Páros binomiális próbák

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Páros binomiális próbák"

Átírás

1 áros nomáls próák Kontngena-tálázatok (rx tálázat) elemzése, ha sem a sor-, sem az oszlop-összegek nem rögzítettek sak N adott - Szmmetra-vzsgálat (összefüggés-vzsgálat) - Függetlenség-vzsgálat BIOMETRIA_NEMARAMÉTERES_3 1

2 Szmmetra-vzsgálat 7. példa G.A.Walker: Common statstal methods for lnal researh wth SAS examples, Collns-Wellesley ulshng, San Dego, Calforna, 1996 Véletlenszerűen kválasztottak 86 páenst, akk egy adott kezelést kaptak. Mndenknek megmérték a lrun-szntjét kezelés előtt és kezelés után s. Kérdés: A kezelésnek van-e mellékhatása a vzelet lrunszntjére, vagys hogy a kezeléstől megváltozk-e a lrun-sznt. Kezelés előtt Kezelés után normáls magas normáls magas dszkordáns egyedek N rögzített! BIOMETRIA_NEMARAMÉTERES_3

3 Nullhpotézs kétféle megfogalmazása: a r1 d r 1 N kezelés előtt (x): normáls () kezelés után (y): magas (1) π 11 π 1 π 1 π H H 1 : : x, y 1 x 1, y H : 1 1 x, y 1 x 1, y H 1 : 1 1 azaz annak a valószínűsége, hogy valak a tálázat ellájáól átkerüljön a tálázat ellájáa, ugyanakkora, mnt annak, hogy valószínűsége, hogy a ellájáól a ellájáa kerüljön át BIOMETRIA_NEMARAMÉTERES_3 3

4 BIOMETRIA_NEMARAMÉTERES_3 4 : H y x : H 1 y x azaz annak a valószínűsége, hogy valak az egyk (x) szempont szernt az első soporta tartozzék, ugyanakkora, mnt hogy a másk (y) szempont szernt az első soporta tartozzék, 1,, 1, : H y x y x y x y x Átrendezve:

5 BIOMETRIA_NEMARAMÉTERES_3 5 z A folytonosság korrekóval: z 1 1 n k n k n k p.5 n<, ksmntás n, nagymntás.5.5 n n z < Szmmetra-vzsgálat számítása: n ^

6 Statsts > Nonparametrs > x tale Frequenes, row 1 erent of total Frequenes, row erent of total Column totals erent of total Ch-square (df=1) V-square (df=1) Yates orreted Ch-square h-square Fsher exat p, one-taled two-taled MNemar Ch-square (A/D) Ch-square (B/C) x Tale Column 1 Column Row Totals % 16.79% 86.47% % 6.977% % % 3.56% 5.59 p= p= p= p=.8 p= p=..45 p=.1175 z z BIOMETRIA_NEMARAMÉTERES_3 6.45

7 8. példa (hpotetkus) Függetlenség-vzsgálat Egy szoológa vzsgálatnál 5 véletlenszerűen kválasztott emert a házastárs hűséghez való vszonyáról kérdeztek. Független-e a kérdésre adott válasz egymástól? H : független hűséges-e fontosnak tartja-e a hűséget a házasságan gen nem gen π j 18 nem π +j π + BIOMETRIA_NEMARAMÉTERES_3 7

8 Függetlenség-vzsgálat számításának elve: O j E E j j j ν = (r 1ሻ ( 1ሻ O j E j oserved value, azaz megfgyelt (mntael) érték expeted value, azaz a függetlenség esetén várt érték E j = N π j = N π + π +j = N r N j N = r j N BIOMETRIA_NEMARAMÉTERES_3 8

9 7. példa számítása: Statsts > Bas Statsts and Tales > Tales and anners E 11 = r 1 1 N = 4 5 = 9.6 E 1 = r 1 N = 6 5 = 1.4 χ = j (O j E j ሻ (18 9.6ሻ (4 15.6ሻ = E j = r Döntés? Summary Tale: Expeted Frequenes (huseg n huseg) Summary Frequeny Tale (huseg n huseg) Marked ells have ounts > 5 Marked ells have ounts > 5 earson Ch-square: 3,5577, df=1, p=,1 Weght varale: szam fontos gen fontos nem Row Totals Weght varale: szam fontos gen fontos nem Row Totals 9,6 1,4, 14,4 15,6 3, 4, 6, 5, BIOMETRIA_NEMARAMÉTERES_3 9

10 Statsts > Nonparametrs > x tales Frequenes, row 1 erent of total Frequenes, row erent of total Column totals erent of total Ch-square (df=1) V-square (df=1) Yates orreted Ch-square h-square Fsher exat p, one-taled two-taled MNemar Ch-square (A/D) Ch-square (B/C) x Tale (Spreadsheet1) Column 1 Column Row Totals % 4.% 4.% % 48.% 6.% % 5.% 3.56 p=. 3.9 p=..84 p= p=. p=..6 p= p=.889 BIOMETRIA_NEMARAMÉTERES_3 1

11 A - próához szükséges előfordulás számok Cohran: egyk E j sem lehet kse 1-nél, és a ellák legfölje %-áan lehet kse 5-nél Conover: ha néhány E j érték.5 körül van, de a töség nagyo 1-nél, az eljárás alkalmazható Ha túlságosan ksnyek a várható előfordulás számok, a ellákat összevonhatjuk. BIOMETRIA_NEMARAMÉTERES_3 11

12 Fsher egzakt próája a sor- és oszlop-összegek s adottak 9. példa A. Agrest: Categoral data analyss, J. Wley,, p. 444 Fsher kolléganője szernt a teát úgy kell helyesen elkészíten, hogy először a tejet öntk a sészée, utána a teát. Fsher kétsége vonta, hogy a tea ízéől észre lehet venn a sorrendet. Ezért az alá kísérletet végezte: Készített 4-4 sésze teát mndkét sorrend szernt és megkóstoltatta a kolléganőjével (ak azt tudta, hogy mndkét reepttel 4-4 tea készült). tényleges sorrend vélt sorrend tej elő tea elő tej elő tea elő BIOMETRIA_NEMARAMÉTERES_3 1

