Mesterséges Intelligencia MI

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Mesterséges Intelligencia MI"

Átírás

1 Mesterséges Intelligencia MI Tudásbázis építése Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437,

2 A tudásbázis építése tudásbeszerzés (knowledge acquisition): tudásmérnök valódi szakértő tudásszervezés (knowledge engineering): a tudásbázis építése ontológia szervezése (ontological engineering) A jó és a rossz tudásbázis tulajdonságai - egy jó tudásreprezentációs nyelv: nagy kifejező erejű, tömör, egyértelmű, környezet-érzéketlen, hatékony - tudásbázis: letisztázott, korrekt, csak fontos relációk kompromisszum: tömörség korrektség Tudásbázis fogyasztója: az emberi olvasó és a következtető gép Gyakori hiba: - embernek értelmesnek tűnő predikátumnevek használata - értelmesek lesznek-e a következtető eljárásnak is?

3 A tudásbázis építése mire lehet szükség objektumok, relációk csoportosulások, szervezetek, halmazok, képviselők objektumok részei, struktúrái, objektumok méretei objektumok és relációk változása az időben... (valódi objektumok modellezése ágens agyában ) ágens agyában létező objektum(fogalmak) modellezése ágens agyában? (cogito ergo sum?) 3

4 Tudásszervezés (Knowledge Engineering) lépései 1. Döntsük el, miről fogunk beszélni: objektumok, tények, relációk (ontológia) házi állatok, kutyák 2. Döntsük el predikátumok, függvények és konstansok szótárát: logikai szintű nevek (amire szabad kezünk van) nagy(x), hangos(x), harapós(x), kölyke(x), 3. A tárgytartományra vonatkozó általános tudás kódolása: logikai állítások = axiómák, precíz módon, a következtetési eljárás automatizmusához 4. Specifikus problémaegyedek leírása: ha az ontológia jó, könnyű, mert a nyelv adott 5. Kérdések megfogalmazása a következtető eljárás számára, válaszok fogadása: jutalom: helyettünk már csak a gép dolgozik (formális hitelességgel) x. harapós(x) harapós(kölyke(x)) Bodri = kölyke(cézár) nagy(bodri), harapós(bodri)?

5 Általános ontológia általános ontológia többé-kevésbé minden speciális problémában jó Figyelem: Minden általánosítás alól létezik kivétel, vagy a részletesebb információ hiányában csupán az alapértelmezést tekinthetjük, vagy pedig minden általánosítás csak egy bizonyos mértékig érvényes. Bár a paradicsom piros egy hasznos szabály, van zöld, sárga és narancssárga paradicsom is. Kivételkezelés kérdése a logikában?

6 Kategóriák - több objektumnak is közös tulajdonságai vannak - kategóriák rendeződnek egy egységes taxonómikus hierarchiába Bár a világgal való kölcsönhatás az egyedi objektumok szintjén történik, a következtetések zöme a kategóriák szintjén valósul meg. Ágens: észlelések bizonyos objektum jelenlétét érzékeli érzékelt tulajdonságok objektum milyen kategóriához tartozik kategória az objektumra vonatkozó további előrejelzések elsőrendű logika: a kategóriák reprezentálása (két módja) - unáris predikátumok: paradicsom(x) - a kategória reifikálása: paradicsomok halmaza egy konstans x egy paradicsom, x Paradicsomok, eleme(x, Paradicsomok) öröklődés: jó elv a tudásbázis szervezésére és egyszerűsítésére. Ha az Élelem kategória minden egyes esete ehető és a Gyümölcs az Élelem, az Alma viszont a Gyümölcs egy alosztálya, akkor tudjuk, hogy minden alma ehető. Ezek után: x. x Paradicsomok Piros(x) Gömbölyű(x)?

7 Természetes fajták kategória: a. szigorú definíció (pl. háromszög) b. a többség un. természetes fajta nincs letisztult definíciója Paradicsomok vörös színűek, kb. gömbszerűek, kb. 5-8 cm átmérőjűek, vékony, de erős bőrrel, belül hússal, magvakkal és lével. Lehet egy kocka alakú paradicsom? Lehet sárga? Paradicsom még, ha 1 m átmérőjű? Egy ágens nem lehet biztos, hogy az általa érzékelt objektum valóban egy paradicsom (hátha kivétel).

8 Szét kell választani mindazt, ami egy kategória minden egyes egyedére igaz, attól, ami a kategória tipikus egyedeire igaz: Paradicsomok Tipikus(Paradicsomok) c. Tipikus(c) c A természetes fajtákra vonatkozó tudás többsége valóban a tipikus egyedekről szól: x. x Tipikus(Paradicsomok) Piros(x) Gömbölyű(x) Ily módon képesek vagyunk a kategóriákra vonatkozó fontos tényeket feljegyezni, anélkül, hogy pontos definíciókat kellene megadnunk.

