1. Mérési példafeladat A matematikai inga vizsgálata
|
|
- Liliána Kerekes
- 6 évvel ezelőtt
- Látták:
Átírás
1 Hoyan készítsünk jeyzőkönyvet? Az aábbiakban ey pédamérést, a hozzá tartozó kiértékeést és rafikus módszerre történő hibaszámítást, vaamint a mérésrő készüt jeyzőkönyv vázatát szeretnénk bemutatni. A jeyzőkönyvben dőt betűve jeötük a mejeyzéseket. 1. Mérési pédafeadat A matematikai ina vizsáata Matematikai ina esetén a T enésidő és az ina hossza között kis kitérések esetén a következő összefüés á fenn: T = 2π, (1) aho a nehézséi yorsuás. Feadatunk ezen összefüés kíséreti eenőrzése, vaamint a nehézséi yorsuás mehatározása. Rözítsük a mérőáványra a fonára akasztott fémoyót. (A fémoyó ey kis horoa akasztható a fonára.) Mérjük me stopperra a fonaina enésidejét küönböző fonáhosszak esetén. értékét rafikus úton kaphatjuk me, ennek érdekében cészerű az (1) eyenetet a következő aakra átrendezni: =. (2) 4π 2T2 Ekkor az y i = i értékek az x i = Ti 2 füvényében eyenest adnak, meynek meredeksée Ebbő már mehatározható. MÉRÉSI FELADATOK 1. Mérjük me a 15, 30, 60, 100 és 135 cm hosszú fonáina enésidejét. Mindeyik mérést eaább háromszor véezzük e. 2. Ábrázojuk az ( i, T 2 i ) pontpárokat. Veyük fiyembe, hoy az i = 0, T i = 0 is mérési pont. 3. Iesszünk eyenest az ( i, Ti 2 ) pontpárokra és számítsuk ki a nehézséi yorsuás értékét. 4. Határozzuk me rafikus módszerre a nehézséi yorsuás hibáját (inkább: a számítási hibát). 2. Órán mért adatok A feadat azt kéri, hoy a enésidőket eaább háromszor mérjük e. Mive ey enésidő 1-2 s, a nay (a enésidőve összemérhető) reakcióidő miatt cészerű eaább 10 enésidőt eyszerre emérni. 4π 2. 1
2 (cm) 10 T(s) 15 9, , , , ,0 3. Kiértékeés A kiértékeéshez ki ke számítanunk a T i és Ti 2 értékeket. A rafikus hibaszámításhoz további két oszopot founk hasznáni, az üres ceákat cészerű már most ekészíteni. Kitötésükhöz szüksé van az eyenes-iesztés során nyert paraméterekre. Az órán mért adatokná mé tetszőees mértékeyséet hasznáhattunk, a kiértékeéskor készített tábázatban azonban már mindent SI mértékeysében ke meadni. A hasznát mértékeyséet fe ke tüntetni a tábázatban. Ezt kétféeképpen tehetjük me. Az eyszerűbb az, ha fejécet készítünk és ebbe írjuk be a mért mennyisé jeét és mértékeyséét. (Mi ezt a módszert követjük.) A másik ehetősé az, ha minden mennyisé után közvetenü odaírjuk a mértékeyséét is. A tábázatba ne feejtsük e beírni az i = 0, T i = 0 mérési pontot is! Iesztés (m) 10 T(s) T(s) T 2 (s 2 ) i. (m) i. (m) ,15 9,2 0,92 0,8464 0,3 11,4 1,14 1,2996 0,6 16,7 1,67 2,7889 1,0 21,1 2,11 4,4521 1,35 23,0 2,3 5,29 A következő épés a tábázatban taáható adatokra történő iesztés. Pédánkban a címen metaáható GNUPLOT nevű proramot ismertetjük. A jeyzőkönyv készítésekor természetesen más iesztőproram is hasznáható. A proramba írjuk be tizedespontta az eső oszopba az x, a második oszopba az y értékeket. Jeen esetben az =. 4π 2T2 eyenetet hasznájuk, íy az x értékek a tábázatban kiszámot Ti 2 értékek, mí az y-ok az ezekhez tartozó i értékek. Az adatok beírása után kattintsunk az Iesztés mekezdése ombra. A proram áta kiírt paraméterekbő nekünk csak az aábbi részetre esz szüksé: Fina set of parameters Asymptotic Standard Error ======================= ========================== a = / (105%) b = / (5.296%) 2
3 A GNUPLOT proram a + b x aakban ieszti az eyenest, ez azt jeenti, hoy az iesztett eyenes eyenete jeen esetben y = 0, x 0, A jeyzőkönyvbe írjuk fe az iesztett eyenes eyenetét, vaamint azt is, hoy miyen proramma iesztettünk. (Küönböző proramokka a numerikus hibáknak köszönhetően küönböző iesztett eyenesekhez juthatunk, bár az etérés többnyire nem jeentős.) Eenőrizzük, hoy a kapott iesztett eyenes mefee-e várakozásainknak és számítsuk ki a nehézséi yorsuás értékét. A (2) eyenet y = b x aakú, aho y =, x = T 2 és b = 4π 2. Íy az iesztett eyenestő azt várjuk, hoy a teneymetszete, azaz a körübeü nua eyen. A kapott b értékbő számíthatjuk ki -t: = b4π 2. Íy jeen esetben = 9, 76 m s 2 adódik. Mive mindent SI-ben számotunk, íy értékét is SI-ben kapjuk me. Fontos, hoy -t nem számohatjuk ki a tábázatban soronként a = 4π 2 képet seítsééve. Ekkor uyanis mé nem iazotuk, hoy az (1) összefüés tejesü, íy természetesen T 2 kiszámítására sem hasznáhatjuk azt. Mit ronthattunk e, ha a várttó nayon küönböző értéket kaptunk? Ha 10 m -tő nayon s 2 etér a nehézséi yorsuás értéke, érdemes eenőrizni a következőket. SI-ben számotunk-e mindent? Iesztésné az x értékekhez a T 2 értékeit írtuk-e? (x és y értékeit fecseréve az eredmény nayon más esz!) Nem írtunk-e e vaamit az iesztésné? (Pédáu nem írtunk-e akár csak eyeteney értékné tizedespont heyett tizedesvesszőt?) A tábázatban mindent jó számotunk-e ki? Ha ezekné a részekné minden rendben van, akkor már csak ey doot tehetünk: eenőrizzük, hoy jó mértük-e e az adatokat, ietve menézzük, hoy a fevett adatok reáisak-e. Iyenkor fetéteezzük, hoy az eredeti (jeen esetben az (1)) összefüés jó, és kiszámojuk, hoy = 9, 81 m2 értékke számova miyen időadatot keett vona mérni. Ha az adatok jók, akkor s vaószínűe eszámotunk vaamit. Ha nem, cészerű újramérni, vay federíteni, hoy mi okozhatott ekkora etérést. Hibaszámítás A hibaszámításhoz az eméeti tudnivaók a webcímen metaáhatók. Itt csak azt mutatjuk me, hoyan akamazhatók eyszerűen az ott eírtak. 3
