Mesterséges Intelligencia MI
|
|
- Lili Borosné
- 9 évvel ezelőtt
- Látták:
Átírás
1 Mesterséges Intelligencia MI Tudásbázis építése Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437,
2 A tudásbázis építése tudásbeszerzés (knowledge acquisition): tudásmérnök valódi szakértő tudásszervezés (knowledge engineering): a tudásbázis építése ontológia szervezése (ontological engineering) A jó és a rossz tudásbázis tulajdonságai - egy jó tudásreprezentációs nyelv: nagy kifejező erejű, tömör, egyértelmű, környezet-érzéketlen, hatékony - tudásbázis: letisztázott, korrekt, csak fontos relációk kompromisszum: tömörség korrektség Tudásbázis fogyasztója: az emberi olvasó és a következtető gép Gyakori hiba: - embernek értelmesnek tűnő predikátumnevek használata - értelmesek lesznek-e a következtető eljárásnak is?
3 A tudásbázis építése mire lehet szükség objektumok, relációk csoportosulások, szervezetek, halmazok, képviselők objektumok részei, struktúrái, objektumok méretei objektumok és relációk változása az időben... (valódi objektumok modellezése ágens agyában ) ágens agyában létező objektum(fogalmak) modellezése ágens agyában? (cogito ergo sum?) 3
4 Tudásszervezés (Knowledge Engineering) lépései 1. Döntsük el, miről fogunk beszélni: objektumok, tények, relációk (ontológia) házi állatok, kutyák 2. Döntsük el predikátumok, függvények és konstansok szótárát: logikai szintű nevek (amire szabad kezünk van) nagy(x), hangos(x), harapós(x), kölyke(x), 3. A tárgytartományra vonatkozó általános tudás kódolása: logikai állítások = axiómák, precíz módon, a következtetési eljárás automatizmusához 4. Specifikus problémaegyedek leírása: ha az ontológia jó, könnyű, mert a nyelv adott 5. Kérdések megfogalmazása a következtető eljárás számára, válaszok fogadása: jutalom: helyettünk már csak a gép dolgozik (formális hitelességgel) x. harapós(x) harapós(kölyke(x)) Bodri = kölyke(cézár) nagy(bodri), harapós(bodri)?
5 Általános ontológia általános ontológia többé-kevésbé minden speciális problémában jó Figyelem: Minden általánosítás alól létezik kivétel, vagy a részletesebb információ hiányában csupán az alapértelmezést tekinthetjük, vagy pedig minden általánosítás csak egy bizonyos mértékig érvényes. Bár a paradicsom piros egy hasznos szabály, van zöld, sárga és narancssárga paradicsom is. Kivételkezelés kérdése a logikában?
6 Kategóriák - több objektumnak is közös tulajdonságai vannak - kategóriák rendeződnek egy egységes taxonómikus hierarchiába Bár a világgal való kölcsönhatás az egyedi objektumok szintjén történik, a következtetések zöme a kategóriák szintjén valósul meg. Ágens: észlelések bizonyos objektum jelenlétét érzékeli érzékelt tulajdonságok objektum milyen kategóriához tartozik kategória az objektumra vonatkozó további előrejelzések elsőrendű logika: a kategóriák reprezentálása (két módja) - unáris predikátumok: paradicsom(x) - a kategória reifikálása: paradicsomok halmaza egy konstans x egy paradicsom, x Paradicsomok, eleme(x, Paradicsomok) öröklődés: jó elv a tudásbázis szervezésére és egyszerűsítésére. Ha az Élelem kategória minden egyes esete ehető és a Gyümölcs az Élelem, az Alma viszont a Gyümölcs egy alosztálya, akkor tudjuk, hogy minden alma ehető. Ezek után: x. x Paradicsomok Piros(x) Gömbölyű(x)?
7 Természetes fajták kategória: a. szigorú definíció (pl. háromszög) b. a többség un. természetes fajta nincs letisztult definíciója Paradicsomok vörös színűek, kb. gömbszerűek, kb. 5-8 cm átmérőjűek, vékony, de erős bőrrel, belül hússal, magvakkal és lével. Lehet egy kocka alakú paradicsom? Lehet sárga? Paradicsom még, ha 1 m átmérőjű? Egy ágens nem lehet biztos, hogy az általa érzékelt objektum valóban egy paradicsom (hátha kivétel).
8 Szét kell választani mindazt, ami egy kategória minden egyes egyedére igaz, attól, ami a kategória tipikus egyedeire igaz: Paradicsomok Tipikus(Paradicsomok) c. Tipikus(c) c A természetes fajtákra vonatkozó tudás többsége valóban a tipikus egyedekről szól: x. x Tipikus(Paradicsomok) Piros(x) Gömbölyű(x) Ily módon képesek vagyunk a kategóriákra vonatkozó fontos tényeket feljegyezni, anélkül, hogy pontos definíciókat kellene megadnunk.