13 tényleges sorrend vélt sorrend tej elő tea elő tej elő tea elő hpergeometrkus eloszlás M a valószínűsége annak, hogy a 4 tej elő sésze teáól éppen 3-t talál el helyesen: k = a = kedvező esetek összes eset = r 1a r 1 r 1 a N r 1 BIOMETRIA_NEMARAMÉTERES_3 13

14 p annak valószínűsége, hogy a talált vagy annál szélsőségese eredmény álljon elő: p A ks mnta-elemszám matt nagyok az ugrások, p<.5 sak akkor lenne, ha mnd a 4 sésze teát jól eltalálnák. BIOMETRIA_NEMARAMÉTERES_3 14

15 Összefoglaló tálázat x tálázatok elemzéséhez Típus I. II. III. IV. V. Rögzített - N 1, r 1, r 1,, r 1, r Véletlen Eloszlás H róa N, 1,, r 1, r 4 független osson 1, r 1 r multnomáls 1 = 1 ( = ) (szmmetra) j j (függetlenség) MNemar, Megj. log-lnear ross-setonal két független nomáls 11 = 1 ( a = ), nomáls egzakt ase-ontrol, retrospetve két független nomáls 11 = 1 a =, nomáls egzakt lnal tral, ohort study prospetve hpergeometrkus 1 a d Fsher egzakt, BIOMETRIA_NEMARAMÉTERES_3 15

16 1. példa A ztonság öv használata és a halálos alesetek száma közt kapsolatot kívánjuk vzsgáln. Hogyan kell a vzsgálatot elvégezn, hogy az elő tálázat szernt I., II., III. ll. IV. típusú tálázatot kapjuk? BIOMETRIA_NEMARAMÉTERES_3 16

17 11. példa rx kontngena-tálázatok elemzése - homogentás vzsgálat χ -próával - (Box-Hunter-Hunter: Statsts for Expermenters, J. Wley, 1978, p. 145) 5 kórházan vzsgálták egy zonyos etegség-típusnál elért javulást. nns javulás részleges javulás teljes gyógyulás A B kórház C D E BIOMETRIA_NEMARAMÉTERES_3 17

18 Sorok (kórházak) független multnomáls eloszlást alkotnak. Nullhpotézs: a multnomáls eloszlások paramétere kórházanként megegyeznek, azaz a különöző kórházakan megegyezk a javulás esélye H : j j 1. Kezeljük egyelőre a javulás fokozatokat névleges skálán mért értékeknek! Ha a nullhpotézs gaz: π j = j N E j = r π j = r j N BIOMETRIA_NEMARAMÉTERES_3 18

19 Summary Frequeny Tale (korhaz n Workook1) Marked ells have ounts > 5 (Margnal summares are not marked) oserved Weght varale:! ~\FT1,,,\38,gyakorsag korhaz nns reszleges teljes Row Totals A B C D E All Grps O j E E j j ν = (r 1ሻ ( 1ሻ j Summary Tale: Expeted Frequenes (korhaz n Workook1) Marked ells have ounts > 5 earson Ch-square: 56,75, df=8, p=, Weght varale:! ~\FT1,,,\38,gyakorsag nns reszleges teljes Row Totals 11,56 19,8 16,39 47, 7,6 1,59 1,81 31, 19,373 3,7 7,55 79, 31,39 51,97 44,64 18,,19 33,9 8,6 8, 9, 149, 18, 367, E 11 = r 1 1 N = = BIOMETRIA_NEMARAMÉTERES_3 19

20 . Sorrend skálán kezelve a javulás adatokat: egyfaktoros ANOVA rangszámokra végezve Depend.: A B C D E Kruskal-Walls ANOVA y Ranks; (korhaz.sta) Independent (groupng) varale: korhaz Kruskal-W alls test: H ( 4, N= 367) = p =. Code Vald Sum of Mean N Ranks Rank Mood-féle Medan Test, Overall Medan = 1.; (korhaz.sta) Independent (groupng) varale: korhaz Dependent: Ch-Square = df = 4 p =. A B C D E Total <= Medan: oserved expeted os.-exp > Medan: oserved expeted os.-exp Total: oserved BIOMETRIA_NEMARAMÉTERES_3

21 3. az E kórház és a tö kórház összehasonlítása Summary Frequeny Tale (korhaz n Workook1) Marked ells have ounts > 5 (Margnal summares are not marked) Weght varale:! ~\FT1,,,\38,gyakorsag melyk nns reszleges teljes Row Totals E neme All Grps Summary Tale: Expeted Frequenes (korhaz n Workook1) Marked ells have ounts > 5 earson Ch-square: 49,8439, df=, p=, Weght varale:! ~\FT1,,,\38,gyakorsag nns reszleges teljes Row Totals, ,916 8,5995 8, 69, ,784 99,45 85, 9, 149, 18, 367, BIOMETRIA_NEMARAMÉTERES_3 1

Statisztikai próbák. Ugyanazon problémára sokszor megvan mindkét eljárás.

Statisztikai próbák. Ugyanazon problémára sokszor megvan mindkét eljárás. Statsztka próbák Paraméteres. A populácó paraméteret becsüljük, ezekkel számolunk.. Az alapsokaság eloszlására van kkötés. Nem paraméteres Nncs lyen becslés Nncs kkötés Ugyanazon problémára sokszor megvan

Részletesebben

NEMPARAMÉTERES PRÓBÁK

NEMPARAMÉTERES PRÓBÁK NEMPARAMÉTERES PRÓBÁK A nemparaméteres próbák nem tételezk föl a normáls eloszlást. A leggyakrabban használt próbák (pl. a t-próbák, ANOVA) feltételezk a normáls eloszlást. Sokszor ez nem teljesül. Következmény:

Részletesebben

Tanult nem paraméteres próbák, és hogy milyen probléma megoldására szolgálnak.

Tanult nem paraméteres próbák, és hogy milyen probléma megoldására szolgálnak. 8. GYAKORLAT STATISZTIKAI PRÓBÁK ISMÉTLÉS: Tanult nem paraméteres próbák, és hogy mlyen probléma megoldására szolgálnak. Név Illeszkedésvzsgálat Χ próbával Illeszkedésvzsgálat grafkus úton Gauss papírral

Részletesebben

Variancia-analízis (ANOVA) Mekkora a tévedés esélye? A tévedés esélye Miért nem csinálunk kétmintás t-próbákat?

