Mechatronika Modul 1: Alapismeretek

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Mechatronika Modul 1: Alapismeretek"

Átírás

1 Mechatronika Modul : Alapismeretek Oktatói segédlet (Elképzelés) Készítették: Matthias Römer Chemnitz-i Műszaki Egyetem, Szerszámgépek és Gyártási Folyamatok Intézete, Németország Cser Adrienn Corvinus Egyetem, Információtechnológiai Intézet, Magyarország EU-Projekt: 00-9 MINOS, Európai elképzelés a globális ipari termelésben résztvevő szakemberek mechatronika témakörben történő továbbképzéséről Az Európai Bizottság támogatást nyújtott ennek a projektnek a költségeihez. Ez a kiadvány (közlemény) a szerző nézeteit tükrözi, és az Európai Bizottság nem tehető felelőssé az abban foglaltak bárminemű felhasználásért.

2 A szakmai anyag elkészítésében és kipróbálásában az alábbi magáncégek és intézmények vettek részt Chemnitz-i Műszaki Egyetem, Szerszámgépek és Gyártási Folyamatok Intézete, Németország Projektvezetés Corvinus Egyetem, Információtechnológiai Intézet, Magyarország Stockholm-i Egyetem, Szociológiai Intézet, Svédország Wroclaw-i Műszaki Egyetem, Gyártástechnológiai és Automatizálási Intézet, Lengyelország Henschke Consulting Drezda, Németország Christian Stöhr Unternehmensberatung, Németország Neugebauer und Partner OHG Drezda, Németország Korff Isomatic sp.z.o.o. Wroclaw, Lengyelország Euroregionális Ipari és Kereskedelmi Kamara Jelenia Gora, Lengyelország Dunaferr Dunaújváros, Magyarország Knorr-Bremse Kft. Kecskemét, Magyarország Nemzeti Szakképzési Intézet Budapest, Magyarország Tartalom: Jegyzet, munkafüzet és oktatói segédlet az alábbi témakörökhöz Modul : Alapismeretek Modul : Interkulturális kompetencia, Projektmenedzsment Modul : Folyadékok Modul : Elektromos meghajtók és vezérlések Modul : Mechatronikus komponensek Modul : Mechatronikus rendszerek és funkciók Modul : Üzembehelyezés, biztonság, teleservice Modul : Távkarbantartás és távdiagnosztika További információ: Technische Universität Chemnitz Institut für Werkzeugmaschinen und Produktionsprozesse (Chemnitz-i Műszaki Egyetem, Szerszámgépek és Gyártási Folyamatok Intézete) Univ.-Prof. Dr.-Ing. habil. Prof. E.h. Dr.-Ing. E.h. Reimund Neugebauer Prof. Dr.-Ing. Dieter Weidlich Reichenhainer Straße 0, 090 Chemnitz, Deutschland Tel.: 9(0)0-00 Fax: 9(0) Internet:

3 Alapismeretek - Oktatói segédlet Minos Műszaki matematika. Alapműveletek. Feladat Oldja meg az alábbi feladatokat! Az eredményt először fejben számítsa ki, majd ismételje meg a számolást zsebszámológépe segítségével! 9 ( ) 9 ( ) ( ) (9 ) ( ) ( ) Fordítsunk különös gondot a műveletek helyes sorrendben történő elvégzésére.. Feladat Oldja meg az alábbi feladatokat! -9 (-) - (-) (-) (-) () (-) (-) A művelet és az előjel kombinációja határozza meg, összeadást vagy kivonást kell végeznünk.. Feladat Oldja meg az alábbi feladatokat! ( ) -