9 VIMIA313 Mesterséges intelligencia, Dobrowiecki - Eredics, BME-MIT 9
10 Mértékek (arány, intervallum, ordinális, nominális) Egyszerű kvantitatív mértékek reprezentálása könnyű: ára(a) = 10, ára(b) = 15, nagyobb(ára(b), ára(a)) Más mérték is van a gyakorlat nehéz, a desszert finom és a vers szép. A mértékek legfontosabb tulajdonsága, hogy többségben rendezettek. Az A tanár adta feladatok nehezebbek, mint azok, amiket a B tanár adott. Egy nehezebb feladatnál kevesebb pontot lehet elérni : e, f. Feladat(e) Feladat(f) Ad(A, e) Ad(B, f) (Nehézség(e) Nehézség(f)) e, f. Feladat(e) Feladat(f) (Nehézség(e) Nehézség(f)) (VárhatóEredmény(e) VárhatóEredmény(f))
11 Összetett objektumok objektumok kategóriákba rendeződnek - alkotó struktúrájuk szerint A része reláció tranzitív és reflexív. Része(Budapest, Magyarország) Része(Magyarország, KözépEurópa) Része(KözépEuropa, Európa) E tényekből, és a Része tranzitivitásából kikövetkeztethetjük, hogy Része(Budapest, Európa). x, y, z. Része(x, y) Része(y, z) Része(x, z)
12 Az idő, a tér és a változás A szituáció kalkulusnak két problémája van: - a szituációk időben pillanatnyi jellegűek - időben egyetlen egy cselekvés történik egyszerre (nem mindig elég) Eseménykalkulus egy konkrét univerzum: térbeli + időbeli dimenzió egy esemény: univerzum (téridő) egy darabja, mind időbeli, mind térbeli kiterjedéssel. részesemény: RészEsemény(AngliaiCsata, WWII) intervallum, hely Benne(NewYork, USA) folyamat, folytonos esemény, állapot, fizikai objektum folyó esemény pl. Római Birodalom tér/idő alakulása temporális logikák: a modális logikák egy változata " p" - "p a jövőben, minden pillanatban igaz lesz" " p" - "p a jövőben, valamikor igaz lesz".
13 VIMIA313 Folyó események (ld. jegyzet)
14 Szubsztanciák A természetes nyelv: ellentmondásos intuíció. Létezik-e ParadicsomLé-nek nevezhető objektum? A valóság nagy része a példányosításnak az elkülönülő objektumokra való felbontásnak látszólag ellenáll. A valóság ez a része: az anyag, ill. a dolog. Malac, vaj objektumok: - megszámlálható - nem megszámlálható - akármilyen része a vaj-objektumnak szintén vaj-objektum - sajnos nem lesz két malacunk, ha a malacot ketté szeljük x, y x Vaj Része(y, x) y Vaj (az anyag a rész mentén öröklődik, a dolog nem: következtetésnél fontos!)
15 Szubsztanciák belső tulajdonságok: inkább magához az objektum szubsztanciájához tartoznak, mint az objektum egészéhez. Ha valamit ketté vágunk, részei a belső tulajdonságukat megtartják - legyen ez sűrűség, forráspont, íz, szín, a tulajdonos azonossága, stb. külső tulajdonságok éppen az ellenkezője: olyan tulajdonságokat, mint a súlyt, hosszat, alakot, funkciót, stb. melyeket a részekre bontásnál megtartani nem lehet. Az Anyag kategória a legáltalánosabb szubsztancia kategória, egyetlen belső tulajdonsága sincs. A Dolog a diszkrét objektumok legáltalánosabb kategóriája, egyetlen külső tulajdonsága sincs. egy valós objektum lehet Anyag, de lehet Dolog is (pl. egy tó) de csinálhatunk dolgot anyagból (pl. 1 kg vaj) (ontológiai elkötelezettség)
16 CYC Doug Lenat, 1984 nagyjából máig, Columbia Desk Encyclopedia (mint az emberi tudás) kódolása kb. 20 év: 700 év ember, 70 m$, fogalom, 2 millió axióma, 6000 mikro elmélet esemény kalkulus kidolgozása
17 Mentális objektumok és hiedelmek - egy ágens - saját hiedelmei + mások hiedelmei miért kell? Mentális objektumok: Ágens hisz B-t. Ágens tud B-t. Hiszi(Ágens, x) - vajon milyen objektum az x? x logikai állítás nem lehet. (Superman = Clark) = (Hiszi(Lujza, Repül(Superman)) Hiszi(Lujza, Repül(Clark))) Referenciális átláthatóság: egy termet a vele ekvivalens termmel szabadon helyettesíthetünk. Elmosódott kontextus Megoldás: szintaktikai elmélet, metanyelvek modális logikák (szintaktika, szemantika, bizonyítás elmélet)
18 Hiszi_Lujza( Repül(Superman) ) Hiszi-Lujza Repül(Superman) meta-nyelv modális operátor p p p Hiszi-Lujza p Hiszi-Lujza p Hiszi-Lujza p Hiszi-Lujza p p = Szép-az-idő pesszimista jól informált mérges malac túlzott optimista Min múlik valóban a modális állítás igazságértéke? Mert ezt be kell építeni a logika szemantikájába!