9 VIMIA313 Mesterséges intelligencia, Dobrowiecki - Eredics, BME-MIT 9

10 Mértékek (arány, intervallum, ordinális, nominális) Egyszerű kvantitatív mértékek reprezentálása könnyű: ára(a) = 10, ára(b) = 15, nagyobb(ára(b), ára(a)) Más mérték is van a gyakorlat nehéz, a desszert finom és a vers szép. A mértékek legfontosabb tulajdonsága, hogy többségben rendezettek. Az A tanár adta feladatok nehezebbek, mint azok, amiket a B tanár adott. Egy nehezebb feladatnál kevesebb pontot lehet elérni : e, f. Feladat(e) Feladat(f) Ad(A, e) Ad(B, f) (Nehézség(e) Nehézség(f)) e, f. Feladat(e) Feladat(f) (Nehézség(e) Nehézség(f)) (VárhatóEredmény(e) VárhatóEredmény(f))

11 Összetett objektumok objektumok kategóriákba rendeződnek - alkotó struktúrájuk szerint A része reláció tranzitív és reflexív. Része(Budapest, Magyarország) Része(Magyarország, KözépEurópa) Része(KözépEuropa, Európa) E tényekből, és a Része tranzitivitásából kikövetkeztethetjük, hogy Része(Budapest, Európa). x, y, z. Része(x, y) Része(y, z) Része(x, z)

12 Az idő, a tér és a változás A szituáció kalkulusnak két problémája van: - a szituációk időben pillanatnyi jellegűek - időben egyetlen egy cselekvés történik egyszerre (nem mindig elég) Eseménykalkulus egy konkrét univerzum: térbeli + időbeli dimenzió egy esemény: univerzum (téridő) egy darabja, mind időbeli, mind térbeli kiterjedéssel. részesemény: RészEsemény(AngliaiCsata, WWII) intervallum, hely Benne(NewYork, USA) folyamat, folytonos esemény, állapot, fizikai objektum folyó esemény pl. Római Birodalom tér/idő alakulása temporális logikák: a modális logikák egy változata " p" - "p a jövőben, minden pillanatban igaz lesz" " p" - "p a jövőben, valamikor igaz lesz".

13 VIMIA313 Folyó események (ld. jegyzet)

14 Szubsztanciák A természetes nyelv: ellentmondásos intuíció. Létezik-e ParadicsomLé-nek nevezhető objektum? A valóság nagy része a példányosításnak az elkülönülő objektumokra való felbontásnak látszólag ellenáll. A valóság ez a része: az anyag, ill. a dolog. Malac, vaj objektumok: - megszámlálható - nem megszámlálható - akármilyen része a vaj-objektumnak szintén vaj-objektum - sajnos nem lesz két malacunk, ha a malacot ketté szeljük x, y x Vaj Része(y, x) y Vaj (az anyag a rész mentén öröklődik, a dolog nem: következtetésnél fontos!)

15 Szubsztanciák belső tulajdonságok: inkább magához az objektum szubsztanciájához tartoznak, mint az objektum egészéhez. Ha valamit ketté vágunk, részei a belső tulajdonságukat megtartják - legyen ez sűrűség, forráspont, íz, szín, a tulajdonos azonossága, stb. külső tulajdonságok éppen az ellenkezője: olyan tulajdonságokat, mint a súlyt, hosszat, alakot, funkciót, stb. melyeket a részekre bontásnál megtartani nem lehet. Az Anyag kategória a legáltalánosabb szubsztancia kategória, egyetlen belső tulajdonsága sincs. A Dolog a diszkrét objektumok legáltalánosabb kategóriája, egyetlen külső tulajdonsága sincs. egy valós objektum lehet Anyag, de lehet Dolog is (pl. egy tó) de csinálhatunk dolgot anyagból (pl. 1 kg vaj) (ontológiai elkötelezettség)

16 CYC Doug Lenat, 1984 nagyjából máig, Columbia Desk Encyclopedia (mint az emberi tudás) kódolása kb. 20 év: 700 év ember, 70 m$, fogalom, 2 millió axióma, 6000 mikro elmélet esemény kalkulus kidolgozása

17 Mentális objektumok és hiedelmek - egy ágens - saját hiedelmei + mások hiedelmei miért kell? Mentális objektumok: Ágens hisz B-t. Ágens tud B-t. Hiszi(Ágens, x) - vajon milyen objektum az x? x logikai állítás nem lehet. (Superman = Clark) = (Hiszi(Lujza, Repül(Superman)) Hiszi(Lujza, Repül(Clark))) Referenciális átláthatóság: egy termet a vele ekvivalens termmel szabadon helyettesíthetünk. Elmosódott kontextus Megoldás: szintaktikai elmélet, metanyelvek modális logikák (szintaktika, szemantika, bizonyítás elmélet)

18 Hiszi_Lujza( Repül(Superman) ) Hiszi-Lujza Repül(Superman) meta-nyelv modális operátor p p p Hiszi-Lujza p Hiszi-Lujza p Hiszi-Lujza p Hiszi-Lujza p p = Szép-az-idő pesszimista jól informált mérges malac túlzott optimista Min múlik valóban a modális állítás igazságértéke? Mert ezt be kell építeni a logika szemantikájába!

Mesterséges Intelligencia MI

Mesterséges Intelligencia MI Mesterséges Intelligencia MI Logikai Emberi ágens tudás és problémái gépi reprezentálása Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade

Részletesebben

Mesterséges Intelligencia MI

Mesterséges Intelligencia MI Mesterséges Intelligencia MI Logikai ágens ügyesebben Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade Mit tudunk már?

Részletesebben

Elsőrendű logika. Mesterséges intelligencia március 28.

