Nem felügyelt tanulás
|
|
- Ágoston Barna
- 6 évvel ezelőtt
- Látták:
Átírás
1 Pintér Balázs
2 Tartalom 1 Bevezetés 2 Klaszterezés Hard clustering k-means Soft clustering témamodellek 3 Dimenziócsökkentés Kovariancia, korreláció Főkomponens anaĺızis 4 Autoenkóderek
3 Bevezetés Tartalom 1 Bevezetés 2 Klaszterezés Hard clustering k-means Soft clustering témamodellek 3 Dimenziócsökkentés Kovariancia, korreláció Főkomponens anaĺızis 4 Autoenkóderek
4 Bevezetés Felügyelt tanulás osztályozás
5 Bevezetés Felügyelt tanulás regresszió
6 Bevezetés klaszterezés
7 Bevezetés Felügyelt tanulás: címkézett adatokból tanulunk valamilyen függvényt Más megközeĺıtések 1 2 Semi-supervised learning 3 Megerősítéses tanulás 4 Evolúciós algoritmusok 5 Neuroevolúció
8 Klaszterezés Tartalom 1 Bevezetés 2 Klaszterezés Hard clustering k-means Soft clustering témamodellek 3 Dimenziócsökkentés Kovariancia, korreláció Főkomponens anaĺızis 4 Autoenkóderek
9 Klaszterezés Példa eloszlás alapú klaszterezés
10 Klaszterezés Példa eloszlás alapú klaszterezés
11 Klaszterezés Feladat Úgy csoportosítunk dolgokat, hogy a hasonlóak egy csoportba kerüljenek Klaszteren belül minél hasonlóbbak Klaszterek között minél kevésbé hasonlóak A dolgok általában R n -beli (vagy gráfbeli) pontok, pl.: Ügyféladatok piacszegmentáláshoz Dokumentumok szózsákkal modellezve, témák meghatározásához,keresési találatok összegzésére Szavak kontextusai, jelentések indukálásához Szerverek adatai (melyikek aktívak általában együtt) Egy csoportot egy klaszternek hívunk
12 Klaszterezés Fajtái Lehet hard vagy soft clustering Hard clustering: egy adatpont csak egy klaszterben szerepelhet Soft clustering: minden adatpontra megvan, hogy mennyire tartozik az egyes klaszterekbe Átmenetek Átfedő klaszterezés: egy elem több klaszterbe is tartozhat, de vagy beletartozik, vagy nem Hierarchikus klaszterezés: a klasztereket hierarchiába szervezzük, a gyerek klaszterbe tartozó elemek a szülőbe is beletartoznak
13 Klaszterezés Hierarchikus klaszterezés
14 Klaszterezés Példa természetes klasztereződésre azonos értelmű szavak jelentései (t-sne)
15 Klaszterezés Hard clustering k-means Tartalom 1 Bevezetés 2 Klaszterezés Hard clustering k-means Soft clustering témamodellek 3 Dimenziócsökkentés Kovariancia, korreláció Főkomponens anaĺızis 4 Autoenkóderek
16 Klaszterezés Hard clustering k-means Példa
17 Klaszterezés Hard clustering k-means Feladat Adott: k, a klaszterek száma Minden klasztert a középpontjával reprezentálunk Centroid, a klaszter pontjainak átlaga A feladat: keressük meg a k klaszter középpontot és az adatpontokat rendeljük ezekhez hozzá úgy, hogy a klaszteren belüli, középponttól számított távolságnégyzeteket minimalizáljuk Ekvivalens a páronkénti távolságnégyzetek minimalizálásával NP-nehéz, így approximáljuk Csak lokális optimumot találunk Többször futtathatjuk különböző véletlen inicializációkkal k-means feladat arg min S k i=1 x µ i 2 = arg min S x S i k i=1 1 2 S i x,y S i x y 2
18 Klaszterezés Hard clustering k-means Algoritmus Kezdetben adott k és az adatpontok R n -ben Inicializáljuk az m (1) 1, m(1) 2,..., m(1) k centroidokat Véletlenszerűen kiválasztunk k adatpontot, vagy Minden adatpontot véletlenszerűen egy klaszterbe sorolunk és kiszámoljuk a centroidokat Váltogatjuk a következő két lépést, amíg nem konvergálunk 1 Minden adatpontot a legközelebbi centroidhoz rendelünk: S (t) i = { x p : xp m (t) 2 xp m (t) 2 j, 1 j k } 2 Kiszámítjuk az új centroidokat i m (t+1) i = 1 S (t) i j x j S (t) i x j
19 Klaszterezés Hard clustering k-means Algoritmus
20 Klaszterezés Hard clustering k-means Algoritmus
21 Klaszterezés Hard clustering k-means Algoritmus
22 Klaszterezés Hard clustering k-means Algoritmus
23 Klaszterezés Hard clustering k-means Algoritmus
24 Klaszterezés Hard clustering k-means Algoritmus
25 Klaszterezés Hard clustering k-means Algoritmus
26 Klaszterezés Hard clustering k-means Problémák túl kicsi k-t adunk meg
27 Klaszterezés Hard clustering k-means Problémák túl nagy k-t adunk meg
28 Klaszterezés Hard clustering k-means Problémák rossz inicializáció
29 Klaszterezés Hard clustering k-means Problémák sűrűség alapúak a klaszterek