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Logikai Emberi ágens tudás és problémái gépi reprezentálása Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade
RészletesebbenMesterséges Intelligencia MI
Mesterséges Intelligencia MI Logikai ágens ügyesebben Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade Mit tudunk már?
RészletesebbenElsőrendű logika. Mesterséges intelligencia március 28.
Elsőrendű logika Mesterséges intelligencia 2014. március 28. Bevezetés Ítéletkalkulus: deklaratív nyelv (mondatok és lehetséges világok közti igazságrelációk) Részinformációkat is kezel (diszjunkció, negáció)
RészletesebbenIsmeretalapú modellezés XI. Leíró logikák
XI. Leíró logikák 1 eddig volt nyílt internetes rendszerekben miért van szükség ismeretalapú re ontológia készítés kérdései ontológiák jellemzői milyen ontológiák vannak most jön mai internetes ontológiák
RészletesebbenMesterséges Intelligencia MI
Mesterséges Intelligencia MI Racionalitás: a hasznosság és a döntés Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade
RészletesebbenOntológiák, 2. Leíró logikák. Kooperáció és intelligencia, DT-MT, BME-MIT
Ontológiák, 2. Leíró logikák Célkitűzés egy jó logikai apparátus kategóriák, nem az a lényeges, hogy objektumokból állnak, amiket változókkal kellene követni (kvantor nem kell) lényeges a hierarchia, öröklődés,
RészletesebbenOntológiák, 1. Kooperáció és intelligencia, BME-MIT
Ontológiák, 1. Elmélet Mechanizmusfeltáró elmélet prediktív (jósló) modell Tartalomelmélet deskriptív (leíró) modell - ontológia objektumok, objektumok tulajdonságai objektumok közötti relációk Arisztotelész
Részletesebbenmatematikus-informatikus szemével
Ontológiák egy matematikus-informatikus szemével Szeredi Péter Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi és Információelméleti Tanszék ➀ Mi az ontológia, mire jó, hogyan csináljuk?
RészletesebbenMesterséges Intelligencia MI
Mesterséges Intelligencia MI Valószínűségi hálók - alapok Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade A szükséges
Részletesebben1. előadás: Halmazelmélet, számfogalom, teljes
1. előadás: Halmazelmélet, számfogalom, teljes indukció Szabó Szilárd Halmazok Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) összessége. Egy halmaz akkor adott, ha minden objektumról eldönthető,
Részletesebben, , A
MI Nagy ZH, 2011. nov. 4., 14.15-16, A és B csoport - Megoldások A/1. Milyen ágenskörnyezetrıl azt mondjuk, hogy nem hozzáférhetı? Adjon példát egy konkrét ágensre, problémára és környezetre, amire igaz
RészletesebbenMesterséges Intelligencia MI
Mesterséges Intelligencia MI Problémamegoldás kereséssel lokális információval Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade
RészletesebbenMesterséges Intelligencia MI
Mesterséges Intelligencia MI Valószínűségi hálók - alapok Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade Valószínűségi
RészletesebbenHalmaz: alapfogalom, bizonyos elemek (matematikai objektumok) Egy halmaz akkor adott, ha minden objektumról eldönthető, hogy
1. előadás: Halmazelmélet Szabó Szilárd Halmazok Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) összessége. Egy halmaz akkor adott, ha minden objektumról eldönthető, hogy hozzátartozik-e,
RészletesebbenBizonytalanság. Mesterséges intelligencia április 4.
Bizonytalanság Mesterséges intelligencia 2014. április 4. Bevezetés Eddig: logika, igaz/hamis Ha nem teljes a tudás A világ nem figyelhető meg közvetlenül Részleges tudás nem reprezentálható logikai eszközökkel
RészletesebbenFormális módszerek GM_IN003_1 Program verifikálás, formalizmusok
Formális módszerek GM_IN003_1 Program verifikálás, formalizmusok Program verifikálás Konkurens programozási megoldások terjedése -> verifikálás szükséges, (nehéz) logika Legszélesebb körben alkalmazott
RészletesebbenS0-02 Típusmodellek (Programozás elmélet)
S0-02 Típusmodellek (Programozás elmélet) Tartalom 1. Absztrakt adattípus 2. Adattípus specifikációja 3. Adattípus osztály 4. Paraméterátadás 5. Reprezentációs függvény 6. Öröklődés és polimorfizmus 7.