Variancia-analízis (ANOVA) Mekkora a tévedés esélye? A tévedés esélye Miért nem csinálunk kétmintás t-próbákat? Varanca-analízs (NOV Mért nem csnálunk kétmntás t-próbákat? B Van különbség a csoportok között? Nncs, az eltérés csak véletlen! Ez a nullhpotézs. és B nncs különbség Legyen, B és C 3 csoport! B és C nncs

Részletesebben

s n s x A m és az átlag Standard hiba A m becslése Információ tartalom Átlag Konfidencia intervallum Pont becslés Intervallum becslés

s n s x A m és az átlag Standard hiba A m becslése Információ tartalom Átlag Konfidencia intervallum Pont becslés Intervallum becslés A m és az átlag Standard hba Mnta átlag 1 170 Az átlagok szntén ngadoznak a m körül. s x s n Az átlagok átlagos eltérése a m- től! 168 A m konfdenca ntervalluma. 3 166 4 173 x s x ~ 68% ~68% annak a valószínűsége,

Részletesebben

Hipotézis vizsgálatok. Egy példa. Hipotézisek. A megfigyelt változó eloszlása Kérdés: Hatásos a lázcsillapító gyógyszer?

Hipotézis vizsgálatok. Egy példa. Hipotézisek. A megfigyelt változó eloszlása Kérdés: Hatásos a lázcsillapító gyógyszer? 01.09.18. Hpotézs vzsgálatok Egy példa Kérdések (példa) Hogyan adhatunk választ? Kérdés: Hatásos a lázcsllapító gyógyszer? Hatásos-e a gyógyszer?? rodalomból kísérletekből Hpotézsek A megfgyelt változó

Részletesebben

Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat

Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi fizika és statisztika I. előadás 2016.11.09 Orvosi

Részletesebben

Regresszió. Fő cél: jóslás Történhet:

Regresszió. Fő cél: jóslás Történhet: Fő cél: jóslás Történhet: Regresszó 1 változó több változó segítségével Lépések: Létezk-e valamlyen kapcsolat a 2 változó között? Kapcsolat természetének leírása (mat. egy.) A regresszós egyenlet alapján

Részletesebben

Nemparaméteres módszerek. Krisztina Boda PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet

Nemparaméteres módszerek. Krisztina Boda PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet Nemparaméteres módszerek Krsztna Boda PhD SZTE ÁOK Orvos Fzka és Orvos Informatka Intézet Paraméteres próbák Paraméter: egy szám, amely a populácó eloszlását jellemz (és általában meghatározza). A normáls

Részletesebben

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Élettan Anatóma Kéma Lehet kérdés?? Statsztka! Az orvos döntéseket hoz! Mkor jó egy döntés? Mennyre helyes egy döntés? Mekkora a tévedés lehetősége? Példa: test

Részletesebben

A multikritériumos elemzés célja, alkalmazási területe, adat-transzformációs eljárások, az osztályozási eljárások lényege

A multikritériumos elemzés célja, alkalmazási területe, adat-transzformációs eljárások, az osztályozási eljárások lényege A multkrtérumos elemzés célja, alkalmazás területe, adat-transzformácós eljárások, az osztályozás eljárások lényege Cél: tervváltozatok, objektumok értékelése (helyzetértékelés), döntéshozatal segítése

Részletesebben

Sztochasztikus kapcsolatok

Sztochasztikus kapcsolatok Sztochasztikus kapcsolatok Petrovics Petra PhD Hallgató Ismérvek közötti kapcsolat (1) Függvényszerű az egyik ismérv szerinti hovatartozás egyértelműen meghatározza a másik ismérv szerinti hovatartozást.

Részletesebben

Statisztika feladatok

Statisztika feladatok Statsztka ok Informatka Tudományok Doktor Iskola Bzonyítandó, hogy: azaz 1 Tekntsük az alább statsztkákat: Igazoljuk, hogy torzítatlan statsztkák! Melyk a leghatásosabb közöttük? (Ez az együttes eloszlásfüggvényük.)

Részletesebben

20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek!

20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek! SPEC 2009-2010. II. félév Statsztka II HÁZI dolgozat Név:... Neptun kód: 20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek! 1. példa Egy üzemben tejport csomagolnak zacskókba,

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

Szerven belül egyenetlen dóziseloszlások és az LNT-modell

Szerven belül egyenetlen dóziseloszlások és az LNT-modell Szerven belül egyenetlen dózseloszlások és az LNT-modell Madas Balázs Gergely, Balásházy Imre MTA Energatudomány Kutatóközpont XXXVIII. Sugárvédelm Továbbképző Tanfolyam Hunguest Hotel Béke 2013. áprls

Részletesebben

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ANOVA ( ) 2. χ σ. α ( ) 2. y y y p p y y = + + = + + p p r. Fisher-Cochran-tétel

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ANOVA ( ) 2. χ σ. α ( ) 2. y y y p p y y = + + = + + p p r. Fisher-Cochran-tétel NOV ( ) ( ) ( ) ( ) ( ) ( ) a Y Y Y Y µ µ µ + + + ( ) ( ) ( ) ( ) + + Y µ µ µ ( ) ( ) ( ) + + µ χ e ( ) ( ) r + + Fher-Cochran-tétel mnd NOV ( ) e χ : H ( ) e S χ ( ) e r ν χ ( ) e S χ ( ) e r r ν χ F

Részletesebben

X PMS 2007 adatgyűjtés eredményeinek bemutatása X PMS ADATGYŰJTÉS

X PMS 2007 adatgyűjtés eredményeinek bemutatása X PMS ADATGYŰJTÉS X PMS ADATGYŰJTÉS 2007 1 Tartalom Összefoglalás...3 A kutatásba beválasztott betegek életkora... 4 A kutatásba bevont betegek nem szerinti megoszlása... 5 Az adatgyűjtés során feltárt diagnózisok megoszlása...

