III. Változás. I./9 Kémiai egyensúly I./10 Egyensúlyi elektrokémia
|
|
- Andor Biró
- 6 évvel ezelőtt
- Látták:
Átírás
1 III. Változás Miként jut a rendszer egyensúlyba? I./9 Kémiai egyensúly I./10 Egyensúlyi elektrokémia III./4 Molekulák mozgásban fizikai változások, nem reaktív rendszerek III./5-7 A kémiai reakciók sebessége, mechanizmusa, molekuláris dinamikája innentől reaktív rendszerek III./8 Folyamatok szilárd felületeken III./9 Dinamikus elektrokémia Fotokémia, nemtermikus aktiválás
2 Különféle halmazállapotok (fázisok) és ezek jellemzése, hasonlóságok és különbözőségek Transzportfolyamatok Diffúzió: anyagtranszport Hővezetés: energiatranszport Viszkozitás: impulzustranszport Gázok, kinetikus gázelmélet Effúzió
3 Ebből következik: a molekulák mozgása és ennek makroszkopikus következményei jelentősen különböznek a három fázisban, de sok közös vonással is bírnak.
4 Példák a hasonlóságra és különbözőségre: a diffúzió és a hővezetés mindhárom halmazállapotban (fázisban) fellépő jelenség: a c, illetve T gradiens kiegyenlítődése molekuláris szintű transzport (nem makroszkopikus konvekció) révén; azonos jellegű egyenlettel írhatók le. a viszkozitás (folyás) csak fluid (gáz- és folyadékfázisban) lép fel, kristályokban nem az ionvezetés: csak elektromos erőtér-gradiens (azaz feszültség) hatására, csak oldatokban és olvadékokban jön létre. Szilárd fázisban elektronvezetés van, gázban nincs vezetés, csak kisülés.
5 Példák a hasonlóságra és különbözőségre: a nyomás: gázfázisban: a molekulák kinetikus energiája nagy, a falon ütközve impulzusok változik, ez okozza az edény minden falán fellépő nyomást (alul, oldalt és felül is!) Ez külső erőtér nélkül is létezik, pl. az űrhajókban. folyadékfázisban: a molekulák kinetikus energiája már kicsi, ez közvetlenül nem okoz nyomást, de gravitációs erőtérben a folyadék súlya az edény alján nyomást okoz, amit a molekulák mozgása átvisz az edény oldalfalára is. szilárd fázisban: csak a gravitáció okozta súly eredményez nyomást, s csak az test alsó falán.
6 Adott halmazállapotú rendszerek csoportosítása: külső erőtértől mentes állapotban. Ezen belül: T, p, c tekintetében homogének (egyensúly!) T, p, c tekintetében inhomogének, azaz bennük T, p, c vagy pl. sűrűséggradiens van. Ekkor μ kiegyenlítődési (transzport) folyamatok indulnak el (hővezetés, diffúzió, viszkozitás, konvekció, keveredés, nyomáshullám). külső erőtérben (inhomogén nyomás, gravitáció, elektromos, mágneses erőtér ) Ekkor halmazállapottól is függő változások mennek végbe: V, p változás, alakváltozás, folyás, áramlás, sűrűségeloszlás, elektromos vezetés
7 Molekulák mozgásban Ismét az egyszerű rendszerekkel kezdjük: fizikai jelenségeket tárgyalunk, melyekben nincsenek kémiai változások (transzportjelenségek vagy transzportfolyamatok, nem reaktív rendszerek) ezt követően tárgyaljuk a kémiai változásokat (reakciók, reaktív rendszerek) beleértve a dinamikus elektrokémiát. 1. Megfogalmazzuk a jelenséget, megmérjük a fenomenológikus viselkedést, felírjuk az egyenleteket,. majd egyszerű modellek segítségével a molekulák mozgásával értelmezzük azokat.
8 Transzportjelenségek Jelenség -gradiens -transzport Diffúzió Koncentráció- Anyag- Hővezetés Hőmérséklet- Energia- Viszkozitás Sebesség- Impulzus- Elekrolitvezetés Elektromos potenciál- Töltés- A transzportjelenségek elvileg mindhárom fázisban megvalósulnak, bár néhány kivétel van (gázban, szilárd fázisban nincs elektrolitvezetés). Itt csak a molekulák vannak mozgásban, a rendszer vagy makroszkopikus részei nincsenek: sem konvekcióval, sem kever(ed)éssel nem számolunk.
9 Transzportfolyamatok Diffúzió: részecsketranszport Hővezetés: energiatranszport Elektrolitos vezetés: töltéstranszport Viszkozitás: impulzustranszport
10 Transzportfolyamatok A transzportjelenségek közös fogalmai: gradiens: valamely paraméter (T, c, E...) nem egyenletes, inhomogén eloszlása a térben, annak legalább egy iránya ( tengelye ) mentén. fluxus: egy adott sajátság (m, v...) vándorlásának jellemzője annak egységnyi felületen, egységnyi idő alatt áthaladt mennyisége. Jele: J(anyag, töltés stb.). J dn anyag dz N: részecskesűrűség (részecskék száma egységnyi térfogatban)
11 Diffúzió: anyagtranszport (molekuláris szinten) J anyag dn D dz Fick I. törvénye: az anyagfluxus arányos a koncentrációgradienssel. A koncentrációkülönbség értelmezhető a kémiai potenciál különbségeként is (mivel μ függ c-től), itt a μ kiegyenlítődése (azaz az egyensúly elérése) diffúzióval történik. Gyakorlati jelentősége: pl. anyagmozgások a talajban. Konvekció és folyás: makroszkopikus! [J]: (db) m - s -1 anyagfluxus [D]: m s -1 diffúziós együttható dn/dz: (db) m -4 koncentrációgradiens
12 Hővezetés: energiatranszport J energia dt dz [J]: J m - s -1 energiafluxus [κ]: J K -1 m -1 s -1 hővezetési együttható dt/dz: K m -1 hőmérsékleti gradiens Fick I. törvényéhez hasonlóan: az energiafluxus arányos a dt/dz hőmérsékletgradienssel. Jó hővezetők: fémek (Ag, Cu, Au, Al), gyémánt Jó hőszigetelők: vákuum, CO, pehelytoll, műanyag, fa Egy gyakorlati jelentőség: házak (falak, üvegek) hőszigetelése. Megkülönböztetünk molekuláris hővezetést, makroszkopikus (konvektív) hőáramlást és fotonok hordozta hősugárzást.
