Budapesti Műszaki és Gazdaságtudományi Egyetem Polimertechnika Tanszék T. ép. III. emelet
|
|
- Orsolya Hegedűsné
- 6 évvel ezelőtt
- Látták:
Átírás
1 Bdapeti Műaki é Gadaágtdományi Egyetem Polimetechnika Tanék T. ép. III. emelet Sála eőítőekeetek é teveéük BMEGEPT69, 3++v, 5 kp V. SODOTT LINEÁIS EŐSÍTŐ SZEKEZETEK Va Láló Mihály Felhanált foáok Iodalom. Cho T.-W. and Ko F.K. edited by: Textile Stctal Compoite. CompoiteMateial Seie 3. Elevie, New Yok, Va L.M.: Textiltemékek teveée. Sekeeti é makotlajdonágok. BME PT Tanék, Bp.. 3. Stoyan D. nd Mecke J. Stochatiche Geometie eine Einfühng. Akademie-Velag, Belin, Zek W.: The Stcte of Yan. Waaw Poland, Spingfield USA, eale J.W.S, Thwaite J.J., and Amibayat J. edito edito: Mechanic of Flexible Fibe Aemblie. SijthoffNoodhoff, NATO ASI Seie Alphen a.d. ijn Ned., Gemantown USA, 98. Ajánlott iodalom 6. Va L.M.: Idealiált tatitik álkötegcellák é alkalmaák ála ekeetek, kompoitok modelleéée. MTA Doktoi dietáció. Bp Bolotin V.V.: Statitikai módeek a ekeetek mechanikájában. Műaki Könyvkiadó Bp Álló G., Főglein J., egedű Gy.C.,., Sabó J.: Beveeté a ámítógépe képfeldolgoába. Kéiat. BME MTKI. Bp Necka B. and Ibahim S.: Stctal Theoy of Fibo Aemblie and Yan. TU of Libeec, 3.. Vetie A.: Semlélete méték- é valóínűégelmélet. Tankönyvkiadó Bp Gibon.F.: Pinciple of Compoite Mateial Mechanic. McGaw-ill, New Yok, 99.. Wlfhot B.: Textile Fetigngvefahen. Eine Einfühng. Cal ane Velag, München, 998.
2 3 Sodott lineái textíliák. Sodott lineái textíliák. Sodott álköteg, álfolyam jellemői Sodott álköteg, álfolyam jellemői A odá a font fonalak előállítáának alapművelete, amelyet nem cak a fonalak előállítáánál, hanem a többágú, eetleg öetett cénák, inóok kötelek gyátáánál, a cénaágak, pámák öeodááho i alkalmanak. Sodatvekto: v n d d l d l S l Sodat - fajlago é abolút odatám: k ω k k v e e v n d d ot t t y x k e T, in, co + Sodott lineái textíliák. Sodott lineái textíliák. elix modell elix modell Göbület é toió: t,n,b kíéő tiéde Sodat é odatpaaméte g: y x + + d d tg g k e T, in, co + κ in, + + t n τ co in, + + b n engee ít cavavonal: -emelkedéű cavavonal : ívho q q α T ρ tg tg Sodattényeő α T qlineái űűég:
3 Sodott lineái textíliák. Sodott álköteg, álfolyam jellemői Tégöbe alakú hengee ít cavavonal: o + e e n o coψ + b o inψ t o,n o,b o a köépgöbe kíéő tiédee Tégöbe alakú odott ekeet odata: e e, t o to e e, to to dψ + τo t o ψ + τ t o d ψ - keetmetet elfodlá a köépvonal köül τ - a köépvonal toiója Sodat keletkeée/cökkenée íkból kiemelénél/íkba fekteténél: A B o o o+ τ τ τ τ / B B A A 5 Sodott lineái textíliák. A odat tömöítő hatáa Fajlago tömöítő eő dn F d ρ Ele öefüggé göbületből: ρ in Fajlago tömöítő eő gá é odat dn d F οο > * dn F d + F F * * 6 3
4 Sodott lineái textíliák. Sodott álköteg, álfolyam jellemői A étegek köötti nyomá eloláa dp T ξ d δ + pnyomá δálátméő ξkeetmeteti kitöltéi tényeő F x F T T T y p a. Ki odat: tg << c T p δ b. Nagy odat: tg> ξ T ξ p + + δ p/p Nomált nyomáelolá mm; 5/m,,,8,6,, - -,5 -,,5 x/ Ki odat Nagy odat 7 Sodott lineái textíliák. Font fonalak minimáli áláma, tejedelmeége a a étegek áma m, akko a álköteget alkotó álak áma n: n + 3mm+ Fonal lineái űűége : dmegy fonalegmen tömege; n-gaú hengeben a álak áma; q o álak lineái űűége + 3/ nq Φ dm q qo + dn nqo nqo o d 3 Fonal keetmeteti áláma: q 6 q n qo q o + 3/ Φ m m m n n 7 n 9 νg n q/qo ν 3 g νg /3 g 8
5 Sodott lineái textíliák. Sodott álköteg, álfolyam jellemői Sodott, való álfolyam ekeete é fogáfelülete modellje: Sodatfelftá alakhiba é odat kölcönhatáa d M 6M C dl I G p d G d C α d 9 Sodott lineái textíliák. Sodott álköteg iládága é a hibaméet hatáa 5 tex pamtfonal átlago akítóeő étékei a Ute Claimat hibaotályok könyeetében a é a átló otályok mentén b : 5