Részletesebben2. A példahalmazban n = 3 negatív és p = 3 pozitív példa van, azaz a példahalmazt képviselő döntési fa információtartalma: I = I(1/2, 1/2) = 1 bit.
Példa 1. Döntési fa számítása/1 1. Legyen a felhasználandó példahalmaz: Példa sz. Nagy(x) Fekete(x) Ugat(x) JóKutya(x) X1 Igen Igen Igen Nem X2 Igen Igen Nem Igen X3 Nem Nem Igen Nem X4 Nem Igen Igen Igen
RészletesebbenLogikai ágensek. Mesterséges intelligencia március 21.
Logikai ágensek Mesterséges intelligencia 2014. március 21. Bevezetés Eddigi példák tudásra: állapotok halmaza, lehetséges operátorok, ezek költségei, heurisztikák Feltételezés: a világ (lehetséges állapotok
RészletesebbenÁgensek bevezető áttekintés:
Ágensek bevezető áttekintés: 1. Racionális ágens megközelítés - racionális cselekvés = bizonyos hiedelmeket feltételezve, adott célok elérésére irányul - a cél = a környezet (környezeti feltételek) egy
RészletesebbenDiszkrét matematika I.
Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 2. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Matematikai logika Diszkrét matematika I. középszint
RészletesebbenEmerald: Integrált jogi modellező keretrendszer
Emerald: Integrált jogi modellező keretrendszer Förhécz András Szőke Ákos Kőrösi Gábor Strausz György Budapesti Műszaki és Gazdaságtudományi Egyetem Multilogic Kft, Budapest Networkshop 2011 2011. április
RészletesebbenVII. Keretalapú ismeretábrázolás
Collins és Quillian kísérlete VII. Keretalapú ismeretábrázolás Tud-e a kanári énekelni? 1.3 mp Képes-e a kanári? 1.4 mp Van-e a kanárinak bőre? 1.5 mp A kanári egy kanári? 1.0 mp A kanári egy madár? 1.2
Részletesebben2. Logika gyakorlat Függvények és a teljes indukció
2. Logika gyakorlat Függvények és a teljes indukció Folláth János Debreceni Egyetem - Informatika Kar 2012/13. I. félév Áttekintés 1 Függvények Relációk Halmazok 2 Természetes számok Formulák Definíció
RészletesebbenMesterséges Intelligencia MI
Mesterséges Intelligencia MI Logikai Logikai ágens ágens cselekvésben ügyesebben - szituációkalkulustól tervkészítésig Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu,
RészletesebbenTérinformatikai algoritmusok Elemi algoritmusok
Cserép Máté Analóg programozásnak nevezzük azt, amikor egy feladat megoldásához egy már ismert és megoldott feladat megoldását használjuk fel. Általában nem pontosan ugyanazt a feladatot oldottuk meg korábban,
RészletesebbenIntelligens irányítások
Intelligens irányítások Fuzzy halmazok Ballagi Áron Széchenyi István Egyetem Automatizálási Tsz. Arisztotelészi szi logika 2 Taichi Yin-Yang Yang logika 3 Hagyományos és Fuzzy halmaz Egy hagyományos halmaz
RészletesebbenDr. Vincze Szilvia;
2014. szeptember 17. és 19. Dr. Vincze Szilvia; vincze@agr.unideb.hu https://portal.agr.unideb.hu/oktatok/drvinczeszilvia/oktatas/oktatott_targyak/index/index.html 2010/2011-es tanév I. féléves tematika
RészletesebbenFilozófiai alapok. Varasdi Károly és Simonyi András. 2007. október 17.
Filozófiai alapok Varasdi Károly és Simonyi András 2007. október 17. Arbor Porphyrii (234 309) Petrus Ramus (1515 1572) John F. Sowa rendszere SUMO csúcskategóriák DOLCE csúcskategóriák Szóhasználat Univerzálé
RészletesebbenModellellenőrzés. dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék
Modellellenőrzés dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Mit szeretnénk elérni? Informális vagy félformális tervek Informális követelmények Formális modell: KS, LTS, TA
RészletesebbenProgramok értelmezése
Programok értelmezése Kód visszafejtés. Izsó Tamás 2016. szeptember 22. Izsó Tamás Programok értelmezése/ 1 Section 1 Programok értelmezése Izsó Tamás Programok értelmezése/ 2 programok szemantika értelmezése
RészletesebbenRelációs struktúrák Relációs elméletek Modális elméletek Gyakorlás Modellezés Házifeladatok MODÁLIS LOGIKAI ALAPOK
DEONTIKUS LOGIKA MODÁLIS LOGIKAI ALAPOK Molnár Attila, Markovich Réka Eötvös Loránd University March 14, 2015 Relációs struktúrák DEONTIKUS RENDSZER MINT RELÁCIÓS STRUKTÚRA Modellezni szeretnénk a cselekvéseket
RészletesebbenLOGIKA ÉS ÉRVELÉSTECHNIKA
LOGIKA ÉS ÉRVELÉSTECHNIKA ELTE TáTK Közgazdaságtudományi Tanszék Logika és érveléstechnika NULLADREND LOGIKA 1. Készítette: Szakmai felel s: 2011. február Készült a következ m felhasználásával: Ruzsa
RészletesebbenDiszkrét matematika I.