13 J Viszkozitás (folyás): impulzustranszport impulzus z dv dz x: a folyadék és az impulzus eredeti haladási iránya z: a súrlódás révén az impulzus ebben az x-re merőleges z irányban transzportálódik. x [J]: kg m -1 s - impulzusfluxus [η]: kg m -1 s -1 viszkozitás(i együttható) 1 P (poise) = 0,1 kg m -1 s -1 dv x /dz: s -1 impulzusgradiens
14 Adatok gázokra: Diffúziós együtthatók: 10-4 m s -1 Hővezetési együtthatók: 0,01-0,1 J K -1 m -1 s -1 Viszkozitások: kg m -1 s -1
15 a transzportegyenletek, azon belül az együtthatók értelmezése molekuláris modellezéssel. A fenomenológikus leírás (az egyenletek alakja) nem, de az egyes rendszerek tulajdonságai, és így a megfontolások, a modellek már függenek a rendszer halmazállapotától.
16 Kinetikus gázelmélet Molekulák gradiensmentes gáztérben (makroszkópos egyensúly). A gázrészecskék (m tömegpontok) szüntelen, véletlenszerű, egyenes vonalú, egyenletes (nem gyorsuló) mozgása és rugalmas (alakváltozás-mentes) ütközések. A gázrészecskéknek csak m tömege és v sebessége számít, így impulzusuk, kinetikus energiájuk van (minőség, méret, alak, szerkezet, orientáció elhanyagolható). Más jelenségekhez is ezt az egyszerű modellt finomítjuk. Reális gázok viselkedéséhez a molekulák közötti vonzó/taszító erőket és saját térfogatukat is figyelembe vesszük (van der Waals-egyenlet). Maxwell Boltzman-eloszlás (E a értelmezéséhez).
17 Kinetikus gázelmélet A kinetikus gázelmélet (többek között) értelmezi a gáznyomást a (kis) edény falán: m tömegű, v sebességű, mv impulzusú részecskék rugalmasan (alakváltozás nélkül) ütköznek a falon, impulzusváltozásuk (+mv-ből mv lesz) eredményezi a nyomást, ami a teljes gáztérben egyenletes. 1 pv nmv 3 A folyadékot tartalmazó edényben fellépő nyomást a Föld gravitációs erőterében a folyadékrészecskék súlya, s nem transzlációs mozgása okozza. Ilyen nyomás az űrben (gravitációs tér = 0) nem lép fel, gáznyomás viszont ott is van.
18 Kinetikus gázelmélet részeredményei: Közepes szabad úthossz: σ: ütközési hatáskeresztmetszet A p és T hatása λ-ra a képletben kiegyenlíti egymást. Az m tömegű (azaz M=N A m móltömegű) részecske 1/ 1/ átlagsebessége: 8kBT 8RT c m M Az átlagsebesség egyenesen arányos T 1/ -vel, és fordítva arányos M 1/ -vel. p Z w 1 / mk BT Z w : az ütközések száma egységnyi felületen, egységnyi idő alatt Ütközési fluxus: k B T p
19 Effúzió jelensége, törvénye és értelmezése Effúzió: a gáz az edényből kis lyukon át a külső vákuumba lassan távozik (a lyukas autógumi leereszt: nem durrdefekt!). [A vákuum viszonylagos, lényeg az egyirányú effúzió.] Graham-féle effúziós törvény: az effúzió sebessége fordítva arányos a moláris tömeg négyzetével (korábban móltömeg meghatározásra is használták): A maradó gáz tömegének mérésével a folyamat egyszerűen és jól követhető. Az effúzió sebessége az ütközési szám (Z w ) és A 0 lyuk felület szorzatából közvetlenül adódik: effúzió sebessége Z effúzió sebessége w A o pa o 1/ 1 / mk T MRT B 1 M pa o N A
20 A nyomás az effúziós kamrában időben exponenciálisan csökken: Kevésbé illékony anyagok gőznyomásának meghatározása az effúzió időbeli követésével: ez fontos pl. vékony fémbevonatok párologtatásos előállításakor. A fémet az effúziós kamrában magasabb T-n tartják. A fém párolgása pótolja az effúziós kiáramlást, a Δt idő alatti Δm tömegveszteség jól mérhető: Effúzió hasznosítása ahol, A V T k m e p p / B / t t A m M RT p / o 1
21 A gáznyomás inhomogenitása külső erőtérben: Erőtérben (pl. a Föld gravitációs erőterében) nagyobb dimenziókban (pl. az atmoszférában) már nem egyenletes, hanem felfelé exponenciálisan csökken a nyomás. Ezt a könnyen levezethető és kimérhető ún. barometrikus formula írja le: p p 0 e Mgh RT Mesterséges gravitációs erőtérben (pl. centrifugában) is előidézhető ez a jelenség, s az így létrejövő M móltömegtől is függő nyomás (azaz koncentráció) - eloszlás tesz lehetővé izotópdúsítást.
22 A diffúzióállandó kiszámítása gázban: 0 d d 0 z N λ N λ N 4 J B c N J 4 B J c N J 0 d d 1 z N J z c 0 d d 0 z N λ N λ N
23 A transzportállandók számítás a kinetikus gázelméletből: diffúziós együttható: hővezetési együttható: viszkozitási együttható: 1 D c cc V,m 1 cmn 3 A
24 A diffúzióról bővebben: Az F termodinamikai erő fogalma: a mechanikai erőhöz [dw = F dx] hasonló fogalom. A termodinamikában a maximális nemtérfogati munka értéke: dw = dμ Ha a kémiai potenciál a helykoordináta függvénye, akkor: μ dw dμ dx x A két egyenlet összevetéséből a kémiai potenciálok különbségéből származó termodinamikai erő: μ F' x p,t p,t
25 A diffúzióról bővebben: A koncentrációgradiensből származó termodinamikai erő oldott anyagra: μ = μ Ө + RT lna Ha az oldat koncentrációja inhomogén: Ha az oldat ideális: a c? így: F' RT c x lna x Az F értéke számítható, pl. kn mol -1 értékekben. c A diffúzió Fick-féle I. törvénye: J D x A J fluxus arányos az s vándorlási sebességgel (és a c koncentrációval): J = sc J D c DF' Ekkor az F bevonásával: s c c x RT Ebből az s vándorlási sebesség vagy D számolható. F' RT c p,t p,t
26 A diffúzióról bővebben: Ionvándorlásnál (lásd később) tudjuk: s = εu Ebből néhány lépésben kapjuk az Einsteinösszefüggést: urt D zf Ez kapcsolat a jól mérhető u ionmozgékonyság és a D diffúziós együttható között (ionok esetén). Ebből származtatható a Nernst Einstein-egyenlet: és a Stokes Einstein-egyenlet: 0 m F RT z D D zfd RT z kbt 6a D hydr
27 A diffúzió időbelisége: a diffúzióegyenlet (Fick II. törvénye) Az adott x helyen bekövetkező koncentrációváltozás időbelisége: c c D t x A diffúzióegyenlet néhány megoldása: A megoldáshoz egy kezdeti feltételt és két peremfeltételt kell megadnunk: t = 0 időpontban az x, y síkban a koncentráció N 0 Nincs a rendszerben nyelő A koncentráció mindig véges Ilyen a cukor a tea alján modell: térbeni diffúzió