30 Klaszterezés Hard clustering k-means Python példák Kép kvantálás: examples/cluster/plot_color_quantization.html Dokumentumok klaszterezése: document_clustering.html
31 Klaszterezés Soft clustering témamodellek Tartalom 1 Bevezetés 2 Klaszterezés Hard clustering k-means Soft clustering témamodellek 3 Dimenziócsökkentés Kovariancia, korreláció Főkomponens anaĺızis 4 Autoenkóderek
32 Klaszterezés Soft clustering témamodellek Témamodellek Soft clusteringre példa: témamodellek Egy dokumentum mennyire szól az egyes témákról Egy témába milyen szavak tartoznak? Pl. Latent Semantic Analysis (SVD) Topics Weights Document govern presid forc languag linguist group vowel voic conson aircraft air flight standard system implement
33 Klaszterezés Soft clustering témamodellek Latent Semantic Analysis words documents topics topics X U S V T words topics topics documents
34 Klaszterezés Soft clustering témamodellek Kiterjesztés csoportritka regularizációval file version data develop server protocol comput machin memori data bit code network server switch data databas page standard system implement model version car vehicl motor tank version machin compil word languag vowel languag noun vowel vowel voic conson word noun end languag linguist group aircraft air flight transport rout vehicl flight machine model number prime integ henri king parliament goddess god greek jesu sin faith henri john william minist rome william roman rome emperor son rome father empir imperi order order princ daughter order roman bishop israel jerusalem christian order pope christian famili includ member england edward english bishop princ peter est year popul linguist million mathemat polit militari elect govern presid forc countri relat govern econom trade bank countri intern develop island central san
35 Klaszterezés Soft clustering témamodellek Példa: kakukktojás játék Egybetartozó szavak Kakukktojás cao wei liu emperor king superman clark luthor kryptonite batman devil demon hell soul body egypt egyptian alexandria pharaoh bishop singh guru sikh saini delhi language dialect linguistic spoken sound mass force motion velocity orbit voice speech hearing sound view athens athenian pericles corinth ancient data file format compression image function problems polynomial equation physical
36 Dimenziócsökkentés Tartalom 1 Bevezetés 2 Klaszterezés Hard clustering k-means Soft clustering témamodellek 3 Dimenziócsökkentés Kovariancia, korreláció Főkomponens anaĺızis 4 Autoenkóderek
37 Dimenziócsökkentés Miért dimenziócsökkentünk? Az adatok valójában alacsonyabb dimenziósak, csak magasabb dimenziós térben vannak Láttatjuk az adatokat Eltüntetjük a zajt Csökkentjük a tanulási feladat bonyolultságát (jobb eredmények, kisebb futási idő,... ) A csökkentett dimenziójú adatokon új törvenyszerűségeket, sejtéseket láthatunk meg A probléma megoldásához kisebb dimenziós és/vagy sűrű reprezentációra van szükségünk
38 Dimenziócsökkentés Példa: Swiss roll
39 Dimenziócsökkentés Példa: A betű forgatása
40 Dimenziócsökkentés Kovariancia, korreláció Tartalom 1 Bevezetés 2 Klaszterezés Hard clustering k-means Soft clustering témamodellek 3 Dimenziócsökkentés Kovariancia, korreláció Főkomponens anaĺızis 4 Autoenkóderek
41 Dimenziócsökkentés Kovariancia, korreláció Kovariancia, korreláció
42 Dimenziócsökkentés Kovariancia, korreláció Kovariancia, korreláció
43 Dimenziócsökkentés Kovariancia, korreláció Kovariancia, (Pearson) korreláció Azt mérik, hogy X, Y val. változók mennyire mozognak együtt Lineáris kapcsolatot mutatnak Cov(X, Y ) = E [ (X E[X ])(Y E[Y ]) ] Pl.: Pozitív: Ha X > E(X ), akkor Y > E(Y ), ha X < E(X ), akkor Y < E(Y ) Cov(X, Y ) = E [ XY ] E[X ] E[Y ] Korreláció: Normalizált kovariancia, -1 és 1 között ρ X,Y = corr(x, Y ) = r xy = cov(x,y ) σ X σ Y = E[(X µ X )(Y µ Y )] σ X σ Y n (x i x)(y i ȳ) i=1 n (x i x) 2 n (y i ȳ) 2 i=1 i=1
44 Dimenziócsökkentés Kovariancia, korreláció Mind a négy adathalmaz korrelációs együtthatója 0.816