6 Sodott lineái textíliák. Fonalak ekeeti modellje é a ekeet, illetve a téfogat váltoáa húá vagy odá hatááa o + úá eetén: ξ o α o ξo + α o + b k + + ξ o kedeti átlago téfogatkitöltéi tényeő ξ o téfogatállandóág α o a egymáa fekvő álak köötti póok kedeti, a abad téfogaton belüli éaánya b> é k állandók Va L.M. Sodott lineái textíliák. Céna, kodcéna, kötél ekeete Egyee a é többöö b immetik cénák ekeete : a. b. Egyee a é többöö b aimmetik ekeetű céna a. b. 6
7 Sodott lineái textíliák. Céna, kodcéna, kötél ekeete Egye peciáli kötelek, odonyok ekeete, keetmetete : Kötél lin. űűége q C D 3 Sodott lineái textíliák. Kétágú kodcéna ekeete engee cénaág keetmeteti alakja: emlegöbe 7
8 3. SODOTT SZÁLAS SZEKEZET ÚZÓSZILÁDSÁGA Sakadá valóínűége tatitik igénybevétel é iládág eetén q q FI x q F x F I x x+dx F S x F p P F FI < x FI < x + dx P x FI < x + dx QF x dqfi x F FI p P F FI < Φ σ F + σ FI Nomáli eloláok eetén 5 3. SODOTT SZÁLAS SZEKEZET ÚZÓSZILÁDSÁGA Adott igénybevételhe kedveőbb iládágeloláú lineái temék megválatáa q q FI x q F x F < F σ < σ q F x F I F S F S x F F F F FI Y σ σ σ σ I + σ σ σ + I σ A. temék kedveőbb, ha: p <p p i a i. temék akadái valóínűége Va L.M. 6 8
9 3. SODOTT SZÁLAS SZEKEZET ÚZÓSZILÁDSÁGA Sodat hatáa a iládága Sodat akítóeő öefüggé é öetevői font fonalak eetében a, valamint a befogái ho L o vége é a álho l o vionyának hatáa a göbék alakjáa b a. F, oο F S,l o b. F, oο F S,l o l o οο l o "> l o ' F Smax F S, l o * * - kitik odatám 7 3. SODOTT SZÁLAS SZEKEZET ÚZÓSZILÁDSÁGA Sodat hatáa a iládága F S F Smax L K V K Különböő felhanálái célú fonalak odattatományai K-kötő-, V-vetülék-, L-lánc- é K-túlodott vagy keppfonal, α - odattényeő α α 8 9
10 Sodott lineái textíliák. övid, odott álfolyam kötegmodellje 9 3. SODOTT SZÁLAS SZEKEZET ÚZÓSZILÁDSÁGA elix fonalekeet modelleée ET-kötegekkel A maadó feültég hatáa a nyúláeloláa Feltételek: cavavonal alakú álak hengeétegeket alkotnak álak fedeége a gá é a odat függvénye: T w TG ; T o ε,w; εo,eo + εo o α To + w T + pw PM-p odái maadófeültég tényeője α kontakció kitevő o
11 3. SODOTT SZÁLAS SZEKEZET ÚZÓSZILÁDSÁGA Sálnyúlá elvi a é modelleett b eloláa a álköteg keetmetetében kedeti nyúláelolá átalaklá húáko 3. SODOTT SZÁLAS SZEKEZET ÚZÓSZILÁDSÁGA Váható húóeő é nyomatékfolyamat Váható húóeő: Ff,o,T E[ FL,,o,T ] daf Af A maadó feültég hatáa Váható nyomaték: M f, o, T E FT Af F L Fcoα nyújtáiányú áleő [,,, T ] o daf F T Finα nyújtáa meőlege áleő M F T da f ξd hengeéteg álakkal kitöltött keetmetete ξ álkitöltéi tényeő itt állandó o, a odott tet külő gaa húá előtt é köben
12 3. SODOTT SZÁLAS SZEKEZET ÚZÓSZILÁDSÁGA Sakítógöbe típok különböő kontakció vielkedéek eetén, növekvő odatétékek mellett TTG,, VE,5%; PM Kiodott 3 3. SODOTT SZÁLAS SZEKEZET ÚZÓSZILÁDSÁGA A odat é a maadó feültég hatáa a kötegakítóeőe
Diszkrét Matematika. zöld könyv ): XIII. fejezet: 1583, 1587, 1588, 1590, Matematikai feladatgyűjtemény II. (
FELADATOK A LEKÉPEZÉSEK, PERMUTÁCIÓK TÉMAKÖRHÖZ Diszkrét Matematika 4. LEKÉPEZÉSEK Értelmezési tartomány és értékkészlet meghatározása : Összefoglaló feladatgyűjtemény matematikából ( zöld könyv ): XIII.
u u IR n n = 2 3 t 0 <t T
IR n n =2 3 u() u u u u IR n n = 2 3 ξ A 0 A 0 0 0 < T F IR n F A 0 A 0 A 0 A 0 F :IR n IR n A = F A 0 A 0 A 0 0 0 A F A 0 A F (, y) =0 a = T>0 b A 0 T 1 2 A IR n A A A F A 0 A 0 ξ A 0 = F (ξ) ε>0 δ ε
I. Az élő anyag legfontosabb szerkezeti tulajdonságai és szerepük a biológiai funkciókban
I. z éő yg egotos szekezet tujoság és szeepük oóg ukók h j I. ε ε k e k I.5 h h λ I. p υ ε υ k ozgás I. M [ Z p Z ] M, Z pv k I.5 I.9 II. Sugázások és kösöhtásuk z éő ygg P M II. e P ~, ~ II. továk II.5
α v e φ e r Név: Pontszám: Számítási Módszerek a Fizikában ZH 1
Név: Pontsám: Sámítási Módseek a Fiikában ZH 1 1. Feladat 2 pont A éjsakai pillangók a Hold fénye alapján tájékoódnak: úgy epülnek, ogy a Holdat állandó sög alatt lássák! A lepkétől a Hold felé mutató
Anyagátviteli műveletek példatár
Anyagátviteli műveletek példatár Erdélyi Péter, Mihalkó Józef, Rajkó Róbert (zerk.) 017/8/14 1. Állandóult állapotban oxigén (A) diffundál nyugvó zén-dioxidon (B) kereztül. Az öznyomá p ö 760 torr (1 atm).
