbudai Egyetem Neumann János Informatikai Kar. Intelligens Mérnöki Rendszerek Intézet
Óbudai Egyetem Neumann János Informatikai Kar Intelligens Mérnöki Rendszerek Intézet 1034 Budapest, Bécsi út 96/B Tel., Fax:1/666-5544,1/666-5545 http://nik.uni-obuda.hu/imri Az 2004-ben alakult IMRI (BMF)
Korszerű információs technológiák
MISKOLCI EGYETEM GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Korszerű információs technológiák Megerősítéses tanulási módszerek és alkalmazásaik Tompa Tamás tanársegéd Általános Informatikai Intézeti Tanszék Miskolc,
Számítógépes képelemzés 7. előadás. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék
Számítógépes képelemzés 7. előadás Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Momentumok Momentum-alapú jellemzők Tömegközéppont Irányultáság 1 2 tan 2 1 2,0 1,1 0, 2 Befoglaló
Intelligens Rendszerek I. Ágensek
Intelligens Rendszerek I. Ágensek 2007/2008. tanév, I. félév Dr. Kovács Szilveszter Email: szkovacs@iit.unimiskolc.hu Miskolci Egyetem Informatikai Intézet 106. sz. szoba Tel: (46) 565111 / 2106 mellék
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék. Neurális hálók. Pataki Béla
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Neurális hálók Előadó: Előadás anyaga: Hullám Gábor Pataki Béla Dobrowiecki Tadeusz BME I.E. 414, 463-26-79
Ágens technológiák. Starkné dr. Werner Ágnes Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék
Ágens technológiák Starkné dr. Werner Ágnes Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék Áttekintés Ágensek és multi-ágens rendszerek Definíciók Típusaik Környezeteik
Bizonytalanság. Mesterséges intelligencia április 4.
Bizonytalanság Mesterséges intelligencia 2014. április 4. Bevezetés Eddig: logika, igaz/hamis Ha nem teljes a tudás A világ nem figyelhető meg közvetlenül Részleges tudás nem reprezentálható logikai eszközökkel
Mesterséges Intelligencia (MI)
Mesterséges Intelligencia (MI) Intelligens ágensek Dobrowiecki Tadeusz Antal Péter, Bolgár Bence, Engedy István, Eredics Péter, Strausz György és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade
Modellkiválasztás és struktúrák tanulása
Modellkiválasztás és struktúrák tanulása Szervezőelvek keresése Az unsupervised learning egyik fő célja Optimális reprezentációk Magyarázatok Predikciók Az emberi tanulás alapja Általános strukturális
Logikai ágensek. Mesterséges intelligencia március 21.
Logikai ágensek Mesterséges intelligencia 2014. március 21. Bevezetés Eddigi példák tudásra: állapotok halmaza, lehetséges operátorok, ezek költségei, heurisztikák Feltételezés: a világ (lehetséges állapotok
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Ágensek Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade intelligens rendszer = egy ágens
Megerősítéses tanulás
Gépi tanulás (Szekvenciális döntési probléma) Megerősítéses tanulás Pataki Béla BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Az egész világot nem tudjuk modellezni,
1. gyakorlat. Mesterséges Intelligencia 2.