45 Dimenziócsökkentés Kovariancia, korreláció Kovariancia mátrix X egy vektor, aminek az elemei val. változók A kovariancia mátrix elemei X i, X j közti kovarianciák Σ ij = cov(x i, X j ) = E [ (X i µ i )(X j µ j ) ] µ i = E(X i ) E[(X 1 µ 1 )(X 1 µ 1 )] E[(X 1 µ 1 )(X 2 µ 2 )] E[(X 1 µ 1 )(X n µ n)] E[(X 2 µ 2 )(X 1 µ 1 )] E[(X 2 µ 2 )(X 2 µ 2 )] E[(X 2 µ 2 )(X n µ n)] E[(X n µ n)(x 1 µ 1 )] E[(X n µ n)(x 2 µ 2 )] E[(X n µ n)(x n µ n)] A főátlóban a szórások vannak. Ekvivalens: Σ = E(X X) µ µ
46 Dimenziócsökkentés Főkomponens anaĺızis Tartalom 1 Bevezetés 2 Klaszterezés Hard clustering k-means Soft clustering témamodellek 3 Dimenziócsökkentés Kovariancia, korreláció Főkomponens anaĺızis 4 Autoenkóderek
47 Dimenziócsökkentés Főkomponens anaĺızis Példa - 2d normáleloszlás
48 Dimenziócsökkentés Főkomponens anaĺızis Főkomponens anaĺızis Principal component analysis (PCA) Demo: Az adathalmazt egy új koordinátarendszerben ábrázoljuk, a tengelyek merőlegesek Az adathalmaz vetítései közül a legnagyobb szórású az első tengelyen (főkomponensen) van A második legnagyobb szórású a második főkomponensen,... Új változók/adatok: a főkomponensekre vetítjük le az eredeti változókat. Ezek már korrelálatlanok Dimenziócsökkentés: eldobjuk azokat a tengelyeket (és koordinátákat), amiken kicsi a szórás
49 Dimenziócsökkentés Főkomponens anaĺızis Főkomponens anaĺızis X R n p : adathalmaz, egy sor egy adatpont t (i) = (t 1,..., t l ) (i) : az adatpontok az új koordinátarendszerbe transzformálva w (k) = (w 1,..., w p ) (k) -val t k (i) = x (i) w (k) for i = 1,..., n k = 1,..., l Szórás maximalizálása { } w (1) = arg max (t 1 ) 2 (i) w =1 i = arg max w =1 { ( x(i) w ) } 2 i
50 Dimenziócsökkentés Főkomponens anaĺızis Főkomponens anaĺızis Ugyanez mátrixosan: w (1) = arg max { Xw 2 } = arg max w =1 w =1 Mivel w egységvektor: { w T X T } Xw w (1) = arg max w T w { } w T X T Xw Ez a Rayleigh-hányados, a legnagyobb lehetséges érték az X T X legnagyobb sajátértéke lesz, ahol w a hozzá tartozó sajátvektor A többi komponensre is így van a főkomponensek az X T X sajátvektorai
51 Dimenziócsökkentés Főkomponens anaĺızis Főkomponens anaĺızis algoritmus Az X mátrixban vannak az adataink Nulla átlagúra hozzuk az adatokat (kivonjuk az átlagot) Kiszámoljuk a Q = X T X kovariancia mátrixot Meghatározzuk ennek a mátrixnak a sajátértékeit, és a sajátvektorait A sajátvektorok a főkomponensek, a belőlük álló bázis az új koordinátarendszer A legnagyobb sajátértékhez tartozó főkomponens a legnagyobb szórású, és így tovább Dimenziócsökkentés: csak a k legnagyobb sajátértékű főkomponenst tartjuk meg
52 Dimenziócsökkentés Főkomponens anaĺızis PCA és SVD SVD X = UΣW T PCA SVD-vel X T X = WΣ T U T UΣW T = WΣ T ΣW T = W ˆΣ 2 W T W-ben már X T X sajátvektorai vannak. A szinguláris értékek a sajátértékek négyzetgyökei.
53 Dimenziócsökkentés Főkomponens anaĺızis A PCA is lineáris
54 Dimenziócsökkentés Főkomponens anaĺızis Python példák A feature scaling fontossága: preprocessing/plot_scaling_importance.html
55 Autoenkóderek Tartalom 1 Bevezetés 2 Klaszterezés Hard clustering k-means Soft clustering témamodellek 3 Dimenziócsökkentés Kovariancia, korreláció Főkomponens anaĺızis 4 Autoenkóderek
56 Autoenkóderek Autoenkóderek
57 Autoenkóderek Autóenkóderek Egyszerű autóenkóder L(x, x ) = x x 2 = x σ (W (σ(wx + b)) + b ) 2 Ez az egyszerű autoenkóder a PCA alterébe projektál Flexibilis, sokféle variáció létezik Denoising autoencoder: zajos inputból kell zajtalan outputot előálĺıtani Sparse autoencoder: csak néhány egység lehet aktív a rejtett reprezentációban VAE: Egy valószínűségi modellt feltételez, a poszterior eloszlást approximálja Sokszor fontosak egy felügyelt mély háló előtanításában
58 Autoenkóderek Köszönöm a figyelmet! Köszönöm a figyelmet!
Principal Component Analysis
Principal Component Analysis Principal Component Analysis Principal Component Analysis Definíció Ortogonális transzformáció, amely az adatokat egy új koordinátarendszerbe transzformálja úgy, hogy a koordináták
Sajátértékek és sajátvektorok. mf1n1a06- mf1n2a06 Csabai István
Sajátértékek és sajátvektorok A fizika numerikus módszerei I. mf1n1a06- mf1n2a06 Csabai István Lineáris transzformáció Vektorok lineáris transzformációja: általános esetben az x vektor iránya és nagysága
Többváltozós lineáris regresszió 3.