Diszkrét matematika I. középszint 2013 ősz 1. Diszkrét matematika I. középszint 8. előadás Mérai László merai@compalg.inf.elte.hu compalg.inf.elte.hu/ merai Komputeralgebra Tanszék 2013 ősz Kombinatorika
RészletesebbenPredikátumkalkulus. 1. Bevezet. 2. Predikátumkalkulus, formalizálás. Predikátumkalkulus alapfogalmai, formalizálás, tagadás, logikailag igaz formulák.
Predikátumkalkulus Predikátumkalkulus alapfogalmai, formalizálás, tagadás, logikailag igaz formulák. 1. Bevezet Nézzük meg a következ két kijelentést: Minden almához tartozik egy fa, amir l leesett. Bármely
RészletesebbenAz R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.
2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az
RészletesebbenElsőrendű logika szintaktikája és szemantikája. Logika (3. gyakorlat) 0-adrendű szemantika 2009/10 II. félév 1 / 1
Elsőrendű logika szintaktikája és szemantikája Logika és számításelmélet, 3. gyakorlat 2009/10 II. félév Logika (3. gyakorlat) 0-adrendű szemantika 2009/10 II. félév 1 / 1 Az elsőrendű logika Elemek egy
RészletesebbenFormális szemantika. Kifejezések szemantikája. Horpácsi Dániel ELTE Informatikai Kar
Formális szemantika Kifejezések szemantikája Horpácsi Dániel ELTE Informatikai Kar 2016-2017-2 Az előadás témája Egyszerű kifejezések formális szemantikája Az első lépés a programozási nyelvek szemantikájának
RészletesebbenLogikai ágensek. Gyenge Csilla
Logikai ágensek Gyenge Csilla Tartalom Bevezetés az ágensek világába Az ágens szó eredete Az ágensekről általánosan A logikai ágens Átfogó ismertetés A Wumpus világ Reprezentáció, következtetés Ítélet-logika
RészletesebbenLogikai ágens, lehetőségek és problémák 2
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Mesterséges Intelligencia - MI Logikai ágens, lehetőségek és problémák 2 Előadó: Hullám Gábor Pataki Béla
RészletesebbenArról, ami nincs A nemlétezés elméletei. 10. Mindaz, ami van. Meinong dzsungele: A létezéstől a fennálláson át az adva levésig november 25.
Arról, ami nincs A nemlétezés elméletei 10. Mindaz, ami van. Meinong dzsungele: A létezéstől a fennálláson át az adva levésig. 2013. november 25. Alexius Meinong ( Ritter von Handschuchsheim) 1853-1920
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
RészletesebbenLeíró Logikai Programozás
DLP I.-1 Leíró Logikai Programozás Szeredi Péter szeredi@cs.bme.hu Lukácsy Gergely lukacsy@cs.bme.hu BME Számítástudományi és Információelméleti Tanszék 2006. október 17. Leíró Logika+ Logikai Programozás
RészletesebbenArról, ami nincs A nemlétezés elméletei. 7. A modern logika és a létezés október 21.
Arról, ami nincs A nemlétezés elméletei 7. A modern logika és a létezés 2013. október 21. Ismétlés Az ontológiai istenérv modern kritikája: a létezés nem tulajdonság nem lehet feltenni a kérdést, hogy
RészletesebbenMesterséges Intelligencia MI
Mesterséges Intelligencia MI Problémamegoldás kereséssel ha sötétben tapogatózunk Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade
RészletesebbenKooperatív és Tanuló Rendszerek
Kooperatív és Tanuló Rendszerek 5. Logikai modellektől emocionális modellekig Dobrowiecki Tadeusz Horváth Gábor 1 Ágens modell kívánatos komponensei (informális) Hiedelmek explicit reprezentációja (logikai
RészletesebbenMesterséges Intelligencia MI
Mesterséges Intelligencia MI Bizonytalan tudás és kezelése Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade Milyen matematikát
RészletesebbenTérinformatikai algoritmusok Elemi algoritmusok
Cserép Máté 2016. szeptember 14. Analóg programozásnak nevezzük azt, amikor egy feladat megoldásához egy már ismert és megoldott feladat megoldását használjuk fel. Általában nem pontosan ugyanazt a feladatot
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 017. ősz 1. Diszkrét matematika 1. középszint. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
RészletesebbenPredikátumkalkulus. Predikátumkalkulus alapfogalmai, formalizálás, tagadás, logikailag igaz formulák. Vizsgáljuk meg a következ két kijelentést.