Elsőrendű logika. Mesterséges intelligencia március 28. Elsőrendű logika Mesterséges intelligencia 2014. március 28. Bevezetés Ítéletkalkulus: deklaratív nyelv (mondatok és lehetséges világok közti igazságrelációk) Részinformációkat is kezel (diszjunkció, negáció)

Részletesebben

Ismeretalapú modellezés XI. Leíró logikák

Ismeretalapú modellezés XI. Leíró logikák XI. Leíró logikák 1 eddig volt nyílt internetes rendszerekben miért van szükség ismeretalapú re ontológia készítés kérdései ontológiák jellemzői milyen ontológiák vannak most jön mai internetes ontológiák

Részletesebben

Mesterséges Intelligencia MI

Mesterséges Intelligencia MI Mesterséges Intelligencia MI Racionalitás: a hasznosság és a döntés Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade

Részletesebben

Ontológiák, 2. Leíró logikák. Kooperáció és intelligencia, DT-MT, BME-MIT

Ontológiák, 2. Leíró logikák. Kooperáció és intelligencia, DT-MT, BME-MIT Ontológiák, 2. Leíró logikák Célkitűzés egy jó logikai apparátus kategóriák, nem az a lényeges, hogy objektumokból állnak, amiket változókkal kellene követni (kvantor nem kell) lényeges a hierarchia, öröklődés,

Részletesebben

Ontológiák, 1. Kooperáció és intelligencia, BME-MIT

Ontológiák, 1. Kooperáció és intelligencia, BME-MIT Ontológiák, 1. Elmélet Mechanizmusfeltáró elmélet prediktív (jósló) modell Tartalomelmélet deskriptív (leíró) modell - ontológia objektumok, objektumok tulajdonságai objektumok közötti relációk Arisztotelész

Részletesebben

matematikus-informatikus szemével

matematikus-informatikus szemével Ontológiák egy matematikus-informatikus szemével Szeredi Péter Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi és Információelméleti Tanszék ➀ Mi az ontológia, mire jó, hogyan csináljuk?

Részletesebben

Mesterséges Intelligencia MI

Mesterséges Intelligencia MI Mesterséges Intelligencia MI Valószínűségi hálók - alapok Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade A szükséges

Részletesebben

1. előadás: Halmazelmélet, számfogalom, teljes

1. előadás: Halmazelmélet, számfogalom, teljes 1. előadás: Halmazelmélet, számfogalom, teljes indukció Szabó Szilárd Halmazok Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) összessége. Egy halmaz akkor adott, ha minden objektumról eldönthető,

Részletesebben

, , A

, , A MI Nagy ZH, 2011. nov. 4., 14.15-16, A és B csoport - Megoldások A/1. Milyen ágenskörnyezetrıl azt mondjuk, hogy nem hozzáférhetı? Adjon példát egy konkrét ágensre, problémára és környezetre, amire igaz

Részletesebben

Mesterséges Intelligencia MI

Mesterséges Intelligencia MI Mesterséges Intelligencia MI Problémamegoldás kereséssel lokális információval Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade

Részletesebben

Mesterséges Intelligencia MI

Mesterséges Intelligencia MI Mesterséges Intelligencia MI Valószínűségi hálók - alapok Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade Valószínűségi

Részletesebben

Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) Egy halmaz akkor adott, ha minden objektumról eldönthető, hogy

Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) Egy halmaz akkor adott, ha minden objektumról eldönthető, hogy 1. előadás: Halmazelmélet Szabó Szilárd Halmazok Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) összessége. Egy halmaz akkor adott, ha minden objektumról eldönthető, hogy hozzátartozik-e,

Részletesebben

Bizonytalanság. Mesterséges intelligencia április 4.

Bizonytalanság. Mesterséges intelligencia április 4. Bizonytalanság Mesterséges intelligencia 2014. április 4. Bevezetés Eddig: logika, igaz/hamis Ha nem teljes a tudás A világ nem figyelhető meg közvetlenül Részleges tudás nem reprezentálható logikai eszközökkel

Részletesebben

Formális módszerek GM_IN003_1 Program verifikálás, formalizmusok

Formális módszerek GM_IN003_1 Program verifikálás, formalizmusok Formális módszerek GM_IN003_1 Program verifikálás, formalizmusok Program verifikálás Konkurens programozási megoldások terjedése -> verifikálás szükséges, (nehéz) logika Legszélesebb körben alkalmazott

Részletesebben

S0-02 Típusmodellek (Programozás elmélet)

S0-02 Típusmodellek (Programozás elmélet) S0-02 Típusmodellek (Programozás elmélet) Tartalom 1. Absztrakt adattípus 2. Adattípus specifikációja 3. Adattípus osztály 4. Paraméterátadás 5. Reprezentációs függvény 6. Öröklődés és polimorfizmus 7.

Részletesebben

2. A példahalmazban n = 3 negatív és p = 3 pozitív példa van, azaz a példahalmazt képviselő döntési fa információtartalma: I = I(1/2, 1/2) = 1 bit.

2. A példahalmazban n = 3 negatív és p = 3 pozitív példa van, azaz a példahalmazt képviselő döntési fa információtartalma: I = I(1/2, 1/2) = 1 bit. Példa 1. Döntési fa számítása/1 1. Legyen a felhasználandó példahalmaz: Példa sz. Nagy(x) Fekete(x) Ugat(x) JóKutya(x) X1 Igen Igen Igen Nem X2 Igen Igen Nem Igen X3 Nem Nem Igen Nem X4 Nem Igen Igen Igen

Részletesebben

Logikai ágensek. Mesterséges intelligencia március 21.