1. gyakorlat Mesterséges Intelligencia. Elérhetőségek web: www.inf.u-szeged.hu/~gulyasg mail: gulyasg@inf.u-szeged.hu Követelmények (nem teljes) gyakorlat látogatása kötelező ZH írása a gyakorlaton elhangzott
Gépi tanulás Gregorics Tibor Mesterséges intelligencia
Gépi tanulás Tanulás fogalma Egy algoritmus akkor tanul, ha egy feladat megoldása során olyan változások következnek be a működésében, hogy később ugyanazt a feladatot vagy ahhoz hasonló más feladatokat
Kutatás-fejlesztési eredmények a Számítógépes Algoritmusok és Mesterséges Intelligencia Tanszéken. Dombi József
Kutatás-fejlesztési eredmények a Számítógépes Algoritmusok és Mesterséges Intelligencia Tanszéken Dombi József Mesterséges intelligencia Klasszikus megközelítés (A*, kétszemélyes játékok, automatikus tételbizonyítás,
Megerősítéses tanulás 2. előadás
Megerősítéses tanulás 2. előadás 1 Technikai dolgok Email szityu@eotvoscollegium.hu Annai levlista http://nipglab04.inf.elte.hu/cgi-bin/mailman/listinfo/annai/ Olvasnivaló: Sutton, Barto: Reinforcement
Logisztikai szimulációs módszerek
Üzemszervezés Logisztikai szimulációs módszerek Dr. Juhász János Integrált, rugalmas gyártórendszerek tervezésénél használatos szimulációs módszerek A sztochasztikus külső-belső tényezőknek kitett folyamatok
Neurális hálózatok bemutató
Neurális hálózatok bemutató Füvesi Viktor Miskolci Egyetem Alkalmazott Földtudományi Kutatóintézet Miért? Vannak feladatok amelyeket az agy gyorsabban hajt végre mint a konvencionális számítógépek. Pl.:
Takács Árpád K+F irányok
Takács Árpád K+F irányok 2016. 06. 09. arpad.takacs@adasworks.com A jövőre tervezünk Az AdasWorks mesterséges intelligencia alapú szoftverterfejlesztéssel és teljes önvezető megoldásokkal forradalmasítja
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Logikai Emberi ágens tudás és problémái gépi reprezentálása Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade
Szoftverminőségbiztosítás
NGB_IN003_1 SZE 2017-18/2 (9) Szoftverminőségbiztosítás Specifikáció alapú (black-box) technikák A szoftver mint leképezés Szoftverhiba Hibát okozó bement Hibás kimenet Input Szoftver Output Funkcionális
za TANTÁRGY ADATLAPJA
za TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény Babeș Bolyai Tudományegyetem 1.2 Kar Matematika és Informatika Kar 1.3 Intézet Magyar Matematika és Informatika Intézet 1.4
Mit látnak a robotok? Bányai Mihály Matemorfózis, 2017.
Mit látnak a robotok? Bányai Mihály Matemorfózis, 2017. Vizuális feldolgozórendszerek feladatai Mesterséges intelligencia és idegtudomány Mesterséges intelligencia és idegtudomány Párhuzamos problémák
Modellezés és szimuláció. Szatmári József SZTE Természeti Földrajzi és Geoinformatikai Tanszék
Modellezés és szimuláció Szatmári József SZTE Természeti Földrajzi és Geoinformatikai Tanszék Kvantitatív forradalmak a földtudományban - geográfiában 1960- as évek eleje: statisztika 1970- as évek eleje:
A TANTÁRGY ADATLAPJA
A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény Babeș Bolyai Tudományegyetem 1.2 Kar Matematika és Informatika Kar 1.3 Intézet Magyar Matematika és Informatika Intézet 1.4
Összeállította Horváth László egyetemi tanár
Óbudai Egyetem Neumann János Informatikai Kar Intelligens Mérnöki Rendszerek Intézet Intelligens Mérnöki Rendszerek Szakirány a Mérnök informatikus alapszakon Összeállította Horváth László Budapest, 2011
Gépi tanulás és Mintafelismerés
Gépi tanulás és Mintafelismerés jegyzet Csató Lehel Matematika-Informatika Tanszék BabesBolyai Tudományegyetem, Kolozsvár 2007 Aug. 20 2 1. fejezet Bevezet A mesterséges intelligencia azon módszereit,
Algoritmusok helyességének bizonyítása. A Floyd-módszer
Algoritmusok helyességének bizonyítása A Floyd-módszer Algoritmusok végrehajtása Egy A algoritmus esetében a változókat három változótípusról beszélhetünk, melyeket az X, Y és Z vektorokba csoportosítjuk
A MEGBÍZHATÓSÁGI ELEMZŐ MÓDSZEREK
1. Elemző módszerek A MEGBÍZHATÓSÁGI ELEMZŐ MÓDSZEREK Ebben a fejezetben röviden összefoglaljuk azokat a módszereket, amelyekkel a technikai, technológiai és üzemeltetési rendszerek megbízhatósági elemzései
Intelligens orvosi műszerek VIMIA023
Intelligens orvosi műszerek VIMIA023 Neurális hálók (Dobrowiecki Tadeusz anyagának átdolgozásával) 2017 ősz http://www.mit.bme.hu/oktatas/targyak/vimia023 dr. Pataki Béla pataki@mit.bme.hu (463-)2679 A
Intelligens ágensek Mesterséges Intelligencia rendszertechnikai gyökerei
Intelligens ágensek Mesterséges Intelligencia rendszertechnikai gyökerei Dobrowiecki Tadeusz Mérés és Információs Rendszerek Tanszék Habilitációs előadás BME-VIK, október 2013 1/37 oldal 1. Lehet-e intelligens
Bonyolult jelenség, aminek nincs jó modellje, sok empirikus adat, intelligens (ember)ágens képessége, hogy ilyen problémákkal mégis megbirkozzék.