28 Dt relatív időskála A diffúzióegyenlet egyik megoldása: x 4Dt n0e c 1 / A Dt Koncentráció-eloszlások különböző síkok felett különböző Dt relatív időskála értékeknél
29 A diffúzióegyenlet kiterjesztése Csak diffúzió: Konvekció és diffúzió: Kémiai reakció, konvekció és diffúzió: x c D t c z c v x c D t c z kc z c v x c D t c z
30 Homogén Heterogén Egyensúlyi elektrokémia (árammentes rendszerek) Elektrolitoldatok termodinamikája: elektrolitos disszociáció ionok termodinamikája és aktivitása Galvánelemek/galváncellák és elektródok termodinamikája: elektrokémiai cellák cella- és elektródpotenciál elektródok típusai Dinamikus elektrokémia (áramjárta rendszerek) Elektrolitok vezetése: elektrolitos vezetés ionmozgékonyság Kohlrausch-törvények Elektródfolyamatok kinetikája: csereáramok túlfeszültség Tafel-egyenlet Butler-Volmer-egyenlet elektrolízis akkumulátorok
31 Mint transzportjelenség, egyben homogén dinamikus elektrokémia I. Az elektrolitoldatok vezetése (κ, Λ m, Λ mo ) - az ionok független vándorlása - Kohlrausch-törvény: Λ m = ν + λ + + ν λ II. Erős elektrolitok: - Kohlrausch vezetési törvénye: Λ m = Λ o m Kc ½ III. Gyenge elektrolitok: (α < 1, α = Λ m /Λ mo ) - Ostwald-féle hígítási törvény IV. Az ionok mozgékonysága V. Az ion-ion kölcsönhatások következményei
32 I. Az elektrolitoldatok vezetése Ionvezetés: az Ohm-törvény érvényes rá: I U / A G vezetés az R el ellenállás reciproka: G 1/ R el T növelésével κ is nő (fémvezetésnél fordítva van). Oldatban célszerűen: κ fajlagos vezetés: Gl / A (l: cellahossz, A: felület, C: cellaállandó) A koncentráció fontos, ezért használjuk a moláris (fajlagos) vezetést is: / c m A Λ m határértéke a Λ m o (végtelen híg oldat moláris fajlagos vezetése). R el GC
33 I. Az elektrolitoldatok vezetése A koncentráció fontos, ezért használjuk a moláris (fajlagos) vezetést is: m / c A Λ m határértéke a Λ o m (végtelen híg oldat moláris fajlagos vezetése). Az elektrolit vezetése az ionok vezetéséből adódik össze: ez az ionok független vándorlásának 0 Kohlrausch-féle törvénye: Λ m λ + és λ - : a kation és anion saját (egyedi) végtelen híg oldatbeli moláris fajlagos vezetése ν + és ν - : a kation és anion sztöchiometriai száma
34 Cella elektrolitok vezetésének mérésére Erős és gyenge elektrolitok vezetésének függése a koncentrációtól
35 II. Erős elektrolitok Fogalom (definíció): az erős elektrolitok oldatában minden koncentrációban gyakorlatilag (közel) teljes a disszociáció, azaz α = 1. Disszociációfok (α): a disszociált molekulák hányada. Az erős elektrolitok Kohlrausch-féle vezetési törvénye: Λ m Λ 0 m Kc K: kísérletileg meghatározható állandó; elsősorban az elektrolit összetételétől, és nem a minőségétől függ. 1
36 III. Gyenge elektrolitok Az α disszociációfok jól tükröződik az adott koncentrációjú oldat Λ m, és a végtelen híg oldat Λ o m vezetésének viszonyában: Savi disszociációs állandó: Ostwald-féle hígítási törvény: 1 m K a 1 Λ Λ m 0 m K a 1 0 m 0 m c m c 1
37 IV. Az ionok mozgékonysága vándorlási sebesség (s) az ionok mozgékonysága (u) közegellenállási tényező (f) mozgékonyság (u) és vezetés (λ) átviteli számok (t + és t - ) átviteli számok meghatározási módszerei
38 IV. Az ionok mozgékonysága Molekuláris kép: az a hydr sugarú ionok az η viszkozitású közegben az F el elektromos erő hatására felgyorsulnak, de ezt az F fric ellenkező irányú súrlódási erő lefékezi (Stokes-törvény). F el ze Ffric fs 6ahydrs Beáll a stacionárius s egyenletes sebességű mozgás: ze s u f Az ionvándorlás sebessége az ε elektromos térerő és az u ionmozgékonyság szorzata. Az u értéke: u ze f ze 6 a hydr
39 IV. Az ionok mozgékonysága Az u ionmozgékonyság mérése lehetőséget ad az a hydr hidrodinamikai ionsugár meghatározására. Ez a hidratáció/szolvatáció miatt eltér a gázfázisban mért ionsugár értékektől. Az u nagyságrendje: 10-8 m V -1 s -1. Érzékletesebben: 10 4 oldószermolekula/s. u ze f ze 6a hydr
40 IV. Az ionok mozgékonysága Az (ion)mozgékonyság és a (moláris) vezetés kapcsolata: érthető, hogy minél nagyobb a mozgékonyság, annál nagyobb a vezetés: zuf Ebből végtelen híg oldatra adódik: 0 Λ m z u z u F szimmetrikus elektrolitra: 0 Λ m z u u F
41 Átviteli szám Az átviteli szám: az áthaladó áram hányad részét szállítja a vizsgált ion: I t I Értelemszerűen: t + + t - = 1 A végtelen híg oldat átviteli számát kísérleti úton, extrapolációval kapjuk. Másrészt az ionmozgékonyságokból is adódik: Az átviteli számok meghatározási módszerei: mozgó határfelületek módszere Hittorf-módszer (elektródterek koncentrációváltozásának mérésével) átviteles galvánelem cellapotenciáljának összehasonlítása az átvitel nélküli elemével t 0 u u u
42 V. Az ion-ion kölcsönhatás (lásd: Kohlrausch-törvény: ) Figyeljük meg ε és η hatását / / RT ert ef qz B RT ef z A 0 m B A K 1 0 Kc Λ Λ m m
43 Debye Hückel Onsager-féle elmélet A DebyeHückel-elmélet alkalmazása ionvezetésre. a moláris fajlagos vezetés függése az ionerősség négyzetgyökétől számított görbék és mért adatok:
I./9 Kémiai egyensúly I./10 Egyensúlyi elektrokémia
Miként jut a rendszer egyensúlyba? I./9 Kéiai egyensúly I./ Egyensúlyi elektrokéia III./4 Molekulák ozgásban fizikai változások, ne reaktív rendszerek III./5-8 A kéiai reakciók sebessége, echanizusa, olekuláris
Példák a hasonlóságra és különbözőségre:
Különféle halmazállapotok (fázisok) és ezek jellemzése, hasonlóságok és különbözőségek Transzportfolyamatok Diffúzió: anyagtranszport Hővezetés: energiatranszport Viszkozitás: impulzustranszport Gázok,
HOMOGÉN EGYENSÚLYI ELEKTROKÉMIA: ELEKTROLITOK TERMODINAMIKÁJA
HOMOGÉN EGYENSÚLYI ELEKTROKÉMIA: ELEKTROLITOK TERMODINAMIKÁJA I. Az elektrokémia áttekintése. II. Elektrolitok termodinamikája. A. Elektrolitok jellemzése B. Ionok termodinamikai képződési függvényei C.