4 Alapismeretek Oktatói segédlet Minos (- ) -( ) -( ) - - ( ) 0 -( ) ( ) - - (- ) Egyrészt meg kell határozni a zárójelekben álló tagok előjeleit, másrészt azonban ügyelni kell a műveletek sorrendjére is.. Feladat Oldja meg az alábbi feladatokat! - (-) 0 (-) - : (-) - -0 : -0 Az osztás és a szorzás során ügyeljünk az előjelekre.. Feladat Oldja meg az alábbi feladatokat úgy, hogy az eredményben ne szerepeljen zárójel! (a b) a b a (b c) ab ac (x y) x ( y) x y 0x xy -9x y xy (x y) (a b) x (a b) y (a b) ax bx 0ay by (x y) (a - b) x (a - b) y (a - b) ax - bx 0ay - by (x - y) (a b) x (a - b) - y (a - b) ax - bx - 0ay by A zárójelek felbontásakor fordítsunk különös gondot az előjelekre!

5 Alapismeretek - Oktatói segédlet Minos. Törtek. Feladat Egyszerűsítse az alábbi törteket, amennyire ez lehetséges! Ne számítsa ki a tizedestört értékét! 9 9 Ügyeljünk arra, hogy a diákok felismerjék az egyszerűsítési lehetőségeket. A törtek egyszerűsítése után kisebb számértékekkel kell számolnunk, így a feladat áttekinthetőbb.. Feladat Egyszerűsítse az alábbi törteket, amennyire ez lehetséges! Ne számítsa ki a tizedestört értékét! A törtek összeadása, illetve kivonása előtt közös nevezőt kell találnunk. Az egyik, vagy mindkét tört bővítése után az eredmény kiszámítható. Ezután az eredményt, amennyire lehet, egyszerűsítsük.. Feladat Egyszerűsítse az alábbi törteket, amennyire ez lehetséges! Ne számítsa ki a tizedestört értékét!

6 Alapismeretek Oktatói segédlet Minos Már a számítás előtt ellenőrizzük, lehetséges-e valamely tag egyszerűsítése. Lehetséges megoldási mód az is, hogy előbb felbontjuk a zárójelet, azaz a zárójel előtti értékkel megszorozzuk a két tagot, majd az összeadást csak ezután végezzük el. A végeredménynek természetesen azonosnak kell lennie! 9 9. Feladat Egyszerűsítse az alábbi törteket, amennyire ez lehetséges! Ne számítsa ki tizedestört értékét! : : : : : : Már a számítás előtt ellenőrizzük, lehetséges-e valamely tag egyszerűsítése. Először a zárójel értékét határozzuk meg, majd elvégezzük az osztást.

7 Alapismeretek - Oktatói segédlet Minos. További matematikai műveletek 0. Feladat Számítsa ki az alábbi hatványok értékét! 9 - / / 0, - / / 0,0 Egyszerűbb hatványok esetén megpróbálhatjuk azok kiszámítását fejben. A számítástechnika területén mindenekelőtt a hatványai fordulnak elő, ezért érdemes ezeket felismerni.. Feladat Írja fel az alábbi számokat, mint a 0 hatványait! A számérték legyen egyjegyű! , , 0 0,, 0-0,0009,9 0 - Itt ugyan egyjegyű számértékek segítségével írtuk le a számokat, azonban érdemes felhívni a figyelmet arra, hogy gyakran a tíz -mal osztható hatványait használjuk.. Feladat Az alábbi számokat írjuk fel hosszú formájukban! 0 00

8 Alapismeretek Oktatói segédlet Minos ,00 0-0,000, 0-0,00000 Lehetséges a számok olyan formában való felírása is, hogy hárommal osztható kitevők jöjjenek létre.. Feladat Számítsa ki az alábbi hatványokat! Az eredményt szintén hatvány formájában adja meg! ,00, 0 - / 0, 9 ( ) ( ) ( ) Kiegészítő feladatként kiszámíthatjuk a hatványok értékét is.. Feladat Számítsa ki az alábbi gyököket! A számoláshoz használjon zsebszámológépet!

