A pont példájának adatai C1 C2 C3 C
|
|
- Ildikó Balla
- 8 évvel ezelőtt
- Látták:
Átírás
1 A 3..5 pont példájának adatai C C C3 C
2 4. Statisztikai jellemzõk megízhatósága 4. Konfidencia tartomány, konfidencia szint A mintákól meghatározott ecslõk magukan is érdekesek lehetnek, különösen, ha minták összehasonlításáról van szó. Természetes azonan, hogy a jellemzõk akkor értékesek igazán, ha azok megízhatóságáról is van képünk. Ez a kívánalom egyenértékü azzal, hogy töé kevésé ismerjük a ecslõ statisztikák eloszlását, de legaláis alkalmazhatunk néhány valószínûségszámításól ismert egyenlõtlenséget. Emlékeztetünk arra, hogy a mintákól számított ecslések valószínûségi változók függvényei lévén maguk is valószínûségi változók. A gyakorlatan a kérdések általáan így vetõdnek fel: (a) mi a valószínûsége annak, hogy a valószínûségi változó egy realizációja (= a következõ megfigyelt adat) elõírt határok közé essék (pl a x )? () melyek azok a határok, amelyek közé a következõ megfigyelt adat elõírt valószínûséggel esik? A két kérdés lényegéen ugyanaz, egyik feladat a másik inverze. Az (a) kérdéssel egyegy megfigyelést értékelünk, a () kérdéssel követelményeket fogalmazunk meg, pl. pontasságot írunk elõ. Ha ismerjük a szóanforgó valószínûségi változó eloszlásfüggvényét, mindkét kérdésre választ kaphatunk: ( a x ) = F( ) F( a) f ( x) p < = dx (4.) a A továiakan az általánosság kedvéért folytonos valószínûségi változók esetére mutatjuk e a megoldások gondolatmenetét. 4. Nevezetes eloszlások Természettudományos gyakorlatunkan egyik leggyakori eloszlásfüggvény a normális eloszlás. Ha valamely vizsgált változóra számos, önmagáan kis hatású, a változó értékét egyforma eséllyel növelõ vagy csökkentõ tényezõ is hat, számíthatunk arra, hogy megfigyelt értéke normális eloszlású lesz. 4.. A normális eloszlás A (4.) integrál ezeseten: ( a x ) ( x µ ) < = exp (4.) σ π a σ p ahol µ az x változó várható értéke, σ pedig annak szórása. (4.) függvénynek nincs analitikusan megadható integrálja, értékeit numerikusan számítják ki az
3 3 u x = µ σ standardizált, 0-közepû és szórású változóra, - és x határok között. (Ezt az eloszlást szokás N(0,) röviditéssel jelölni). Miután a x Φ( x) = exp ( u / ) du (4.3) π függvény szimmetrikus, tálázatokan csak az eloszlás (második) felét adják meg, 0 és + határok között, ahol a Φ(x) valószínûség 0.5.tõl -ig nõ. Negativ x argumentumok esetén a valószínûséget x x ( ) f ( u) du = f ( u) du = Φ x (4.4) módon kell keresni. Ha arra vagyunk kiváncsiak, mi annak valószínûsége, hogy x a - és + határok között lép fel, a tálázat argumentumához tartozó érték kétszereséõl ki kell vonnunk -et. Ugyanis: ( ) = Φ f = ( u) du f ( u) du f ( u) du = f ( u) du f ( u) du = f ( u) du = Érdemes megjegyezni, hogy normális eloszlás esetén p(- x ) = Φ() = p(- x ) = Φ() = p(-.96 x.96) = Φ(.96) = p(-3 x 3) =Φ(3) = illetve nem standardizált változóra: p((µ σ) x (µ+σ)) = p((µ σ) x (µ + σ)) = p(µ.96σ) x µ +.96σ) = p((µ 3σ) x (µ + 3σ)) = (4.5) Azt a tartományt amelye a valószínûségi változó várhatóan p valószínûséggel esik, a változó p szintû megízhatósági vagy konfidencia tartományának nevezik. A változó természetesen α = - p valószínûséggel a konfidencia tartományon kívül is realizálódhat. Ezt az α értéket tévedési valószínûségnek szokás nevezni. A konfidencia tartományt gyakran α szintû tartománynak is nevezik.