4 A rafikus hibaszámítás során me ke határozni, hoy a mért értékek mennyire térnek e az iesztett értékektő. Ezért eőször kiszámojuk az iesztett értékeket, azaz kiszámojuk azt, hoy az eyenes az átaunk mért x i = Ti 2 pontokban miyen értékeket vesz fe. T 2 (s 2 ) i. (m) i. (m) 0 0, , , ,8464 0, , , , ,2996 0, , , , ,7889 0, , , , ,4521 0, , , , ,29 0, , 29 0, ,27057 Következő épésként ki ke számítani a = i. értékeket. Viyázzunk, ez eőjees menynyisé. Az eredeti tábázatunk íy a következő aakot öti: (m) 10 T(s) T(s) T 2 (s 2 ) i. (m) i. = (m) , , ,15 9,2 0,92 0,8464 0, , ,3 11,4 1,14 1,2996 0, , ,6 16,7 1,67 2,7889 0, ,0515 1,0 21,1 2,11 4,4521 1, , ,35 23,0 2,3 5,29 1, ,07943 Az b meredeksé hibájának mehatározásához a T 2 rafikonon be ke rajzoni az x teneyre szimmetrikus bennfoaó téaapot. E téaap átójának a meredeksée adja me az eyenes meredekséének hibáját. A meredeksé a tα = szöe szemközti oda szö meetti oda képette számítható. Esetünkben a szöe szemközti oda hossza 0,15886, mí a szö meetti oda hossza 5,29. A bennfoaó téaap átójának meredeksée íy 0, Az iesztett eyenes b meredeksée tehát az aábbi formában írható fe: b = 0, ±0, m s 2. Látható, hoy feesees ennyi tizedesjeyet hasznáni, eé a b = 0, 247 ± 0, 003 m s 2 feírás. Ebbő a nehézséi yorsuás és a hibája a = b 4π 2 képet aapján = 0, 247 4π 2 = 9, 76 m s 2, mí = 0, 003 4π 2 = 0, 12 m s 2. Íy = 9, 76 ± 0, 12 m s 2 aakban írható. 4. Jeyzőkönyv A MATEMATIKAI INGA VIZSGÁLATA Mérést véezte: Mérőtárs neve 1 : Mérés időpontja: Jeyzőkönyv eadásának időpontja: 1 Ez csak abban az esetben nem szüksées, ha az ietőnek nincs mérőpárja. 4
5 A mérés céja Azt szeretnénk iazoni, hoy matematikai ina esetében iaz a T = 2π összefüés, ha az inát csak kis szöben térítjük ki. Szeretnénk emeett mehatározni a nehézséi yorsuás értékét. (A képetben T a enésidő, az ina hossza, pedi a nehézséi yorsuás.) A jeyzőkönyvet úy ke ekészíteni, hoy azok számára is érthető eyen, akik nem ismerik a mérést. Ezért ha képetet írunk a jeyzőkönyvbe, akkor me ke nevezni, hoy mit jeönek az eyes betűk. Kérjük, hoy a jeyzőkönyvet saját szavaikka írják me, és ne veyenek át mondatokat, mondatrészeket az interneten is metaáható seédanyabó. A mérőeszközök Fonáina oyóva, stopperóra, mérőszaa. A mérés rövid eírása Mérőszaa seítsééve beáítjuk a fonaina hosszát eőször 15 cm-re, majd feakasztjuk a mérőáványra és (eyben) emérünk tíz enésidőt. Ezután vátoztatjuk az ina hosszát 30, 60, 100, véü 135 cm-re. Minden esetben tíz enésidőt mérünk. Csak a ényees eemeket ke itt meemíteni, iyen pédáu, hoy tíz enésidőt mértünk. Számítóépes mérésekné a mérés rövid eírásába nem tartozik bee, hoy a proramot hoyan ke hasznáni, csak az, hoy a proram mit mér és hoyan értékei azt ki. Mérési adatok (m) 10 T(s) 0,15 9,2 0,30 11,4 0,60 16,7 1,00 21,1 1,35 23,0 Itt a fonáina hossza, és T a fonáina enésideje. Fiyejünk arra, hoy a jeyzőkönyvben már a mérési adatok is csak SI-ben ehetnek! Mive A mérés céja fejezetben már definiáuk -et és T-t, ezért most nem ke fetétenü újra definiánunk a tábázatban hasznát jeöéseket. Hibaforrások 1. A fonáina hosszát csak 2-3 mm pontosan ehetett beáítani. 2. A enésdő mérésekor a reakcióidő is szerepet játszott, ez becsésem szerint körübeü 0,2s-ot jeenthetett. 5
6 Kiértékeés A T = 2π összefüés eyszerű aebrai átaakításokka az = 4π 2 T 2 aakra hozható. A tábázatban metaáható és T 2 értéke is. Ezekre az adatokra a GNUPLOT proram seítsééve eyenest iesztettem. Az eyenes eyenete: y = 0, x 0, , aho y = és x = T 2. i az iesztett eyenes küönböző Ti 2 heyeken fevett értéke. A hibaszámításhoz a i. = értékeket is kiszámítottam. (m) 10 T(s) T(s) T 2 (s 2 ) i. (m) i. = (m) , , ,15 9,2 0,92 0,8464 0, , ,3 11,4 1,14 1,2996 0, , ,6 16,7 1,67 2,7889 0, ,0515 1,0 21,1 2,11 4,4521 1, , ,35 23,0 2,3 5,29 1, ,07943 Az (1) rafikon mutatja -et a T 2 füvényében, mí a (2) rafikonon i. = (m)-et ábrázotuk T 2 füvényében. Ez utóbbi rafikonró eovasható, hoy az iesztett eyenes meredekséének hibája 0,15886 = 0, Íy a b meredeksé az aábbi aakot öti: b = 5,29 0, ± 0, m, azaz b = 0, 247 ± 0, 003 m. Ebbő a = 9, 76 ± 0, 12 m érték adódik. s 2 s 2 s 2 6
7 Az ábrakészítésre vonatkozó tudnivaók a webodaon taáhatók (9. oda). Eredmények/Eredménytábázat ± ( m s 2 ) irodami ( m s 2 ) 9, 76 ± 0, 12 9,81 Diszkusszió Az T 2 rafikon pontjaira jó ieszkedik az iesztett eyenes, íy azt mondhatjuk, hoy sikerüt iazoni a T = 2π összefüést. Az iesztett eyenes meredekséébő számot nehézséi yorsuás értéke hibán beü meeyezik a Budapesten mérhető nehézséi yorsuás értékéve (9, 81 m s 2 ). 7
Az egyszeres függesztőmű erőjátékáról
Az eyszeres üesztőmű erőjátékáró A címbei szerkezet az 1 ábrán szeméhető részeteive is 1 ábra orrása: [ 1 ] A szerkezet működésének jeemzése: ~ a vízszintes kötőerenda a két véén szabadon eekszik a közepén
Függvények közelítése hatványsorral (Taylor-sor) Ha az y(x) függvény Taylor-sorának csupán az elsı két tagját tartjuk meg, akkor az
Füvénye özeítése htványsorr (Tyor-sor z heyen többször deriváhtó y( füvényt z pont örnyezetében jó özeíthetjü z dy( d y( d y( y( y( ( ( (! d! d! d véteen htványsorr. derivát értéét z heyen e számítni.