Logikai ágensek. Mesterséges intelligencia március 21. Logikai ágensek Mesterséges intelligencia 2014. március 21. Bevezetés Eddigi példák tudásra: állapotok halmaza, lehetséges operátorok, ezek költségei, heurisztikák Feltételezés: a világ (lehetséges állapotok

Részletesebben

Ágensek bevezető áttekintés:

Ágensek bevezető áttekintés: Ágensek bevezető áttekintés: 1. Racionális ágens megközelítés - racionális cselekvés = bizonyos hiedelmeket feltételezve, adott célok elérésére irányul - a cél = a környezet (környezeti feltételek) egy

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 2. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Matematikai logika Diszkrét matematika I. középszint

Részletesebben

Emerald: Integrált jogi modellező keretrendszer

Emerald: Integrált jogi modellező keretrendszer Emerald: Integrált jogi modellező keretrendszer Förhécz András Szőke Ákos Kőrösi Gábor Strausz György Budapesti Műszaki és Gazdaságtudományi Egyetem Multilogic Kft, Budapest Networkshop 2011 2011. április

Részletesebben

VII. Keretalapú ismeretábrázolás

VII. Keretalapú ismeretábrázolás Collins és Quillian kísérlete VII. Keretalapú ismeretábrázolás Tud-e a kanári énekelni? 1.3 mp Képes-e a kanári? 1.4 mp Van-e a kanárinak bőre? 1.5 mp A kanári egy kanári? 1.0 mp A kanári egy madár? 1.2

Részletesebben

2. Logika gyakorlat Függvények és a teljes indukció

2. Logika gyakorlat Függvények és a teljes indukció 2. Logika gyakorlat Függvények és a teljes indukció Folláth János Debreceni Egyetem - Informatika Kar 2012/13. I. félév Áttekintés 1 Függvények Relációk Halmazok 2 Természetes számok Formulák Definíció

Részletesebben

Mesterséges Intelligencia MI

Mesterséges Intelligencia MI Mesterséges Intelligencia MI Logikai Logikai ágens ágens cselekvésben ügyesebben - szituációkalkulustól tervkészítésig Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu,

Részletesebben

Térinformatikai algoritmusok Elemi algoritmusok

Térinformatikai algoritmusok Elemi algoritmusok Cserép Máté Analóg programozásnak nevezzük azt, amikor egy feladat megoldásához egy már ismert és megoldott feladat megoldását használjuk fel. Általában nem pontosan ugyanazt a feladatot oldottuk meg korábban,

Részletesebben

Intelligens irányítások

Intelligens irányítások Intelligens irányítások Fuzzy halmazok Ballagi Áron Széchenyi István Egyetem Automatizálási Tsz. Arisztotelészi szi logika 2 Taichi Yin-Yang Yang logika 3 Hagyományos és Fuzzy halmaz Egy hagyományos halmaz

Részletesebben

Dr. Vincze Szilvia;

Dr. Vincze Szilvia; 2014. szeptember 17. és 19. Dr. Vincze Szilvia; vincze@agr.unideb.hu https://portal.agr.unideb.hu/oktatok/drvinczeszilvia/oktatas/oktatott_targyak/index/index.html 2010/2011-es tanév I. féléves tematika

Részletesebben

Filozófiai alapok. Varasdi Károly és Simonyi András. 2007. október 17.

Filozófiai alapok. Varasdi Károly és Simonyi András. 2007. október 17. Filozófiai alapok Varasdi Károly és Simonyi András 2007. október 17. Arbor Porphyrii (234 309) Petrus Ramus (1515 1572) John F. Sowa rendszere SUMO csúcskategóriák DOLCE csúcskategóriák Szóhasználat Univerzálé

Részletesebben

Modellellenőrzés. dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék

Modellellenőrzés. dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Modellellenőrzés dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Mit szeretnénk elérni? Informális vagy félformális tervek Informális követelmények Formális modell: KS, LTS, TA

Részletesebben

Programok értelmezése

Programok értelmezése Programok értelmezése Kód visszafejtés. Izsó Tamás 2016. szeptember 22. Izsó Tamás Programok értelmezése/ 1 Section 1 Programok értelmezése Izsó Tamás Programok értelmezése/ 2 programok szemantika értelmezése

Részletesebben

Relációs struktúrák Relációs elméletek Modális elméletek Gyakorlás Modellezés Házifeladatok MODÁLIS LOGIKAI ALAPOK

Relációs struktúrák Relációs elméletek Modális elméletek Gyakorlás Modellezés Házifeladatok MODÁLIS LOGIKAI ALAPOK DEONTIKUS LOGIKA MODÁLIS LOGIKAI ALAPOK Molnár Attila, Markovich Réka Eötvös Loránd University March 14, 2015 Relációs struktúrák DEONTIKUS RENDSZER MINT RELÁCIÓS STRUKTÚRA Modellezni szeretnénk a cselekvéseket

Részletesebben

LOGIKA ÉS ÉRVELÉSTECHNIKA

LOGIKA ÉS ÉRVELÉSTECHNIKA LOGIKA ÉS ÉRVELÉSTECHNIKA ELTE TáTK Közgazdaságtudományi Tanszék Logika és érveléstechnika NULLADREND LOGIKA 1. Készítette: Szakmai felel s: 2011. február Készült a következ m felhasználásával: Ruzsa

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2013 ősz 1. Diszkrét matematika I. középszint 8. előadás Mérai László merai@compalg.inf.elte.hu compalg.inf.elte.hu/ merai Komputeralgebra Tanszék 2013 ősz Kombinatorika

Részletesebben

Predikátumkalkulus. 1. Bevezet. 2. Predikátumkalkulus, formalizálás. Predikátumkalkulus alapfogalmai, formalizálás, tagadás, logikailag igaz formulák.