Dr.ing. NAGY-GYÖRGY Tamás
Dr.ing. NAGY-GYÖRGY Tamás profesor E-mail: tamas.nagy-gyorgy@upt.ro Tel: +40 256 403 935 Web: http://www.ct.upt.ro/users/tamasnagygyorgy/index.htm Birou: A219 Dr.ing. Nagy-György T. Facultatea de Construcții.
Máté: Orvosi képalkotás
Máté: Ovoi képalkotá..4. zóódá Kohee: a foto eg atommal tötéő ütközé tá változatla eegiával, de má iába halad tovább. Fotoelektomo: a foto eg eőe kötött elektot kilök a pálájáól. Az elekto kietik eegiája
Tartalomjegyzék. dr. Lublóy László főiskolai docens. Nyomott oszlop vasalásának tervezése
dr. Lulóy Lázló főikolai docen yomott ozlop vaaláának tervezée oldalzám: 7. 1. Tartalomjegyzék 1. Központoan nyomott ozlop... 1.1. Vaalá tervezée egyzerűített zámítáal... 1..Vaalá tervezée két irányan....
TARTÓSZERKEZETEK II.-III.
TRTÓSZERKEZETEK II.-III. VSBETOSZERKEZETEK 29.3.7. VSBETO KERESZTMETSZET YOMÁSI TEHERBÍRÁSÁK SZÁMÍTÁS kereztmetzet teherbíráa megelelı ha nyomott km. eetén: Rd hol a normálerı tervezéi értéke (mértékadó
9. ábra. A 25B-7 feladathoz
. gyakolat.1. Feladat: (HN 5B-7) Egy d vastagságú lemezben egyenletes ρ téfogatmenti töltés van. A lemez a ±y és ±z iányokban gyakolatilag végtelen (9. ába); az x tengely zéuspontját úgy választottuk meg,
Elektromos polarizáció: Szokás bevezetni a tömegközéppont analógiájára a töltésközéppontot. Ennek definíciója: Qr. i i
0. Elektoos polaizáció, polaizáció vekto, elektoos indukció vekto. Elektoos fluxus. z elektoos ező foástövénye. Töltéseloszlások. Hatáfeltételek az elektosztatikában. Elektoos polaizáció: Szokás bevezetni
Képletgyűjtemény a Gazdaságstatisztika tárgy A matematikai statisztika alapjai című részhez
Buaet űzak é Gazaágtuomá Egetem Gazaág- é Táaalomtuomá Ka Üzlet Tuomáok Itézet eezmet é Vállalatgazaágta Tazék Tóth Zuzaa Ezte Jóá Tamá Kéletgűtemé a Gazaágtatztka tág A matematka tatztka alaa című ézhez
Laplace transzformáció
Laplace tranzformáció 27. márciu 19. 1. Bevezeté Definíció: Legyen f :, R. Az F ) = f t) e t dt függvényt az f függvény Laplace-tranzformáltjának nevezzük, ha a fenti impropriu integrál valamilyen R zámokra
Á Á Á Á Á ö ő ü Ü ö ő ú ű ő ü ü ő ű ö ű ő ö ö ő ö ő ő ő ő ő ő ő ő ő ű ő ő ű ö ö ö ő ő Ü ő ő ű ö ő ő Ü ű ö ö ö ö ö ö ö ü ö ö ú ü ő ü ű ö ö ü ű ő ö ő ö ő ű ő ö ő ü ö ű ő ö ö Ü ö ö ő ő ö ő ű ő ő ü ö ő ő ú
É ö í ö í í ű ö ö ú í í ú í ó Ó ö ú í ö ú í ű ö ü ó ü ó í ó ó ű ü í ű ö ó ó í ö Ü Ó í ó ű ó í ó ö ü ó í í ö ö í ó ö ú í ó ó í ó Ü ó í ü ű ö ü ó ó ö ö ö ö í ö ú Ó í í í ü ó ö ü í ó í Á Ó í ó ó ó ú Á ö í
ű ü ű ű ű ű ö Á ö ö ú ú ö ö ö ü ö ö ö ű ö ú ú ű ö ö ü ö ö ú ö ü ü ö ü ö ű ö ö ü ö ö ü ö ü ü ü ö ö ö ö ű ö ű ü ö ö ü ű ö ü ö ű ü ű ö ö ú ű ö ú ö ö ü ű ű ö ű ü ö ű ö ö ö ú ö ü ö ö ö ö ú ü ü ö ö ü ö ö ö ö
É á á á ö á á á á á á á á á ű á á á á á á á ű á á á ö á á á á á á á á á á á á á á á ű á ű á á á ö á á ú á á á á á ö ű á ű á á ü á á á É É ú É ü É ü Ú Á É ú Ú Á É Ü É Ú É Ú ű á ű á á ü Í Ú ü Á á É É ű á
ó Ü ő É ó ó ő Ó Ó í ő ó ő Ö É ó ő ú Ü í ó Ú ő Ó Ó í ó ő ó É ó É ó ö ö ű Ö ő Ó ő ó ó Éó Ó É Ó Ó Ő ó É ó ó Ó É Ó ó ö í Ó ö í ű Ó í í ö Ü ű ó í ó ö ű Ó Ö Ö ó Ö Ó í ö ü ű ú ü ú ő ó í ó ó Ú ú í í í ó Ö ü ő
Hőátviteli műveletek példatár. Szerkesztette: Erdélyi Péter és Rajkó Róbert
Hőátviteli műveletek példatár Szerkeztette: Erdélyi Péter é Rajkó Róbert . Milyen vatag legyen egy berendezé poliuretán zigetelée, ha a megengedhető legnagyobb hővezteég ϕ 8 m? A berendezé két oldalán
(KOJHA 125) Kisfeladatok
GAZDASÁGTUDOMÁNYI EGYETEM Közlekedésménöki Ka Jámű- és hajtáselemek I. (KOJHA 25) Kisfeladatok Jáműelemek és Hajtások Ssz.:...... Név:......................................... Neptun kód.:......... ADATVÁLASZTÉK
Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ
Megoldások Harmadik fejezet gyakorlatai 3.. gyakorlat megoldása ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4;, 3 normális eloszlású P (ξ 8 ξ 5 feltételes valószínűségét (.3. alapján számoljuk.