0. mérés A MÉRNÖK MÉR
0. mérés A MÉRNÖK MÉR 1. Bevezetés A mérnöki ismeretszerzés eyik klasszikus formája a mérés, és a mérési eredményekből levonható következtetések feldolozása (a mérnök és a mérés szó közötti kapcsolat nyilvánvaló).
Mágnesesség, elektrodinamika
Mánesessé, eektrodinamika Máneses aapjeenséek: Eyes vasércek, pédáu manetit (Fe 3 O 4 ) képesek apró vasdarabokat maukhoz vonzani. máneses test és a vasdarab között mindi vonzó a köcsönhatás. z iyen máneseket
A mérés célkitűzései: A sűrűség fogalmának mélyítése, különböző eljárások segítségével sűrűség mérése.
A mérés célkitűzései: A sűrűsé foalmának mélyítése, különböző eljárások seítséével sűrűsé mérése. Eszközszüksélet: Mechanika I. készletből: állvány, mérőhener fecskendő különböző anyaokból készült, eyforma
2. Közelítő megoldások, energiaelvek:
SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK 4. MECHANIKA-VÉGESELEM MÓDSZER ELŐADÁS (kidogozta: Szüe Veronika, eg. ts.) IV. eőadás. Közeítő megodások, energiaevek:.4. Ritz-módszer,.4.. Lineáris
Atommagok mágneses momentumának mérése
Atommaok máneses momentumának mérése Tóth Bence fizikus, 3. évfolyam 2006.02.23. csütörtök beadva: 2005.03.16. 1 1. A mérés célja a proton -faktorának mehatározása, majd a fluor és a proton -faktorai arányának
=... =...e exponenciális alakú a felírása. komplex számok nagyságai és x tengellyel bezárt szögei. Feladat: z1z 2
SZÉCHENYI ISTVÁN EGYETEM MECHANIKA - REZGÉSTAN ALKALMAZOTT MECHANIKA TANSZÉK Eméet édése és váaso eyetem aapépésben (BS épésben) éstvevı ménöhaató sámáa (0) Matemata aapo A eméet édése öött seepehetne
Két példa lineárisan változó keresztmetszetű rúd húzása
Két péda ineárisan vátozó keresztmetszetű rúd húzása Eőző dogozatnkban meynek címe: Hámos rúd húzása szintén egy vátozó keresztmetszetű, egyenes tengeyű, végein P nagyságú erőve húzott rúd esetét vizs
A tapasztalat szerint a Faraday-féle indukciótörvény alakja a nyugalmi indukcióra: d U o Φ
4 Nyuami indukció Faraday-fée indukció törvény, interáis és differenciáis aak Szoenoid tekercs önindukciós eyütthatója Máneses mező eneriája és eneriasűrűsée Huroktörvény átaánosítása eyeten hurok esetében
2. Közelítő megoldások, energiaelvek:
SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK 3. MECHANIKA-VÉGESELEM MÓDSZER ELŐADÁS (kidogozta: Szüe Veronika, egy. ts.) III. eőadás. Közeítő megodások, energiaevek:.. A tejes otenciáis energia
(4) Adja meg a kontinuum definícióját! Olyan szilárd test, amelynek tömegeloszlása és mechanikai viselkedése folytonos függvényekkel leírható.