9 Alapismeretek - Oktatói segédlet Minos 9,, 0,0 0,9 Az egyszerűbb gyökök esetén megpróbálhatjuk ezek értékét fejben kiszámítani. Zsebszámológép használata esetén az eredményeket néha kerekíteni kell. Használjuk a tizedesvessző utáni első három számjegyet. 9

10 Alapismeretek Oktatói segédlet Minos. A kettes számrendszer. Feladat Az alábbi tízes számrendszerbeli számokat számítsa át kettes számrendszerbe! Az átszámításhoz ismernünk kell a kettő hatványait a 0 -tól legalább a -ig. Ezek:,,,,,,, és.. Feladat Az alábbi kettes számrendszerbeli számokat számítsa át tízes számrendszerbe! Ennél a feladatnál is fontos a kettő hatványainak ismerete. 0

Mechatronika Modul 12: Interfészek Munkafüzet www.minos-mechatronic.eu

Mechatronika Modul 12: Interfészek Munkafüzet www.minos-mechatronic.eu Mechatronika Modul 12: Interfészek Munkafüzet (Koncepció) Dr. Gabriele Neugebauer Dipl.-Ing. Matthias Römer Neugebauer und Partner OHG, Németország Európai elképzelés a globális ipari termelésben résztvev

Részletesebben

Modul 2 (Rész 1): Interkulturális kompetencia

Modul 2 (Rész 1): Interkulturális kompetencia Mechatronika Modul 2 (Rész 1): Interkulturális kompetencia Munkafüzet (Elképzelés) Készítették: Christian Stöhr Christian Stöhr Unternehmensberatung, Németország Andre Henschke Henschke Consulting Drezda,

Részletesebben

EU-Project Nr. 2005-146319,,MINOS, EU-Project Nr. DE/08/LLP-LDV/TOI/147110,,MINOS**

EU-Project Nr. 2005-146319,,MINOS, EU-Project Nr. DE/08/LLP-LDV/TOI/147110,,MINOS** Mechatronika Modul 10: Robotika Munkafüzet Készítették: Petr Blecha Zden k Kolíbal Radek Knoflí ek Aleš Pochylý Tomáš Kubela Radim Blecha Tomáš B ezina Brno-i M szaki Egyetem, Gépészmérnöki Kar Gyártási

Részletesebben

Mechatronika Modul 3: Folyadékok

Mechatronika Modul 3: Folyadékok Mechatronika Modul 3: Folyadékok Oktatói segédlet (Elképzelés) Készítették: Matthias Römer Chemnitz-i Műszaki Egyetem, Szerszámgépek és Gyártási Folyamatok Intézete, Németország Cser Adrienn Corvinus Egyetem,

Részletesebben

Modul 2 (Rész 1): Interkulturális kompetencia

Modul 2 (Rész 1): Interkulturális kompetencia Mechatronika Modul 2 (Rész 1): Interkulturális kompetencia Oktatói segédlet (Elképzelés) Készítették: Christian Stöhr Christian Stöhr Unternehmensberatung, Németország Andre Henschke Henschke Consulting

Részletesebben

Mechatronikus. Jegyzet (Elképzelés) Rendszerek és funkciók. Készítették:

Mechatronikus. Jegyzet (Elképzelés) Rendszerek és funkciók. Készítették: Mechatronika Modul 6: Mechatronikus Rendszerek és funkciók Jegyzet (Elképzelés) Készítették: Jerzy Jędrzejewski Wojciech Kwaśny Zbigniew Rodziewicz Andrzej Błażejewski Wroclaw-i Műszaki Egyetem, Gyártástechnológiai

Részletesebben

Mechatronika. Modul 12: Interfészek. Jegyzet. Készítették: Dr. Gabriele Neugebauer Dipl.-Ing. Matthias Römer