3D-s számíógépes geomeia és alakzaekonskció 3. Felülemeszések páhzamosan elol és lekeekíő felüleek hp://cg.ii.bme.h/poal/noe/3 hps://www.ik.bme.h/kepzes/agak/viiiav8 D. Váa Tamás D. ali Pée BME Villamosménöki
TARTÓSZERKEZETEK II. NGB_se004_02 Vasbetonszerkezetek
Széchenyi István Egyetem Szerkezetépítési és Geotechnikai Tanszék TARTÓSZERKEZETEK II. NGB_se004_0 Vasbetonszerkezetek Monolit vasbetonvázas épület födémlemezének tervezése című házi feladat részletes
Szakács Jenő Megyei Fizika Verseny, I. forduló, 2003/2004. Megoldások 1/9., t L = 9,86 s. = 104,46 m.
Szakác enő Megyei Fizika Vereny, I. forduló, 00/004. Megoldáok /9. 00, v O 4,9 k/h 4,9, t L 9,86.,6 a)?, b)?, t t L t O a) A futók t L 9,86 ideig futnak, így fennáll: + t L v O. Az adott előny: 4,9 t L
Használhatósági határállapotok. Alakváltozások ellenőrzése
1.GYAKORLAT Használhatósági határállapotok A használhatósági határállapotokhoz tartozó teherkombinációk: Karakterisztikus (repedésmentesség igazolása) Gyakori (feszített szerkezetek repedés korlátozása)
Makromolekulák fizikája
Makomoekuák fizikája Bevezetés Az egyedi ánc moekuaméet, áncmode a konfomációt befoyásoó tényezők eoszások Poime odatok köcsönhatások eegyedés fázisegyensúy Moekuatömeg meghatáozás fagyáspontcsökkenés
REZGÉSTAN GYAKORLAT Kidolgozta: Dr. Nagy Zoltán egyetemi adjunktus. 17. feladat: Kéttámaszú tartó (rúd) hajlító rezgései (kontinuum modell)
SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK REZGÉSTAN GYAKORLAT Kidogota: Dr. Nagy Zotán egyetemi adjunktu 7. feadat: Kéttámaú tartó (rúd) hajító regéei (kontinuum mode) y v( t ) K = 8m E ρai
Segédlet a Tengely gördülő-csapágyazása feladathoz
Segélet a Tengely göülő-csaágyazása felaathoz Összeállította: ihai Zoltán egyetemi ajunktus Tengely göülő-csaágyazása Aott az. ábán egy csaágyazott tengely kinematikai vázlata. A ajz szeint az A jelű csaágy
Modellek és Algoritmusok - 2.ZH Elmélet
Modellek és Algoritmusok - 2.ZH Elmélet Ha hibát elírást találsz kérlek jelezd: sellei_m@hotmail.com A fríss/javított változat elérhet : people.inf.elte.hu/semsaai/modalg/ 2.ZH Számonkérés: 3.EA-tól(DE-ek)
ó ű ó ü ó ó ü ó ü Í Ö Ő ű Á ó Á Á Á ó ü ó Ö Ö ÚÁ Ö Ó Ó Ó ó Á Ö Ö Á Ó Á Á ó Á Ö Ú Á Ú Ö Ö Á Ö ú Ú Ö ü ú ú ó ü ú ű ó ú ü ú ó ó ü ó ú ü ú Ű ó ü ó ú ó ű ó ú ú ú ó ó ú ú ü ó ü ó ú ó ó ü Ö ó ó ű ó ú ü Ö ű ó
É ű Ö ű ű Ö ű ű ű É ű ű ű ű ű ű ű ű ű É ű ű ű ű ű ű Ó ű ű É ű ű ű ű ű Ö ű ű ű Ó ű Á Á ű ű ű Á Ü Ű ű ű ű Ő Á Á Á ű Á Á É É Á Á Á ű ű ű Á É Á Á ű Á ű Á Á ű ű ű ű ű ű ű ű ű ű ű ű Á Á É ű Á ű É ű Ü ű É É É
Ó ő Ó ő ú ő ö ü Ó ő ö ő ü ő ö ő ü ö ö ő ö ü ú ö ő ü ú É ő ő ő ö ő ü ö Ó ő Á ő Á ú ü ő ú ú Ó ő Ó ő Á ő ő ő Ó ő Á ő ö ő ü ö ő ő ő ú ő Á ő ő ő Á ő ö ö ő ü ü ö ö ü ő É ő ő Á ő Á Ö ü ú ö Á ü ö ö ő ö ö ú ö ő
ü Ö ü í ü ü ü ü í Ö ö ü ú ü ü ö ü ü ű ö í í ö í űá ú ü ö ö ö í ü ü ü ü ü ű ö í í ö í ű ú ü ü í ü ü ű ö í í ö í űá ú ü íí ü Á í í í Á ű ú í ö ö í ü ö ö ö í ö í ú ö ü ü ű ö ö í ű ö í ű ü ű ö í ű ö í ö í
Hőátviteli műveletek példatár
Hőátviteli műveletek példatár Szerkeztette: Erdélyi Péter é Rajkó Róbert 05. zeptember 0. . Milyen vatag legyen egy berendezé poliuretán zigetelée, ha a megengedhető legnagyobb hővezteég φ 8 m? A berendezé
Felületi feszültség: cseppfolyós-gáz határfelületen a vonzerő kiegyensúlyozatlan: rugalmas hártyaként viselkedik.