Predikátumkalkulus. 1. Bevezet. 2. Predikátumkalkulus, formalizálás. Predikátumkalkulus alapfogalmai, formalizálás, tagadás, logikailag igaz formulák. Predikátumkalkulus Predikátumkalkulus alapfogalmai, formalizálás, tagadás, logikailag igaz formulák. 1. Bevezet Nézzük meg a következ két kijelentést: Minden almához tartozik egy fa, amir l leesett. Bármely

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

Elsőrendű logika szintaktikája és szemantikája. Logika (3. gyakorlat) 0-adrendű szemantika 2009/10 II. félév 1 / 1

Elsőrendű logika szintaktikája és szemantikája. Logika (3. gyakorlat) 0-adrendű szemantika 2009/10 II. félév 1 / 1 Elsőrendű logika szintaktikája és szemantikája Logika és számításelmélet, 3. gyakorlat 2009/10 II. félév Logika (3. gyakorlat) 0-adrendű szemantika 2009/10 II. félév 1 / 1 Az elsőrendű logika Elemek egy

Részletesebben

Formális szemantika. Kifejezések szemantikája. Horpácsi Dániel ELTE Informatikai Kar

Formális szemantika. Kifejezések szemantikája. Horpácsi Dániel ELTE Informatikai Kar Formális szemantika Kifejezések szemantikája Horpácsi Dániel ELTE Informatikai Kar 2016-2017-2 Az előadás témája Egyszerű kifejezések formális szemantikája Az első lépés a programozási nyelvek szemantikájának

Részletesebben

Logikai ágensek. Gyenge Csilla

Logikai ágensek. Gyenge Csilla Logikai ágensek Gyenge Csilla Tartalom Bevezetés az ágensek világába Az ágens szó eredete Az ágensekről általánosan A logikai ágens Átfogó ismertetés A Wumpus világ Reprezentáció, következtetés Ítélet-logika

Részletesebben

Logikai ágens, lehetőségek és problémák 2

Logikai ágens, lehetőségek és problémák 2 Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Mesterséges Intelligencia - MI Logikai ágens, lehetőségek és problémák 2 Előadó: Hullám Gábor Pataki Béla

Részletesebben

Arról, ami nincs A nemlétezés elméletei. 10. Mindaz, ami van. Meinong dzsungele: A létezéstől a fennálláson át az adva levésig november 25.

Arról, ami nincs A nemlétezés elméletei. 10. Mindaz, ami van. Meinong dzsungele: A létezéstől a fennálláson át az adva levésig november 25. Arról, ami nincs A nemlétezés elméletei 10. Mindaz, ami van. Meinong dzsungele: A létezéstől a fennálláson át az adva levésig. 2013. november 25. Alexius Meinong ( Ritter von Handschuchsheim) 1853-1920

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Leíró Logikai Programozás

Leíró Logikai Programozás DLP I.-1 Leíró Logikai Programozás Szeredi Péter szeredi@cs.bme.hu Lukácsy Gergely lukacsy@cs.bme.hu BME Számítástudományi és Információelméleti Tanszék 2006. október 17. Leíró Logika+ Logikai Programozás

Részletesebben

Arról, ami nincs A nemlétezés elméletei. 7. A modern logika és a létezés október 21.

Arról, ami nincs A nemlétezés elméletei. 7. A modern logika és a létezés október 21. Arról, ami nincs A nemlétezés elméletei 7. A modern logika és a létezés 2013. október 21. Ismétlés Az ontológiai istenérv modern kritikája: a létezés nem tulajdonság nem lehet feltenni a kérdést, hogy

Részletesebben

Mesterséges Intelligencia MI

Mesterséges Intelligencia MI Mesterséges Intelligencia MI Problémamegoldás kereséssel ha sötétben tapogatózunk Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade

Részletesebben

Kooperatív és Tanuló Rendszerek

Kooperatív és Tanuló Rendszerek Kooperatív és Tanuló Rendszerek 5. Logikai modellektől emocionális modellekig Dobrowiecki Tadeusz Horváth Gábor 1 Ágens modell kívánatos komponensei (informális) Hiedelmek explicit reprezentációja (logikai

Részletesebben

Mesterséges Intelligencia MI

Mesterséges Intelligencia MI Mesterséges Intelligencia MI Bizonytalan tudás és kezelése Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade Milyen matematikát

Részletesebben

Térinformatikai algoritmusok Elemi algoritmusok

Térinformatikai algoritmusok Elemi algoritmusok Cserép Máté 2016. szeptember 14. Analóg programozásnak nevezzük azt, amikor egy feladat megoldásához egy már ismert és megoldott feladat megoldását használjuk fel. Általában nem pontosan ugyanazt a feladatot

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 017. ősz 1. Diszkrét matematika 1. középszint. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Predikátumkalkulus. Predikátumkalkulus alapfogalmai, formalizálás, tagadás, logikailag igaz formulák. Vizsgáljuk meg a következ két kijelentést.

Predikátumkalkulus. Predikátumkalkulus alapfogalmai, formalizálás, tagadás, logikailag igaz formulák. Vizsgáljuk meg a következ két kijelentést. Predikátumkalkulus Predikátumkalkulus alapfogalmai, formalizálás, tagadás, logikailag igaz formulák. 1. Bevezet Vizsgáljuk meg a következ két kijelentést. Minden almához tartozik egy fa, amir l leesett.