SZÉCHENYI ISTVÁN EGYETEM MECHANIKA - REZGÉSTAN ALKALMAZOTT MECHANIKA TANSZÉK Eméet édése és váaszo eyetem aapépzésben (BS épzésben) észtvevő ménöhaató számáa () Adja me az anya pont defníóját! defníó:
Castigliano- és Betti-tételek összefoglalása, kidolgozott példa
Castigiano- és Betti-téteek összefogaása, kidogozott péda Készítette: Dr. Kossa Attia kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék Frissítve: 15. január 8. Az aakvátozási energiasűrűség számítása egy
Lineáris erőtörvény vizsgálata és rugóállandó meghatározása
Lineáris erőtörvény vizsgálata és rugóállandó meghatározása A mérés célja Szeretnénk igazolni az F=-Dx skaláris Hooke-törvényt, azaz a rugót nyújtó erő és a rugó megnyúlása közt fennálló lineáris kapcsolatot,
Tartalom Fogalmak Törvények Képletek Lexikon
Fizikakönyv ifj. Zátonyi Sándor, 016. Tartalom Foalmak Törvények Képletek Lexikon A szabadesés Az elejtett kulcs, a fáról lehulló alma vay a leejtett kavics füőleesen esik le. Ősszel a falevelek azonban
Cölöpcsoport függőleges teherbírásának és süllyedésének számítása
17. számú mérnöki kézikönyv Frissítve: 2016. április Cölöpcsoport füőlees teherbírásának és süllyedésének számítása Proram: Fájl: Cölöpcsoport Demo_manual_17.sp Ennek a mérnöki kézikönyvnek a célja, a
FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
izika középszint 1012 ÉRETTSÉGI VIZSGA 11. május 17. IZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐORRÁS MINISZTÉRIUM JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ ELSŐ RÉSZ A feleletválasztós
M M b tg c tg, Mókuslesen
Mókusesen A két egyforma magas fiú Ottó és András a sík terepen áó fenyőfa törzsén fefeé mászó mókust figyei oyan messzirő ahonnan nézve a mókus már csak egy pontnak átszik ára ára Amikor a mókus az M
Matematika a fizikában
DIMENZIÓK 53 Matematikai Közlemények III kötet, 015 doi:10031/dim01508 Matematika a fizikában Nay Zsolt Roth Gyula Erdészeti, Faipari Szakközépiskola és Kolléium nayzs@emknymehu ÖSSZEFOGLALÓ A cikkben
A késdobálásról. Bevezetés
A késdobáásró Beezetés Már sok ée annak, hogy kést dobátunk, több - keesebb sikerre. Ez tisztán tapasztaati úton működött. Femerütek bizonyos kérdések, ameyekre nem kaptunk áaszt sehon - nan. Ezek pédáu
7. BINER ELEGYEK GŐZ-FOLYADÉK EGYENSÚLYA; SZAKASZOS REKTIFI KÁLÁS JELLEMZÉSE
DESZTILLÁCIÓ 63 7. BINER ELEGYEK GŐZ-FOLYADÉK EGYENSÚLYA; SZAKASZOS REKTIFI KÁLÁS JELLEMZÉSE A desztiáció foyadékeegyek akotórészeinek eváasztása az eegy részeges egőzöögtetéséve és az eküönített (átaában
A befogott tartóvég erőtani vizsgálatához III. rész
A befogott tartóvég erőtani vizsgáatához III. rész Az I. részben a befogott gerendavéget merevnek, a tehereoszást ineáris függvény szerintinek vettük. A II. részben a befogott gerendavéget rugamasan deformáhatónak,
Szabályozó áramlásmérővel
Méretek Ø Ød Leírás Akamazási terüet Az áramásmérő fehasznáható szabáyozásra és foyamatos áramásmérésre is. Áandó beépítésre készüt, így már a tervezési fázisban specifikáni ke. Ød Ø Szereési, mérési,
KÖRNYEZETVÉDELEM- VÍZGAZDÁLKODÁS ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Környezetvédele-vízazdálkodás iseretek eelt szint Javítási-értékelési útutató 1811 ÉRETTSÉGI VIZSGA 018. ájus 16. KÖRNYEZETVÉDELEM- VÍZGAZDÁLKODÁS ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI
Mérést végezte: Varga Bonbien. Állvány melyen plexi lapok vannak rögzítve. digitális Stopper
Mérést végezte: Varga Bonbien Mérőtárs neve: Megyeri Balázs Mérés időpontja: 2008.04.22 Jegyzőkönyv Leadásának időpontja: 2008.04.29 A Mérés célja: Hooke Törvény Vizsgálata Hooke törvényének igazolása,
II. Egyenáramú generátorokkal kapcsolatos egyéb tudnivalók:
Bolizsár Zolán Aila Enika -. Eyenáramú eneráorok (NEM ÉGLEGES EZÓ, TT HÁNYOS, HBÁT TATALMAZHAT!!!). Eyenáramú eneráorokkal kapcsolaos eyé univalók: a. alós eneráorok: Természeesen ieális eneráorok nem
2. MECHANIKA-VÉGESELEM MÓDSZER ELŐADÁS (kidolgozta: Szüle Veronika, egy. ts.) II. előadás
SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK. MECHANIKA-VÉGESELEM MÓDSZER ELŐADÁS (kiogozta: Szüe Veronika egy. ts.) II. eőaás. Közeítő megoások energiaevek: Összetett rugamas peremérték feaat
Számítások. *Előadásanyagban nem szerepel. Kamat idővel egyenesen arányos. 1.3. Példa - Kamatos kamat egész évekre éven belül egyszerű kamat
Számítások.Kamatszámítás..Péda - Kamatos kamat Számítsuk ki a visszafizetedő összeget az aábbi kostrukció eseté (kamatos kamatta számova), ha 2005.0.0-é köcsö adtuk 200.000 Ft- ot, 205.2.3-é kapjuk vissza
ELLENŐRZŐ KÉRDÉSEK LENGÉSTANBÓL: A rugóállandó a rugómerevség reciproka. (Egyik végén befogott tartóra: , a rugómerevség mértékegysége:
ELLENŐRZŐ ÉRDÉSE LENGÉSNBÓL: Átaáno kérdéek: Mik a engőrendzer eemei?: engőrendzer eemei: a tömeg(ek), a rugó(k), ietve a ciapítá(ok). Mi a rugóáandó?: rugóáandó a rugó egyégnyi terheé aatti aakvátozáát
1.9. FOLYADÉK GŐZNYOMÁSÁNAK MEGHATÁROZÁSA A HŐMÉRSÉKLET FÜGGVÉNYÉBEN EGYSZERŰ SZTATIKUS ELJÁRÁSSAL, PÁROLGÁSHŐ SZÁMÍTÁSA
1.9. FOLYADÉK GŐZNYOMÁSÁNAK MEGHATÁROZÁSA A HŐMÉRSÉKLET FÜGGVÉNYÉBEN EGYSZERŰ SZTATIKUS ELJÁRÁSSAL, PÁROLGÁSHŐ SZÁMÍTÁSA A mérés kivitelezése és az eredmények meadása tekintetében ez a leírás az irányadó.
I n n o v a t i v e M e t r o l o g y AXIOMTOO. Fejlődés a KMG technológiában. Axiom too manuális és CNC koordináta mérőgépek bemutatása
I n n o v a t i v e M e t r o o g y AXIOMTOO Fejődés a KMG technoógiában Axiom too manuáis és CNC koordináta mérőgépek bemutatása Aberink Ltd Est. 1993 Egy kompett eenőrző központ Axiom too... a következő
Harmonikus rezgőmozgás
Haronikus rezgőozgás (Vázat). A rezgőozgás fogaa. Rezgőozgás eírását segítő ennyiségek 3. Kapcsoat az egyenetes körozgás és a haronikus rezgőozgás között 4. A haronikus rezgőozgás kineatikai egyenetei
Három erő egyensúlya kéttámaszú tartó
dott: z 1. ábr szerinti kéttámszú trtó. Három erő egyensúy kéttámszú trtó 1. ábr Keresett: ~ rekcióerők vektor, szerkesztésse és számításs, z ábbi dtok esetén ; ~ speciáis esetek tgás. dtok: F = 10,0 kn;
Korpuszbútor hátfalrögzítő facsavarjainak méretezéséről
Koruszbútor hátfarögzítő facsavarjainak méretezésérő Páyám korai szakaszában köze kerütem bútorszerkezetek erőtani számításaihoz is. Az akkoriban feehető egyébként nagyon kisszámú hasznáható szakirodaom
Kinematika 2016. február 12.