4 4 A evezetésen feltett () kérdés, azaz az, hogy megkívánt, rendszerint kerek konfidencia szinthez milyen ± kσ konfidencia határok tartoznak, alkalmasan átrendezett tálázatokkal válaszolható meg. p α = - p k A normális eloszlás -és a továiakan tárgyalt Student és χ eloszlások számértékeit kézikönyveken vagy pl. a internetcímen lehet megtalálni. 4.. A Student eloszlás Ha egy normális eloszlású sokaságól vett minta sok elemû (n > 0), akkor a mintáól számított s standard deviáció jól ecsüli az elméleti szórást, σ-t. Ha azonan nem ez a helyzet, a kevese elemû mintáól ecsült s standard deviációval szélese konfidencia tartományt kell megadnunk ahhoz, hogy iztonságunk megmaradjon. A helyes összefüggéseket ezeken az eseteken a normális eloszlás helyett a Student eloszlás adja meg, amelynél a konfidencia tartományok szélességét megadó t szorzók a minta elemszámától, pontosaan a minta szaadsági fokától függenek. A szintén szimmetrikus F ν + Γ t du, (4.6) ν+ νπ ν Γ u + ( ν t) = Student eloszlás szintén tálázatoltan található. Leghasználatosaak azok a tálázatok, amelyekkel az α tévedési valószínüséghez és a ν szaadsági fokhoz tartozó konfidencia tartomány határai kereshetõk ki. (Minta. 4. tálázat)
5 5 4. tálázat. Student eloszlás t értékei, különözõ mérésszámnál α = - p T n = 3 n=5 n = , A χ eloszlás Mivel a valószínûségi változók négyzetei (pl. a szórás négyzete, a variancia ) gyakorlatunkan igen jelentõsek, fontos szerepû az a függvény, amelyik a független, különkülön N(0,) eloszlású változók χ = X + X X ν (4.7) összegének eloszlását adja meg, a χ eloszlásfüggvény: F ( ν, x) = ν x ν u, u e du (4.7) ν 0 Γ ahol ν a szaadsági fok, a független valószínûségi változók száma. A függvény láthatóan két változótól függõen adja meg azt, mi a valószínûsége annak, hogy a változók négyzetösszege x- nél kise Az F eloszlás A normális és Student eloszlást sikeresen alkalmazzák normális változók különségeinek vizsgálatára. Valószínûségi változók négyzetösszegei esetén hasznosanak izonyult azok hányadosainak kritikus megítélése. Erre a feladatra (nevezetesen annak eldöntésére,.hogy egyezõnek vagy eltérõnek tekinthetõ-e két változó négyzetösszege) az Fisher féle F eloszlás alkalmas. Ez a függvény két független, χ eloszlású változó hányadosának eloszlásáról tájékoztat. Az F függvény az ν X i / ν i= F = ν (4.8) Y / ν i= i
6 6 hányados adott határok közötti elõfordulási valószínûségét adja meg, ahol ν és ν a számláló és nevezõ szaadsági foka. F számlálójáan és nevezõjéen varianciákat ismerhetünk fel. Az F eloszlás 0 és + között értelmezett. Eõl következõen az F törten a számlálónak kell kisenek lennie. A gyakorlatan használt F tálázatokan a választott α tévedési valószínûségnek, továá a számláló és a nevezõ szaadsági fokának ismeretéen lehet megtalálni azt a kritikus Fˆ értéket, amelynél egyezõnek feltételezett változók esetén a kisérletileg megkapott F érték nem lehet nagyo. 5. Statisztikai hipotézisek, statisztikai döntések. 5. Alapelvek Az olyan ecslések, mint a középérték, a szórás valószínûségi változók, amelyeknek megvan a maguk eloszlása, várható értéke, szórása. Ha ez így van, feltehetõk olyan kérdések, hogy két ecslés véletlenül tér-e el egymástól vagy az eltérésnek jelentõs oka van? Más szavakkal fogalmazva kérdezzük:két ecslés ugyanahhoz a sokasághoz tartozik-e, azaz, ha számértékük eltér, akkor ez annak tulajdonítható-e, hogy más sokasághoz tartoznak, vagy csak a véletlennek? Ezekre a kérdésekre válaszolnak a statisztikai próák. A válaszadás gondolatmenete ez: (a) meg kell határozni két összehasonlítandó érték eltérését (különségét). () ha ismerjük a vizsgált valószínûségi változók eloszlását, akkor a két érték különségérõl eldönthetõ, hogy mekkora annak fellépési valószínûsége. Az eltéréseket a különség szórásához viszonyítjuk, azt vizsgáljuk, nagyo-e az eltérés ennél a szórásnál, vagy annak két-, háromszorosánál. (c) ha úgy itéljük, hogy ez a valószínûség kicsiny, akkor az eltérést nem a véletlennek tulajdonítjuk és a két értéket jelentõsen, szignifikánsan