Felületi feszültség: cseppfolyós-gáz határfelületen a vonzerő kiegyensúlyozatlan: rugalmas hártyaként viselkedik. Mérése: L huzalkeret folyadékhártya mozgatható huzal F F = L σ két oldala van a hártyának
Typotex Kiadó. Jelölések
Jelölések a = dolgozók fogyasztása (12. fejezet és A. függelék) a i = egyéni tőkeállomány i éves korban A = társadalmi (aggregált) tőkeállomány b j = egyéni nyugdíj j éves korban b k = k-adik nyugdíjosztály
= 450 kg. b) A hó 4500 N erővel nyomja a tetőt. c) A víz tömege m víz = m = 450 kg, V víz = 450 dm 3 = 0,45 m 3. = 0,009 m = 9 mm = 1 14
. kategória... Adatok: h = 5 cm = 0,5 m, A = 50 m, ρ = 60 kg m 3 a) kg A hó tömege m = ρ V = ρ A h m = 0,5 m 50 m 60 3 = 450 kg. b) A hó 4500 N erővel nyomja a tetőt. c) A víz tömege m víz = m = 450 kg,
LEGYEN MÁS A SZENVEDÉLYED!
E g y ü t t m z k ö d é s i a j á n l a t L E G Y E N M Á S A S Z E N V E D É L Y E D! 2. E F O P - 1. 8. 9-1 7 P á l y á z a t i t e r v e z e t 3. 0 ( F o r r á s : w w w. p a l y a z a t. g o v. h u
V. fejezet: Vasbeton keresztmetszet ellenõrzése nyírásra
: Vasbeton keresztmetszet ellenõrzése nyírásra 5.. Koncentrált erõvel tehelt konzol ellenõrzése nyírásra φ0/00 Q=0 kn φ0 φ0 Anyagok : Beton: C5/30 Betonacél: B60.0 Betonfedés:0 mm Kedv.elm.: 0 mm Kengy.táv:
csak csak4 csak3 csak1 sak csak2 NYERŐÁR
mn W FM K F v n d m n d K v d 3 p d 3p 0 d 0 0 0 ó vn g 0 p mb B x M hnő po pő 3 0 3 30 CLgnd 0 Mpo á E gán po á v p g őn gbó M 8 m 08 Nop nú ó K ú ó ú á mn nop n m o C pá bnph ó ü önbö ő m bn 8 0 P dá
GÉPÉSZETI ALAPISMERETEK
Gépézeti alapimeretek középzint 2 ÉRETTSÉGI VIZSGA 204. máju 20. GÉPÉSZETI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fonto tudnivalók
Biológiai molekulák számítógépes szimulációja Balog Erika
Bológa molekulák számíógépes szmulácóa Balog Eka Semmelwes Egyeem, Bofzka és Sugábológa Inéze SZEKVENCIA ALA THR SER THR LYS LYS LEU HSD LYS GLU PRO ALA ILE LEU LYS ALA ILE ASP ASP THR TYR VAL LYS PRO
Fizika és 6. Előadás
Fzka 5. és 6. Előadás Gejesztett, csllapított oszclláto: dőméés F s λv k F F s m F( t) Fo cos( ωt) v F (t) Mozgásegyenlet: F f o o m ma kx λ v + Fo cos( ωt) Megoldás: x( t) Acos ( ) ( ) β ωt ϕ + ae t sn
ANALÍZIS III. ELMÉLETI KÉRDÉSEK
ANALÍZIS III. ELMÉLETI KÉRDÉSEK Szerkesztette: Balogh Tamás 2014. május 15. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így
TARTÓSZERKEZETEK II. NGB_se004_02 Vasbetonszerkezetek
Széchenyi István Egyetem Szerkezetépítési és Geotechnikai Tanszék TARTÓSZERKEZETEK II. NGB_se004_0 Vasbetonszerkezetek Monolit vasbetonvázas épület födémlemezének tervezése című házi feladat részletes
FIZIKA I Villamosságtan
FZKA Viamosságtan D. ványi Miósné egyetemi taná 8. óa Készüt az ERFO-DD-Hu-- szeződésszámú pojet támogatásáva, 4. PTE PMMK Műszai nfomatia Tanszé EA-V/ . Foytonossági fetétee-ét mágneses anyag hatáfeüetén
Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához
Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához Izsák Ferenc 2007. szeptember 17. Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához 1 Vázlat Bevezetés: a vizsgált egyenlet,
0,00 0,01 0,02 0,03 0,04 0,05 0,06 Q
1. Az ábrában látható kapcsolási vázlat szerinti berendezés két üzemállapotban működhet. A maximális vízszint esetében a T jelű tolózár nyitott helyzetben van, míg a minimális vízszint esetén az automatikus
Analı zis elo ada sok
Vajda Istva n Neumann Ja nos Informatika Kar O budai Egyetem 1 / 13 Specia lis differencia la si szaba lyok Logaritmikus differencia la s f (x)g (x) g (x) = e ln f (x) = e g (x) ln f (x) = f (x) g (x)
BME Gépészmérnöki Kar 3. vizsga (112A) Név: 1 Műszaki Mechanikai Tanszék január 11. Neptun: 2 Szilárdságtan Aláírás: 3
BME Gépészmérnöki Kar 3. vizsga (2A) Név: Műszaki Mechanikai Tanszék 2. január. Neptun: 2 Szilárdságtan Aláírás: 3. feladat (2 pont) A vázolt befogott tartót a p intenzitású megoszló erőrendszer, az F
A SZOJKA III PILÓTA NÉLKÜLI REPÜLŐGÉP REPÜ LÉSSZABÁLYOZÓ RENDSZER ZAVARELHÁRÍTÁSÁNAK VIZSGÁLATA II.