Kinematika 2016. február 12. Kinematika feladatokat oldunk me, szamárháromszö helyett füvényvizsálattal. A szamárháromszöel az a baj, hoy a feladat meértése helyett valami szabály formális használatára
Kiváló teljesítmény kivételes megtakarítás
motoros és LPG meghajtású eensúyos targonák 4 pneumatikus gumiabrons 1.5 3.5 tonna FD/FG15N FD/FG18N FD/FG20CN FD/FG20N FD/FG25N FD/FG30N FD/FG35N Kiváó tejesítmény kivétees megtakarítás A GRENDIA ES típust
ARCA TECHNOLOGY. Fali kazán család KONDENZÁCIÓS. Kis méretű Digitális, elektronikus vezérléssel SEDBUK BAND A
ARCA TECHNOLOGY Fai kazán csaád KONDENZÁCIÓS Kis méretű Digitáis, eektronikus vezérésse SEDBUK BAND A A Heizer új, kifejezett kis méretű (7 x 400 x 0) kondenzációs faikazánja eektronikus szabáyzássa, digitáis
Anyagmozgatás Gyakorlati segédlet. Gyakorlatvezetı: Dr. Németh Gábor Ph.D. egyetemi adjunktus. Sopron, 2009
Nyugat-Magyarországi Egyetem Faipari Mérnöki Kar Gépészeti Intézet Anyagmozgatás Gyakorati segédet Gyakoratvezetı: Dr. Németh Gábor Ph.D. egyetemi adjunktus Sopron, 009 Lánctranszportır Mőszaki adatok:
Radványi Gábor alpolgármester. Szabó László vezérigazgató. Tisztelt Képviselő-testület! Tárgy: Javaslat fedett jégpálya létesítésére
Eőterjesztő: Eőkészítő: Radványi Gábor apogármester Kőbányai Vagyonkezeő Zrt. Szabó Lászó vezérigazgató Tárgy: Javasat fedett jégpáya étesítésére Tisztet Képviseő-testüet! A Budapest Főváros X. kerüet
Intermodális közösségi közlekedési csomópont kialakítása Győrött. Melléklet Környezeti helyzetértékelés
FŐMTERV ENVECON Konzorcium Tsz: 12.12.125 Intermodális közösséi közlekedési csomópont kialakítása Győrött (KÖZOP-5.5.0-09-11-2011-0005) Melléklet Környezeti helyzetértékelés Mebízó: Győr Meyei Joú Város
Rugalmas állandók mérése
Rugalmas állandók mérése Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina Szerda délelőtti csoport Mérés ideje: 11/30/2011 Beadás ideje: 12/07/2011 1 1. A mérés rövid leírása Mérésem
A csomagolóipar feladata az 1169/2011/EU rendelet tükrében"
A csomaolóipar feladata az 1169/2011/EU rendelet tükrében" Szeedyné Fricz Ánes főosztályvezető-helyettes Élelmiszer-feldolozási Főosztály 2014. október 29. 1 Az Európai Parlament és a Tanács 1169/2011/EU
PÓRA Katalin, NAGY László
Az ionizációs differenciáis hatáskeresztmetszet tanumányozása H 2 moekua esetében Study of Ionization Differentia Cross Section in Case of H 2 Moecue PÓRA Katain, NAGY Lászó Fizika Kar, Babeş Boyai Tudományeyetem,
merevségének oldódásával és az mtézrnél!1yl
I az 991192-es tan.év Komárom-Eszterszabáyozás merevségének odódásáva és az mtézrné!1y gom, A egfontosabb cékitűzés az tantárgy- és tanórarendszert érintő térnyeréséve- eindutak az intézményekben, és ma
Solow modell levezetések
Solow modell levezetések Szabó-Bakos Eszter 25. 7. hét, Makroökonómia. Aranyszabály A azdasá működését az alábbi eyenletek határozzák me: = ak α t L α t C t = MP C S t = C t = ( MP C) = MP S I t = + (
Fizika 1X, pótzh (2010/11 őszi félév) Teszt
Fizika X, pótzh (00/ őszi félév) Teszt A sebessé abszolút értékének időszerinti interálja meadja az elmozdulást. H Az átlayorsulás a sebesséváltozás és az eltelt idő hányadosa. I 3 A harmonikus rező mozást
Lakatos J.: Analitikai Kémiai Gyakorlatok Anyagmérnök BSc. Hallgatók Számára, (2008)
1. yak.: Gravimetria Leveő nedvessétartalmának mehatározása. Vízminta oldott sótartalmának mehatározása Porminta nedvessétartalmának és izzítási maradékának mehatározása. A ravimetria olyan analitikai
Kábel-membrán szerkezetek
Kábe-membrán szerkezetek Szereési aak meghatározása Definíció: Egy geometriai aak meghatározása adott peremfetéte és eőfeszítés esetén ameyné a beső erők egyensúyban vannak. Numerikus módszerek: Geometriai
Éves Energetikai Szakreferens Jelentés havi bontással. Baár-Madas Református Gimnázium Budapest, Lórántffy Zsuzsa u. 3. CÉG.
Éves Energetikai Szakreferens Jeentés havi bontássa CÉG Baár-Madas Református Gimnázium Jeentési időszak 2017 TELEPHELY 1022. Budapest, Lórántffy Zsuzsa u. 3. SZAKREFJEL_FEDLAP Page 1 Energetikai Szakreferensi
25. FOLYADÉK GŐZNYOMÁSÁNAK MEGHATÁROZÁSA A HŐMÉRSÉKLET FÜGGVÉNYÉBEN EGYSZERŰ SZTATIKUS ELJÁRÁSSAL, PÁROLGÁSHŐ SZÁMÍTÁSA
25. FOLYADÉK GŐZNYOMÁSÁNAK MEGHATÁROZÁSA A HŐMÉRSÉKLET FÜGGVÉNYÉBEN EGYSZERŰ SZTATIKUS ELJÁRÁSSAL, PÁROLGÁSHŐ SZÁMÍTÁSA A szüksées elméleti háttér: - a fáziseyensúly termodinamikai feltétele; - Gibbs-féle
levegőztetés2 levegőztetés2 A levegőztetés technikai megvalósítása LEVEGŐELOSZTÓ kevert/levegőztetett δ g ellenállás k g
A eveőztetés techniai mevaósítása KEVERÕMÛ EVEGŐESZTÓ Kevert evert/eveőztetett xién átadás buborébó 1.A ázbuboré főtömeébő diffúzió a áz/foyadé határfeüetre. 1/ δ eenáás "vezetõépessé (anyaátadási tényező).diffúzió
3. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: dr. Nagy Zoltán egy. adjunktus; Bojtár Gergely egy. ts.; Tarnai Gábor mérnöktanár) y P
SZÉCHEYI ISTVÁ EGYETEM LKLMZOTT MECHIK TSZÉK MECHIK-SZILÁRDSÁGT GYKORLT (idogota: dr ag Zotán eg adjuntus; Bojtár Gerge eg ts; Tarnai Gábor mérnötanár) Vastag faú cső húása: / d D dott: a ábrán átható
A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása.