eltérõnek nyilvánítjuk, tudva azt, hogy tévedhetünk is. A kis valószínûség szokásosan az α tévedési valószínûséggel egyezik. Hogy az eltérés mekkora valószínûségét tekintjük majd kicsiny -nek (mekkora tévedési valószínûséget vállalunk), az a feladat körülményeitõl függõ, elõzetes elhatározás kérdése. Belátható, hogy a választást a próa elött illik megejteni. A gondolatmenetet és a használt szakkifejezéseket szemléljük meg egy példán. Tegyük fel, hogy arra vagyunk kiváncsiak, egy valószínûségi változó konkrét x értéke eletartozik-e egy, általunk ismert µ középértékû és σ szórású normális sokasága vagy nem? Más szavakkal arra, hogy a µ -x különség eesik-e ( 3σ x µ< + 3σ ) tartománya? Ha nem, akkor egy 0.7% valószínûségû esemény következett e. Ha ezt kicsinynek ítéljük, akkor azt mondjuk, x nem tartozik a sokasághoz és een 0.7%
7 7 valószínûséggel tévedhetünk, hiszen elven végtelen nagy vagy kicsi elem is lehetne a sokaság eleme. Formálisan ezt tesszük: A p(µ - uσ x< µ + uσ ) (5.) valószínûség nem változik, ha a zárójeleken elüli eseményt leíró egyenlötlenséget szaályosan átalakítjuk: (µ - uσ x< µ + uσ) = (- uσ x - µ < + uσ) = ( x - µ uσ) x µ σ u Nos, ha az egyenlõtlenség aloldala, amit û módon is szoktak jelölni nagyo, mint három, akkor a x ν p > 3 (5.) σ valószínûség a normális eloszlás tálázata szerint = 0.7%, ami kicsiny valószínûség, ezért x-et nem tartjuk, a sokaság elemének. 5. Statisztikai hipotézisek Mivel statisztikai vizsgálattal az igazságot aszolut izonyossággal nem sikerül megállapítani, az állításokat hipotéziseknek nevezzük, és nem azt mondjuk róluk, hogy igazak, vagy hamisak, hanem azt, hogy elfogadjuk-e õket, vagy elvetjük. 5.. Nullahipotézis és alternatív (ellen)hipotézis Feltevésünk általáan az, hogy a vizsgált ecslések megegyeznek, azaz különségük 0. Innen a nullahipotézis elnevezés és a (H 0 ) jelölés H 0 : µ = µ (5.3) A nullahipotézissel szemen alternatív hipotézist (H A ) szokás felállítani, amely lehet a nullahipotézis ellentéte, de nem szükségképpen az. H A : µ µ (5.4) vagy például H A : µ > µ (5.5)
8 8 5.. Egyoldalas és kétoldalas hipotézisek Az (5.3) ( egyenlõ ) hipotézissel szemeállított (5.4) ( nem egyenlõ ) és (5.5) ( nagyo ) hipotéziseket meg kell különöztetnünk! Az elsõ eseten elvetjük a hipotézist akkor is, ha a µ - µ különség túl nagy negatív, és akkor is, ha ha túl nagy pozitív szám. Ha 5% tévedési valószínûséget választottunk,.5% valószínûséget kell adni annak, hogy a különség a "haranggöre" egyik végére,.5%-ot annak, hogy a másik végére essék. A kérdésfeltevést ezért is nevezik "kétoldalas" (two sided) feltevésnek. Ha viszont a H A : µ > µ alternatív hipotézissel foglalkozunk, csak az a határ érdekel, amelynél µ 5% valószínûséggel nagyo. mint µ. (Egyoldalas, one sided kérdésfeltevés.) Más szavakkal: ha kétoldalas a feltevés, azokat az u határokat figyeljük, amelyek a sûrüségfüggvény alatti.5% % valószínûségû területet határolják, egyoldalas eseten pedig a % valószínûségterületet. A gyakorlatan ez azt jelenti, hogy a kritikus u értékeket kétoldalas próánál a 0.05 (α/), egyoldalasnál a 0.05 (α ) oszlopan kell keresni Elsõfajú és másodfajú hiák Statisztikai hipotézisek elfogadásánál vagy elvetésénél kétféle hiát lehet véteni: elsõfajú és másodfajú hiákat: Egy igaz hipotézis elfogadása Egy igaz hipotézis elvetése Egy hamis hipotézis elvetése Egy hamis hipotézis elfogadása nincs hia elsõfajú, vagy α hia.- nincs hia másodfajú vagy β hia. A kétféle hia jelentõségét csak az adott helyzeten lehet mérlegelni. A körülmények döntik el, hogy mi okoz nagyo kárt: egy jo növényvédõszer elvetése, vagy egy rossz evezetése, egy eteg kezelésének elhagyása, vagy egy egészséges megoperálása. Az elsõfajú hia valószínûségét a tévedési valószínûség csökkentésével lehet kiseiteni. A másodfajú hia valószínûségének eállítása onyolulta kérdés. 5.3 Gyakori statisztikus próák A továiakan két gyakran használt példát mutatunk e. A példák tö szempontól egyszerûek, de jó megjegyezni, hogy a matematikai statisztikának a gyakorlatan felvetõdõ neheze feladatokra (nem normális, vagy ismeretlen eloszlású adatok, különözõ mérteû minták st.) is számos megoldása van Két számtani közép egyezésének vizsgálata Két mérési eredményt akarunk összehasonlítani. A mérési eredmények véges n és n párhuzamos mérés átlagai, számtani közepek, x.és x értékek. Tudni szeretnénk, eltér-e