Részletesebben

BIOMETRIA_ANOVA_2 1 1

BIOMETRIA_ANOVA_2 1 1 Két faktor szerinti ANOVA Az A faktor minden szintjét kombináljuk a B faktor minden szintjével, minden cellában azonos számú ismétlés (kiegyensúlyozott terv). A terv szerkezete miatt a faktorok hatását

Részletesebben

KISTERV2_ANOVA_

KISTERV2_ANOVA_ Két faktor szerinti ANOVA Az A faktor minden szintjét kombináljuk a B faktor minden szintjével, minden cellában azonos számú ismétlés (kiegyensúlyozott terv). A terv szerkezete miatt a faktorok hatását

Részletesebben

ANOVA. Egy faktor szerinti ANOVA. Nevével ellentétben nem szórások, hanem átlagok összehasonlítására szolgál. Több független mintánk van, elemszámuk

ANOVA. Egy faktor szerinti ANOVA. Nevével ellentétben nem szórások, hanem átlagok összehasonlítására szolgál. Több független mintánk van, elemszámuk Egy faktor zernt NOV Nevével ellentétben nem zóráok, hanem átlagok özehaonlítáára zolgál Több független mntánk van, elemzámuk,...,,, r y,...,, y, y,..., yr;,, r H : r NOV. élda (Box-Hunter-Hunter: Stattc

Részletesebben

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Életta Aatóma Kéma Lehet kérdés?? Statsztka! Az orvos dötéseket hoz! Mkor jó egy dötés? Meyre helyes egy dötés? Mekkora a tévedés lehetősége? Példa: test hőmérséklet

Részletesebben

Virág Katalin. Szegedi Tudományegyetem, Bolyai Intézet

Virág Katalin. Szegedi Tudományegyetem, Bolyai Intézet Függetleségvizsgálat Virág Katali Szegedi Tudomáyegyetem, Bolyai Itézet Függetleség Függetleség Két változó függetle, ha az egyik változó megfigyelése a másik változóra ézve em szolgáltat iformációt; azaz

Részletesebben

Táblázatok 4/5. C: t-próbát alkalmazunk és mivel a t-statisztika értéke 3, ezért mind a 10%-os, mind. elutasítjuk a nullhipotézist.

Táblázatok 4/5. C: t-próbát alkalmazunk és mivel a t-statisztika értéke 3, ezért mind a 10%-os, mind. elutasítjuk a nullhipotézist. 1. Az X valószínőség változó 1 várható értékő és 9 szórásnégyzető. Y tıle független várható értékkel és 1 szórásnégyzettel. a) Menny X + Y várható értéke? 13 1 b) Menny X -Y szórásnégyzete? 13 1 összesen

Részletesebben

Feltesszük, hogy a mintaelemek között nincs két azonos. ha X n a rendezett mintában az R n -ik. ha n 1 n 2

Feltesszük, hogy a mintaelemek között nincs két azonos. ha X n a rendezett mintában az R n -ik. ha n 1 n 2 Kabos: Ordinális változók Hipotézisvizsgálat-1 Minta: X 1, X 2,..., X N EVM (=egyszerű véletlen minta) X-re Feltesszük, hogy a mintaelemek között nincs két azonos. Rendezett minta: X (1), X (2),..., X

Részletesebben

Minősítéses mérőrendszerek képességvizsgálata

Minősítéses mérőrendszerek képességvizsgálata Mnősítéses mérőrendszerek képességvzsgálata Vágó Emese, Dr. Kemény Sándor Budapest Műszak és Gazdaságtudomány Egyetem Kéma és Környezet Folyamatmérnök Tanszék Az előadás vázlata 1. Mnősítéses mérőrendszerek

Részletesebben

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell Példa STATISZTIKA Egy gazdálkodó k kukorica hibrid termesztése között választhat. Jelöljük a fajtákat A, B, C, D-vel. Döntsük el, hogy a hibridek termesztése esetén azonos terméseredményre számíthatunk-e.

Részletesebben

LOGIT-REGRESSZIÓ a függő változó: névleges vagy sorrendi skála

LOGIT-REGRESSZIÓ a függő változó: névleges vagy sorrendi skála LOGIT-REGRESSZIÓ a függő változó: névleges vagy sorrendi skála a független változó: névleges vagy sorrendi vagy folytonos skála BIOMETRIA2_NEMPARAMÉTERES_5 1 Y: visszafizeti-e a hitelt x: fizetés (életkor)

Részletesebben

Fizika labor zh szept. 29.

Fizika labor zh szept. 29. Fzka laor zh 6. szept. 9.. Mar nén évek óta a sark pékségen vesz magának 8 dkg-os rozskenyeret. Hazaérve mndg lemér, hány dkg-os kenyeret kapott aznap, és statsztkát készít a kenyerek tömegének eloszlásáról.

Részletesebben

Varianciaanalízis 4/24/12

Varianciaanalízis 4/24/12 1. Feladat Egy póker kártya keverő gép a kártyákat random módon választja ki. A vizsgálatban 1600 választott kártya színei az alábbi gyakorisággal fordultak elő. Vizsgáljuk meg, hogy a kártyák kiválasztása

Részletesebben

Véletlenszám generátorok. 6. előadás

Véletlenszám generátorok. 6. előadás Véletlenszám generátorok 6. előadás Véletlenszerű változók, valószínűség véletlen, véletlen változók valószínűség fogalma egy adott esemény bekövetkezésének esélye értékét 0 és között adjuk meg az összes

Részletesebben

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Nonparametric Tests. Petra Petrovics.