Részletesebben

MAGYAR NYELVÉSZETI TÁRGYAK ISMERTETÉSE BA NYELVTECHNOLÓGIAI SZAKIRÁNY

MAGYAR NYELVÉSZETI TÁRGYAK ISMERTETÉSE BA NYELVTECHNOLÓGIAI SZAKIRÁNY MAGYAR NYELVÉSZETI TÁRGYAK ISMERTETÉSE BA NYELVTECHNOLÓGIAI SZAKIRÁNY Tantárgy neve: BBNMT00300 Fonetika 3 A tantárgy célja, hogy az egyetemi tanulmányaik kezdetén levő magyar szakos hallgatókat megismertesse

Részletesebben

Intelligens Elosztott Rendszerek. Dobrowiecki Tadeusz és Eredics Péter, Gönczy László, Pataki Béla és Strausz György közreműködésével

Intelligens Elosztott Rendszerek. Dobrowiecki Tadeusz és Eredics Péter, Gönczy László, Pataki Béla és Strausz György közreműködésével Intelligens Elosztott Rendszerek Dobrowiecki Tadeusz és Eredics Péter, Gönczy László, Pataki Béla és Strausz György közreműködésével A mai előadás tartalma Mi is egy rendszer? Mit jelent elosztottnak lenni?

Részletesebben

Algoritmusok Tervezése. Fuzzy rendszerek Dr. Bécsi Tamás

Algoritmusok Tervezése. Fuzzy rendszerek Dr. Bécsi Tamás Algoritmusok Tervezése Fuzzy rendszerek Dr. Bécsi Tamás Bevezetés Mese a homokkupacról és a hidegről és a hegyekről Bevezetés, Fuzzy történet Két értékű logika, Boole algebra Háromértékű logika n értékű

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Objektumorientált paradigma és a programfejlesztés

Objektumorientált paradigma és a programfejlesztés Objektumorientált paradigma és a programfejlesztés Vámossy Zoltán vamossy.zoltan@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Ficsor Lajos (Miskolci Egyetem) prezentációja alapján Objektumorientált

Részletesebben

4. Fogyasztói preferenciák elmélete

4. Fogyasztói preferenciák elmélete 4. Fogyasztói preferenciák elmélete (ld. Temesi J.: A döntéselmélet alapjai, 47-63) 4.1 Preferencia relációk Mit jelent a fogyasztó választása? Legyen X egy olyan halmaz amelynek az elemei azok a lehetőségek

Részletesebben

Óbudai Egyetem Neumann János Informatikai Kar. Intelligens Mérnöki Rendszerek Intézet

Óbudai Egyetem Neumann János Informatikai Kar. Intelligens Mérnöki Rendszerek Intézet Óbudai Egyetem Neumann János Informatikai Kar Intelligens Mérnöki Rendszerek Intézet 1034 Budapest, Bécsi út 96/B Tel., Fax:1/666-5544,1/666-5545 http://nik.uni-obuda.hu/imri Az 2004-ben alakult IMRI (BMF)

Részletesebben

Mesterséges Intelligencia MI

Mesterséges Intelligencia MI Mesterséges Intelligencia MI Problémamegoldás kereséssel általános problémák Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade

Részletesebben

Alapszintű formalizmusok

Alapszintű formalizmusok Alapszintű formalizmusok dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Mit szeretnénk elérni? Informális tervek Informális követelmények Formális modell Formalizált követelmények

Részletesebben

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 13.

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 13. Algoritmuselmélet NP-teljes problémák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 13. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet

Részletesebben

Trigonometria Megoldások. 1) Oldja meg a következő egyenletet a valós számok halmazán! (12 pont) Megoldás:

Trigonometria Megoldások. 1) Oldja meg a következő egyenletet a valós számok halmazán! (12 pont) Megoldás: Trigonometria Megoldások ) Oldja meg a következő egyenletet a valós számok halmazán! cos + cos = sin ( pont) sin cos + = + = ( ) cos cos cos (+ pont) cos + cos = 0 A másodfokú egyenlet megoldóképletével

Részletesebben

Gépi tanulás és Mintafelismerés

Gépi tanulás és Mintafelismerés Gépi tanulás és Mintafelismerés jegyzet Csató Lehel Matematika-Informatika Tanszék BabesBolyai Tudományegyetem, Kolozsvár 2007 Aug. 20 2 1. fejezet Bevezet A mesterséges intelligencia azon módszereit,

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. estis képzés 2017. ősz 1. Diszkrét matematika 1. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

2011. szeptember 14. Dr. Vincze Szilvia;

2011. szeptember 14. Dr. Vincze Szilvia; 2011. szeptember 14. Dr. Vincze Szilvia; vincze@fin.unideb.hu https://portal.agr.unideb.hu/oktatok/drvinczeszilvia Első pillantásra hihetetlennek tűnik, hogy egy olyan tiszta és érzelmektől mentes tudomány,

Részletesebben

OOP. Alapelvek Elek Tibor

OOP. Alapelvek Elek Tibor OOP Alapelvek Elek Tibor OOP szemlélet Az OOP szemlélete szerint: a valóságot objektumok halmazaként tekintjük. Ezen objektumok egymással kapcsolatban vannak és együttműködnek. Program készítés: Absztrakciós

Részletesebben

Intelligens beágyazott rendszer üvegházak irányításában

Intelligens beágyazott rendszer üvegházak irányításában P5-T6: Algoritmustervezési környezet kidolgozása intelligens autonóm rendszerekhez Intelligens beágyazott rendszer üvegházak irányításában Eredics Péter, Dobrowiecki P. Tadeusz, BME-MIT 1 Üvegházak Az

Részletesebben

Temporális adatbázisok. Kunok Balázs szakdolgozata alapján

Temporális adatbázisok. Kunok Balázs szakdolgozata alapján Temporális adatbázisok Kunok Balázs szakdolgozata alapján Miért? Döntéshozatalok körülményeinek meghatározása. Nem csak az a lényeges, hogy hogyan változott az adat, hanem az is, hogy miért. Adatok helyreállíthatók