Többváltozós lineáris regresszió 3. Orlovits Zsanett 2018. október 10. Alapok Kérdés: hogyan szerepeltethetünk egy minőségi (nominális) tulajdonságot (pl. férfi/nő, egészséges/beteg, szezonális hatások,
Strukturált Generátorrendszerek Online Tanulása és Alk-ai
Strukturált Generátorrendszerek Online Tanulása és Alkalmazásai Problémamegoldó Szeminárium 2010. nov. 5 Tartalomjegyzék Motiváció, példák Regressziós feladatok (generátorrendszer fix) Legkisebb négyzetes
IBM SPSS Modeler 18.2 Újdonságok
IBM SPSS Modeler 18.2 Újdonságok 1 2 Új, modern megjelenés Vizualizáció fejlesztése Újabb algoritmusok (Python, Spark alapú) View Data, t-sne, e-plot GMM, HDBSCAN, KDE, Isotonic-Regression 3 Új, modern
A többváltozós lineáris regresszió III. Főkomponens-analízis
A többváltozós lineáris regresszió III. 6-7. előadás Nominális változók a lineáris modellben 2017. október 10-17. 6-7. előadás A többváltozós lineáris regresszió III., Alapok Többváltozós lineáris regresszió
Szinguláris érték felbontás Singular Value Decomposition
Szinguláris érték felbontás Singular Value Decomposition Borbély Gábor 7. április... Tétel (teljes SVD. Legyen A C m n mátrix (valósra is jó, ekkor léteznek U C m m és V C n n unitér mátrixok (valósban
Adatbányászati szemelvények MapReduce környezetben
Adatbányászati szemelvények MapReduce környezetben Salánki Ágnes salanki@mit.bme.hu 2014.11.10. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Felügyelt
Kvadratikus alakok gyakorlás.
Kvadratikus alakok gakorlás Kúpszeletek: Adott eg kvadratikus alak a következő formában: ax 2 + 2bx + c 2 + k 1 x + k 2 + d = 0, a, b, c, k 1, k 2, d R (1) Ezt felírhatjuk a x T A x + K x + d = 0 alakban,
5. elıadás március 22. Portfólió-optimalizálás
5. elıadás 203. március 22. Portfólió-optimalizálás Alapfeladat Cél: minél nagyobb várható hozam elérése De: közben a kockázat legyen minél kisebb Kompromisszum: elvárt hozamot érje el a várható érték
Saj at ert ek-probl em ak febru ar 22.
Sajátérték-problémák 2016. február 22. Az alapfeladat Adott a következő egyenlet: Av = λv, (1) ahol A egy ismert mátrix v ismeretlen vektor λ ismeretlen szám Azok a v, λ kombinációk, amikre az egyenlet
Szinguláris értékek. Wettl Ferenc április 3. Wettl Ferenc Szinguláris értékek április 3. 1 / 28
Szinguláris értékek Wettl Ferenc 2015. április 3. Wettl Ferenc Szinguláris értékek 2015. április 3. 1 / 28 Tartalom 1 Szinguláris érték 2 Alkalmazások 3 Norma 4 Mátrixnorma Wettl Ferenc Szinguláris értékek
Babeş Bolyai Tudományegyetem, Kolozsvár Matematika és Informatika Kar Magyar Matematika és Informatika Intézet
/ Babeş Bolyai Tudományegyetem, Kolozsvár Matematika és Informatika Kar Magyar Matematika és Informatika Intézet / Tartalom 3/ kernelek segítségével Felügyelt és félig-felügyelt tanulás felügyelt: D =
Kódverifikáció gépi tanulással
Kódverifikáció gépi tanulással Szoftver verifikáció és validáció kiselőadás Hidasi Balázs 2013. 12. 12. Áttekintés Gépi tanuló módszerek áttekintése Kódverifikáció Motiváció Néhány megközelítés Fault Invariant
7. Régió alapú szegmentálás
Digitális képek szegmentálása 7. Régió alapú szegmentálás Kató Zoltán http://www.cab.u-szeged.hu/~kato/segmentation/ Szegmentálási kritériumok Particionáljuk a képet az alábbi kritériumokat kielégítő régiókba
Diverzifikáció Markowitz-modell MAD modell CAPM modell 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 11. Előadás Portfólió probléma Portfólió probléma Portfólió probléma Adott részvények (kötvények,tevékenységek,
Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek
Az november 23-i szeminárium témája Rövid összefoglaló Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek felfrissítése? Tekintsünk ξ 1,..., ξ k valószínűségi változókat,
MISKOLCI EGYETEM GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR
MISKOLCI EGYETEM GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Korszerű információs technológiák Klaszteranalízis Tompa Tamás tanársegéd Általános Informatikai Intézeti Tanszék Miskolc, 2018. október 20. Tartalom
Közösség detektálás gráfokban
Közösség detektálás gráfokban Önszervező rendszerek Hegedűs István Célkitűzés: valamilyen objektumok halmaza felett minták, csoportok detektálása csakis az egyedek közötti kapcsolatok struktúrájának a
Gépi tanulás a gyakorlatban. Bevezetés
Gépi tanulás a gyakorlatban Bevezetés Motiváció Nagyon gyakran találkozunk gépi tanuló alkalmazásokkal Spam detekció Karakter felismerés Fotó címkézés Szociális háló elemzés Piaci szegmentáció analízis
Blind Source Separation. Kiváltott agyi jelek informatikai feldolgozása
Blind Source Separation Kiváltott agyi jelek informatikai feldolgozása 1 Bevezetés Az EEG jelek elemzése során egyik fő nehézség a különböző források szuperponálásából kapott többcsatornás jelből az egyes
ANOVA,MANOVA. Márkus László március 30. Márkus László ANOVA,MANOVA március / 26