Mechatronika. Modul 12: Interfészek. Jegyzet. Készítették: Dr. Gabriele Neugebauer Dipl.-Ing. Matthias Römer Mechatronika Modul 12: Interfészek Jegyzet Készítették: Dr. Gabriele Neugebauer Dipl.-Ing. Matthias Römer Neugebauer und Partner OHG, Németország EU-Project Nr. 2005-146319,,MINOS, EU-Project Nr. DE/08/LLP-LDV/TOI/147110,,MINOS**

Részletesebben

Mechatronika Biztonság, üzembe helyezés, hibakeresés

Mechatronika Biztonság, üzembe helyezés, hibakeresés Mechatronika Modul 7: Biztonság, üzembe helyezés, hibakeresés Jegyzet (Elképzelés) Készítették: Matthias Römer Chemnitz-i Műszaki Egyetem, Szerszámgépek és Gyártási Folyamatok Intézete, Németország Cser

Részletesebben

Mechatronika. Modul 2 (Rész 2): Projektmenedzsment. Oktatói segédlet (Elképzelés) Készítették:

Mechatronika. Modul 2 (Rész 2): Projektmenedzsment. Oktatói segédlet (Elképzelés) Készítették: Mechatronika Modul 2 (Rész 2): Projektmenedzsment Oktatói segédlet (Elképzelés) Készítették: Christian Stöhr Christian Stöhr Unternehmensberatung, Németország Andre Henschke Henschke Consulting Drezda,

Részletesebben

Mechatronika Modul 4: Elektromos meghatók És vezérlések

Mechatronika Modul 4: Elektromos meghatók És vezérlések Mechatronika Modul 4: Elektromos meghatók És vezérlések Jegyzet (Elképzelés) Készítették: Matthias Römer Chemnitz-i Műszaki Egyetem, Szerszámgépek és Gyártási Folyamatok Intézete, Németország Cser Adrienn

Részletesebben

Mechatronika. Modul 2 (Rész 2): Projektmenedzsment. Jegyzet (Elképzelés) Készítették:

Mechatronika. Modul 2 (Rész 2): Projektmenedzsment. Jegyzet (Elképzelés) Készítették: Mechatronika Modul 2 (Rész 2): Projektmenedzsment Jegyzet (Elképzelés) Készítették: Christian Stöhr Christian Stöhr Unternehmensberatung, Németország Andre Henschke Henschke Consulting Drezda, Németország

Részletesebben

Mechatronikus. Oktatói segédlet (Elképzelés) Rendszerek és funkciók. Készítették:

Mechatronikus. Oktatói segédlet (Elképzelés) Rendszerek és funkciók. Készítették: Mechatronika Modul 6: Mechatronikus Rendszerek és funkciók Oktatói segédlet (Elképzelés) Készítették: Jerzy Jędrzejewski Wojciech Kwaśny Zbigniew Rodziewicz Andrzej Błażejewski Wroclaw-i Műszaki Egyetem,

Részletesebben

Mechatronika Modul 3: Folyadékok

Mechatronika Modul 3: Folyadékok Mechatronika Modul 3: Folyadékok Jegyzet (Elképzelés) Készítették: Matthias Römer Chemnitz-i Műszaki Egyetem, Szerszámgépek és Gyártási Folyamatok Intézete, Németország Cser Adrienn Corvinus Egyetem, Információtechnológiai

Részletesebben

Mechatronika. Modul 12: Interfészek. Oktatói segédlet. (Koncepció) Dr. Gabriele Neugebauer Dipl.-Ing. Matthias Römer

Mechatronika. Modul 12: Interfészek. Oktatói segédlet. (Koncepció) Dr. Gabriele Neugebauer Dipl.-Ing. Matthias Römer Mechatronika Modul 12: Interfészek Oktatói segédlet (Koncepció) Dr. Gabriele Neugebauer Dipl.-Ing. Matthias Römer Neugebauer und Partner OHG, Németország Európai elképzelés a globális ipari termelésben