Részletesebben

Diszkrét matematika 1. középszint

Diszkrét matematika 1. középszint Diszkrét matematika 1. középszint 2017. sz 1. Diszkrét matematika 1. középszint 3. el adás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Sémi összehasonlító nyelvészet

Sémi összehasonlító nyelvészet Sémi összehasonlító nyelvészet BMA-HEBD-303 Biró Tamás 5. A nyelvtörténeti rekonstrukció alapjai. Jelentéstan. 2016. március 30. Összehasonlító rekonstrukció: alapok A történeti rekonstrukció klasszikus

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha

Részletesebben

Bizonytalan tudás kezelése

Bizonytalan tudás kezelése Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Bizonytalan tudás kezelése Előadó: Előadás anyaga: Hullám Gábor Pataki Béla Dobrowiecki Tadeusz Valószínűségi

Részletesebben

UML (Unified Modelling Language)

UML (Unified Modelling Language) UML (Unified Modelling Language) UML (+ Object Constraint Language) Az objektum- modellezés egy szabványa (OMG) UML A 80-as, 90-es években egyre inkább terjedő objektum-orientált analízis és tervezés (OOA&D)

Részletesebben

Matematika A1a Analízis

Matematika A1a Analízis B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika Aa Analízis BMETE90AX00 Az exp és ln függvények H607, EIC 209-04-24 Wettl

Részletesebben

Az informatika logikai alapjai

Az informatika logikai alapjai Az informatika logikai alapjai Várterész Magda DE, Informatikai Kar PTI BSc és informatikatanár hallgatók számára 2017. Példák Az alábbi világokban állításokat akarunk megfogalmazni: A táblára színes karikákat

Részletesebben

15. LINEÁRIS EGYENLETRENDSZEREK

15. LINEÁRIS EGYENLETRENDSZEREK 15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül A Borel Cantelli lemma és annak általánosítása. A valószínűségszámítás egyik fontos eredménye a Borel Cantelli lemma. Először informálisan ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az

Részletesebben

Bonyolult jelenség, aminek nincs jó modellje, sok empirikus adat, intelligens (ember)ágens képessége, hogy ilyen problémákkal mégis megbirkozzék.

Bonyolult jelenség, aminek nincs jó modellje, sok empirikus adat, intelligens (ember)ágens képessége, hogy ilyen problémákkal mégis megbirkozzék. Vizsga, 2015. dec. 22. B cs. B1. Hogyan jellemezhetők a tanulást igénylő feladatok? (vendégelőadás) Bonyolult jelenség, aminek nincs jó modellje, sok empirikus adat, intelligens (ember)ágens képessége,

Részletesebben

Menet. A konfirmáció Hempel paradoxonai. Hempel véleménye a konformációs paradoxonokról

Menet. A konfirmáció Hempel paradoxonai. Hempel véleménye a konformációs paradoxonokról 1 Kvalitatív konfirmáció Menet Konfirmációs kritériumok 2 A konfirmáció Hempel paradoxonai Hempel véleménye a konformációs paradoxonokról Hempel konfirmáció fogalma A konfirmáció problémája: 3 Mit jelent

Részletesebben

Az Országos kompetenciamérés (OKM) tartalmi kerete. a 20/2012. (VIII. 31.) EMMI rendelet 3. melléklete alapján

Az Országos kompetenciamérés (OKM) tartalmi kerete. a 20/2012. (VIII. 31.) EMMI rendelet 3. melléklete alapján Az Országos kompetenciamérés (OKM) tartalmi kerete a 20/2012. (VIII. 31.) EMMI rendelet 3. melléklete alapján Az OKM tartalmi keret Célja: definiálja azokat a tényezőket és szempontrendszereket, amelyek

Részletesebben

Temporális logikák és modell ellenırzés

Temporális logikák és modell ellenırzés Temporális logikák és modell ellenırzés Temporális logikák Modális logika: kijelentések különböző módjainak tanulmányozására vezették be (eredetileg filozófusok). Ilyen módok: esetleg, mindig, szükségszerűen,

Részletesebben

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 12.

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 12. Algoritmuselmélet NP-teljes problémák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 12. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet

Részletesebben

Objektumorientált paradigma és programfejlesztés Bevezető

Objektumorientált paradigma és programfejlesztés Bevezető Objektumorientált paradigma és programfejlesztés Bevezető Vámossy Zoltán vamossy.zoltan@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Ficsor Lajos (Miskolci Egyetem) prezentációja alapján

Részletesebben

Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel! függvények RE 1 Relációk Függvények függvények RE 2 Definíció Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor

Részletesebben

Matematikai logika és halmazelmélet

Matematikai logika és halmazelmélet Matematikai logika és halmazelmélet Wettl Ferenc előadása alapján 2015-09-07 Wettl Ferenc előadása alapján Matematikai logika és halmazelmélet 2015-09-07 1 / 21 Tartalom 1 Matematikai kijelentések szerkezete

Részletesebben

Logika es sz am ıt aselm elet I. r esz Logika 1/36

Logika es sz am ıt aselm elet I. r esz Logika 1/36 1/36 Logika és számításelmélet I. rész Logika 2/36 Elérhetőségek Tejfel Máté Déli épület, 2.606 matej@inf.elte.hu http://matej.web.elte.hu Tankönyv 3/36 Tartalom 4/36 Bevezető fogalmak Ítéletlogika Ítéletlogika