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Nonparametric Tests. Petra Petrovics. Nonparametric Tests Petra Petrovics PhD Student Hypothesis Testing Parametric Tests Mean o a population Population proportion Population Standard Deviation Nonparametric Tests Test or Independence Analysis

Részletesebben

Statisztikai. Statisztika Sportszervező BSc képzés (levelező tagozat) Témakörök. Statisztikai alapfogalmak. Statisztika fogalma. Statisztika fogalma

Statisztikai. Statisztika Sportszervező BSc képzés (levelező tagozat) Témakörök. Statisztikai alapfogalmak. Statisztika fogalma. Statisztika fogalma Témakörök Statsztka Sortszerező BSc kézés (leelező tagozat) 2-2-es tané félé Oktató: Dr Csáfor Hajnalka főskola docens Vállalkozás-gazdaságtan Tsz E-mal: hcsafor@ektfhu Statsztka fogalmak Statsztka elemzések

Részletesebben

Hipotézis vizsgálatok

Hipotézis vizsgálatok Hipotézis vizsgálatok Hipotézisvizsgálat Hipotézis: az alapsokaság paramétereire vagy az alapsokaság eloszlására vonatkozó feltevés. Hipotézis ellenőrzés: az a statisztikai módszer, amelynek segítségével

Részletesebben

OKTATÁSGAZDASÁGTAN. Készítette: Varga Júlia Szakmai felelős: Varga Júlia június

OKTATÁSGAZDASÁGTAN. Készítette: Varga Júlia Szakmai felelős: Varga Júlia június OKTATÁSGAZDASÁGTAN Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázat projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudomány Tanszékén az ELTE Közgazdaságtudomány Tanszék az MTA Közgazdaságtudomány

Részletesebben

y ij = µ + α i + e ij

y ij = µ + α i + e ij Elmélet STATISZTIKA 3. Előadás Variancia-analízis Lineáris modellek A magyarázat a függő változó teljes heterogenitásának két részre bontását jelenti. A teljes heterogenitás egyik része az, amelynek okai

Részletesebben

Adatok statisztikai értékelésének főbb lehetőségei

Adatok statisztikai értékelésének főbb lehetőségei Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció

Részletesebben

Esetelemzések az SPSS használatával

Esetelemzések az SPSS használatával Esetelemzések az SPSS használatával 1. Tekintsük az spearman.sav állományt, amely egy harminc tehenet számláló állomány etetés- és fejéskori nyugtalansági sorrendjét tartalmazza. Vizsgáljuk meg, hogy van-e

Részletesebben

Adatelemzés és adatbányászat MSc

Adatelemzés és adatbányászat MSc Adatelemzés és adatbányászat MSc. téma Adatelemzés, statsztka elemek áttekntése Adatelemzés módszertana probléma felvetés módszer, adatok meghatározása nyers adatok adatforrás meghatározása adat tsztítás

Részletesebben

VARIANCIAANALÍZIS (szóráselemzés, ANOVA)

VARIANCIAANALÍZIS (szóráselemzés, ANOVA) VARIANCIAANAÍZIS (szóráselemzés, ANOVA) Varancaanalízs. Varancaanalízs (szóráselemzés, ANOVA) Adott: egy vagy több tetszőleges skálájú független változó és egy legalább ntervallum skálájú függő változó.

Részletesebben

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Nonparametric Tests

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Nonparametric Tests Nonparametric Tests Petra Petrovics Hypothesis Testing Parametric Tests Mean of a population Population proportion Population Standard Deviation Nonparametric Tests Test for Independence Analysis of Variance

Részletesebben

Az első számjegyek Benford törvénye

Az első számjegyek Benford törvénye Az első számjegyek Benford törvénye Frank Benford (1883-1948) A General Electric fizikusa Simon Newcomb (1835 1909) asztronómus 1. oldal 2. oldal A híres arizonai csekk sikkasztási eset http://www.aicpa.org/pubs/jofa/may1999/nigrini.htm

Részletesebben

Normális eloszlás paramétereire vonatkozó próbák

Normális eloszlás paramétereire vonatkozó próbák Normális eloszlás paramétereire vonatkozó próbák Az alábbi próbák akkor használhatók, ha a meggyelések függetlenek, és feltételezhetjük, hogy normális eloszlásúak a meggyelések függetlenek, véges szórású

Részletesebben

Kiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely.

Kiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely. Kiválasztás A változó szerint Egymintás t-próba Mann-Whitney U-test paraméteres nem-paraméteres Varianciaanalízis De melyiket válasszam? Kétmintás t-próba Fontos, hogy mindig a kérdésnek és a változónak

Részletesebben

4 2 lapultsági együttható =

4 2 lapultsági együttható = Leíró statsztka Egy kísérlet végeztével általában tetemes mennységű adat szokott összegyűln. Állandó probléma, hogy mt s kezdjünk - lletve mt tudunk kezden az adatokkal. A statsztka ebben segít mnket.

Részletesebben

Hipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás

Hipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás STATISZTIKA Hipotézis, sejtés 11. Előadás Hipotézisvizsgálatok, nem paraméteres próbák Tudományos hipotézis Nullhipotézis felállítása (H 0 ): Kétmintás hipotézisek Munkahipotézis (H a ) Nullhipotézis (H

Részletesebben

Ötvözetek mágneses tulajdonságú fázisainak vizsgálata a hiperbolikus modell alkalmazásával

Ötvözetek mágneses tulajdonságú fázisainak vizsgálata a hiperbolikus modell alkalmazásával AGY 4, Kecskemét Ötvözetek mágneses tulajdonságú fázsanak vzsgálata a hperbolkus modell alkalmazásával Dr. Mészáros István egyetem docens Budapest Műszak és Gazdaságtudomány Egyetem Anyagtudomány és Technológa

Részletesebben

Kettőnél több csoport vizsgálata. Makara B. Gábor MTA Kísérleti Orvostudományi Kutatóintézet

Kettőnél több csoport vizsgálata. Makara B. Gábor MTA Kísérleti Orvostudományi Kutatóintézet Kettőnél több csoport vizsgálata Makara B. Gábor MTA Kísérleti Orvostudományi Kutatóintézet Gyógytápszerek (kilokalória/adag) Három gyógytápszer A B C 30 5 00 10 05 08 40 45 03 50 35 190 Kérdések: 1. Van-e

Részletesebben

A pont példájának adatai C1 C2 C3 C

A pont példájának adatai C1 C2 C3 C A 3..5 pont példájának adatai C C C3 C4 0.00000 0.00000 0.00000 0.00000 0.00000 0.96 0.003 0.437 0.458 0.7336 0.00785 0.34957 0.565 0.3308 0.0096 0.43840 0.979 0.343 0.0440 0.44699 0.3008 0.370 0.083 0.44986

Részletesebben

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 7. Előadás Egyenletes eloszlás Binomiális eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell /56 Matematikai statisztika Reprezentatív mintavétel