ANOVA,MANOVA Márkus László 2013. március 30. Márkus László ANOVA,MANOVA 2013. március 30. 1 / 26 ANOVA / MANOVA One-Way ANOVA (Egyszeres ) Analysis of Variance (ANOVA) = szóráselemzés A szórásokat elemezzük,
Nagy-György Judit. Szegedi Tudományegyetem, Bolyai Intézet
Többváltozós statisztika Szegedi Tudományegyetem, Bolyai Intézet Többváltozós módszerek Ezek a módszerek több változó együttes vizsgálatára vonatkoznak. Alapvető típusaik: többdimenziós eloszlásokra vonatkozó
Gépi tanulás a gyakorlatban. Lineáris regresszió
Gépi tanulás a gyakorlatban Lineáris regresszió Lineáris Regresszió Legyen adott egy tanuló adatbázis: Rendelkezésünkre áll egy olyan előfeldolgozott adathalmaz, aminek sorai az egyes ingatlanokat írják
Vektorterek. =a gyakorlatokon megoldásra ajánlott
Vektorterek =a gyakorlatokon megoldásra ajánlott 40. Alteret alkotnak-e a valós R 5 vektortérben a megadott részhalmazok? Ha igen, akkor hány dimenziósak? (a) L = { (x 1, x 2, x 3, x 4, x 5 ) x 1 = x 5,
Hátralevı órák. Néhány fontos probléma. Többdimenziós adatbázisok. k dimenziós térbeli indexek
1 2 Hátralevı órák 1. A negyedik paradigma 2. Amdahl-törvénye és az Amdahl-szám 3. x64 alapú nagyteljesítményű hardverek 4. Adattároló rendszerek 5. Hálózatok 6. Relációs adatbázis-kezelők 7. Adatok tárolása
Lineáris regressziós modellek 1
Lineáris regressziós modellek 1 Ispány Márton és Jeszenszky Péter 2016. szeptember 19. 1 Az ábrák C.M. Bishop: Pattern Recognition and Machine Learning c. könyvéből származnak. Tartalom Bevezető példák
Matematikai statisztika I. témakör: Valószínűségszámítási ismétlés
Matematikai statisztika I. témakör: Valószínűségszámítási ismétlés Elek Péter 1. Valószínűségi változók és eloszlások 1.1. Egyváltozós eset Ismétlés: valószínűség fogalma Valószínűségekre vonatkozó axiómák
Szinguláris értékek. Wettl Ferenc április 12. Wettl Ferenc Szinguláris értékek április / 35
Szinguláris értékek Wettl Ferenc 2016. április 12. Wettl Ferenc Szinguláris értékek 2016. április 12. 1 / 35 Tartalom 1 Szinguláris érték 2 Norma 3 Mátrixnorma 4 Alkalmazások Wettl Ferenc Szinguláris értékek
Matematika (mesterképzés)
Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,
Matematikai statisztika Gazdaságinformatikus MSc október 8. lineáris regresszió. Adatredukció: Faktor- és főkomponensanaĺızis.
i Matematikai statisztika Gazdaságinformatikus MSc 6. előadás 2018. október 8. 1/52 - Hol tartottunk? Modell. Y i = β 0 + β 1 X 1,i + β 2 X 2,i +... + β k X k,i + u i i minden t = 1,..., n esetén. X i
(Independence, dependence, random variables)
Két valószínűségi változó együttes vizsgálata Feltételes eloszlások Két diszkrét változó együttes eloszlása a lehetséges értékpárok és a hozzájuk tartozó valószínűségek (táblázat) Példa: Egy urna 3 fehér,
Villamosmérnök A4 11. hét Kétdimenziós normális eloszlás, cht - Megoldások
Villamosmérnök A 11. hét Kétdimenziós normális eloszlás, cht - Megoldások Kétdimenziós normális összefoglalás Egy kétdimenziós X, Y valószínűségi változó kovariancia mátrixa: VarX CovX, Y CovX, Y VarY
azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a = c (j) i,l l,i
A Cochran Fisher tételről A matematikai statisztika egyik fontos eredménye a Cochran Fisher tétel, amely a variancia analízisben játszik fontos szerepet. Ugyanakkor ez a tétel lényegét tekintve valójában
Korreláció és lineáris regresszió
Korreláció és lineáris regresszió Két folytonos változó közötti összefüggés vizsgálata Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi Fizika és Statisztika I. előadás 2016.11.02.
Bevezetés a Korreláció &
Bevezetés a Korreláció & Regressziószámításba Petrovics Petra Doktorandusz Statisztikai kapcsolatok Asszociáció 2 minőségi/területi ismérv között Vegyes kapcsolat minőségi/területi és egy mennyiségi ismérv
Gépi tanulás a gyakorlatban. Kiértékelés és Klaszterezés
Gépi tanulás a gyakorlatban Kiértékelés és Klaszterezés Hogyan alkalmazzuk sikeresen a gépi tanuló módszereket? Hogyan válasszuk az algoritmusokat? Hogyan hangoljuk a paramétereiket? Precízebben: Tegyük
Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria Bódis Emőke 2016. 04. 25. J J 9 Korrelációanalízis Regresszióanalízis: hogyan változik egy vizsgált változó értéke egy másik változó változásának függvényében. Korrelációs
Társadalmi és gazdasági hálózatok modellezése
Társadalmi és gazdasági hálózatok modellezése 5. el adás Közösségszerkezet El adó: London András 2017. október 16. Közösségek hálózatban Homofília, asszortatívitás Newman modularitás Közösségek hálózatban
Eloszlások jellemzése. Momentumok. Medián és kvantilis. Karakterisztikus függvény
Karakterisztikus függvény Eloszlások jellemzése Momentumok Karakterisztikus függvény Medián és kvantilis Medián Kvantilis Módusz Hogyan lehetne általánosítani a generátorfüggvényt folytonos okra? Karakterisztikus
Saj at ert ek-probl em ak febru ar 26.