Molekulák mozgásban a kémiai kinetika a környezetben
Energiatartalék Molekulák mozgásban a kémiai kinetika a környezetben A termodinamika és a kinetika A termodinamika a lehetőség θ θ θ G = H T S A kinetika a valóság: 1. A fizikai rész: - a reaktánsoknak
Transzportfolyamatok
Transzportfolyamatok Boda Dezső 2009. május 21. 1. Diffúzió elektromos tér hiányában Fizikai kémiából tanultuk, hogy valamely anyagban az i komponens áramsűrűségére fluxus) egy dimenzióban a következő
Fizika-Biofizika I. DIFFÚZIÓ OZMÓZIS Október 22. Vig Andrea PTE ÁOK Biofizikai Intézet
Fizika-Biofizika I. DIFFÚZIÓ OZMÓZIS 2013. Október 22. Vig Andrea PTE ÁOK Biofizikai Intézet DIFFÚZIÓ 1. KÍSÉRLET Fizika-Biofizika I. - DIFFÚZIÓ 1. kísérlet: cseppentsünk tintát egy üveg vízbe 1. megfigyelés:
Transzportjelenségek
Transzportjelenségek Fizikai kémia előadások 8. Turányi Tamás ELTE Kémiai Intézet lamináris (réteges) áramlás: minden réteget a falhoz közelebbi szomszédja fékez, a faltól távolabbi szomszédja gyorsít
Kiss László Láng Győző ELEKTROKÉMIA
Kiss László Láng Győző ELEKTROKÉMIA A könyv megjelenését támogatta a Magyar Tudományos Akadémia Kémiai Tudományok Osztálya Dr. Kiss László, Dr. Láng Gőző, 2011 ISBN 978 963 331 148 6 A könyv és adathordozó
A diffúzió leírása az anyagmennyiség időbeli változásával A diffúzió leírása a koncentráció térbeli változásával
Kapcsolódó irodalom: Kapcsolódó multimédiás anyag: Az előadás témakörei: 1.A diffúzió fogalma 2. A diffúzió biológiai jelentősége 3. A részecskék mozgása 3.1. A Brown mozgás 4. Mitől függ a diffúzió erőssége?
Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája
Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gáz egyenlet és általánosított gáz egyenlet 5-4 A tökéletes gáz egyenlet alkalmazása 5-5 Gáz halmazállapotú reakciók
Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája
Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gázegyenlet és általánosított gázegyenlet 5-4 A tökéletes gázegyenlet alkalmazása 5-5 Gáz reakciók 5-6 Gázkeverékek
Reakciókinetika és katalízis
Reakciókinetika és katalízis k 4. előadás: 1/14 Különbségek a gázfázisú és az oldatreakciók között: 1 Reaktáns molekulák által betöltött térfogat az oldatreakciónál jóval nagyobb. Nincs akadálytalan mozgás.
Biofizika szeminárium. Diffúzió, ozmózis
Biofizika szeminárium Diffúzió, ozmózis I. DIFFÚZIÓ ORVOSI BIOFIZIKA tankönyv: III./2 fejezet Részecskék mozgása Brown-mozgás Robert Brown o kísérlet: pollenszuszpenzió mikroszkópos vizsgálata o megfigyelés:
Termodinamika (Hőtan)
Termodinamika (Hőtan) Termodinamika A hőtan nagyszámú részecskéből (pl. gázmolekulából) álló makroszkópikus rendszerekkel foglalkozik. A nagy számok miatt érdemes a mólt bevezetni, ami egy Avogadro-számnyi
Általános kémia képletgyűjtemény. Atomszerkezet Tömegszám (A) A = Z + N Rendszám (Z) Neutronok száma (N) Mólok száma (n)
Általános kémia képletgyűjtemény (Vizsgára megkövetelt egyenletek a szimbólumok értelmezésével, illetve az egyenletek megfelelő alkalmazása is követelmény) Atomszerkezet Tömegszám (A) A = Z + N Rendszám
Az elektromos kettősréteg. Az elektromos potenciálkülönbség eredete, értéke és az azt befolyásoló tényezők. Kolloidok stabilitása.
Az elektromos kettősréteg. Az elektromos potenciálkülönbség eredete, értéke és az azt befolyásoló tényezők. Kolloidok stabilitása. Adszorpció oldatból szilárd felületre Adszorpció oldatból Nem-elektrolitok
Az előadás vázlata: Állapotjelzők: Állapotjelzők: Állapotjelzők: Állapotjelzők: nagy közepes kicsi. Hőmérséklet, T tapasztalat (hideg, meleg).