Részletesebben

Nemparaméteres eljárások

Nemparaméteres eljárások Nemparaméteres eljárások Bevezetés Az ntervallum vagy a hányados skálán végzett méréseknél az adatokból számolhatunk átlagot, szórásnégyzetet, szórást Fontos módszerek alapulnak ezeknek a származtatott

Részletesebben

Kísérlettervezési alapfogalmak:

Kísérlettervezési alapfogalmak: Kísérlettervezés alapfogalmak: Tényező, faktor (factor) független változó, ható tényező (kezelés, gyógyszer, takarmány, genotípus, élőhely, stb.) amnek hatását a kísérletben vzsgáln vagy összehasonlítan

Részletesebben

Statisztikai hipotézisvizsgálatok. Paraméteres statisztikai próbák

Statisztikai hipotézisvizsgálatok. Paraméteres statisztikai próbák Statisztikai hipotézisvizsgálatok Paraméteres statisztikai próbák 1. Magyarországon a lakosság élelmiszerre fordított kiadásainak 2000-ben átlagosan 140 ezer Ft/fő volt. Egy kérdőíves felmérés során Veszprém

Részletesebben

Kettőnél több csoport vizsgálata. Makara B. Gábor

Kettőnél több csoport vizsgálata. Makara B. Gábor Kettőnél több csoport vizsgálata Makara B. Gábor Három gyógytápszer elemzéséből az alábbi energia tartalom adatok származtak (kilokalória/adag egységben) Három gyógytápszer elemzésébô A B C 30 5 00 10

Részletesebben

[Biomatematika 2] Orvosi biometria. Visegrády Balázs

[Biomatematika 2] Orvosi biometria. Visegrády Balázs [Biomatematika 2] Orvosi biometria Visegrády Balázs 2016. 03. 27. Probléma: Klinikai vizsgálatban három különböző antiaritmiás gyógyszert (ß-blokkoló) alkalmaznak, hogy kipróbálják hatásukat a szívműködés

Részletesebben

Biomatematika 13. Varianciaanaĺızis (ANOVA)

Biomatematika 13. Varianciaanaĺızis (ANOVA) Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 13. Varianciaanaĺızis (ANOVA) Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date:

Részletesebben

1., Egy területen véletlenszerűen kihelyezet kvadrátokban megszámlálták az Eringium maritimum (tengerparti ördögszekér) egyedeit.

1., Egy területen véletlenszerűen kihelyezet kvadrátokban megszámlálták az Eringium maritimum (tengerparti ördögszekér) egyedeit. 1., Egy területen véletlenszerűen kihelyezet kvadrátokban megszámlálták az Eringium maritimum (tengerparti ördögszekér) egyedeit. 1., Határozza meg az átlagos egyedszámot és a szórást. Egyedszám (x i )

Részletesebben

Biometria az orvosi gyakorlatban. Regresszió Túlélésanalízis

Biometria az orvosi gyakorlatban. Regresszió Túlélésanalízis SZDT-09 p. 1/36 Biometria az orvosi gyakorlatban Regresszió Túlélésanalízis Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Logisztikus regresszió

Részletesebben

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,

Részletesebben

Több valószínűségi változó együttes eloszlása, korreláció

Több valószínűségi változó együttes eloszlása, korreláció Tartalomjegzék Előszó... 6 I. Valószínűségelméleti és matematikai statisztikai alapok... 8 1. A szükséges valószínűségelméleti és matematikai statisztikai alapismeretek összefoglalása... 8 1.1. Alapfogalmak...

Részletesebben

Egymintás próbák. Alapkérdés: populáció <paramétere/tulajdonsága> megegyezik-e egy referencia paraméter értékkel/tulajdonsággal?

Egymintás próbák. Alapkérdés: populáció <paramétere/tulajdonsága> megegyezik-e egy referencia paraméter értékkel/tulajdonsággal? Egymintás próbák σ s μ m Alapkérdés: A populáció egy adott megegyezik-e egy referencia paraméter értékkel/tulajdonsággal? egymintás t-próba Wilcoxon-féle előjeles

Részletesebben

Populációbecslés és monitoring. Eloszlások és alapstatisztikák

Populációbecslés és monitoring. Eloszlások és alapstatisztikák Populációbecslés és monitoring Eloszlások és alapstatisztikák Eloszlások Az eloszlás megadja, hogy milyen valószínűséggel kapunk egy adott intervallumba tartozó értéket, ha egy olyan populációból veszünk

Részletesebben

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus. Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza

Részletesebben

Valószínűségszámítás összefoglaló

Valószínűségszámítás összefoglaló Statisztikai módszerek BMEGEVGAT Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

Balogh Edina Árapasztó tározók működésének kockázatalapú elemzése PhD értekezés Témavezető: Dr. Koncsos László egyetemi tanár

Balogh Edina Árapasztó tározók működésének kockázatalapú elemzése PhD értekezés Témavezető: Dr. Koncsos László egyetemi tanár Balogh Edna Árapasztó tározók működésének kockázatalapú elemzése PhD értekezés Témavezető: Dr. Koncsos László egyetem tanár Budapest Műszak és Gazdaságtudomány Egyetem Építőmérnök Kar 202 . Bevezetés,

Részletesebben

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás, // KURZUS: Matematika II. MODUL: Valószínűség-számítás 21. lecke: A feltételes valószínűség, események függetlensége Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Részletesebben

Kidolgozott feladatok a nemparaméteres statisztika témaköréből

Kidolgozott feladatok a nemparaméteres statisztika témaköréből Kdolgozott feladatok a nemparaméteres statsztka témaköréből A táékozódást mndenféle színkódok segítk. A feladatok eredet szövege zöld, a megoldások fekete, a fgyelmeztető, magyarázó elemek pros színűek.