A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása. Eszközszükséglet: Bunsen állvány lombik fogóval 50 g-os vasból készült súlyok fonál mérőszalag,
Gazdaságos kapcsolat: kondenzációs technika és napenergia-hasznosítás
28 GÁZBERENDEZÉSEK, GÁZFELHASZNÁLÁS 2006 Gazdaságos kapcsoat: kondenzációs technika és napenergia-hasznosítás Miyen feadatokra haszná(hat)juk a napsugárzást? Miért nevezhetõ kataizátornak a szoáris fûtésrásegítéses
Hőtágulás (Vázlat) 1. Szilárd halmazállapotú anyagok hőtágulása a) Lineáris hőtágulás b) Térfogati hőtágulás c) Felületi hőtágulás
Hőáguás (Váza). Sziárd hamazáapoú anyagok hőáguása a) Lineáris hőáguás b) érfogai hőáguás c) Feüei hőáguás 2. Foyékony hamazáapoú anyagok hőáguása. A víz rendeenes visekedése hőáguáskor 4. Gázok hőáguása
2002. október 29. normalizáltjai eloszlásban a normális eloszláshoz konvergálnak, hanem azt is, hogy a
A Vaószínűségszámítás II. eőadássorozat hetedik eőadása. 2002. október 29. Határeoszástéteek függeten vektor értékű vaószínűségi vátozókra. Hangsúyoztuk, hogy a Lindeberg fée centráis határeoszástéte nemcsak
Egy másik alapfeladat fűrészelt, illetve faragott gerendákra. 1. ábra
Ey másik alapfeladat fűrészelt, illetve faraott erendákra Az előző dolozatokban ld.: ( E - 1 ), ( E - ), ( E - ) már szinte teljesen előkészítettük az itteni feladatot. Ehhez tekintsük az 1. ábrát! 1.
+ 6 P( E l BAL)+ 6 P( E l K ZEJ>);
\ Lássátok be, hogy a következő két összefüggés is heyes! ~ 2 P(EIJOBB) = 6P(EIKEZDO)+ 6P(EIJOBB)+ 6 0 + ö, + 6 P( E BAL)+ 6 P( E K ZEJ>);.., P( E KOZEP) = 6 + 6 P( E BAL)+ 6 P( E JOBB) + 6 O+ + ~P( E
Tömegmérés stopperrel és mérőszalaggal
Tömegmérés stopperrel és mérőszalaggal 1. Általános tudnivalók Mérőhelyén egy játékpisztolyt, négy lövedéket, valamint egy jól csapágyazott, fatalpra erősített fémlemezt talál. A lentebb közölt utasítások
AERMEC hőszivattyú az előremutató fűtési alternatíva
- AERMEC hőszivattyú az előremutató fűtési alternatíva A hőszivattyúk a kifordított hűtőép elvén a környezetből a hőeneriát hasznosítják épületek fűtésére a felhasználó által kifizetett eneriaárra vonatkoztatva
BÉKÉSCSABA MEGYE1 JOGÚ VÁROS. Békéscsaba, Szent István tér 7.
BÉKÉSCSABA MEGYE1 JOGÚ VÁROS ALPOLGÁRMESTERÉTŐL Békéscsaba, Szent István tér 7. Ik!. sz.: V.449120fO. Eőadó: Túriné Kovács Márta Tarné dr. Maatyinszki Anita, Nagy Árpád Me.: f Hiv. sz: Postacím: 5601 Pf
Parabola - közelítés. A megoszló terhelés intenzitásának felvételéről. 1. ábra
Paraboa - közeítés A kötéstatikáva aktívan fogakozó Ovasónak az aábbiak ismétésnek tűnhetnek vagy nem Hosszabb tanakoás után úgy öntöttem, hogy a nem tejesen nyivánvaó ogokró éremes ehet szót ejteni Iyennek
Mechanikailag deformált grafén optikai vezetőképessége
Tudományos Diákköri Dogozat Mechanikaiag deformát grafén optikai vezetőképessége Könye Viktor Témavezetők: Dr. Cserti József Széchenyi Gábor Eötvös Loránd Tudományegyetem Természettudományi Kar Kompex
Sugárszivattyú H 1. h 3. sugárszivattyú. Q 3 h 2. A sugárszivattyú hatásfoka a hasznos és a bevezetett hidraulikai teljesítmény hányadosa..
Suárszivattyú suárszivattyúk működési elve ey nay eneriájú rimer folyadéksuár és ey kis eneriájú szekunder folyadéksuár imulzusseréje az ún. keverőtérben. rimer és szekunderköze lehet azonos vay eltérő