Az előadás vázlata: I. A tökéletes gáz és állapotegyenlete. izoterm, izobár és izochor folyamatok. II. Tökéletes gázok elegyei, a móltört fogalma, a parciális nyomás, a Dalton-törvény. III. A reális gázok
Reológia Mérési technikák
Reológia Mérési technikák Reológia Testek (és folyadékok) külső erőhatásra bekövetkező deformációját, mozgását írja le. A deformációt irreverzibilisnek nevezzük, ha a az erőhatás megszűnése után a test
Biofizika I. DIFFÚZIÓ OZMÓZIS
1. KÍSÉRLET 1. kísérlet: cseppentsünk tintát egy üveg vízbe Biofizika I. OZMÓZIS 2012. szeptember 5. Dr. Bugyi Beáta PTE ÁOK Biofizikai Intézet 1. megfigyelés: a folt lassan szétterjed és megfesti az egész
SEMMELWEIS EGYETEM. Biofizikai és Sugárbiológiai Intézet, Nanokémiai Kutatócsoport. Zrínyi Miklós
SEMMELWEIS EGYETEM Biofizikai és Sugárbiológiai Intézet, Nanokémiai Kutatósoport Transzportjelenségek az élő szervezetben I. Zrínyi Miklós egyetemi tanár, az MTA levelező tagja mikloszrinyi@gmail.om RENDSZER
A gáz halmazállapot. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011
A gáz halmazállapot A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 0 Halmazállapotok, állapotjelzők Az anyagi rendszerek a részecskék közötti kölcsönhatásoktól és az állapotjelzőktől függően
Biológiai membránok fizikája, diffúzió, ozmózis Dr. Nagy László
Biológiai membránok fizikája, diffúzió, ozmózis Dr. Nagy László -Az anyagcsere és a transzportfolyamatok. - Makrotranszport : jelentős anyagmennyiségek transzportja : csöveken, edényeken keresztül : nagyobb
Diffúzió. Diffúzió sebessége: gáz > folyadék > szilárd (kötőerő)
Diffúzió Diffúzió - traszportfolyamat (fonon, elektron, atom, ion, hőmennyiség...) Elektromos vezetés (Ohm) töltés áram elektr. potenciál grad. Hővezetés (Fourier) energia áram hőmérséklet különbség Kémiai
2. A hőátadás formái és törvényei 2. A hőátadás formái Tapasztalat: tűz, füst, meleg edény füle, napozás Hőáramlás (konvekció) olyan folyamat,
2. A hőátadás formái és törvényei 2. A hőátadás formái Tapasztalat: tűz, füst, meleg edény füle, napozás. 2.1. Hőáramlás (konvekció) olyan folyamat, amelynek során a hő a hordozóközeg áramlásával kerül
DIFFÚZIÓ. BIOFIZIKA I Október 20. Bugyi Beáta
BIOFIZIKA I 010. Okóber 0. Bugyi Beáa TRANSZPORTELENSÉGEK Transzpor folyama: egy fizikai mennyiség érbeli eloszlása megválozik Emlékezeő: ermodinamika 0. főéele az egyensúly álalános feléele TERMODINAMIKAI
Előszó.. Bevezetés. 1. A fizikai megismerés alapjai Tér is idő. Hosszúság- és időmérés.
SZABÓ JÁNOS: Fizika (Mechanika, hőtan) I. TARTALOMJEGYZÉK Előszó.. Bevezetés. 1. A fizikai megismerés alapjai... 2. Tér is idő. Hosszúság- és időmérés. MECHANIKA I. Az anyagi pont mechanikája 1. Az anyagi
Diffúzió. Diffúzió. Diffúzió. Különféle anyagi részecskék anyagon belüli helyváltoztatása Az anyag lehet gáznemű, folyékony vagy szilárd
Anyagszerkezettan és anyagvizsgálat 5/6 Diffúzió Dr. Szabó Péter János szpj@eik.bme.hu Diffúzió Különféle anyagi részecskék anyagon belüli helyváltoztatása Az anyag lehet gáznemű, folyékony vagy szilárd
Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.
Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg
Biológiai membránok fizikája, diffúzió, ozmózis Dr. Nagy László
Biológiai membránok fizikája, diffúzió, ozmózis Dr. Nagy László -Az anyagcsere és a transzportfolyamatok. - Makrotranszport : jelentős anyagmennyiségek transzportja : csöveken, edényeken keresztül : nagyobb
Az elektrokémia áttekintése
Az elektrokémia áttekintése 1 Homogén Heterogén Egyensúlyi elektrokémia (árammentes rendszerek) Elektrolitoldatok termodinamikája: elektrolitos disszociáció ionok termodinamikája és aktivitása Galvánelemek/galváncellák
Orvosi Fizika 10. Biológiai membránok fizikája, diffúzió, ozmózis Dr. Nagy László
Orvosi Fizika 10. Biológiai membránok fizikája, diffúzió, ozmózis Dr. Nagy László -Az anyagcsere és a transzportfolyamatok. - Makrotranszport : jelentős anyagmennyiségek transzportja : csöveken, edényeken
Diffúzió 2003 március 28
Diffúzió 3 március 8 Diffúzió: különféle anyagi részecskék (szilárd, folyékony, gáznemű) anyagon belüli helyváltozása. Szilárd anyagban való mozgás Öndiffúzió: a rácsot felépítő saját atomok energiaszint-különbség
FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István
Ez egy gázos előadás lesz! ( hőtana) Dr. Seres István Kinetikus gázelmélet gáztörvények Termodinamikai főtételek fft.szie.hu 2 Seres.Istvan@gek.szie.hu Kinetikus gázelmélet Az ideális gáz állapotjelzői:
ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK
ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK HŐTÁGULÁS lineáris (hosszanti) hőtágulási együttható felületi hőtágulási együttható megmutatja, hogy mennyivel változik meg a test hossza az eredeti hosszához képest, ha
Az elektrokémia áttekintése
1 Az elektrokémia áttekintése 2 Elektródfolyamatok kinetikája (heterogén dinamikus elektrokémia) Homogén Heterogén Egyensúlyi elektrokémia (árammentes rendszerek) Elektrolitoldatok termodinamikája: elektrolitos
BIOFIZIKA I OZMÓZIS Bugyi Beáta (PTE ÁOK Biofizikai Intézet) OZMÓZIS
BIOFIZIKA I OZMÓZIS - 2010. 10. 26. Bugyi Beáta (PTE ÁOK Biofizikai Intézet) OZMÓZIS BIOFIZIKA I - DIFFÚZIÓ DIFFÚZIÓ - ÁTTEKINTÉS TRANSZPORTFOLYAMATOK ÁLTALÁNOS LEÍRÁSA ONSAGER EGYENLET lineáris, irreverzibilis
Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek
Atomok elsődleges kölcsönhatás kovalens ionos fémes véges számú atom térhálós szerkezet 3D ionos fémek vegyületek ötvözetek molekulák atomrácsos vegyületek szilárd gázok, folyadékok, szilárd anyagok Gázok
OGA-FZ1-T Fizikai kémia /18/2