Vizsga, 2015. dec. 22. B cs. B1. Hogyan jellemezhetők a tanulást igénylő feladatok? (vendégelőadás) Bonyolult jelenség, aminek nincs jó modellje, sok empirikus adat, intelligens (ember)ágens képessége,
Adaptív menetrendezés ADP algoritmus alkalmazásával
Adaptív menetrendezés ADP algoritmus alkalmazásával Alcím III. Mechwart András Ifjúsági Találkozó Mátraháza, 2013. szeptember 10. Divényi Dániel Villamos Energetika Tanszék Villamos Művek és Környezet
Programozási módszertan. A gépi tanulás alapmódszerei
SZDT-12 p. 1/24 Programozási módszertan A gépi tanulás alapmódszerei Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu SZDT-12 p. 2/24 Ágensek Az új
1. Informatikai trendek, ágensek, többágenses rendszerek. Intelligens Elosztott Rendszerek BME-MIT, 2018
1. Informatikai trendek, ágensek, többágenses rendszerek A számítástechnika történetének 5 nagy trendje mindenütt jelenlévő (ubiquity) összekapcsolt (interconnection) intelligens delegált (delegation)
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Tudásbázis építése Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade A tudásbázis építése
Követelmény a 7. évfolyamon félévkor matematikából
Követelmény a 7. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Elemek halmazba rendezése több szempont alapján. Halmazok ábrázolása. A nyelv logikai elemeinek helyes használata.
Számítási intelligencia
Botzheim János Számítási intelligencia Budapesti Műszaki és Gazdaságtudományi Egyetem, Mechatronika, Optika és Gépészeti Informatika Tanszék Graduate School of System Design, Tokyo Metropolitan University
IT KOCKÁZATOK, ELEMZÉSÜK, KEZELÉSÜK
Póserné Oláh Valéria Budapesti Műszaki Főiskola NIK, poserne.valeria@nik.bmf.hu IT KOCKÁZATOK, ELEMZÉSÜK, KEZELÉSÜK Absztrakt Napjainkban már a legtöbb szervezet működése elképzelhetetlen informatikai
Tisztán kivehetı tendencia: kommunikációs hálózatok egyre bonyolultabbakká válnak Hálózat bonyolultsága
@ Budapest University of Technology and Economics Nagy hálózatok evolúciója Gulyás András, Heszberger Zalán High Speed Networks Laboratory Internet trendek Tisztán kivehetı tendencia: kommunikációs hálózatok
13. Tanulás elosztott rendszerekben/1. Intelligens Elosztott Rendszerek BME-MIT, 2017
13. Tanulás elosztott rendszerekben/1 (Egyedi ágens) tanulásáról röviden Célja: javulás (feladavégzésben), adaptalódás, robusztusság (környezet), kompenzálás, hibatürés (ismerethiány, meghibasodás) Miből:
2014. november 5-7. Dr. Vincze Szilvia
24. november 5-7. Dr. Vincze Szilvia A differenciálszámítás az emberiség egyik legnagyobb találmánya és ez az állítás nem egy matek-szakbarbár fellengzős kijelentése. A differenciálszámítás segítségével
Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function
Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Tanulás pszichológiai szinten Classical conditioning Hebb ötlete: "Ha az A sejt axonja elég közel van a B sejthez,
A forrás pontos megnevezésének elmulasztása valamennyi hivatkozásban szerzői jogsértés (plágium).