2. MECHANIZMUSOK GYAKORLAT (kidolgozta: Bojtár Gergely egy. Ts; Tarnai Gábor mérnöktanár.)
1/7 SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK 2. MECHANIZMUSOK GYAKORLAT (idolozta: Bojtár Gerely ey. Ts; mérnötanár.) Mechanizmuso szerezeti éplete határozottsái foai 2.1. Adott: A mechanizmus
4. A mérések pontosságának megítélése
4 A mérések pontosságának megítélése 41 A hibaterjedési törvény Ha egy F változót az x 1,x,x 3,,x r közvetlenül mért adatokból számítunk ki ( ) F = F x1, x, x3,, x r (41) bizonytalanságát a hibaterjedési
Salgótarján Megyei Jogú Város Polgárm estere. Javaslat stratégiai együttműködési megállapodás megkötésére
Sagótarján Megyei Jogú Város Pogárm estere Szám:12382/2014. Javasat stratégiai együttműködési megáapodás megkötésére A szabad váakozási zónák kedvező fetéteeket és kedvezményeket biztosítanak a gazdasági
FFT =0.. 1! 1 %=0.. 1! 2. Legyen az ú.n. egységgyök a következő definícióval megadva: &# = 3
FFT. oldal A DFT alkalmas valamely időüő jel Fourier transzormáltjának előállítására és íy a spektrum elvételére is. Futási ideje azonban o(n ) ami ien korlátozottá teszi használatát - a spektrum uyanis
O k t a t á si Hivatal
k t a t á si Hivatal 01/01. tanévi rszáos Középiskolai Tanulmányi Verseny Kémia I. kateória. orduló I. FELADATR Meoldások 1. A helyes válasz(ok) betűjele: B, D, E. A lenayobb elektromotoros erejű alvánelem
Mágneses szuszceptibilitás mérése
Mágneses szuszceptibilitás mérése Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina Szerda délelőtti csoport Mérés ideje: 10/19/2011 Beadás ideje: 10/26/2011 1 1. A mérés rövid leírása
J ~15-. számú előterjesztés
Budapest Főváros X. kerüet Kőbányai Önkormányzat Apogármestere J ~15-. számú eőterjesztés Eőterjesztés a Képviseő-testüet részére a Magyar Labdarúgó Szövetség Országos abdarúgó páyaépítési programján történő
A lecke célja: A tananyag felhasználója megismerje a forgó tömegek kiegyensúlyozásának elméleti alapjait.
modu: Kinematika Kinetika 4 ecke: Forgó tömegek kiegensúoása ecke céja: tananag fehasnáója megismerje a forgó tömegek kiegensúoásának eméeti aapjait Követemének: Ön akkor sajátította e megfeeően a tananagot
SMART Ink szabadkézi beépülő modul
SMART Ink szabadkézi beépülő modul Mac OS X operációs rendszer szoftver Felhasználói útmutató Hihetetlenül eyszerű Termékreisztráció Ha reisztráltatja a SMART terméket, akkor értesítjük az új funkciókról
Az úttengely helyszínrajzi tervezése során kialakuló egyenesekből, átmeneti ívekből és körívekből álló geometriai vonal pontjait számszerűen pontosan
Úttengeyek számítása és kitűzése Az úttengey heyszínrajzi tervezése során kiaakuó egyenesekbő, átmeneti ívekbő és körívekbő áó geometriai vona pontjait számszerűen pontosan rögzíteni ke, hogy az a terepen
Általános beállítások
Page 1 of 21 Átaános beáítások Nyissa meg az Opciók menü Átaános beáítások... menüpontját. Itt megvátoztathatja a Sprint-Layout összes beáítását. Aap beáítások Mértékegység Itt beáíthatja a Sprint-Layout
EGY KIS KLASSZIKUS DIFFERENCIÁLGEOMETRIA, A GAUSSBONNET-TÉTEL BIZONYÍTÁSA. 1. Bevezetés
Alkalmazott Matematikai Lapok 26 (2009), 9-15. EGY KIS KLASSZIKUS DIFFERENCIÁLGEOMETRIA, A GAUSSBONNET-TÉTEL BIZONYÍTÁSA SZEMLÉLETES BIZONYÍTÁST ADUNK A FELÜLETELMÉLET FONTOS TÉTELÉRE FARKAS MIKLÓS 1.
~IIami ~ámbrtlő$ék JELENTÉS. a távfűtés és melegvízszolgáltatás támogatási és gazdálkodási rendszerének vizsgálatáról. 1991. május hó 55.
~IIami ~ámbrtő$ék JELENTÉS a távfűtés és meegvízszogátatás támogatási és gazdákodási rendszerének vizsgáatáró 1991. május hó 55. A vizsgáatot Nagy József régióvezető főtanácsos vezette. Az összefogaót
Összefüggések a marótárcsás kotrógépek elméleti és tényleges
Összefüggések a marótárcsás kotrógépek eméeti és tényeges tejesítménye között BREUER JÁNOS ok. bányamérnök, DR.DAÓ GYÖRGY ok. bányagépészmérnök, ok. küfejtési szakmérnök A küfejtésnek a viág bányászatában
Minőség, amiben bízhat SZALAGFŰRÉSZLAPOK ÉS FÉMMEGMUNKÁLÓ SZERSZÁMOK
Minősé, amiben bízhat SZALAGFŰRÉSZLAPOK ÉS FÉMMEGMUNKÁLÓ SZERSZÁMOK Köszönti Önt a Bahco Fémfűrészelés Katalóus Öröel mutatjuk be a Bahco leújabb fejlesztésű ipari szalafűrészlapjait. A folyamatos fejlődésünk
SMART Ink szabadkézi beépülő modul
SMART Ink szabadkézi beépülő modul Windows operációs rendszerek Felhasználói útmutató Hihetetlenül eyszerű Termékreisztráció Ha reisztráltatja a SMART terméket, akkor értesítjük az új funkciókról és szoftverfrissítésekről.
Rugalmas állandók mérése (2-es számú mérés) mérési jegyzõkönyv
(-es számú mérés) mérési jegyzõkönyv Készítette:,... Beadás ideje:.. 9. /9 A mérés leírása: A mérés során különbözõ alakú és anyagú rudak Young-moduluszát, valamint egy torziós szál torziómoduluszát akarjuk
Bepattanó kötés kisfeladat
Bepattanó kötés kisfeadat Hagató nee: Neptun kód: Bepattanó kötés kisfeadat FELADAT: Végzezze e az ADATTÁBLÁZAT (II. oda) megfeeő sorszámú adataia a tégaap keresztmetszetű egyensziárdságú, karos bepattanó
Szerelési kézikönyv. Díszítőpanel BYCQ140CW1 BYCQ140CW1W
Díszítőpanel BYCQ0CW BYCQ0CWW 9 8 7 6 6 6 7 7 +6 a a c e f d h 6 mm 6 8 7 9 6 BYCQ0CW Díszítőpanel BYCQ0CWW Előkészületek üzeme helyezés előtt Az üzeme helyezés helyén veye csak ki az eyséet a csomaolásól.