Sajátérték-problémák 2018. február 26. Az alapfeladat Adott a következő egyenlet: Av = λv, (1) ahol A egy ismert mátrix v ismeretlen, nem zérus vektor λ ismeretlen szám Azok a v, λ kombinációk, amikre
Szalai Péter. April 17, Szalai Péter April 17, / 36
Szociális hálók Szalai Péter April 17, 2015 Szalai Péter April 17, 2015 1 / 36 Miről lesz szó? 1 Megfigyelések Kis világ Power-law Klaszterezhetőség 2 Modellek Célok Erdős-Rényi Watts-Strogatz Barabási
A maximum likelihood becslésről
A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának
A főkomponens-elemzés alkalmazása a kémiában
r. Pósa Mihály, Szebenyi Anna ** és r. Gaál Ferenc A főkomponens-elemzés alkalmazása a kémiában 1. Bevezetés A főkomponens-elemzés (Principial Component Analysis, PCA) a molekulaszerkezet - hatás - kvantitatív
VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag. Mátrix rangja
VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag 2019. március 21. Mátrix rangja 1. Számítsuk ki az alábbi mátrixok rangját! (d) 1 1 2 2 4 5 1 1 1 1 1 1 1 1 2 1 2 1 1 0 1 1 2 1 0 1 1 1 1 2 3 1 3
Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31.
Regresszió Csorba János Nagyméretű adathalmazok kezelése 2010. március 31. A feladat X magyarázó attribútumok halmaza Y magyarázandó attribútumok) Kérdés: f : X -> Y a kapcsolat pár tanítópontban ismert
Klaszterezés, 2. rész
Klaszterezés, 2. rész Csima Judit BME, VIK, Számítástudományi és Információelméleti Tanszék 208. április 6. Csima Judit Klaszterezés, 2. rész / 29 Hierarchikus klaszterezés egymásba ágyazott klasztereket
Osztályozás, regresszió. Nagyméretű adathalmazok kezelése Tatai Márton
Osztályozás, regresszió Nagyméretű adathalmazok kezelése Tatai Márton Osztályozási algoritmusok Osztályozás Diszkrét értékkészletű, ismeretlen attribútumok értékének meghatározása ismert attribútumok értéke
Inferencia valószínűségi modellekben
Statisztikai tanulás az idegrendszerben, 2016. Inferencia valószínűségi modellekben Bányai Mihály banyai.mihaly@wigner.mta.hu http://golab.wigner.mta.hu/people/mihaly-banyai/ Inferencia valószínűségi modellekben
1. Lineáris transzformáció
Lineáris transzformáció Lineáris transzformáció mátrixának felírása eg adott bázisban: Emlékeztető: Legen B = {u,, u n } eg tetszőleges bázisa az R n -nek, Eg tetszőleges v R n vektor egértelműen felírható
Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió
SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás
Klaszterezés. Kovács Máté március 22. BME. Kovács Máté (BME) Klaszterezés március / 37
Klaszterezés Kovács Máté BME 2012. március 22. Kovács Máté (BME) Klaszterezés 2012. március 22. 1 / 37 Mi a klaszterezés? Intuitív meghatározás Adott dolgokból halmazokat klasztereket alakítunk ki úgy,
6. Előadás. Vereb György, DE OEC BSI, október 12.
6. Előadás Visszatekintés: a normális eloszlás Becslés, mintavételezés Reprezentatív minta A statisztika, mint változó Paraméter és Statisztika Torzítatlan becslés A mintaközép eloszlása - centrális határeloszlás
Regressziós vizsgálatok
Regressziós vizsgálatok Regresszió (regression) Általános jelentése: visszaesés, hanyatlás, visszafelé mozgás, visszavezetés. Orvosi területen: visszafejlődés, involúció. A betegség tünetei, vagy maga
Mérnökgeodéziai hálózatok feldolgozása
Mérnökgeodéziai hálózatok feldolgozása dr. Siki Zoltán siki@agt.bme.hu XIV. Földmérő Találkozó Gyergyószentmiklós 2013.05.09-12. Mérnökgeodéziai hálózatok nagy relatív pontosságú hálózatok (1/100 000,
Matematikai geodéziai számítások 6.
Matematikai geodéziai számítások 6. Lineáris regresszió számítás elektronikus távmérőkre Dr. Bácsatyai, László Matematikai geodéziai számítások 6.: Lineáris regresszió számítás elektronikus távmérőkre
Alkalmazott algebra - SVD
Alkalmazott algebra - SVD Ivanyos Gábor 20 sz Poz. szemidenit mátrixok spektrálfelbontásának általánosítása nem feltétlenül négyzetes mátrixokra LSI - mögöttes szemantikájú indexelés "Közelít " webkeresés
Keresés képi jellemzők alapján. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék
Keresés képi jellemzők alapján Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Lusta gépi tanulási algoritmusok Osztályozás: k=1: piros k=5: kék k-legközelebbi szomszéd (k=1,3,5,7)
Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport
Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12,
Korrel aci os egy utthat ok febru ar 29.
Korrelációs együtthatók 2012. február 29. Május 2-án elmarad az óra. Helyette április 10-én, kedden 5 órakor vendégelőadás lesz: Maschine learning with R: decision trees, clustering. Applications: language
A szimplex algoritmus
A szimplex algoritmus Ismétlés: reprezentációs tétel, az optimális megoldás és az extrém pontok kapcsolata Alapfogalmak: bázisok, bázismegoldások, megengedett bázismegoldások, degenerált bázismegoldás
Blind Source Separation. Kiváltott agyi jelek informatikai feldolgozása
Blind Source Separation Kiváltott agyi jelek informatikai feldolgozása 1 Bevezetés Az EEG jelek elemzése során egyik fő nehézség a különböző források szuperponálásából kapott többcsatornás jelből az egyes
Vektorok, mátrixok, lineáris egyenletrendszerek
a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.