Predikátumkalkulus Predikátumkalkulus alapfogalmai, formalizálás, tagadás, logikailag igaz formulák. 1. Bevezet Vizsgáljuk meg a következ két kijelentést. Minden almához tartozik egy fa, amir l leesett.
RészletesebbenMAGYAR NYELVÉSZETI TÁRGYAK ISMERTETÉSE BA NYELVTECHNOLÓGIAI SZAKIRÁNY
MAGYAR NYELVÉSZETI TÁRGYAK ISMERTETÉSE BA NYELVTECHNOLÓGIAI SZAKIRÁNY Tantárgy neve: BBNMT00300 Fonetika 3 A tantárgy célja, hogy az egyetemi tanulmányaik kezdetén levő magyar szakos hallgatókat megismertesse
RészletesebbenIntelligens Elosztott Rendszerek. Dobrowiecki Tadeusz és Eredics Péter, Gönczy László, Pataki Béla és Strausz György közreműködésével
Intelligens Elosztott Rendszerek Dobrowiecki Tadeusz és Eredics Péter, Gönczy László, Pataki Béla és Strausz György közreműködésével A mai előadás tartalma Mi is egy rendszer? Mit jelent elosztottnak lenni?
RészletesebbenAlgoritmusok Tervezése. Fuzzy rendszerek Dr. Bécsi Tamás
Algoritmusok Tervezése Fuzzy rendszerek Dr. Bécsi Tamás Bevezetés Mese a homokkupacról és a hidegről és a hegyekről Bevezetés, Fuzzy történet Két értékű logika, Boole algebra Háromértékű logika n értékű
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
RészletesebbenObjektumorientált paradigma és a programfejlesztés
Objektumorientált paradigma és a programfejlesztés Vámossy Zoltán vamossy.zoltan@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Ficsor Lajos (Miskolci Egyetem) prezentációja alapján Objektumorientált
Részletesebben4. Fogyasztói preferenciák elmélete
4. Fogyasztói preferenciák elmélete (ld. Temesi J.: A döntéselmélet alapjai, 47-63) 4.1 Preferencia relációk Mit jelent a fogyasztó választása? Legyen X egy olyan halmaz amelynek az elemei azok a lehetőségek
RészletesebbenÓbudai Egyetem Neumann János Informatikai Kar. Intelligens Mérnöki Rendszerek Intézet
Óbudai Egyetem Neumann János Informatikai Kar Intelligens Mérnöki Rendszerek Intézet 1034 Budapest, Bécsi út 96/B Tel., Fax:1/666-5544,1/666-5545 http://nik.uni-obuda.hu/imri Az 2004-ben alakult IMRI (BMF)
RészletesebbenMesterséges Intelligencia MI
Mesterséges Intelligencia MI Problémamegoldás kereséssel általános problémák Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade
RészletesebbenAlapszintű formalizmusok
Alapszintű formalizmusok dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Mit szeretnénk elérni? Informális tervek Informális követelmények Formális modell Formalizált követelmények
RészletesebbenAlgoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 13.
Algoritmuselmélet NP-teljes problémák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 13. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet
RészletesebbenTrigonometria Megoldások. 1) Oldja meg a következő egyenletet a valós számok halmazán! (12 pont) Megoldás:
Trigonometria Megoldások ) Oldja meg a következő egyenletet a valós számok halmazán! cos + cos = sin ( pont) sin cos + = + = ( ) cos cos cos (+ pont) cos + cos = 0 A másodfokú egyenlet megoldóképletével
RészletesebbenGépi tanulás és Mintafelismerés
Gépi tanulás és Mintafelismerés jegyzet Csató Lehel Matematika-Informatika Tanszék BabesBolyai Tudományegyetem, Kolozsvár 2007 Aug. 20 2 1. fejezet Bevezet A mesterséges intelligencia azon módszereit,
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. estis képzés 2017. ősz 1. Diszkrét matematika 1. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
Részletesebben2011. szeptember 14. Dr. Vincze Szilvia;
2011. szeptember 14. Dr. Vincze Szilvia; vincze@fin.unideb.hu https://portal.agr.unideb.hu/oktatok/drvinczeszilvia Első pillantásra hihetetlennek tűnik, hogy egy olyan tiszta és érzelmektől mentes tudomány,
RészletesebbenOOP. Alapelvek Elek Tibor
OOP Alapelvek Elek Tibor OOP szemlélet Az OOP szemlélete szerint: a valóságot objektumok halmazaként tekintjük. Ezen objektumok egymással kapcsolatban vannak és együttműködnek. Program készítés: Absztrakciós
RészletesebbenIntelligens beágyazott rendszer üvegházak irányításában