9 9 egymástól a két eredmény. Egyszerûség kedvéért tételezzük fel, hogy a két eredményt ugyanannyi párhuzamos mért értékõl számították, és azt is, hogy a mérési módszer pontossága a két mérés között nem változott. Tegyük fel továá, hogy a mért értékek normális eloszlásúak. A nullahipotézis: H 0 : µ = µ Feltevés : σ = σ n = n Az ellenhipotézis: H A : µ µ A nullahipotézisõl következik, hogy a vizsgált valószínûségi változónk a µ µ küllönség. Kérdés, mi ennek a különségnek a szórása? Tudjuk, hogy az x számtani közép varianciáját az s /n mennyiség ecsli. A varianciák összeadhatóságáól következik, hogy az x x különség szórása ecslése: s / n + s / n, esetünken: ( s + s )/ n. A szaadsági fok: *(n-). Ismerve ezeket a mennyiséget A számított t: t$ = x x ( + ) s s / n Ezt a mennyiséget kell a tálázati kritikus t(α,ν)-értékkel összemérni. 5. Numerikus példa (L. Sachs: Statistische Methoden, Springer, Berlin 993. p. 77) Legyen x = 4.76, x = 40., s = 33.44, s =.55, n = 30 ˆ t = = =.8666 / ( ) t kritikus értéke 95%-os megízhatósági szinten, 58 szaadsági foknál: t( α / = 0.05, ν = 58) =.00 A µ - µ különség konfidencia tartománya: *.366 µ - µ < * µ - µ < A két középérték nem tér el egymástól szignifikánsan, H 0 -t megtartjuk, a különség konfidencia tartománya 95% valószínûséggel tartalmazza 0-t Tapasztalati szórások összehasonlítása Mint errõl a 4..3 és 4..4 pontan már szó volt, valószínûségi változók négyzetei összegének összehasonlítására célszerûen nem különségük, hanem hányadosuk eloszlásfüggvénye használtatik. Végesszámú mintákól ecsült varianciák ilyen mennyiségek, a
10 0 döntõ függvény az F-eloszlás. Ha a szórások négyzetének hányadosa meghalad egy izonyos, α-tól függõ értéket, akkor a két variancia - α iztonsággal eltér egymástól. Az F eloszlás két másik változója a számláló és nevezõ szaadsági foka. A próa lépései a következõk: Legyen adott minta. A minták elemszáma legyen n és n. A két mintáól meghatározunk két standard deviációt: s -et és s -t. Kérdés: szignifikánsan eltér-e a két szórás? ) Fogalmazzuk meg a hipotéziseket: H 0 : σ = H A : σ σ σ (kétoldalas kérdésfeltevés) H 0 : σ H A : σ = σ < σ (egyoldalas kérdésfeltevés) ) Válasszunk tévedési valószínûséget (α) 3) Válasszuk ki a két szórás közül a nagyoat. Kapja ez az indexet. 4) Képezzük a számított Fˆ hányadost: 5) Keressük meg F kritikus értékét =. $F s s F -nek három változója van: a tévedési valószínûség (α) és a két szaadsági fok: ν = n - és ν = n -. A kritikus F értékek a tálázatok α oldalán, a ν oszlopan és a ν soran találhatók. Egyoldalas kérdésfeltevésnél az α valószínüséghez tartozó tálázatot, kétoldalasnál az α/ valószínüséghez tartozó tálázatot kell választani. Ha a számított Fˆ nagyo a kritikusnál, a nullahipotézist el kell vetni, a szórások szignifikánsan eltérnek egymástól, adott tévedési valószínûséggel. 5. Numerikus példa: Elfogadhatjuk-e azt az 5. példáan megadott hipotézist, miszerint az aan szereplõ szórások megegyeznek? (L. Sachs: Statistische Methoden, Springer, Berlin 993. p. 77) H 0 : σ = H A : σ σ σ (kétoldalas kérdésfeltevés) α = 0.05 s = 33.44, s =.55, n = 30, n = 30, ν = 9,. ν = Fˆ = =.483 <.09 = F(9,9,0.05).55 A nullahipotézist elfogadjuk.
1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása
HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat
Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1
Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában
Bevezetés a hipotézisvizsgálatokba
Bevezetés a hipotézisvizsgálatokba Nullhipotézis: pl. az átlag egy adott µ becslése : M ( x -µ ) = 0 Alternatív hipotézis: : M ( x -µ ) 0 Szignifikancia: - teljes bizonyosság csak teljes enumerációra -
Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.
Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát
GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet
GVMST22GNC Statisztika II. 3. előadás: 8. Hipotézisvizsgálat Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Hipotézisvizsgálat v becslés Becslés Ismeretlen paraméter Közeĺıtő
STATISZTIKA. Egymintás u-próba. H 0 : Kefir zsírtartalma 3% Próbafüggvény, alfa=0,05. Egymintás u-próba vagy z-próba
Egymintás u-próba STATISZTIKA 2. Előadás Középérték-összehasonlító tesztek Tesztelhetjük, hogy a valószínűségi változónk értéke megegyezik-e egy konkrét értékkel. Megválaszthatjuk a konfidencia intervallum
Hipotéziselmélet - paraméteres próbák. eloszlások. Matematikai statisztika Gazdaságinformatikus MSc szeptember 10. 1/58
u- t- Matematikai statisztika Gazdaságinformatikus MSc 2. előadás 2018. szeptember 10. 1/58 u- t- 2/58 eloszlás eloszlás m várható értékkel, σ szórással N(m, σ) Sűrűségfüggvénye: f (x) = 1 e (x m)2 2σ
STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése
4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól
Statisztika I. 9. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 9. előadás Előadó: Dr. Ertsey Imre Statisztikai hipotézis vizsgálatok elsősorban a biometriában alkalmazzák, újabban reprezentatív jellegű ökonómiai vizsgálatoknál, üzemi szinten élelmiszeripari
Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a
Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,
Hipotézis vizsgálatok
Hipotézis vizsgálatok Hipotézisvizsgálat Hipotézis: az alapsokaság paramétereire vagy az alapsokaság eloszlására vonatkozó feltevés. Hipotézis ellenőrzés: az a statisztikai módszer, amelynek segítségével
biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás
Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani
Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok
STATISZTIKA 1. Előadás Hipotézisvizsgálatok Tematika 1. Hipotézis vizsgálatok 2. t-próbák 3. Variancia-analízis 4. A variancia-analízis validálása, erőfüggvény 5. Korreláció számítás 6. Kétváltozós lineáris
Hipotézis vizsgálatok
Hipotézis vizsgálatok Hipotézisvizsgálat Hipotézis: az alapsokaság paramétereire vagy az alapsokaság eloszlására vonatkozó feltevés. Hipotézis ellenőrzés: az a statisztikai módszer, amelynek segítségével
y ij = µ + α i + e ij
Elmélet STATISZTIKA 3. Előadás Variancia-analízis Lineáris modellek A magyarázat a függő változó teljes heterogenitásának két részre bontását jelenti. A teljes heterogenitás egyik része az, amelynek okai
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus
Biostatisztika VIII. Mátyus László. 19 October
Biostatisztika VIII Mátyus László 19 October 2010 1 Ha σ nem ismert A gyakorlatban ritkán ismerjük σ-t. Ha kiszámítjuk s-t a minta alapján, akkor becsülhetjük σ-t. Ez további bizonytalanságot okoz a becslésben.
Intervallumbecsle s Mintave tel+ Hipote zisvizsga lat Egyminta s pro ba k Ke tminta s pro ba k Egye b vizsga latok O sszef.
Intervallumbecsle s Mintave tel+ Hipote zisvizsga lat Egyminta s pro ba k Ke tminta s pro ba k Egye b vizsga latok O sszef. Feladatok Gazdaságstatisztika 7. Statisztikai becslések (folyt.); 8. Hipotézisvizsgálat
Hipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás
STATISZTIKA Hipotézis, sejtés 11. Előadás Hipotézisvizsgálatok, nem paraméteres próbák Tudományos hipotézis Nullhipotézis felállítása (H 0 ): Kétmintás hipotézisek Munkahipotézis (H a ) Nullhipotézis (H
Anyagvizsgálati módszerek Mérési adatok feldolgozása. Anyagvizsgálati módszerek
Anyagvizsgálati módszerek Mérési adatok feldolgozása Anyagvizsgálati módszerek Pannon Egyetem Mérnöki Kar Anyagvizsgálati módszerek Statisztika 1/ 22 Mérési eredmények felhasználása Tulajdonságok hierarchikus
x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:
Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Valószínűségi változó általános fogalma: A : R leképezést valószínűségi változónak nevezzük, ha : ( ) x, x R, x rögzített esetén esemény.
e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma:
Normális eloszlás ξ valószínűségi változó normális eloszlású. ξ N ( µ, σ 2) Paraméterei: µ: várható érték, σ 2 : szórásnégyzet (µ tetszőleges, σ 2 tetszőleges pozitív valós szám) Normális eloszlás sűrűségfüggvénye:
Statisztika Elıadások letölthetık a címrıl
Statisztika Elıadások letölthetık a http://www.cs.elte.hu/~arato/stat*.pdf címrıl Konfidencia intervallum Def.: 1-α megbízhatóságú konfidencia intervallum: Olyan intervallum, mely legalább 1-α valószínőséggel
Kettőnél több csoport vizsgálata. Makara B. Gábor MTA Kísérleti Orvostudományi Kutatóintézet
Kettőnél több csoport vizsgálata Makara B. Gábor MTA Kísérleti Orvostudományi Kutatóintézet Gyógytápszerek (kilokalória/adag) Három gyógytápszer A B C 30 5 00 10 05 08 40 45 03 50 35 190 Kérdések: 1. Van-e
STATISZTIKA. A Föld pályája a Nap körül. Philosophiae Naturalis Principia Mathematica (A természetfilozófia matematikai alapelvei, 1687)
STATISZTIKA 10. Előadás Megbízhatósági tartományok (Konfidencia intervallumok) Sir Isaac Newton, 1643-1727 Philosophiae Naturalis Principia Mathematica (A természetfilozófia matematikai alapelvei, 1687)
1. Példa. A gamma függvény és a Fubini-tétel.
. Példa. A gamma függvény és a Fubini-tétel.. Az x exp x + t )) függvény az x, t tartományon folytonos, és nem negatív, ezért alkalmazható rá a Fubini-tétel. I x exp x + t )) dxdt + t dt π 4. [ exp x +
STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika
Kettőnél több csoport vizsgálata. Makara B. Gábor
Kettőnél több csoport vizsgálata Makara B. Gábor Három gyógytápszer elemzéséből az alábbi energia tartalom adatok származtak (kilokalória/adag egységben) Három gyógytápszer elemzésébô A B C 30 5 00 10
egyetemi jegyzet Meskó Balázs
egyetemi jegyzet 2011 Előszó 2. oldal Tartalomjegyzék 1. Bevezetés 4 1.1. A matematikai statisztika céljai.............................. 4 1.2. Alapfogalmak......................................... 4 2.
Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision
Biomatematika 13. Varianciaanaĺızis (ANOVA)
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 13. Varianciaanaĺızis (ANOVA) Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date:
y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell
Példa STATISZTIKA Egy gazdálkodó k kukorica hibrid termesztése között választhat. Jelöljük a fajtákat A, B, C, D-vel. Döntsük el, hogy a hibridek termesztése esetén azonos terméseredményre számíthatunk-e.
Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem
agy számok törvényei Statisztikai mintavétel Várható érték becslése Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem A mérés mint statisztikai mintavétel A méréssel az eloszlásfüggvénnyel
6. Előadás. Vereb György, DE OEC BSI, október 12.
6. Előadás Visszatekintés: a normális eloszlás Becslés, mintavételezés Reprezentatív minta A statisztika, mint változó Paraméter és Statisztika Torzítatlan becslés A mintaközép eloszlása - centrális határeloszlás
Statisztika elméleti összefoglaló
1 Statisztika elméleti összefoglaló Tel.: 0/453-91-78 1. Tartalomjegyzék 1. Tartalomjegyzék.... Becsléselmélet... 3 3. Intervallumbecslések... 5 4. Hipotézisvizsgálat... 8 5. Regresszió-számítás... 11
Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása
Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból
Valószínűségi változók. Várható érték és szórás
Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :
A mérési eredmény megadása
A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a véletlenszerű
Normális eloszlás tesztje
Valószínűség, pontbecslés, konfidenciaintervallum Normális eloszlás tesztje Kolmogorov-Szmirnov vagy Wilk-Shapiro próba. R-funkció: shapiro.test(vektor) balra ferde eloszlás jobbra ferde eloszlás balra
Normális eloszlás paramétereire vonatkozó próbák
Normális eloszlás paramétereire vonatkozó próbák Az alábbi próbák akkor használhatók, ha a meggyelések függetlenek, és feltételezhetjük, hogy normális eloszlásúak a meggyelések függetlenek, véges szórású
földtudományi BSc (geológus szakirány) Matematikai statisztika elıadás, 2014/ félév 6. elıadás
Matematikai statisztika elıadás, földtudományi BSc (geológus szakirány) 2014/2015 2. félév 6. elıadás Konfidencia intervallum Def.: 1-α megbízhatóságú konfidencia intervallum: Olyan intervallum, mely legalább
Kiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely.
Kiválasztás A változó szerint Egymintás t-próba Mann-Whitney U-test paraméteres nem-paraméteres Varianciaanalízis De melyiket válasszam? Kétmintás t-próba Fontos, hogy mindig a kérdésnek és a változónak
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria Bódis Emőke 2016. 04. 25. J J 9 Korrelációanalízis Regresszióanalízis: hogyan változik egy vizsgált változó értéke egy másik változó változásának függvényében. Korrelációs
2013 ŐSZ. 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét!
GAZDASÁGSTATISZTIKA KIDOLGOZOTT ELMÉLETI KÉRDÉSEK A 3. ZH-HOZ 2013 ŐSZ Elméleti kérdések összegzése 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét! 2. Mutassa be az
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen
A Statisztika alapjai
A Statisztika alapjai BME A3c Magyar Róbert 2016.05.12. Mi az a Statisztika? A statisztika a valóság számszerű információinak megfigyelésére, összegzésére, elemzésére és modellezésére irányuló gyakorlati
Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg
LMeasurement.tex, March, 00 Mérés Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg a mérendő mennyiségben egy másik, a mérendővel egynemű, önkényesen egységnek választott
MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI
MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk
Kutatásmódszertan és prezentációkészítés
Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I
Statisztika I. 10. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 10. előadás Előadó: Dr. Ertsey Imre Varianciaanalízis A különböző tényezők okozta szórás illetőleg szórásnégyzet összetevőire bontásán alapszik Segítségével egyszerre több mintát hasonlíthatunk
STATISZTIKA. ( x) 2. Eloszlásf. 9. gyakorlat. Konfidencia intervallumok. átlag. 45% 40% 35% 30% 25% 20% 15% 10% 5% 0% (cm)
Normális eloszlás sűrűségfüggvénye STATISZTIKA 9. gyakorlat Konfidencia intervallumok f σ π ( µ ) σ ( ) = e /56 p 45% 4% 35% 3% 5% % 5% % 5% Normális eloszlás sűrűségfüggvénye % 46 47 48 49 5 5 5 53 54
Abszolút folytonos valószín ségi változó (4. el adás)
Abszolút folytonos valószín ségi változó (4. el adás) Deníció (Abszolút folytonosság és s r ségfüggvény) Az X valószín ségi változó abszolút folytonos, ha van olyan f : R R függvény, melyre P(X t) = t
[Biomatematika 2] Orvosi biometria. Visegrády Balázs
[Biomatematika 2] Orvosi biometria Visegrády Balázs 2016. 03. 27. Probléma: Klinikai vizsgálatban három különböző antiaritmiás gyógyszert (ß-blokkoló) alkalmaznak, hogy kipróbálják hatásukat a szívműködés
Biostatisztika Összefoglalás
Biostatisztika Összefoglalás A biostatisztika vizsga A biostatisztika vizsga az Orvosi fizika és statisztika I. fizika vizsgájával egy napon történik. A vizsga keretében 30 perc alatt 0 kérdésre kell válaszolni
Többváltozós lineáris regressziós modell feltételeinek
Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p
Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 11. előadás Előadó: Dr. Ertsey Imre Összefüggés vizsgálatok A társadalmi gazdasági élet jelenségei kölcsönhatásban állnak, összefüggnek egymással. Statisztika alapvető feladata: - tényszerűségek
K oz ep ert ek es variancia azonoss ag anak pr ob ai: t-pr oba, F -pr oba m arcius 21.