HADTUDOMÁNY SZEGEDI PÉTER A SZOJKAIII PILÓTA NÉLKÜLI REPÜLŐGÉP REPÜ LÉSSZABÁLYOZÓ RENDSZER ZAVARELHÁRÍTÁSÁNAK VIZSGÁLATA II. A repüléabáloó renderekkel emben támatott alapvető követelmén, hog minimálja
Fogaskerekek III. Általános fogazat
Fogskeekek III. Áltlános fogt Elei, kopenált fogtok esetén: vlint: ostóköök gödülőköökkel egybeesnek áltlános fogt főbb jelleői: A tengelytáv: -ól -enő, A kpcsolósög α-ólα -e nő, A ostókö dés gödülőkö
v i = v i V. (1) m i m i (v i V) = i P = i m i V = m i v i i A V = P M
Mképpen függ egy pontrendszer mpulzusa a vonatkoztatás rendszertől? K-ban legyenek a részecskék sebessége v. K -ben mely K-hoz képest V sebességgel halad v = v V. (1) P = m v = m (v V) = m v m V = = P
DIFFERENCIÁL EGYENLETRENDSZEREK DR. BENYÓ ZOLTÁN
DIFFERENCIÁL EGYENLETRENDSZEREK DR. ENYÓ ZOLTÁN be Redzer folyaat t differeciáló ódzer: Feltételezük egy értéket é ebből képezzük az elő, áodik, az -edik deriváltat. Itegráló ódzer z -edik deriváltból
A ferde szabadforgácsolásról, ill. a csúszóforgácsolásról ismét
A ferde szabadforgácsolásról, ill. a csúszóforgácsolásról ismét A szabadforgácsolást [ 1 ] az alábbiak szerint definiálja, ill. jellemzi. Ha a forgácsolószerszám élének minden pontjában a forgácsolási
ő ó ü ö ő ö ö ő ö ó ű ö ő ó ó ü ő ü ö ű ö ő ó ó ő ö ö ó ő ö ö ő ű ö ő ű ö ö ő ő ő ö ö ú ó ö ö ö ő ő ó ő ü ó ó ű ö ö ü ő ü ö ő ü ő ó ű ö ö ö ó ö ö ö ü
ú ő ö ó ő ü ö ó ó ó ö Ö ú ó ó ó ö ő ö ő ö ő ö ú Ö ó ó ű ö ő ó ö ű ö ö ő ö ó ű ö ő ö ő ö ú ü ű ö ő ó ö ő ö ó ö Ó ű ö ő ö ó ü ú ú ö ö ü ü ö ü ú ő Ű ö ő ö ú ó ű ü ő ö ő ü ö ü ő ó ü ú ü ö ö ó Ó ó ó ő ü ö ö
s i (MPa) p K = 0 s jb p B s RB - 50
SAF. Adott a tfedée ietett öetett cő eő cövének i () diagramja. B = 70 mm ; = 40 mm ; p B = 50 ; p = 0 ; = 0, 49. p = 0 i () jb B r p B 0,49 B - 50. Sámíta ki értékét, vaamint a eő cő r küő ugarát! Váoja
STATISZTIKA. Philosophiae Naturalis Principia Mathematica (A természetfiloz. szetfilozófia fia matematikai alapelvei, 1687) Laplace ( )
STATISZTIKA 8. Előad adá Megbíhat tartomáyok (Kofidecia itervallumok) (Kofidecia itervallumok) Sir Iaac Newto, 1643-177 177 Philoohiae Naturali Priciia Mathematica (A terméetfilo etfiloófia fia matematikai
Ó ű ű Á ú ű ű ú ú ú ű ű É ú É Á Á ú ű Ü Á Ü Á ű Ö Ú É Ó É Á Á Á Ű Á úá Á Ö É Ö É Ü
ú ú ú ú Ö ú ű ú Á ú ú ű ű ú ű ú ú Ó ű ű Á ú ű ű ú ú ú ű ű É ú É Á Á ú ű Ü Á Ü Á ű Ö Ú É Ó É Á Á Á Ű Á úá Á Ö É Ö É Ü Ó Á Á Á ú ú Ő Ö Ü ú Ü Á ú ú Á Ú ú ú ú É ú Ó Ö É Á ű ú É Ó ű ú ú ű ű ú ű ú ű ű ú ű ű
Excel segédlet Üzleti statisztika tantárgyhoz
Miskolci Egyetem Üzleti Statisztika és Előrejelzési Intézeti Tanszék Excel segédlet Üzleti statisztika tantárgyhoz. Z próba einek meghatározása óbafüggvény: x - m z = ; vagy σ/ n x - m z = ; vagy s/ n
THE LITERARY WORKS OF ŚRĪMANTA ŚAṄKARADEVA AND MAHĀPURUṢA MĀDHAVADEVA
THE LITERARY WORKS OF ŚRĪMANTA ŚAṄKARADEVA AND MAHĀPURUṢA MĀDHAVADEVA Uploaded by The Literature Branch of Śrīmanta Śaṅkaradeva Saṅgha [15 th June/2012] BARGĪT The Śaṅkarī Classical (BHAKTI) songs Composed
Energiatételek - Példák
9. Előadás Húzott rúd potenciális energiája: Hooke-modell: σ = Eε Geom. hetséges Geometriai egyenlet: + geom. peremfeltételek: u εx = ε = x u(0) = 0 ul () = 0 du dx Energiatételek Példák = k l 0 pudx l
Enzimkinetika. Enzimkinetika. Michaelis-Menten kinetika. Biomérnöki műveletek és folyamatok Környezetmérnöki MSc. 2. előadás: Enzimkinetika
Enziinetia Az enzie reació ebeégéne leíráa, jellező paraétere azonoítáa. Ha: E + E + P A ztöchioetriához indegyiet ól-ban vagy graban ellene ifejezni. De: az enzipreparátu ohae tizta. Ezért az enzie ennyiégét
ELEKTRONIKAI ALAPISMERETEK