Elméleti összefoglaló a Valószín ségszámítás kurzushoz
Elméleti összefoglaló a Valószín ségszámítás kurzushoz Véletlen kísérletek, események valószín sége Deníció. Egy véletlen kísérlet lehetséges eredményeit kimeneteleknek nevezzük. A kísérlet kimeneteleinek
2013 ŐSZ. 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét!
GAZDASÁGSTATISZTIKA KIDOLGOZOTT ELMÉLETI KÉRDÉSEK A 3. ZH-HOZ 2013 ŐSZ Elméleti kérdések összegzése 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét! 2. Mutassa be az
c adatpontok és az ismeretlen pont közötti kovariancia vektora
1. MELLÉKLET: Alkalmazott jelölések A mintaterület kiterjedése, területe c adatpontok és az ismeretlen pont közötti kovariancia vektora C(0) reziduális komponens varianciája C R (h) C R Cov{} d( u, X )
Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet
Klaszteranalízis Hasonló dolgok csoportosítását jelenti, gyakorlatilag az osztályozás szinonimájaként értelmezhetjük. A klaszteranalízis célja A klaszteranalízis alapvető célja, hogy a megfigyelési egységeket
KÖZELÍTŐ INFERENCIA II.
STATISZTIKAI TANULÁS AZ IDEGRENDSZERBEN KÖZELÍTŐ INFERENCIA II. MONTE CARLO MÓDSZEREK ISMÉTLÉS Egy valószínűségi modellben a következtetéseinket a látensek vagy a paraméterek fölötti poszterior írja le.
Szepesvári Csaba. 2005 ápr. 11
Gépi tanulás III. Szepesvári Csaba MTA SZTAKI 2005 ápr. 11 Szepesvári Csaba (SZTAKI) Gépi tanulás III. 2005 ápr. 11 1 / 37 1 Döntési fák 2 Felügyelet nélküli tanulás Klaszter-anaĺızis EM algoritmus Gauss
Standardizálás, transzformációk
Standardizálás, transzformációk A transzformációk ugynúgy mennek, mint egyváltozós esetben. Itt még fontosabbak a linearitás miatt. Standardizálás átskálázás. Centrálás: kivonjuk minden változó átlagát,
További sajátértékek. 10. előadás, május 3. Megjegyzések. A szűrés hatása a portfólió optimalizálásra
További sajátértékek 10. előadás, 2017. május 3. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Keressük azt az alacsonyabb
LINEÁRIS MODELLBEN május. 1. Lineáris modell, legkisebb négyzetek elve
BECSLÉS ÉS HIPOTÉZISVIZSGÁLAT LINEÁRIS MODELLBEN Móri Tamás ELTE TTK Valószínűségelméleti és Statisztika Tanszék 2008 május Lineáris modell, legkisebb négyzetek elve Tegyük fel, hogy egy bizonyos pl fizikai)
1. Bázistranszformáció
1. Bázistranszformáció Transzformáció mátrixa új bázisban A bázistranszformáció képlete (Freud, 5.8.1. Tétel) Legyenek b és d bázisok V -ben, ] v V és A Hom(V). Jelölje S = [[d 1 ] b,...,[d n ] b T n n
Matematikai statisztika Gazdaságinformatikus MSc október 8. lineáris regresszió. Adatredukció: Faktor- és főkomponensanaĺızis.
i Matematikai statisztika Gazdaságinformatikus MSc 6. előadás 2018. október 8. 1/52 - Hol tartottunk? Modell. Y i = β 0 + β 1 X 1,i + β 2 X 2,i +... + β k X k,i + u i i minden t = 1,..., n esetén. 2/52
Elemi statisztika. >> =weiszd= << december 20. Szerintem nincs sok szükségünk erre... [visszajelzés esetén azt is belerakom] x x = n
Elemi statisztika >> =weiszd=
Csoport-struktúrált generátorrendszerek online tanulása
Csoport-struktúrált generátorrendszerek online tanulása ELTE, Informatikai Kar TÁMOP Kutatószeminárium 2011. jan. 28 Tartalomjegyzék Motiváció Regressziós feladatok (generátorrendszer fix) Legkisebb négyzetes
Főkomponens és Faktor analízis
Főkomponens és Faktor analízis Márkus László 2014. december 4. Márkus László Főkomponens és Faktor analízis 2014. december 4. 1 / 34 Bevezetés - Főkomponens és Faktoranalízis A főkomponens és faktor analízis
1. feladatsor Komplex számok
. feladatsor Komplex számok.. Feladat. Kanonikus alakban számolva határozzuk meg az alábbi műveletek eredményét. (a) i 0 ; i 8 ; (b) + 4i; 3 i (c) ( + 5i)( 6i); (d) i 3+i ; (e) 3i ; (f) ( +3i)(8+i) ( 4
Számítógépes képelemzés 7. előadás. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék
Számítógépes képelemzés 7. előadás Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Momentumok Momentum-alapú jellemzők Tömegközéppont Irányultáság 1 2 tan 2 1 2,0 1,1 0, 2 Befoglaló
x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:
Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Valószínűségi változó általános fogalma: A : R leképezést valószínűségi változónak nevezzük, ha : ( ) x, x R, x rögzített esetén esemény.