A szakirodalmi idézések és hivatkozások rendszere és megadásuk szabályai A bibliográfia legfontosabb szabályai Fogalma: Bibliográfiai hivatkozáson azoknak a pontos és kellően részletezett adatoknak az
Tanulás elosztott rendszerekben/3
Tanulás elosztott rendszerekben/3 MARL Multi Agent Reinforcement Learning Többágenses megerősítéses tanulás Kezdjük egy ágenssel. Legyenek a környezeti állapotai s-ek, cselekvései a-k, az ágens cselekvéseit
Kiterjesztések sek szemantikája
Kiterjesztések sek szemantikája Példa D Integer = {..., -1,0,1,... }; D Boolean = { true, false } D T1... T n T = D T 1... D Tn D T Az összes függvf ggvény halmaza, amelyek a D T1,..., D Tn halmazokból
Formális módszerek GM_IN003_1 Program verifikálás, formalizmusok
Formális módszerek GM_IN003_1 Program verifikálás, formalizmusok Program verifikálás Konkurens programozási megoldások terjedése -> verifikálás szükséges, (nehéz) logika Legszélesebb körben alkalmazott
A szoftver tesztelés alapjai
Szoftverellenőrzési technikák A szoftver tesztelés alapjai Micskei Zoltán, Majzik István http://www.inf.mit.bme.hu/ 1 Hol tartunk a félévi anyagban? Követelményspecifikáció ellenőrzése Ellenőrzések a tervezési
Etológia Emelt A viselkedés mérése. Miklósi Ádám egyetemi tanár ELTE TTK Etológia Tanszék 2018
Etológia Emelt A viselkedés mérése Miklósi Ádám egyetemi tanár ELTE TTK Etológia Tanszék 2018 amiklosi62@gmail.com A viselkedés leírása: A viselkedés, mint fenotipikus jellemző Viselkedés: Élő szervezetek
Neurális hálózatok.... a gyakorlatban
Neurális hálózatok... a gyakorlatban Java NNS Az SNNS Javás változata SNNS: Stuttgart Neural Network Simulator A Tübingeni Egyetemen fejlesztik http://www.ra.cs.unituebingen.de/software/javanns/ 2012/13.
DOKTORANDUSZ FÓRUM, 1999 Miskolc, 1999. november. Megerősítő tanulási módszerek alkalmazása az informatikában
DOKTORANDUSZ FÓRUM, 1999 Miskolc, 1999. november Megerősítő tanulási módszerek alkalmazása az informatikában STEFÁN PÉTER Miskolci Egyetem, Alkalmazott Informatikai Tanszék 3515 Miskolc-Egyetemváros 1.
Valószínűségi hálók. Mesterséges Intelligencia - MI. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Mesterséges Intelligencia - MI Valószínűségi hálók Előadó: Hullám Gábor Pataki Béla Előadás anyaga: Dobrowiecki
Gépi tanulás a gyakorlatban. Kiértékelés és Klaszterezés
Gépi tanulás a gyakorlatban Kiértékelés és Klaszterezés Hogyan alkalmazzuk sikeresen a gépi tanuló módszereket? Hogyan válasszuk az algoritmusokat? Hogyan hangoljuk a paramétereiket? Precízebben: Tegyük
Algoritmusok Tervezése. Fuzzy rendszerek Dr. Bécsi Tamás
Algoritmusok Tervezése Fuzzy rendszerek Dr. Bécsi Tamás Bevezetés Mese a homokkupacról és a hidegről és a hegyekről Bevezetés, Fuzzy történet Két értékű logika, Boole algebra Háromértékű logika n értékű
A TANTÁRGY ADATLAPJA
A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény Babeș Bolyai Tudományegyetem 1.2 Kar Matematika és Informatika Kar 1.3 Intézet Magyar Matematika és Informatika Intézet 1.4
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Racionalitás: a hasznosság és a döntés Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade
Mesterséges intelligencia. Gregorics Tibor people.inf.elte.hu/gt/mi
people.inf.elte.hu/gt/mi Szakirodalom Könyvek Fekete István - - Nagy Sára: Bevezetés a mesterséges intelligenciába, LSI Kiadó, Budapest, 1990, 1999. ELTE-Eötvös Kiadó, Budapest, 2006. Russel, J. S., Norvig,
Intelligens robotok. Előadás vázlat. 1 előadás
Intelligens robotok Előadás vázlat 1 előadás Felhasznált Irodalom: Összeállította: Harmati István Ph.D., egyetemi adjunktus J. R. Kok, M. T. J. Spaan, N. Vlassis: Non-commutative multi-robot cooperation
I. LABOR -Mesterséges neuron
I. LABOR -Mesterséges neuron A GYAKORLAT CÉLJA: A mesterséges neuron struktúrájának az ismertetése, neuronhálókkal kapcsolatos elemek, alapfogalmak bemutatása, aktivációs függvénytípusok szemléltetése,
Gépi tanulás. Hány tanítómintára van szükség? VKH. Pataki Béla (Bolgár Bence)
Gépi tanulás Hány tanítómintára van szükség? VKH Pataki Béla (Bolgár Bence) BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Induktív tanulás A tanítás folyamata: Kiinduló
The nontrivial extraction of implicit, previously unknown, and potentially useful information from data.