P5-T6: Algoritmustervezési környezet kidolgozása intelligens autonóm rendszerekhez Intelligens beágyazott rendszer üvegházak irányításában Eredics Péter, Dobrowiecki P. Tadeusz, BME-MIT 1 Üvegházak Az
RészletesebbenTemporális adatbázisok. Kunok Balázs szakdolgozata alapján
Temporális adatbázisok Kunok Balázs szakdolgozata alapján Miért? Döntéshozatalok körülményeinek meghatározása. Nem csak az a lényeges, hogy hogyan változott az adat, hanem az is, hogy miért. Adatok helyreállíthatók
RészletesebbenDiszkrét matematika 1. középszint
Diszkrét matematika 1. középszint 2017. sz 1. Diszkrét matematika 1. középszint 3. el adás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
RészletesebbenSémi összehasonlító nyelvészet
Sémi összehasonlító nyelvészet BMA-HEBD-303 Biró Tamás 5. A nyelvtörténeti rekonstrukció alapjai. Jelentéstan. 2016. március 30. Összehasonlító rekonstrukció: alapok A történeti rekonstrukció klasszikus
RészletesebbenFEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha
RészletesebbenBizonytalan tudás kezelése
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Bizonytalan tudás kezelése Előadó: Előadás anyaga: Hullám Gábor Pataki Béla Dobrowiecki Tadeusz Valószínűségi
RészletesebbenUML (Unified Modelling Language)
UML (Unified Modelling Language) UML (+ Object Constraint Language) Az objektum- modellezés egy szabványa (OMG) UML A 80-as, 90-es években egyre inkább terjedő objektum-orientált analízis és tervezés (OOA&D)
RészletesebbenMatematika A1a Analízis
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika Aa Analízis BMETE90AX00 Az exp és ln függvények H607, EIC 209-04-24 Wettl
RészletesebbenAz informatika logikai alapjai
Az informatika logikai alapjai Várterész Magda DE, Informatikai Kar PTI BSc és informatikatanár hallgatók számára 2017. Példák Az alábbi világokban állításokat akarunk megfogalmazni: A táblára színes karikákat
Részletesebben15. LINEÁRIS EGYENLETRENDSZEREK
15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a
Részletesebbenismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül
A Borel Cantelli lemma és annak általánosítása. A valószínűségszámítás egyik fontos eredménye a Borel Cantelli lemma. Először informálisan ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az
RészletesebbenBonyolult jelenség, aminek nincs jó modellje, sok empirikus adat, intelligens (ember)ágens képessége, hogy ilyen problémákkal mégis megbirkozzék.
Vizsga, 2015. dec. 22. B cs. B1. Hogyan jellemezhetők a tanulást igénylő feladatok? (vendégelőadás) Bonyolult jelenség, aminek nincs jó modellje, sok empirikus adat, intelligens (ember)ágens képessége,
RészletesebbenMenet. A konfirmáció Hempel paradoxonai. Hempel véleménye a konformációs paradoxonokról
1 Kvalitatív konfirmáció Menet Konfirmációs kritériumok 2 A konfirmáció Hempel paradoxonai Hempel véleménye a konformációs paradoxonokról Hempel konfirmáció fogalma A konfirmáció problémája: 3 Mit jelent
RészletesebbenAz Országos kompetenciamérés (OKM) tartalmi kerete. a 20/2012. (VIII. 31.) EMMI rendelet 3. melléklete alapján
Az Országos kompetenciamérés (OKM) tartalmi kerete a 20/2012. (VIII. 31.) EMMI rendelet 3. melléklete alapján Az OKM tartalmi keret Célja: definiálja azokat a tényezőket és szempontrendszereket, amelyek
RészletesebbenTemporális logikák és modell ellenırzés
Temporális logikák és modell ellenırzés Temporális logikák Modális logika: kijelentések különböző módjainak tanulmányozására vezették be (eredetileg filozófusok). Ilyen módok: esetleg, mindig, szükségszerűen,
RészletesebbenAlgoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 12.
Algoritmuselmélet NP-teljes problémák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 12. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet
RészletesebbenObjektumorientált paradigma és programfejlesztés Bevezető
Objektumorientált paradigma és programfejlesztés Bevezető Vámossy Zoltán vamossy.zoltan@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Ficsor Lajos (Miskolci Egyetem) prezentációja alapján
RészletesebbenRelációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!