2 kredit vizsga Alapozó modul tavasszal ajánlott félév: 2. Foglalkozás/félév: 28 óra előadás + 0 óra gyakorlat + 0 óra szeminárium = összesen 28 óra Kurzus létszámkorlát: min. 1 fő max. 100 fő Előfeltételek:
SZBN Fizikai kémia 2017/18/2
4 kredit vizsga Alapozó modul tavasszal Foglalkozás/félév: 28 óra előadás + 0 óra gyakorlat + 0 óra szeminárium = összesen 28 óra Kurzus létszámkorlát: min. 1 fő max. 100 fő Tematika 1. hét: Tökéletes
Molekuláris dinamika I. 10. előadás
Molekuláris dinamika I. 10. előadás Miről is szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten minden részecske mozgását szimuláljuk? Hogyan tudjuk megérteni a folyadékok,
Anyagismeret 2016/17. Diffúzió. Dr. Mészáros István Diffúzió
Anyagismeret 6/7 Diffúzió Dr. Mészáros István meszaros@eik.bme.hu Diffúzió Különféle anyagi részecskék anyagon belüli helyváltoztatása Az anyag lehet gáznemű, folyékony vagy szilárd Diffúzió Diffúzió -
Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek
Atomok elsődleges kölcsönhatás kovalens ionos fémes véges számú atom térhálós szerkezet 3D ionos fémek vegyületek ötvözetek molekulák atomrácsos vegyületek szilárd gázok, folyadékok, szilárd anyagok Gázok
a természet logikája
Róka András a természet logikája Ha sok cseresznyepaprikát madzagra fűzünk, abból lesz a paprikakoszorú. Ha viszont nem fűzzük fel őket, nem lesz belőlük lük koszorú. Pedig a paprika ugyanannyi, éppoly
Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont)
Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont) 1. "Az olyan rendszereket, amelyek határfelülete a tömegáramokat megakadályozza,... rendszernek nevezzük" (1) 2. "Az olyan rendszereket,
Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27
Az egyensúly 6'-1 6'-2 6'-3 6'-4 6'-5 Dinamikus egyensúly Az egyensúlyi állandó Az egyensúlyi állandókkal kapcsolatos összefüggések Az egyensúlyi állandó számértékének jelentősége A reakció hányados, Q:
Sók oldékonysági szorzatának és oldáshőjének meghatározása vezetés méréssel
Sók oldékonysági szorzatának és oldáshőjének meghatározása vezetés méréssel 1. Bevezetés Az elektromos ellenállás anyagi tulajdonság, melyen -definíció szerint- az anyagon áthaladó 1 amper intenzitású
13 Elektrokémia. Elektrokémia Dia 1 /52
13 Elektrokémia 13-1 Elektródpotenciálok mérése 13-2 Standard elektródpotenciálok 13-3 E cella, ΔG és K eq 13-4 E cella koncentráció függése 13-5 Elemek: áramtermelés kémiai reakciókkal 13-6 Korrózió:
2. (d) Hővezetési problémák II. főtétel - termoelektromosság
2. (d) Hővezetési problémák II. főtétel - termoelektromosság Utolsó módosítás: 2015. március 10. Kezdeti érték nélküli problémák (1) 1 A fél-végtelen közeg a Az x=0 pontban a tartományban helyezkedik el.
A kémiai és az elektrokémiai potenciál
Dr. Báder Imre A kémiai és az elektrokémiai potenciál Anyagi rendszerben a termodinamikai egyensúly akkor állhat be, ha a rendszerben a megfelelő termodinamikai függvénynek minimuma van, vagyis a megváltozása
Elektrokémia kommunikációs dosszié ELEKTROKÉMIA. ANYAGMÉRNÖK NAPPALI MSc KÉPZÉS, SZABADON VÁLASZTHATÓ TÁRGY TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ
ELEKTROKÉMIA ANYAGMÉRNÖK NAPPALI MSc KÉPZÉS, SZABADON VÁLASZTHATÓ TÁRGY TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŰSZAKI ANYAGTUDOMÁNYI KAR KÉMIAI INTÉZET Miskolc, 2014. Tartalom jegyzék 1. Tantárgyleírás,
Határfelületi jelenségek. Fogorvosi anyagtan fizikai alapjai 3. Általános anyagszerkezeti ismeretek. N m J 2
Határelületi jelenségek 1. Felületi eszültség Fogorvosi anyagtan izikai alapjai 3. Általános anyagszerkezeti ismeretek Határelületi jelenségek Kiemelt témák: elületi eszültség adhézió nedvesítés ázis ázisdiagramm
1. Mi a termodinamikai rendszer? Miben különbözik egymástól a nyitott és a zárt termodinamikai
3.1. Ellenőrző kérdések 1. Mi a termodinamikai rendszer? Miben különbözik egymástól a nyitott és a zárt termodinamikai rendszer? Az anyagi valóság egy, általunk kiválasztott szempont vagy szempontrendszer
Az α értékének változtatásakor tanulmányozzuk az y-x görbe alakját. 2 ahol K=10
9.4. Táblázatkezelés.. Folyadék gőz egyensúly kétkomponensű rendszerben Az illékonyabb komponens koncentrációja (móltörtje) nagyobb a gőzfázisban, mint a folyadékfázisban. Móltört a folyadékfázisban x;
f = n - F ELTE II. Fizikus 2005/2006 I. félév
ELTE II. Fizikus 2005/2006 I. félév KISÉRLETI FIZIKA Hıtan 2. (X. 25) Gibbs féle fázisszabály (0-dik fıtétel alkalmazása) Intenzív állapotothatározók száma közötti összefüggés: A szabad intenzív paraméterek
Reakciókinetika. Általános Kémia, kinetika Dia: 1 /53
Reakciókinetika 9-1 A reakciók sebessége 9-2 A reakciósebesség mérése 9-3 A koncentráció hatása: a sebességtörvény 9-4 Nulladrendű reakció 9-5 Elsőrendű reakció 9-6 Másodrendű reakció 9-7 A reakciókinetika
5. gy. VIZES OLDATOK VISZKOZITÁSÁNAK MÉRÉSE OSTWALD-FENSKE-FÉLE VISZKOZIMÉTERREL
5. gy. VIZES OLDAOK VISZKOZIÁSÁNAK MÉRÉSE OSWALD-FENSKE-FÉLE VISZKOZIMÉERREL A fluid közegek jellemző anyagi tulajdonsága a viszkozitás, mely erősen befolyásolhatja a bennük lejátszódó reakciók sebességét,
5. Laboratóriumi gyakorlat
5. Laboratóriumi gyakorlat HETEROGÉN KÉMIAI REAKCIÓ SEBESSÉGÉNEK VIZSGÁLATA A CO 2 -nak vízben történő oldódása és az azt követő egyensúlyra vezető kémiai reakció az alábbi reakcióegyenlettel írható le:
A 27/2012. (VIII. 27.) NGM rendelet (29/2016. (VIII. 26.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.
A 27/2012. (VIII. 27.) NGM rendelet (29/2016. (VIII. 26.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés azonosítószáma és megnevezése 54 524 03 Vegyész technikus Tájékoztató
Mivel foglalkozik a hőtan?