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Adatelemzés intelligens módszerekkel Hullám Gábor Adatelemzés hagyományos megközelítésben I. Megválaszolandó
Fuzzy rendszerek és neurális hálózatok alkalmazása a diagnosztikában
Budapesti Műszaki és Gazdaságtudományi Egyetem Fuzzy rendszerek és neurális hálózatok alkalmazása a diagnosztikában Cselkó Richárd 2009. október. 15. Az előadás fő témái Soft Computing technikák alakalmazásának
Temporális logikák és modell ellenırzés
Temporális logikák és modell ellenırzés Temporális logikák Modális logika: kijelentések különböző módjainak tanulmányozására vezették be (eredetileg filozófusok). Ilyen módok: esetleg, mindig, szükségszerűen,
Funkcionális konnektivitás vizsgálata fmri adatok alapján
Funkcionális konnektivitás vizsgálata fmri adatok alapján Képalkotási technikák 4 Log Resolution (mm) 3 Brain EEG & MEG fmri TMS PET Lesions 2 Column 1 0 Lamina -1 Neuron -2 Dendrite -3 Synapse -4 Mikrolesions
TUDÁSREPREZENTÁCIÓ 1.0-3.0 víziók, szemantikai modellek, eszközök
TUDÁRPRZNTÁCIÓ 1.0-3.0 víziók, szemantikai modellek, eszközök Dr. BNDK András - igazgató MÁRKU Zsolt projektvezető I Informatikai Oktatóközpont Alapítvány TUDÁRPRZNTÁCIÓ 1.0 1956 A Dartmouth Konferenciától
Intelligens adatelemzés
Antal Péter, Antos András, Horváth Gábor, Hullám Gábor, Kocsis Imre, Marx Péter, Millinghoffer András, Pataricza András, Salánki Ágnes Intelligens adatelemzés Szerkesztette: Antal Péter A jegyzetben az
Probabilisztikus funkcionális modellek idegrendszeri adatok elemzésére
Probabilisztikus funkcionális modellek idegrendszeri adatok elemzésére Bányai Mihály! MTA Wigner FK! Computational Systems Neuroscience Lab!! KOKI-VIK szeminárium! 2014. február 11. Struktúra és funkció
Mesterséges intelligencia, szakértői rendszerek Ágensek, multi ágens rendszerek, tanuló ágensek p. 1/43
Mesterséges intelligencia, szakértői rendszerek Ágensek, multi ágens rendszerek, tanuló ágensek p. 1/43 Mesterséges intelligencia, szakértői rendszerek Ágensek, multi ágens rendszerek, tanuló ágensek Werner
10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK
MATEMATIK A 9. évfolyam 10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK Tanári útmutató 2 MODULLEÍRÁS A modul
Funkcionális és logikai programozás. { Márton Gyöngyvér, 2012} { Sapientia, Erdélyi Magyar Tudományegyetem }
Funkcionális és logikai programozás { Márton Gyöngyvér, 2012} { Sapientia, Erdélyi Magyar Tudományegyetem } http://www.ms.sapientia.ro/~mgyongyi ` 1 Jelenlét: Követelmények, osztályozás Az első 4 előadáson
Ambiens szabályozás problémája Kontroll és tanulás-1
Ambiens szabályozás problémája Kontroll és tanulás-1 Ambiens (fizikai) tér Ambiens Intelligencia szenzorok beavatkozók Ágens szervezet AmI - megfigyelés, elemzés - tervezés, megtanulás AmI - statikus -
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. estis képzés 2017. ősz 1. Diszkrét matematika 1. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
Nemzeti alaptanterv 2012 MATEMATIKA
ALAPELVEK, CÉLOK Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika
Intelligens irányítások
Intelligens irányítások Fuzzy halmazok Ballagi Áron Széchenyi István Egyetem Automatizálási Tsz. Arisztotelészi szi logika 2 Taichi Yin-Yang Yang logika 3 Hagyományos és Fuzzy halmaz Egy hagyományos halmaz