Elektronikai alapismeretek középszint ÉETTSÉGI VIZSGA. május. ELEKTONIKAI ALAPISMEETEK KÖZÉPSZINTŰ ÍÁSBELI ÉETTSÉGI VIZSGA JAVÍTÁSI-ÉTÉKELÉSI ÚTMTATÓ NEMZETI EŐOÁS MINISZTÉIM Egyszerű, rövid feladatok
3D-s számítógépes geometria
3D-s számíógépes geomeia 8. Felülemeszések páhzamosan elol és lekeekíő felüleek hp://cg.ii.bme.h/poal/noe/3 hps://www.ik.bme.h/kepzes/agak/viiiav D. Váa Tamás BME Villamosménöki és Infomaikai Ka Iáníásechnika
Populáció nagyságának felmérése, becslése
http:/zeu.yf.hu/~zept/kuzuok.htm Populáció agyágáak felméée, beclée Becült paaméteek: - az adott populáció telje agyága (egyed, pá, tb) D- dezitá (űűég), egyégyi felülete/téfogata zámított egyedzám (egyed/m,
Enzimkinetika. Enzimkinetika
Enziminetia Az enzime reació ebeégéne leíráa, jellemző paramétere azonoítáa. Ha: E + E + P A ztöchiometriához mindegyiet mól-ban vagy grammban ellene ifejezni. De: az enzimpreparátum ohaem tizta. Ezért
7. VÉKONY FORGÁSHÉJAK MEMBRÁN ELMÉLETE
7 VÉONY FOGÁSHÉJA EÁN ELÉLETE 7 Alafogalmak, egenletek Héj: olan tet, amelnek egik mérete (a vatagága) lénegeen kie, mint a máik kettő, értelmehető a köéfelület é e nem ík öéfelület: a vatagági méret feleéi
ISKOLÁNK DOLGOZÓI AZ TANÉVBEN AZ OSZTÁLYOK TANULMÁNYI EREDMÉNYEI STATISZTIKAI ÖSSZESÍTÉS A KÉT TANÉVRŐL
SLÁ LGZÓ Z 66- ÉBE Z SZÁLY LÁY EREÉYE SSZ ÖSSZESÍÉS É ÉRŐL - 55 - l dlgó 6-,, évebe eüle é v : : Sóg,dő Blb eld Láló g g-ö óá óef gh -áb á óefé gh á-f ' l Gáb -f l Gábé -f 7 Í7 Áád Sád ö- 5 6 Áádé e g-ö
N.III. Vasbeton I. T1-t Gerendák I oldal
N.III. Vabeton I. T1-t Gerendák I. 01.0. 1. oldal 1.1. Négyzögkereztmetzet ellenőrzée hajlítára: normálian vaalt gerenda Feladat Ellenőrizze az ábrán adott vabeton gerendát hajlítára! Az állandó teher
,- (.,-- /0 & # )11.!"#$%&'! "#$%&' ()*+,-. /01. * : ; 4 DED1 5 $< :1 F GHIJK LMNOE => PQ/RS LMNO TUVW XYS + $< 9:+ LMNO Z9 [\ ]^_`
,- (.,-- /0 & # )11.!"#$%&'! "#$%&' ()*+,-. /01. * 2346789: ; 4 $?@AB3C DED1 $< :1 F GHIJK LMNOE => PQ/RS LMNO TUVW XYS + $< 9:+ LMNO Z9 [\ ]^_`ab $
A keynesi modell I. Elméleti közgazdaságtan II. A keynesi modell I. A pénzpiac és a makrokereslet. Makroökonómia. A keynesi pénzpiaci modell
Elmélet közgazdaságtan. Makroökonóma A keynes modell. A pénzpac és a makrokereslet A keynes modell. A keynes pénzpac modell a) A pénzkínálat azonos a neoklasszkus modellével b) A pénzkeresletnél a Fsher-egyenlet
Szakács Jenő Megyei Fizika Verseny, az I. forduló feladatainak megoldása 1
Szakác enő Megyei Fizika Vereny, az I. forduló feladatainak megoldáa. t perc, az A fiú ebeége, a B fiú ebeége, b 6 a buz ebeége. t? A rajz alapján: t + t + b t t t + t + 6 t t 7 t t t 7t 4 perc. Így A
Fluktuáló terű transzverz Ising-lánc dinamikája
2016. szeptember 8. Phys. Rev. B 93, 134305 Modell H(t) = 1 2 L 1 σi x σi+1 x h(t) 2 i=1 h(t)-fluktuáló mágneses tér. Hogyan terjednek jelek a zajos rendszerben? L σi z, i=1 Zajok típusai 1 fehér zaj 2
A térképen ábrázolt vonal: - sík felület egyenese? - sík felület görbéje? - görbült felület egyenese ( geodetikus )? - görbült felület görbéje?
Előzetes megjegyzés: 1. Az időt nyugodtan mérhetjük méterben. ct [s ] = t [m ] A film kétórás volt. = A film 2.16 milliárd kilométernyi ideig tartott. 2. A tömeget is nyugodtan mérhetjük méterben! GM [kg]
A térképen ábrázolt vonal: - sík felület egyenese? - sík felület görbéje? - görbült felület egyenese ( geodetikus )? - görbült felület görbéje?
Előzetes megjegyzés: 1. Az időt nyugodtan mérhetjük méterben. ct [s ] = t [m ] A film kétórás volt. = A film 2.16 milliárd kilométernyi ideig tartott. 2. A tömeget is nyugodtan mérhetjük méterben! GM [kg]
T obbv altoz os f uggv enyek integr alja. 3. r esz aprilis 19.