I. feladatsor. 9x x x 2 6x x 9x. 12x 9x2 3. 9x 2 + x. x(x + 3) 50 (d) f(x) = 8x + 4 x(x 2 25)
I. feladatsor () Határozza meg az alábbi függvények határozatlan integrálját: (a) f(x) = (b) f(x) = x + 4 9x + (c) f(x) = (d) f(x) = 6x + 5 5x + f(x) = (f) f(x) = x + x + 5 x 6x + (g) f(x) = (h) f(x) =
Matematikai geodéziai számítások 5.
Matematikai geodéziai számítások 5 Hibaterjedési feladatok Dr Bácsatyai László Matematikai geodéziai számítások 5: Hibaterjedési feladatok Dr Bácsatyai László Lektor: Dr Benedek Judit Ez a modul a TÁMOP
Adatelemzési eljárások az idegrendszer kutatásban Somogyvári Zoltán
Adatelemzési eljárások az idegrendszer kutatásban Somogyvári Zoltán MTA KFKI Részecske és Magfizikai Intézet, Biofizikai osztály Az egy adatsorra (idősorra) is alkalmazható módszerek Példa: Az epileptikus
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,
Intelligens adatelemzés
Antal Péter, Antos András, Horváth Gábor, Hullám Gábor, Kocsis Imre, Marx Péter, Millinghoffer András, Pataricza András, Salánki Ágnes Intelligens adatelemzés Szerkesztette: Antal Péter A jegyzetben az
Adaptív dinamikus szegmentálás idősorok indexeléséhez
Adaptív dinamikus szegmentálás idősorok indexeléséhez IPM-08irAREAE kurzus cikkfeldolgozás Balassi Márton 1 Englert Péter 1 Tömösy Péter 1 1 Eötvös Loránd Tudományegyetem Informatikai Kar 2013. november
KÖZELÍTŐ INFERENCIA II.
STATISZTIKAI TANULÁS AZ IDEGRENDSZERBEN KÖZELÍTŐ INFERENCIA II. MONTE CARLO MÓDSZEREK ISMÉTLÉS Egy valószínűségi modellben a következtetéseinket a látensek vagy a paraméterek fölötti poszterior írja le.
0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles
Matematika szigorlat, Mérnök informatikus szak I. 2013. jan. 10. Név: Neptun kód: Idő: 180 perc Elm.: 1. f. 2. f. 3. f. 4. f. 5. f. Fel. össz.: Össz.: Oszt.: Az elérhető pontszám 40 (elmélet) + 60 (feladatok)
A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2018/
Operációkutatás I. 2018/2019-2. Szegedi Tudományegyetem Informatika Intézet Számítógépes Optimalizálás Tanszék 2. Előadás LP alapfeladat A lineáris programozás (LP) alapfeladata standard formában Max c
Adatbányászat. Klaszterezés Szociális hálózatok. Szegei Tudományegyetem. Lehetetlenségi tétel Hierarchikus eljárások Particionáló módszerek
Adatányászat Klaszterezés Szociális hálózatok Szegei Tudományegyetem Adatányászat Mit várhatunk egy klaszterezőtől? Az ojektumok olyan csoportjainak megtalálása, hogy az egy csoportan levő ojektumok hasonlóak
Searching in an Unsorted Database
Searching in an Unsorted Database "Man - a being in search of meaning." Plato History of data base searching v1 2018.04.20. 2 History of data base searching v2 2018.04.20. 3 History of data base searching
Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz
Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb
Standardizálás, transzformációk
Standardizálás, transzformációk A transzformációk ugynúgy mennek, mint egyváltozós esetben. Itt még fontosabbak a linearitás miatt. Standardizálás átskálázás. Centrálás: kivonjuk minden változó átlagát,
Least Squares becslés
Least Squares becslés A négyzetes hibafüggvény: i d i ( ) φx i A négyzetes hibafüggvény mellett a minimumot biztosító megoldás W=( d LS becslés A gradiens számítása és nullává tétele eredményeképp A megoldás
A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2017/
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatika Intézet Számítógépes Optimalizálás Tanszék 2. Előadás LP alapfeladat A lineáris programozás (LP) alapfeladata standard formában Max c
1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak
1. Generátorrendszer Generátorrendszer. Tétel (Freud, 4.3.4. Tétel) Legyen V vektortér a T test fölött és v 1,v 2,...,v m V. Ekkor a λ 1 v 1 + λ 2 v 2 +... + λ m v m alakú vektorok, ahol λ 1,λ 2,...,λ
Matematikai geodéziai számítások 6.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr. Bácsatyai László Matematikai geodéziai számítások 6. MGS6 modul Lineáris regresszió számítás elektronikus távmérőkre SZÉKESFEHÉRVÁR 2010 Jelen szellemi
Modellkiválasztás és struktúrák tanulása
Modellkiválasztás és struktúrák tanulása Szervezőelvek keresése Az unsupervised learning egyik fő célja Optimális reprezentációk Magyarázatok Predikciók Az emberi tanulás alapja Általános strukturális
PONTFELHŐ REGISZTRÁCIÓ
PONTFELHŐ REGISZTRÁCIÓ ITERATIVE CLOSEST POINT Cserteg Tamás, URLGNI, 2018.11.22. TARTALOM Röviden Alakzatrekonstrukció áttekintés ICP algoritmusok Projektfeladat Demó FORRÁSOK Cikkek Efficient Variants