Smaller Pleasures. Apróbb örömök. Keleti lakk tárgyak Répás János Sándor mûhelyébõl Lacquerware from the workshop of Répás János Sándor
Smaller Pleasures Apróbb örömök Keleti lakk tárgyak Répás János Sándor mûhelyébõl Lacquerware from the workshop of Répás János Sándor Smaller Pleasures Oriental lacquer, or urushi by its frequently used
Mesterséges neurális hálózatok II. - A felügyelt tanítás paraméterei, gyorsító megoldásai - Versengéses tanulás
Mesterséges neurális hálózatok II. - A felügyelt tanítás paraméterei, gyorsító megoldásai - Versengéses tanulás http:/uni-obuda.hu/users/kutor/ IRE 7/50/1 A neurális hálózatok általános jellemzői 1. A
Alter Róbert Báró Csaba Sensor Technologies Kft
Közúti forgalomelemzés kamerával e_traffic Alter Róbert Báró Csaba Sensor Technologies Kft Előadás témái Cégbemutató Videó analitikai eljárások Forgalomszámláló eszközök összehasonlítása e_traffic forgalomelemző
Intelligens Rendszerek I. Tudásábrázolás szemantikus hálókkal, keretekkel és forgatókönyvvel
Intelligens Rendszerek I. Tudásábrázolás szemantikus hálókkal, keretekkel és forgatókönyvvel 2007/2008. tanév, I. félév Dr. Kovács Szilveszter E-mail: szkovacs@iit.uni-miskolc.hu Miskolci Egyetem Informatikai
GAZDASÁGINFORMATIKA ALAPJAI...
Tartalom ELŐSZÓ... 7 GAZDASÁGINFORMATIKA ALAPJAI... 9 Bevezetés... 9 INFORMATIKA ALAPJAI... 11 A kezdetek technikai szempontból... 11 A kezdetek elméleti és technológiai szempontból... 14 Az információ...
Intelligens Elosztott Rendszerek. Dobrowiecki Tadeusz és Eredics Péter, Gönczy László, Pataki Béla és Strausz György közreműködésével
Intelligens Elosztott Rendszerek Dobrowiecki Tadeusz és Eredics Péter, Gönczy László, Pataki Béla és Strausz György közreműködésével A mai előadás tartalma Mi is egy rendszer? Mit jelent elosztottnak lenni?
1. Alapfogalmak Algoritmus Számítási probléma Specifikáció Algoritmusok futási ideje
1. Alapfogalmak 1.1. Algoritmus Az algoritmus olyan elemi műveletekből kompozíciós szabályok szerint felépített összetett művelet, amelyet megadott feltételt teljesítő bemeneti adatra végrehajtva, a megkívánt
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Megerősítéses tanulás Pataki Béla BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Ágens tudása: Induláskor: vagy ismeri már a környezetet
Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén
Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén Dombi József Szegedi Tudományegyetem Bevezetés - ID3 (Iterative Dichotomiser 3) Az ID algoritmusok egy elemhalmaz felhasználásával
Probabilisztikus modellek V: Struktúra tanulás. Nagy Dávid
Probabilisztikus modellek V: Struktúra tanulás Nagy Dávid Statisztikai tanulás az idegrendszerben, 2015 volt szó a normatív megközelítésről ezen belül a probabilisztikus modellekről láttatok példákat az
4. Lokalizáció Magyar Attila
4. Lokalizáció Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2011. szeptember 23. 4. Lokalizáció 2 4. Tartalom
Érzékelők az autonóm járművekben
Érzékelők az autonóm járművekben Gáspár Péter Szirányi Tamás 1 Érzékelők Tartalom Motivációs háttér Környezetérzékelés célja Autóipari érzékelők Széria megoldások és ipari trendek 2 Motiváció: A járműipar
Visszacsatolt (mély) neurális hálózatok
Visszacsatolt (mély) neurális hálózatok Visszacsatolt hálózatok kimenet rejtett rétegek bemenet Sima előrecsatolt neurális hálózat Visszacsatolt hálózatok kimenet rejtett rétegek bemenet Pl.: kép feliratozás,