Részletesebben

Statisztikai szoftverek esszé

Statisztikai szoftverek esszé Statisztikai szoftverek esszé Dávid Nikolett Szeged 2011 1 1. Helyzetfelmérés Adott egy kölcsön.txt nevű adatfájl, amely információkkal rendelkezik az ügyfelek életkoráról, családi állapotáról, munkaviszonyáról,

Részletesebben

Eloszlás-független módszerek (folytatás) 14. elıadás ( lecke) 27. lecke khí-négyzet eloszlású statisztikák esetszámtáblázatok

Eloszlás-független módszerek (folytatás) 14. elıadás ( lecke) 27. lecke khí-négyzet eloszlású statisztikák esetszámtáblázatok Eloszlás-független módszerek (folytatás) 14. elıadás (7-8. lecke) Illeszkedés-vizsgálat 7. lecke khí-négyzet eloszlású statisztikák esetszámtáblázatok elemzésére Illeszkedés-vizsgálat Gyakorisági sorok

Részletesebben

Véletlenszám generátorok és tesztelésük. Tossenberger Tamás

Véletlenszám generátorok és tesztelésük. Tossenberger Tamás Véletlenszám generátorok és tesztelésük Tossenberger Tamás Érdekességek Pénzérme feldobó gép: $0,25-os érme 1/6000 valószínűséggel esik az élére 51% eséllyel érkezik a felfelé mutató oldalára Pörgetésnél

Részletesebben

Több laboratórium összehasonlítása, körmérés

Több laboratórium összehasonlítása, körmérés Több oratórium összehasonlítása, körmérés colorative test, round robin a rendszeres hibák ellenőrzése, számszerűsítése Statistical Manual of AOAC, W. J. Youden: Statistical Techniques for Colorative Tests,

Részletesebben

) ( s 2 2. ^t = (n x 1)s n (s x+s y ) x +(n y 1)s y n x+n y. +n y 2 n x. n y df = n x + n y 2. n x. s x. + s 2. df = d kritikus.

) ( s 2 2. ^t = (n x 1)s n (s x+s y ) x +(n y 1)s y n x+n y. +n y 2 n x. n y df = n x + n y 2. n x. s x. + s 2. df = d kritikus. Kétmtás t-próba ^t ȳ ( s +( s + + df + vag ha, aor ^t ȳ (s +s Welch-próba ^d ȳ s + s ( s + s df ( s ( s + d rtus t s (α, +t s (α, s + s Kofdecatervallum ét mta átlagáa ülöbségére SE s ( + s ( ±t (α,df

Részletesebben

Megállapítható változók elemzése Függetlenségvizsgálat, illeszkedésvizsgálat, homogenitásvizsgálat

Megállapítható változók elemzése Függetlenségvizsgálat, illeszkedésvizsgálat, homogenitásvizsgálat Megállapítható változók elemzése Függetleségvzsgálat, lleszkedésvzsgálat, homogetásvzsgálat Ordáls, omáls esetre s alkalmazhatóak a következő χ próbá alapuló vzsgálatok: 1) Függetleségvzsgálat: két valószíűség

Részletesebben

Az elektromos kölcsönhatás

Az elektromos kölcsönhatás TÓTH.: lektrosztatka/ (kbővített óravázlat) z elektromos kölcsönhatás Rég tapasztalat, hogy megdörzsölt testek különös erőket tudnak kfejten. Így pl. megdörzsölt műanyagok (fésű), megdörzsölt üveg- vagy

Részletesebben

A hő terjedése szilárd test belsejében szakaszos tüzelés esetén

A hő terjedése szilárd test belsejében szakaszos tüzelés esetén A hő terjedése szlárd test belsejében szakaszos tüzelés esetén Snka Klára okl. kohómérnök, doktorandusz hallgató Mskol Egyetem Anyag- és Kohómérnök Kar Energahasznosítás Khelyezett anszék Bevezetés Az

Részletesebben

Kapcsolat vizsgálat : kontingencia táblák jelentősége és használata az epidemiológiában, diagnosztikában: RR, OR.

Kapcsolat vizsgálat : kontingencia táblák jelentősége és használata az epidemiológiában, diagnosztikában: RR, OR. Kapcsolat vizsgálat : kontingencia táblák jelentősége és használata az epidemiológiában, diagnosztikában: RR, OR. Dr. Prohászka Zoltán Az MTA doktora Semmelweis Egyetem III. Sz. Belgyógyászati Klinika

Részletesebben

Az entrópia statisztikus értelmezése

Az entrópia statisztikus értelmezése Az entrópa statsztkus értelmezése A tapasztalat azt mutatja hogy annak ellenére hogy egy gáz molekulá egyed mozgást végeznek vselkedésükben mégs szabályszerűségek vannak. Statsztka jellegű vselkedés szabályok

Részletesebben

Dr. Szőke Szilvia Dr. Balogh Péter: Nemparaméteres eljárások

Dr. Szőke Szilvia Dr. Balogh Péter: Nemparaméteres eljárások Dr. Szőke Szilvia Dr. Balogh Péter: Nemparaméteres eljárások Bevezetés A magas mérési szintű változók adataiból számolhatunk átlagot, szórást. Fontos módszerek alapulnak ezeknek a származtatott paramétereknek

Részletesebben

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 15. Nemparaméteres próbák Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date: November

Részletesebben

A szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai

A szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai 05..04. szórások vizsgálata z F-próba Hogya foguk hozzá? Nullhipotézis: a két szórás azoos, az eltérés véletle (mitavétel). ullhipotézishez tartozik egy ú. F-eloszlás. Szabadsági fokok: számláló: - evező:

Részletesebben

A800. Az eredeti használati utasítás fordítása. Kávéfőző gép: FCS4050 - Hűtőegység: FCS4053

A800. Az eredeti használati utasítás fordítása. Kávéfőző gép: FCS4050 - Hűtőegység: FCS4053 A800 Az eredet használat utasítás fordítása Kávéfőző gép: FCS050 - Hűtőegység: FCS053 A készülék használata előtt olvassa el a használat utasítást és a «Bztonság tudnvalók» című fejezetet. Tartsa a használat

Részletesebben

STATISZTIKA PRÓBAZH 2005

STATISZTIKA PRÓBAZH 2005 STATISZTIKA PRÓBAZH 2005 1. FELADATSOR: számítógépes feladatok (még bővülni fog számítógép nélkül megoldandó feladatokkal is) Használjuk a Dislexia Excel fájlt (internet: http:// starts.ac.uk)! 1.) Hasonlítsuk

Részletesebben

Logisztikus regresszió

Logisztikus regresszió Logisztikus regresszió 9. előadás Kvantitatív statisztikai módszerek Dr. Szilágyi Roland Függő változó (y) Nem metrikus Metri kus Gazdaságtudományi Kar Független változó () Nem metrikus Metrikus Kereszttábla