függvények RE 1 Relációk Függvények függvények RE 2 Definíció Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor
RészletesebbenMatematikai logika és halmazelmélet
Matematikai logika és halmazelmélet Wettl Ferenc előadása alapján 2015-09-07 Wettl Ferenc előadása alapján Matematikai logika és halmazelmélet 2015-09-07 1 / 21 Tartalom 1 Matematikai kijelentések szerkezete
RészletesebbenLogika es sz am ıt aselm elet I. r esz Logika 1/36
1/36 Logika és számításelmélet I. rész Logika 2/36 Elérhetőségek Tejfel Máté Déli épület, 2.606 matej@inf.elte.hu http://matej.web.elte.hu Tankönyv 3/36 Tartalom 4/36 Bevezető fogalmak Ítéletlogika Ítéletlogika
RészletesebbenDunaújvárosi Főiskola Informatikai Intézet. Intelligens ágensek. Dr. Seebauer Márta. főiskolai tanár
Dunaújvárosi Főiskola Informatikai Intézet Intelligens ágensek Dr. Seebauer Márta főiskolai tanár seebauer.marta@szgti.bmf.hu Ágens Ágens (agent) bármi lehet, amit úgy tekinthetünk, hogy érzékelők (sensors)
RészletesebbenRE 1. Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!
RE 1 Relációk Függvények RE 2 Definíció: Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor azt mondjuk, hogy
RészletesebbenDiszkrét matematika I.
Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 3. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Relációk Diszkrét matematika I. középszint 2014.
RészletesebbenSzámítási intelligencia
Botzheim János Számítási intelligencia Budapesti Műszaki és Gazdaságtudományi Egyetem, Mechatronika, Optika és Gépészeti Informatika Tanszék Graduate School of System Design, Tokyo Metropolitan University
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
RészletesebbenLogika és informatikai alkalmazásai kiskérdések február Mikor mondjuk, hogy az F formula a G-nek részformulája?
,,Alap kiskérdések Logika és informatikai alkalmazásai kiskérdések 2012. február 19. 1. Hogy hívjuk a 0 aritású függvényjeleket? 2. Definiálja a termek halmazát. 3. Definiálja a formulák halmazát. 4. Definiálja,
RészletesebbenMéréselmélet MI BSc 1
Mérés és s modellezés 2008.02.15. 1 Méréselmélet - bevezetés a mérnöki problémamegoldás menete 1. A probléma kitűzése 2. A hipotézis felállítása 3. Kísérlettervezés 4. Megfigyelések elvégzése 5. Adatok
RészletesebbenÉrtelek, értelek... de miről beszélsz??
Biró Tamás Amszterdami Egyetem, ACLC Értelek, értelek... de miről beszélsz?? A keresztény-zsidó párbeszéd a kognitív vallástudomány perspektívájából Áttekintés: kihívások, perspektívák, válaszok Kihívások
RészletesebbenLogikai programozás ADMINISZTRATÍV KÉRDÉSEK KÖVETELMÉNYRENDSZER FŐBB PONTOK NÉHÁNY BIZTATÓ SZÓ
Logikai programozás ADMINISZTRATÍV KÉRDÉSEK Bármilyen kérdéssel (akár tananyag, akár nem), örömmel, bánattal: achs.agnes@gmail.com (Ha két napon belül nem válaszolok, akkor kérek egy figyelmeztető levelet.
RészletesebbenCsima Judit október 24.
Adatbáziskezelés Funkcionális függőségek Csima Judit BME, VIK, Számítástudományi és Információelméleti Tanszék 2018. október 24. Csima Judit Adatbáziskezelés Funkcionális függőségek 1 / 1 Relációs sémák
RészletesebbenMesterséges Intelligencia MI
Mesterséges Intelligencia MI Valószínűségi hálók - következtetés Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade Következtetés
RészletesebbenFRAKTÁLGEOMETRIA. Metrikus terek, szeparábilitás, kompaktság. Czirbusz Sándor czirbusz@gmail.com. Komputeralgebra Tanszék ELTE Informatika Kar
Metrikus terek, szeparábilitás, kompaktság Czirbusz Sándor czirbusz@gmail.com Komputeralgebra Tanszék ELTE Informatika Kar 2010. március 7. Vázlat 1 Szeparábilitás Definíciók A szeparábilitás ekvivalens
RészletesebbenLogika es sz am ıt aselm elet I. r esz Logika Negyedik el oad as 1/26
1/26 Logika és számításelmélet I. rész Logika Negyedik előadás Tartalom 2/26 Az elsőrendű logika szemantikája Formulák és formulahalmazok szemantikus tulajdonságai Elsőrendű logikai nyelv interpretációja
Részletesebben1. gyakorlat ( ), Bevezető analízis 1., ősz (Besenyei Ádám csoportja)
1. gyakorlat (2016. 09. 12.), Bevezető analízis 1., 2016. ősz A színek jelentése: fekete az előzetes vázlat; piros, ami ehhez képest módosult. 1. Három matematikus bemegy egy kocsmába, és rendel. A nagy
RészletesebbenKOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I. 4 IV. FÜGGVÉNYEk 1. LEkÉPEZÉSEk, függvények Definíció Legyen és két halmaz. Egy függvény -ből -ba egy olyan szabály, amely minden elemhez pontosan egy elemet rendel hozzá. Az
Részletesebben