G~. számú előterjesztés
G~. számú eőterjesztés Budapest Főváros X. kerüet Kőbányai Önkormányzat Apogármestere Eőterjesztés a Gazdasági Bizottság részére a PGY &PGY Kft. részére játékterem üzemetetéséhez szükséges tuajdonosi hozzájáruásró
Ellenırzési nyomvonal
3.sz. meéket Eenırzési nyomvon z Ámháztrtás mőködési rendjérı szóó 217/1998. (XII. 30.) Kormányrendeet 145/B. (2) bekezdése kimondj, hogy z eenırzési nyomvon kötségvetési szerv szervezeti és mőködési szbáyztánk
Nagyteljesítményű elektrolízis berendezések www.prominent.com
Biztonságos és hatékony vízfertőtenítés konyhasóva Nagytejesítményű eektroízis berendezések www.prominent.com Környezetbarát vízfertőtenítés Az eektroízis gazdaságiag böcs, műszakiag érett aternatíva a
Elméleti előadás Bővített kiadás (Nem prezentációnak szánt változat) Készítette: Boldizsár Zoltán Attila
Elméleti előadás Bővített kiadás (Nem prezentációnak szánt változat) Készítette: Boldizsár Zoltán Attila zoltan.boldizsar@ttk.elte.hu 1. Jegyzőkönyv-készítés: általános elvárások A jegyzőkönyveknek meghatározott
Gerendák lehajlása: hibás-e a szilárdságtanon tanult összefüggés? Tudományos Diákköri Konferencia. Készítette: Miklós Zita Trombitás Dóra
Gerendák ehajása: hibás-e a sziárdságtanon tanut összefüggés? Tudományos Diákköri Konferenia Készítette: Mikós Zita Trombitás Dóra Konzuensek: Dr. Puzsik Anikó Dr. Koár Lászó Péter Budapesti Műszaki és
KIEGÉSZÍTÉS A VONALINTEGRÁLHOZ
KIEGÉSZÍTÉS A VONALINTEGRÁLHOZ BSC MATEMATIKATANÁR SZAKIRÁNY 28/29. TAVASZI FÉLÉV Az lábbikbn z el dáson vonlinterálról ill. primitív füvényr l elhnzottk közül zok olvshtók, mik Lczkovich-T. Sós: Anlízis
2. Rugalmas állandók mérése
2. Rugalmas állandók mérése Klasszikus fizika laboratórium Mérési jegyzőkönyv Mérést végezte: Vitkóczi Fanni Jegyzőkönyv leadásának időpontja: 2012. 12. 15. I. A mérés célja: Két anyag Young-modulusának
Fizika Országos Középiskolai Tanulmányi Verseny Harmadik fordulója a harmadik kategória részére 2006.
Fizika Országos Középiskoai Tanumányi Verseny Harmadik forduója a harmadik kategória részére 2006. Bevezetés A feadat megodásához aapvető ismeretekke ke rendekeznie a forgómozgássa kapcsoatban és a ferromágneses
BUDAPEST FŐVÁROS X. kerület KŐBÁNYAI ÖNKORMÁNYZAT POLGÁRMESTERE. Javaslat a Szent László Plébániatemp rendszerének fel
?. BUDAPEST FŐVÁROS X. kerüet KŐBÁNYAI ÖNKORMÁNYZAT POLGÁRMESTERE Tárgy: avasat a Szent Lászó Pébániatemp rendszerének fe om behatoás-ező úítására, korszerűsítésére és bővítésére Tisztet Képviseő-testüet!
MILTON ROY VEGYSZERADAGOLÓ SZIVATTYÚK
MILTON ROY VEGYSZERADAGOLÓ SZIVATTYÚK X I. kiadás TARTALOMJEGYZÉK Odaszám LMI sorozat átaános eírás 4 LMI vegyszeráósági tábázat - kivonat 6 LMI gyorskiváasztási tábázat 7 LMI szivattyúk nyomóodai speciáis
Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ)
Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ) KÉSZÍTETTE: DR. FÜVESI VIKTOR 2016. 10. Mai témáink o A hiba fogalma o Méréshatár és mérési tartomány M é r é s i h i b a o A hiba megadása o A hiba
ú Ú Ö É ú ü í í ü í í í í ü Ú í ű í ú ü ü í í ü ü í ü ü ú Í í ű í ü ü Ü í í ü í ú ű ú ú í í ü ú í ü É ü Ö í í ü ú ű í í ü í ű í í Í Ö í í ü Ö ú É Í í í í ü ű ü ű ü ü ü ü í í í í ú í ü í ú É ü ü ü ü í ü
ó ó ú ú ó ó ó ü ó ü Á Á ü É ó ü ü ü ú ü ó ó ü ó ü ó ó ú ú ú ü Ü ú ú ó ó ü ó ü ü Ü ü ú ó Ü ü ű ű ü ó ü ű ü ó ú ó ú ú ú ó ú ü ü ű ó ú ó ó ü ó ó ó ó ú ó ü ó ó ü ü ó ü ü Ü ü ó ü ü ü ó Ü ó ű ü ó ü ü ü ú ó ü
:.::-r:,: DlMENZI0l szoc!0toolnl ránsnnat0m A HELYI,:.:l:. * [:inln.itri lú.6lrl ri:rnl:iilki t*kill[mnt.ml Kilírirlrln K!.,,o,.r*,u, é é é ő é é é ő é ő ő ú í í é é é ő é í é ű é é ő ő é ü é é é í é ő
Ü Ö Á Á Á Á Á É ű Ü Ú ű ű Á É ű Ú Ü ű Ü Ü Ü Ü Ü Ü Ü Ü Ü Á Ü Ü Ü Ö Ö Ú Ö Ü Ö ű ű ű ű ű Á ű Ú ű ű ű ű ű É Á Ö Ö Ö ű ű ű Á ű ű ű ű ű ű ű ű ű ű Ü Ü Ü Ü ű ű ű ű ű ű ű ű ű ű ű Ú ű ű ű ű ű ű Ü Ö Ü Ó Ö ű ű ű
Ü Éü É ü í í Í ö Ü Ú ú Ó í ő í Ö ű ö Ó ú Ű ü í Ó ö Ó Ü Ó Ó í í ú í Ü Ü ő Ú Ó Ó í ú É ÉÉ É Á Ü Ü Ü Ú ő í Ő Ó Ü ő ö ü ő ü ö ú ő ő ő ü ö ő ű ö ő ü ő ő ü ú ü ő ü ü Í ü Í Á Ö Í É Ú ö Í Á Ö í É ö í ő ő í ö ü
Ö Ó ú É ű É Ö Ö Ö Ü Ó Ú É ú É Ü Ú ú Ü ű ú Ü Ö Ö ú ű Ú ű ű ú Ö Ö Ö Ö É ú ú Ő Ö ú Ü Ó ú Ú Ü Ö ű ű ű Ö ű ú Ó ű Ö Ü ű ú ú ú ú É ú Ö ú ú Ü ú Ó ú ú ú ú ú ú ű ű ú ű ú ú ű Ö ú ú ú ű Ö ú ű ú ű Ü Ö Ü ű Ü Ö ú ú Ü