Részletesebben

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése 4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól

Részletesebben

Regresszió számítás az SPSSben

Regresszió számítás az SPSSben Regresszió számítás az SPSSben Kvantitatív statisztikai módszerek Petrovics Petra Lineáris regressziós modell X és Y közötti kapcsolatot ábrázoló egyenes. Az Y függ: x 1, x 2,, x p p db magyarázó változótól

Részletesebben

Philosophiae Doctores. A sorozatban megjelent kötetek listája a kötet végén található

Philosophiae Doctores. A sorozatban megjelent kötetek listája a kötet végén található Phlosophae Doctores A sorozatban megjelent kötetek lstája a kötet végén található Benedek Gábor Evolúcós gazdaságok szmulácója AKADÉMIAI KIADÓ, BUDAPEST 3 Kadja az Akadéma Kadó, az 795-ben alapított Magyar

Részletesebben

Turbulens áramlás modellezése háromszög elrendezésű csőkötegben

Turbulens áramlás modellezése háromszög elrendezésű csőkötegben Turbulens áramlás modellezése háromszög elrendezésű csőkötegben Mayer Gusztáv mayer@sunserv.kfk.hu 2005. 09. 27. CFD Workshop 1 Tartalom - Vzsgált geometra Motvácó Az áramlás jellemző Saját fejlesztésű

Részletesebben

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma:

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma: Normális eloszlás ξ valószínűségi változó normális eloszlású. ξ N ( µ, σ 2) Paraméterei: µ: várható érték, σ 2 : szórásnégyzet (µ tetszőleges, σ 2 tetszőleges pozitív valós szám) Normális eloszlás sűrűségfüggvénye:

Részletesebben

A sokaság/minta eloszlásának jellemzése

A sokaság/minta eloszlásának jellemzése 3. előadás A sokaság/mnta eloszlásának jellemzése tpkus értékek meghatározása; az adatok különbözőségének vzsgálata, a sokaság/mnta eloszlásgörbéjének elemzése. Eloszlásjellemzők Középértékek helyzet (Me,

Részletesebben

egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk

egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk Valószínűségszámítás 8. feladatsor 2015. november 26. 1. Bizonyítsuk be, hogy az alábbi folyamatok mindegyike martingál. a S n, Sn 2 n, Y n = t n 1+ 1 t 2 Sn, t Fn = σ S 1,..., S n, 0 < t < 1 rögzített,

Részletesebben

Biostatisztika VIII. Mátyus László. 19 October

Biostatisztika VIII. Mátyus László. 19 October Biostatisztika VIII Mátyus László 19 October 2010 1 Ha σ nem ismert A gyakorlatban ritkán ismerjük σ-t. Ha kiszámítjuk s-t a minta alapján, akkor becsülhetjük σ-t. Ez további bizonytalanságot okoz a becslésben.

Részletesebben

2012. április 18. Varianciaanaĺızis

2012. április 18. Varianciaanaĺızis 2012. április 18. Varianciaanaĺızis Varianciaanaĺızis (analysis of variance, ANOVA) Ismételt méréses ANOVA Kérdések: (1) van-e különbség a csoportok között (t-próba általánosítása), (2) van-e hatása a

Részletesebben

Bevezetés a Korreláció &

Bevezetés a Korreláció & Bevezetés a Korreláció & Regressziószámításba Petrovics Petra Doktorandusz Statisztikai kapcsolatok Asszociáció 2 minőségi/területi ismérv között Vegyes kapcsolat minőségi/területi és egy mennyiségi ismérv

Részletesebben

Asszociációs szabályok

Asszociációs szabályok Asszociációs szabályok Nikházy László Nagy adathalmazok kezelése 2010. március 10. Mi az értelme? A ö asszociációs szabály azt állítja, hogy azon vásárlói kosarak, amik tartalmaznak pelenkát, általában

Részletesebben

Statisztika elméleti összefoglaló

Statisztika elméleti összefoglaló 1 Statisztika elméleti összefoglaló Tel.: 0/453-91-78 1. Tartalomjegyzék 1. Tartalomjegyzék.... Becsléselmélet... 3 3. Intervallumbecslések... 5 4. Hipotézisvizsgálat... 8 5. Regresszió-számítás... 11

Részletesebben

Kvantitatív statisztikai módszerek

Kvantitatív statisztikai módszerek Kvantitatív statisztikai módszerek 1. konzultáció tárgyjegyző Dr. Szilágyi Roland Mérési skálák Számok meghatározott szabályok szerinti hozzárendelése jelenségekhez, bizonyos tulajdonságokhoz. 4 féle szabály

Részletesebben

Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok

Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok STATISZTIKA 1. Előadás Hipotézisvizsgálatok Tematika 1. Hipotézis vizsgálatok 2. t-próbák 3. Variancia-analízis 4. A variancia-analízis validálása, erőfüggvény 5. Korreláció számítás 6. Kétváltozós lineáris

Részletesebben

Tiszta és kevert stratégiák

Tiszta és kevert stratégiák sza és kever sraégák sza sraéga: Az -edk áékos az sraégá és ez alkalmazza. S sraégahalmazból egyérelműen válasz k egy eknsük a kövekező áéko. Ké vállala I és II azonos erméke állí elő. Azon gondolkodnak,

Részletesebben

Korreláció számítás az SPSSben

Korreláció számítás az SPSSben Korreláció számítás az SPSSben Kvantitatív statisztikai módszerek Petrovics Petra Statisztikai kapcsolatok Asszociáció 2 minőségi/területi ismérv között Vegyes kapcsolat minőségi/területi és egy mennyiségi

Részletesebben

Varianciaanalízis. Egytényezős kísérletek (Más néven: egyutas osztályozás, egyszempontos varianciaanalízis ANOVA)

Varianciaanalízis. Egytényezős kísérletek (Más néven: egyutas osztályozás, egyszempontos varianciaanalízis ANOVA) Varancaanalízs A varancaanalízs során kettőnél több sokaság középértékenek mnta alapán történő összehasonlítása történk zért nevezk a kétmntás t-próba általánosításának A nullhpotézs eldöntéséhez használuk

Részletesebben