Középérték és variancia azonosságának próbái: t-próba, F -próba 2012. március 21. Hipotézis álĺıtása Feltételezés: a minta egy adott szempont alapján más populációhoz tartozik, mint b minta. Nullhipotézis
Kiváltott agyi jelek informatikai feldolgozása Statisztika - Gyakorlat Kiss Gábor IB.157.
Kiváltott agyi jelek informatikai feldolgozása 2018 Statisztika - Gyakorlat Kiss Gábor IB.157. kiss.gabor@tmit.bme.hu Példa I (Vonat probléma) Aladár 25 éves és mindkét nagymamája él még: Borbála és Cecília.
Segítség az outputok értelmezéséhez
Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró
Statisztikai következtetések Nemlineáris regresszió Feladatok Vége
[GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell
Valószínűségszámítás összefoglaló
Statisztikai módszerek BMEGEVGAT Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat
Kísérlettervezés - biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert u-próba Feltétel: egy ormális eloszlású sokaság σ variaciájáak számszerű értéke ismert. Hipotézis: a sokaság µ várható értéke
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,
STATISZTIKAI ALAPOK. Statisztikai alapok_eloszlások_becslések 1
STATISZTIKAI ALAPOK Statisztikai alapok_eloszlások_becslések 1 Pulzus példa Egyetemista fiatalokból álló csoport minden tagjának (9 fő) megmérték a pulzusát (PULSE1), majd kisorsolták ki fusson és ki nem
Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió
SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás
Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat
Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat 7. lecke Paraméter becslés Konfidencia intervallum Hipotézis vizsgálat feladata Paraméter becslés és konfidencia
Matematika III. 5. Nevezetes valószínűség-eloszlások Prof. Dr. Závoti, József
Matematika III. 5. Nevezetes valószínűség-eloszlások Prof. Dr. Závoti, József Matematika III. 5. : Nevezetes valószínűség-eloszlások Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul a TÁMOP
Matematikai geodéziai számítások 10.
Matematikai geodéziai számítások 10. Hibaellipszis, talpponti görbe és közepes ponthiba Dr. Bácsatyai, László Matematikai geodéziai számítások 10.: Hibaellipszis, talpponti görbe és Dr. Bácsatyai, László
Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem.
Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Elemi esemény: a kísérlet egyes lehetséges egyes lehetséges kimenetelei.
Kísérlettervezés alapfogalmak
Kísérlettervezés alapfogalmak Rendszermodellezés Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Kísérlettervezés Cél: a modell paraméterezése a valóság alapján
Matematikai statisztika c. tárgy oktatásának célja és tematikája
Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:
TARTALOMJEGYZÉK. 1. téma Átlagbecslés (Barna Katalin) téma Hipotézisvizsgálatok (Nagy Mónika Zita)... 23
TARTALOMJEGYZÉK 1. téma Átlagbecslés (Barna Katalin).... 7 2. téma Hipotézisvizsgálatok (Nagy Mónika Zita)... 23 3. téma Összefüggések vizsgálata, korrelációanalízis (Dr. Molnár Tamás)... 73 4. téma Összefüggések
Elemi statisztika. >> =weiszd= << december 20. Szerintem nincs sok szükségünk erre... [visszajelzés esetén azt is belerakom] x x = n
Elemi statisztika >> =weiszd=
Biostatisztika Összefoglalás
Biostatisztika Összefoglalás A biostatisztika vizsga A biostatisztika vizsga az Orvosi fizika és statisztika I. fizika vizsgájával egy napon történik. A vizsga keretében 30 perc alatt 0 kérdésre kell válaszolni
STATISZTIKAI ALAPOK. Statisztikai alapok_eloszlások_becslések 1
STATISZTIKAI ALAPOK Statisztikai alapok_eloszlások_becslések 1 Pulzus példa Egyetemista fiatalokból álló csoport minden tagjának (9 fő) megmérték a pulzusát (PULSE1), majd kisorsolták ki fusson és ki nem
Az első számjegyek Benford törvénye
Az első számjegyek Benford törvénye Frank Benford (1883-1948) A General Electric fizikusa Simon Newcomb (1835 1909) asztronómus 1. oldal 2. oldal A híres arizonai csekk sikkasztási eset http://www.aicpa.org/pubs/jofa/may1999/nigrini.htm
A bergengóc lakosság szemszín szerinti megoszlása a négy tartományban azonos:
A. Matematikai Statisztika 2.MINTA ZH. 2003 december Név (olvasható) :... A feladatmegoldásnak az alkalmazott matematikai modell valószínűségszámítási ill. statisztikai szóhasználat szerinti megfogalmazását,
A valószínűségszámítás elemei
A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:
4/24/12. Regresszióanalízis. Legkisebb négyzetek elve. Regresszióanalízis
1. feladat Regresszióanalízis. Legkisebb négyzetek elve 2. feladat Az iskola egy évfolyamába tartozó diákok átlagéletkora 15,8 év, standard deviációja 0,6 év. A 625 fős évfolyamból hány diák fiatalabb
Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.
Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,
A leíró statisztikák
A leíró statisztikák A leíró statisztikák fogalma, haszna Gyakori igény az, hogy egy adathalmazt elemei egyenkénti felsorolása helyett néhány jellemző tulajdonságának megadásával jellemezzünk. Ezeket az
Elméleti összefoglaló a Valószín ségszámítás kurzushoz
Elméleti összefoglaló a Valószín ségszámítás kurzushoz Véletlen kísérletek, események valószín sége Deníció. Egy véletlen kísérlet lehetséges eredményeit kimeneteleknek nevezzük. A kísérlet kimeneteleinek
Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.
Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,
Többváltozós Regresszió-számítás
Töváltozós Regresszió-számítás 3. előadás Döntéselőkészítés módszertana Dr. Szilágyi Roland Korreláció Célja a kacsolat szorosságának mérése. Regresszió Célja a kacsolatan megfigyelhető törvényszerűség
Elemszám becslés. Kaszaki József Ph.D. SZTE ÁOK Sebészeti Műtéttani Intézet
Elemszám becslés Kaszaki József Ph.D. SZTE ÁOK Sebészeti Műtéttani Intézet Miért fontos? Gazdasági okok: Túl kevés elem esetén nem tudjuk kimutatni a kívánt hatást Túl kevés elem esetén olyan eredmény
Least Squares becslés
Least Squares becslés A négyzetes hibafüggvény: i d i ( ) φx i A négyzetes hibafüggvény mellett a minimumot biztosító megoldás W=( d LS becslés A gradiens számítása és nullává tétele eredményeképp A megoldás
STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 7. Előadás Egyenletes eloszlás Binomiális eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell /56 Matematikai statisztika Reprezentatív mintavétel
Matematikai statisztikai elemzések 3.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematikai statisztikai elemzek 3. MSTE3 modul Becslelmélet: alapfogalmak, nevezetes statisztikák, intervallum-becsl SZÉKESFEHÉRVÁR
BIOMETRIA (H 0 ) 5. Előad. zisvizsgálatok. Hipotézisvizsg. Nullhipotézis
Hipotézis BIOMETRIA 5. Előad adás Hipotézisvizsg zisvizsgálatok Tudományos hipotézis Nullhipotézis feláll llítása (H ): Kétmintás s hipotézisek Munkahipotézis (H a ) Nullhipotézis (H ) > = 1 Statisztikai
Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat
Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi fizika és statisztika I. előadás 2016.11.09 Orvosi
Matematika III. 9. Statisztikai hipotézisek Prof. Dr. Závoti, József
Matematika III. 9. Statisztikai hipotézisek Prof. Dr. Závoti, József Matematika III. 9. : Statisztikai hipotézisek Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027
Többváltozós lineáris regressziós modell feltételeinek tesztelése I.
Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Kvantitatív statisztikai módszerek Petrovics Petra Többváltozós lineáris regressziós
Biometria, haladó biostatisztika EA+GY biometub17vm Szerda 8:00-9:00, 9:00-11:00 Déli Tömb 0-804, Lóczy Lajos terem
Biometria, haladó biostatisztika EA+GY biometub17vm Szerda 8:00-9:00, 9:00-11:00 Déli Tömb 0-804, Lóczy Lajos terem Előadások-gyakorlatok 2018-ban (13 alkalom) IX.12, 19, 26, X. 3, 10, 17, 24, XI. 7, 14,
Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 15. Nemparaméteres próbák Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date: November
Matematikai alapok és valószínőségszámítás. Normál eloszlás
Matematikai alapok és valószínőségszámítás Normál eloszlás A normál eloszlás Folytonos változók esetén az eloszlás meghatározása nehezebb, mint diszkrét változók esetén. A változó értékei nem sorolhatóak
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.22. Valószínűségi változó Véletlentől függő számértékeket (értékek sokasága) felvevő változókat valószínűségi változóknak nevezzük(jelölés: ξ, η, x). (pl. x =
Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók
Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz
Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes
Hipotézis vizsgálatok. Egy példa. Hipotézisek. A megfigyelt változó eloszlása Kérdés: Hatásos a lázcsillapító gyógyszer?
01.09.18. Hpotézs vzsgálatok Egy példa Kérdések (példa) Hogyan adhatunk választ? Kérdés: Hatásos a lázcsllapító gyógyszer? Hatásos-e a gyógyszer?? rodalomból kísérletekből Hpotézsek A megfgyelt változó