Többváltozós függvények integrálja. 3. rész. 2018. április 19. Kettős integrál Kettős integrál téglalap alakú tartományon. Ismétlés Ha = [a, b] [c, d] téglalap-tartomány, f : I integrálható függvény, akkor
Kalkulus II. Beugró kérdések és válaszok 2012/2013 as tanév II. félév
Klkulus II. Beugró kérdések és válszok 2012/2013 s tnév II. félév 1. Legyen ], b[ R nemüres, nyílt intervllum, f :], b[ R függvény. Hogyn vn értelmezve z f függvény primitív függvénye? Válsz. Legyen ],
Hangfrekvenciás mechanikai rezgések vizsgálata
Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk
Megjegyzés: jelenti. akkor létezik az. ekkor
. Hármas Integrál. Bevezetés és definíciók A bevezetés első részében egy feladaton keresztül jutunk el a hármasintegrál definíciójához. Feladat: Legyen R korlátos test, és a testnek legyen az f(x, y, z
Anyagmozgatás Gyakorlati segédlet. Gyakorlatvezetı: Dr. Németh Gábor Ph.D. egyetemi adjunktus. Sopron, 2009
Nyugat-Magyarországi Egyetem Faipari Mérnöki Kar Gépészeti Intézet Anyagmozgatás Gyakorati segédet Gyakoratvezetı: Dr. Németh Gábor Ph.D. egyetemi adjunktus Sopron, 009 Lánctranszportır Mőszaki adatok:
-40% [ csak7
ó JOBB JN O OM M N ő pd ő pp 8 ZmP ő ó pő á ó áá h 0 ű ő ő pó ú m h ő ó p á Zm b á 00 0 0 0 0 C P N Ó Y N Ő Z Z óá Ö N Z Z Y É á á b É p ó ó á ó áá h 0 0 á á d á m őü á ó b 0 D b dám m á á h ó pá 00 0
Mechanika című MSc tantárgy: TENGELYMÉRETEZÉS
ZÉHENY TVÁN EGYETE GÉPÉZÉRNÖ NORT É VLLOÉRNÖ R LLZOTT EHN TNZÉ ehanika ímű tantárg: TENGELYÉRETEZÉ felaat: őtengel méreteée feültégúra iolgoá: ott: eg körgűrű keretmetetű tartó (őtengel) veéle keretmetetének
1.1. Feladatok. x 0 pontban! b) f(x) = 2x + 5, x 0 = 2. d) f(x) = 1 3x+4 = 1. e) f(x) = x 1. f) x 2 4x + 4 sin(x 2), x 0 = 2. általános pontban!
. Egyváltozós függgvények deriválása.. Feladatok.. Feladat A definíció alapján határozzuk meg a következő függvények deriváltját az x pontban! a) f(x) = x +, x = 5 b) f(x) = x + 5, x = c) f(x) = x+, x
Szubkonvex becslések automorf L-függvényekre
Szubkonvex becslések automorf L-függvényekre és alkalmazásaik Harcos Gergely Rényi Alfréd Matematikai Kutatóintézet http://www.renyi.hu/ gharcos/ 2012. február 14. Magyar Tudományos Akadémia Áttekintés
"Flat" rendszerek. definíciók, példák, alkalmazások
"Flat" rendszerek definíciók, példák, alkalmazások Hangos Katalin, Szederkényi Gábor szeder@scl.sztaki.hu, hangos@scl.sztaki.hu 2006. október 18. flatness - p. 1/26 FLAT RENDSZEREK: Elméleti alapok 2006.
MECHANIKA / STATIKA ÉS SZILÁRDSÁGTAN / FELADATOK
/CSK ISKOLI HSZNÁLTR / ECHNIK / STTIK ÉS SZILÁRDSÁGTN / ELDTOK ÖSSZEÁLLÍTOTT: SZEKERES GYÖRGY . eladat: Cı ellenırzé, ébredı fezültégekre. z " é " pontok közé hegeztett cı tengelyére merılegeen hegeztett
Eötvös Loránd Tudományegyetem Informatikai Kar. Additív számelméleti függvények eloszlása
Eötvös Loránd Tudományegyetem Informatikai Kar Additív számelméleti függvények eloszlása Doktori értekezés tézisei Germán László Témavezető Prof. Dr. Kátai Imre akadémikus Informatika Doktori Iskola vezető:
Valószínűségszámítás összefoglaló
Statisztikai módszerek BMEGEVGAT Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
Együttműködési ajánlat Kulturális intézmények a köznevelés eredményességéért EFOP Véglegesített pályázat 3.0 (Forrás:
E g y ü t t m z k ö d é s i a j á n l a t K u l t u r á l i s i n t é z m é n y e k a k ö z n e v e l é s e r e d m é n y e s s é g é é r t E F O P - 3. 3. 2-1 6 V é g l e g e s í t e t t p á l y á z a
r tr r r t s t s② t t ① t r ② tr s r
r tr r r t s t s② t t ① t r ② tr s r r ás③ r s r r r á s r ② s ss rt t s s tt r t r t r P s ② Pá③ á ② Pét r t rs t② t② r t ② s s ás t r s ② st s t t r t t r s t s t t t t s s s str t r r t r t ① r t r
A statisztikai vizsgálat tárgyát képező egyedek összességét statisztikai sokaságnak nevezzük.
Statisztikai módszerek. BMEGEVGAT01 Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudomáyi Egyetem Gépészméröki Kar Hidrodiamikai Redszerek Taszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
KÉPLETTÁR BIOFIZIKA ÉS BIOSTATISZTIKA TÁRGYAKHOZ. Összeállította: A Biofizikai és Sugárbiológiai Intézet
KÉPLEÁ BOFZK ÉS BOSSZK ÁGYKHOZ Összállíoa: Bozka és Sugábológa éz Budas 7 GYKOLOK.FÉLÉV MKOSZKÓP. EFKOME ( k K k N N össz N obj N ok λ υákuu közg sα s β s β h s d sα k kλ MKOSZKÓP. k MÉÉSECHNK λ δ,6 s
Rugalmas hullámok terjedése. A hullámegyenlet és speciális megoldásai
Rugalmas hullámok tejedése. A hullámegyenlet és speciális megoldásai Milyen hullámok alakulhatnak ki ugalmas közegben? Gázokban és folyadékokban csak longitudinális hullámok tejedhetnek. Szilád közegben
Gyakorló feladatok a 2. zárthelyihez. Kidolgozott feladatok
Gakorló feladatok a. zárthelihez Kidolgozott feladatok. a) Határozzuk meg a függesztőrúd négzetkeresztmetszetének a oldalhosszát cm-re kerekítve úg, hog a függesztőrúdban ébredő normálfeszültség ne érje
Nyomás a dugattyúerők meghatározásához 6,3 bar. Nyersanyag:
Dugattyúrúd nélküli hengerek Siklóhenger 16-80 mm Csatlakozások: M7 - G 3/8 Kettős működésű mágneses dugattyúval Integrált 1 Üzemi nyomás min/max 2 bar / 8 bar Környezeti hőmérséklet min./max. -10 C /