Hőtan Gáztörvények Mivel foglalkozik a hőtan? A hőtan a rendszerek hőmérsékletével, munkavégzésével, és energiájával foglalkozik. A rendszerek stabilitása áll a fókuszpontjában. Képes megválaszolni a kérdést:
Hidrosztatika, Hidrodinamika
Hidrosztatika, Hidrodinamika Folyadékok alaptulajdonságai folyadék: anyag, amely folyni képes térfogat állandó, alakjuk változó, a tartóedénytől függ a térfogat-változtató erőkkel szemben ellenállást fejtenek
Általános Kémia, 2008 tavasz
9 Elektrokémia 9-1 Elektródpotenciálok mérése 9-1 Elektródpotenciálok mérése 9-2 Standard elektródpotenciálok 9-3 E cell, ΔG, és K eq 9-4 E cell koncentráció függése 9-5 Elemek: áramtermelés kémiai reakciókkal
Kémiai reakciók sebessége
Kémiai reakciók sebessége reakciósebesség (v) = koncentrációváltozás változáshoz szükséges idő A változás nem egyenletes!!!!!!!!!!!!!!!!!! v= ± dc dt a A + b B cc + dd. Melyik reagens koncentrációváltozását
Transzportfolyamatok. Alapfogalmak. Lokális mérlegegyenlet. Transzportfolyamatok 15/11/2015
Alapfogalmak Transzportfolyamatok Diffúzió, Hővezetés Viszkozitás Önként végbemenő folyamat: Egyensúlyi állapot irányába Intenzív paraméterek kiegyenlítődése (p, T, µ) Extenzív paraméterek áramlása (V,
TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor
1. 2:24 Normál Magasabb hőmérsékleten a részecskék nagyobb tágassággal rezegnek, s így távolabb kerülnek egymástól. Magasabb hőmérsékleten a részecskék kisebb tágassággal rezegnek, s így távolabb kerülnek
Kinetika. Általános Kémia, kinetika Dia: 1 /53
Kinetika 15-1 A reakciók sebessége 15-2 Reakciósebesség mérése 15-3 A koncentráció hatása: a sebességtörvény 15-4 Nulladrendű reakció 15-5 Elsőrendű reakció 15-6 Másodrendű reakció 15-7 A reakció kinetika
Orvosi Fizika 13. Bari Ferenc egyetemi tanár SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet
Orvosi Fizika 13. Elektromosságtan és mágnességtan az életfolyamatokban 2. Bari Ferenc egyetemi tanár SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Szeged, 2011. december 5. Egyenáram Vezető
Szívelektrofiziológiai alapjelenségek. Dr. Tóth András 2018
Szívelektrofiziológiai alapjelenségek 1. Dr. Tóth András 2018 Témák Membrántranszport folyamatok Donnan egyensúly Nyugalmi potenciál 1 Transzmembrán transzport A membrántranszport-folyamatok típusai J:
Műszaki hőtan I. ellenőrző kérdések
Alapfogalmak, 0. főtétel Műszaki hőtan I. ellenőrző kérdések 1. Mi a termodinamikai rendszer? Miben különbözik egymástól a nyitott és zárt termodinamikai rendszer? A termodinamikai rendszer (TDR) az anyagi
TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor
1. 2:29 Normál párolgás olyan halmazállapot-változás, amelynek során a folyadék légneművé válik. párolgás a folyadék felszínén megy végbe. forrás olyan halmazállapot-változás, amelynek során nemcsak a
7 Elektrokémia. 7-1 Elektródpotenciálok mérése
7 Elektrokémia 7-1 Elektródpotenciálok mérése 7-2 Standard elektródpotenciálok 7-3 E cell, ΔG, és K eq 7-4 E cell koncentráció függése 7-5 Elemek: áramtermelés kémiai reakciókkal 7-6 Korrózió: nem kívánt
Hőmérsékleti sugárzás
Ideális fekete test sugárzása Hőmérsékleti sugárzás Elméleti háttér Egy ideális fekete test leírható egy egyenletes hőmérsékletű falú üreggel. A fala nemcsak kibocsát, hanem el is nyel energiát, és spektrális
5. Az adszorpciós folyamat mennyiségi leírása a Langmuir-izoterma segítségével
5. Az adszorpciós folyamat mennyiségi leírása a Langmuir-izoterma segítségével 5.1. Átismétlendő anyag 1. Adszorpció (előadás) 2. Langmuir-izoterma (előadás) 3. Spektrofotometria és Lambert Beer-törvény
OZMÓZIS. BIOFIZIKA I Október 25. Bugyi Beáta PTE ÁOK Biofizikai Intézet
BIOFIZIKA I 2011. Október 25. Bugyi Beáta PTE ÁOK Biofizikai Intézet Áttekintés 1. Diffúzió rövid ismétlés 2. Az ozmózis jelensége és leírása 4. A diffúzió és ozmózis orvos biológiai jelentősége Diffúzió
FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István
Ez egy gázos előadás lesz! ( hőtana) Dr. Seres István Kinetikus gázelmélet gáztörvények Termodinamikai főtételek fft.szie.hu 2 Seres.Istvan@gek.szie.hu Kinetikus gázelmélet Az ideális gáz állapotjelzői:
3. (b) Kereszthatások. Utolsó módosítás: április 1. Dr. Márkus Ferenc BME Fizika Tanszék
3. (b) Kereszthatások Utolsó módosítás: 2013. április 1. Vezetési együtthatók fémekben (1) 1 Az elektrongáz hővezetési együtthatója A levezetésben alkalmazott feltételek: 1. Minden elektron ugyanazzal
A mechanika alapjai. A pontszerű testek dinamikája
A mechanika alapjai A pontszerű testek dinamikája Horváth András SZE, Fizika Tsz. v 0.6 1 / 26 alapi Bevezetés Newton I. Newton II. Newton III. Newton IV. alapi 2 / 26 Bevezetés alapi Bevezetés Newton
Az előadás vázlata: Állapotjelzők: Állapotjelzők: Állapotjelzők: Állapotjelzők: nagy közepes kicsi. Hőmérséklet, T tapasztalat (hideg, meleg).
Az előadás vázlata: I. A tökéletes gáz és állapotegyenlete. izoterm, izobár és izochor folyamatok. II. Tökéletes gázok elegyei, a móltört fogalma, a parciális nyomás, a Dalton-törvény. III. A reális gázok
1. SI mértékegységrendszer
I. ALAPFOGALMAK 1. SI mértékegységrendszer Alapegységek 1 Hosszúság (l): méter (m) 2 Tömeg (m): kilogramm (kg) 3 Idő (t): másodperc (s) 4 Áramerősség (I): amper (A) 5 Hőmérséklet (T): kelvin (K) 6 Anyagmennyiség
Elektromos áram. Vezetési jelenségek
Elektromos áram. Vezetési jelenségek Emlékeztető Elektromos áram: töltéshordozók egyirányú áramlása Áramkör részei: áramforrás, vezető, fogyasztó Áramköri jelek Emlékeztető Elektromos áram hatásai: Kémiai
ÁLTALÁNOS ÉS SZERVETLEN KÉMIA SZIGORLATI VIZSGAKÉRDÉSEK 2010/2011 TANÉVBEN ÁLTALÁNOS KÉMIA
ÁLTALÁNOS ÉS SZERVETLEN KÉMIA SZIGORLATI VIZSGAKÉRDÉSEK 2010/2011 TANÉVBEN ÁLTALÁNOS KÉMIA 1. Kémiai alapfogalmak: - A kémia alaptörvényei ( a tömegmegmaradás törvénye, állandó tömegarányok törvénye) -
TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor
Nézd meg a képet és jelöld az 1. igaz állításokat! 1:56 Könnyű F sak a sárga golyó fejt ki erőhatást a fehérre. Mechanikai kölcsönhatás jön létre a golyók között. Mindkét golyó mozgásállapota változik.
TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor
gázok hőtágulása függ: 1. 1:55 Normál de független az anyagi minőségtől. Függ az anyagi minőségtől. a kezdeti térfogattól, a hőmérséklet-változástól, Mlyik állítás az igaz? 2. 2:31 Normál Hőáramláskor
Folyadékok áramlása Folyadékok. Folyadékok mechanikája. Pascal törvénye
Folyadékok áramlása Folyadékok Folyékony halmazállapot nyíróerő hatására folytonosan deformálódik (folyik) Folyadék Gáz Plazma Talián Csaba Gábor PTE ÁOK, Biofizikai Intézet 2012.09.12. Folyadék Rövidtávú
Az anyagok lehetséges állapotai, a fizikai körülményektől (nyomás, hőmérséklet) függően. Az anyagokat általában a normál körülmények között jellemző
Az anyagok lehetséges állapotai, a fizikai körülményektől (nyomás, hőmérséklet) függően. Az anyagokat általában a normál körülmények között jellemző állapotuk alapján soroljuk be szilárd, folyékony vagy
Követelmények: f - részvétel az előadások 67 %-án - 3 db érvényes ZH (min. 50%) - 4 elfogadott laborjegyzőkönyv
Fizikai kémia és radiokémia B.Sc. László Krisztina 18-93 klaszlo@mail.bme.hu F ép. I. lépcsőház 1. emelet 135 http://oktatas.ch.bme.hu/oktatas/konyvek/fizkem/kornymern Követelmények: 2+0+1 f - részvétel
Alkalmazás a makrókanónikus sokaságra: A fotongáz
Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,
1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1
1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 Kérdések. 1. Mit mond ki a termodinamika nulladik főtétele? Azt mondja ki, hogy mindenegyes termodinamikai kölcsönhatáshoz tartozik a TDR-nek egyegy
FIZIKA II. Dr. Rácz Ervin. egyetemi docens
FIZIKA II. Dr. Rácz Ervin egyetemi docens Fontos tudnivalók e-mail: racz.ervin@kvk.uni-obuda.hu web: http://uni-obuda.hu/users/racz.ervin/index.htm Iroda: Bécsi út, C. épület, 124. szoba Fizika II. - ismertetés
Légköri termodinamika
Légköri termodinamika Termodinamika: a hőegyensúllyal, valamint a hőnek, és más energiafajtáknak kölcsönös átalakulásával foglalkozó tudományág. Meteorológiai vonatkozása ( a légkör termodinamikája): a
Molekuláris dinamika. 10. előadás
Molekuláris dinamika 10. előadás Mirőlis szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten? Hogyan tudjuk megérteni a folyadékok, gázok, szilárdtestek makroszkópikus
Modern Fizika Labor. 2. Elemi töltés meghatározása
Modern Fizika Labor Fizika BSC A mérés dátuma: 2011.09.27. A mérés száma és címe: 2. Elemi töltés meghatározása Értékelés: A beadás dátuma: 2011.10.11. A mérést végezte: Kalas György Benjámin Németh Gergely
PHYWE Fizikai kémia és az anyagok tulajdonságai
PHYWE Fizikai kémia és az anyagok tulajdonságai Témakörök: Gázok és gáztörvények Felületi feszültség Viszkozitás Sűrűség és hőtágulás Olvadáspont, forráspont, lobbanáspont Hőtan és kalorimetria Mágneses
Termodinamikai egyensúlyi potenciál (Nernst, Donnan). Diffúziós potenciál, Goldman-Hodgkin-Katz egyenlet.
Termodinamikai egyensúlyi potenciál (Nernst, Donnan). Diffúziós potenciál, Goldman-Hodgkin-Katz egyenlet. Biológiai membránok passzív elektromos tulajdonságai. A sejtmembrán kondenzátorként viselkedik
Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27
Az egyensúly 10-1 Dinamikus egyensúly 10-2 Az egyensúlyi állandó 10-3 Az egyensúlyi állandókkal kapcsolatos összefüggések 10-4 Az egyensúlyi állandó számértékének jelentősége 10-5 A reakció hányados, Q:
Egy részecske mozgási energiája: v 2 3 = k T, ahol T a gáz hőmérséklete Kelvinben 2 2 (k = 1, J/K Boltzmann-állandó) Tehát a gáz hőmérséklete
Hőtan III. Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak. Rugalmasan ütköznek egymással és a tartály
SEMMELWEIS EGYETEM. Biofizikai és Sugárbiológiai Intézet, Nanokémiai Kutatócsoport. TRANSZPORTFOLYAMATOK biológiai rendszerekben.
SEMMELWEIS EGYETEM Biofizikai és Sugárbiológiai Intézet, Nanokémiai Kutatósoport TRANSZPORTFOLYAMATOK biológiai rendszerekben Zrínyi Miklós egyetemi tanár, az MTA rendes tagja mikloszrinyi@gmail.om " Hol
Belső energia, hőmennyiség, munka Hőtan főtételei
Belső energia, hőmennyiség, munka Hőtan főtételei Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak.
Elméleti kérdések 11. osztály érettségire el ı készít ı csoport
Elméleti kérdések 11. osztály érettségire el ı készít ı csoport MECHANIKA I. 1. Definiálja a helyvektort! 2. Mondja meg mit értünk vonatkoztatási rendszeren! 3. Fogalmazza meg kinematikailag, hogy mikor
TÖBBKOMPONENS RENDSZEREK FÁZISEGYENSÚLYAI II. Ismerjük fel, hogy többkomponens fázisegyensúlyokban a folyadék fázisnak kitüntetett szerepe van!
TÖKOMPONENS RENDSZEREK FÁZISEGYENSÚLYI II Ismerjük fel hogy többkomonens fázisegyensúlyokban a folyadék fázisnak kitüntetett szeree van! Eddig: egymásban korátlanul oldódó folyadékok folyadék-gz egyensúlyai
Jegyzőkönyv. Konduktometria. Ungvárainé Dr. Nagy Zsuzsanna
Jegyzőkönyv CS_DU_e 2014.11.27. Konduktometria Ungvárainé Dr. Nagy Zsuzsanna Margócsy Ádám Mihálka Éva Zsuzsanna Róth Csaba Varga Bence I. A mérés elve A konduktometria az oldatok elektromos vezetésének