Részletesebben

Dunaújvárosi Főiskola Informatikai Intézet. Intelligens ágensek. Dr. Seebauer Márta. főiskolai tanár

Dunaújvárosi Főiskola Informatikai Intézet. Intelligens ágensek. Dr. Seebauer Márta. főiskolai tanár Dunaújvárosi Főiskola Informatikai Intézet Intelligens ágensek Dr. Seebauer Márta főiskolai tanár seebauer.marta@szgti.bmf.hu Ágens Ágens (agent) bármi lehet, amit úgy tekinthetünk, hogy érzékelők (sensors)

Részletesebben

RE 1. Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

RE 1. Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel! RE 1 Relációk Függvények RE 2 Definíció: Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor azt mondjuk, hogy

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 3. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Relációk Diszkrét matematika I. középszint 2014.

Részletesebben

Számítási intelligencia

Számítási intelligencia Botzheim János Számítási intelligencia Budapesti Műszaki és Gazdaságtudományi Egyetem, Mechatronika, Optika és Gépészeti Informatika Tanszék Graduate School of System Design, Tokyo Metropolitan University

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Logika és informatikai alkalmazásai kiskérdések február Mikor mondjuk, hogy az F formula a G-nek részformulája?

Logika és informatikai alkalmazásai kiskérdések február Mikor mondjuk, hogy az F formula a G-nek részformulája? ,,Alap kiskérdések Logika és informatikai alkalmazásai kiskérdések 2012. február 19. 1. Hogy hívjuk a 0 aritású függvényjeleket? 2. Definiálja a termek halmazát. 3. Definiálja a formulák halmazát. 4. Definiálja,

Részletesebben

Méréselmélet MI BSc 1

Méréselmélet MI BSc 1 Mérés és s modellezés 2008.02.15. 1 Méréselmélet - bevezetés a mérnöki problémamegoldás menete 1. A probléma kitűzése 2. A hipotézis felállítása 3. Kísérlettervezés 4. Megfigyelések elvégzése 5. Adatok

Részletesebben

Értelek, értelek... de miről beszélsz??

Értelek, értelek... de miről beszélsz?? Biró Tamás Amszterdami Egyetem, ACLC Értelek, értelek... de miről beszélsz?? A keresztény-zsidó párbeszéd a kognitív vallástudomány perspektívájából Áttekintés: kihívások, perspektívák, válaszok Kihívások

Részletesebben

Logikai programozás ADMINISZTRATÍV KÉRDÉSEK KÖVETELMÉNYRENDSZER FŐBB PONTOK NÉHÁNY BIZTATÓ SZÓ

Logikai programozás ADMINISZTRATÍV KÉRDÉSEK KÖVETELMÉNYRENDSZER FŐBB PONTOK NÉHÁNY BIZTATÓ SZÓ Logikai programozás ADMINISZTRATÍV KÉRDÉSEK Bármilyen kérdéssel (akár tananyag, akár nem), örömmel, bánattal: achs.agnes@gmail.com (Ha két napon belül nem válaszolok, akkor kérek egy figyelmeztető levelet.

Részletesebben

Csima Judit október 24.

Csima Judit október 24. Adatbáziskezelés Funkcionális függőségek Csima Judit BME, VIK, Számítástudományi és Információelméleti Tanszék 2018. október 24. Csima Judit Adatbáziskezelés Funkcionális függőségek 1 / 1 Relációs sémák

Részletesebben

Mesterséges Intelligencia MI

Mesterséges Intelligencia MI Mesterséges Intelligencia MI Valószínűségi hálók - következtetés Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade Következtetés

Részletesebben

FRAKTÁLGEOMETRIA. Metrikus terek, szeparábilitás, kompaktság. Czirbusz Sándor czirbusz@gmail.com. Komputeralgebra Tanszék ELTE Informatika Kar

FRAKTÁLGEOMETRIA. Metrikus terek, szeparábilitás, kompaktság. Czirbusz Sándor czirbusz@gmail.com. Komputeralgebra Tanszék ELTE Informatika Kar Metrikus terek, szeparábilitás, kompaktság Czirbusz Sándor czirbusz@gmail.com Komputeralgebra Tanszék ELTE Informatika Kar 2010. március 7. Vázlat 1 Szeparábilitás Definíciók A szeparábilitás ekvivalens

Részletesebben

Logika es sz am ıt aselm elet I. r esz Logika Negyedik el oad as 1/26

Logika es sz am ıt aselm elet I. r esz Logika Negyedik el oad as 1/26 1/26 Logika és számításelmélet I. rész Logika Negyedik előadás Tartalom 2/26 Az elsőrendű logika szemantikája Formulák és formulahalmazok szemantikus tulajdonságai Elsőrendű logikai nyelv interpretációja

Részletesebben

1. gyakorlat ( ), Bevezető analízis 1., ősz (Besenyei Ádám csoportja)

1. gyakorlat ( ), Bevezető analízis 1., ősz (Besenyei Ádám csoportja) 1. gyakorlat (2016. 09. 12.), Bevezető analízis 1., 2016. ősz A színek jelentése: fekete az előzetes vázlat; piros, ami ehhez képest módosult. 1. Három matematikus bemegy egy kocsmába, és rendel. A nagy

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 4 IV. FÜGGVÉNYEk 1. LEkÉPEZÉSEk, függvények Definíció Legyen és két halmaz. Egy függvény -ből -ba egy olyan szabály, amely minden elemhez pontosan egy elemet rendel hozzá. Az

Részletesebben