Részletesebben

Közösségen belüli migráció

Közösségen belüli migráció Mechatronika Modul: Közösségen belüli migráció Jegyzet Andre Henschke Henschke Consulting, Németország EU-projekt Nr. DE/08/LLP-LdV/TOI/147110 MINOS ++, 2008-2010 Európai innovációtranszfer projekt a globalizált

Részletesebben

Mechatronika Modul 5: Mechatronikus komponensek

Mechatronika Modul 5: Mechatronikus komponensek Mechatronika Modul 5: Mechatronikus komponensek Oktatói segédlet (Elképzelés) Készítették: Wojciech Kwaśny Andrzej Błażejewski Wroclaw-i Műszaki Egyetem, Gyártástechnológiai és Automatizálási Intézet,

Részletesebben

Mechatronika Modul 1-4

Mechatronika Modul 1-4 Mechatronika Modul 1-4 Jegyzet (Elképzelés) Alapismeretek Interkulturális kompetencia Projektmenedzsment Folyadékok Elektromos meghatók És vezérlések EU-Projekt: 2005-146319 MINOS, 2005-2007 Európai elképzelés

Részletesebben

Mechatronika Modul 1-4

Mechatronika Modul 1-4 Mechatronika Modul 1-4 Munkafüzet Oktatói segédlet Alapismeretek Interkulturális kompetencia Projektmenedzsment Folyadékok Elektromos meghatók És vezérlések EU-Projekt: 2005-146319 MINOS, 2005-2007 Európai

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben

Mechatronika Modul 5-8

Mechatronika Modul 5-8 Mechatronika Modul 5-8 Munkafüzet Oktatói segédlet Mechatronikus komponensek Mechatronikus Rendszerek és funkciók Mechatronikus rendszerek távdiagnosztikája és karbantartása EU-Projekt: 2005-146319 MINOS,

Részletesebben

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros!

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros! Számelmélet - oszthatóság definíciója - oszthatósági szabályok - maradékos osztás - prímek definíciója - összetett szám definíciója - legnagyobb közös osztó definíciója - legnagyobb közös osztó meghatározása

Részletesebben

EU-Project Nr. 2005-146319,,MINOS, EU-Project Nr. DE/08/LLP-LDV/TOI/147110,,MINOS**

EU-Project Nr. 2005-146319,,MINOS, EU-Project Nr. DE/08/LLP-LDV/TOI/147110,,MINOS** Mechatronika Modul 10: Robotika Oktatói segédlet Készítették: Petr Blecha Zden k Kolíbal Radek Knoflí ek Aleš Pochylý Tomáš Kubela Radim Blecha Tomáš B ezina Brno-i M szaki Egyetem, Gépészmérnöki Kar Gyártási

Részletesebben

Mechatronika. Jegyzet. Modul 9: Gyors prototípusgyártás

Mechatronika. Jegyzet. Modul 9: Gyors prototípusgyártás Mechatronika Modul 9: Gyors prototípusgyártás Jegyzet Készítették: dr in. Bogdan Dybaa, dr in. Tomasz Boratyski dr in. Jacek Czajka dr in. Tomasz Bdza dr in. Mariusz Frankiewicz mgr in. Tomasz Kurzynowski

Részletesebben

TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. tankönyv ötödikeseknek. címû tankönyvéhez

TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. tankönyv ötödikeseknek. címû tankönyvéhez TANMENETJAVASLAT Dr. Korányi Erzsébet MATEMATIKA tankönyv ötödikeseknek címû tankönyvéhez A heti 3 óra, évi 111 óra B heti 4 óra, évi 148 óra Javaslat témazáró dolgozatra: Dr. Korányi Erzsébet: Matematika

Részletesebben

SZÁMRENDSZEREK. c) 136; 253 7. c) 3404; 6514 8. = 139 c) 31210 4. = 508 e) 150 6 = 5843.

SZÁMRENDSZEREK. c) 136; 253 7. c) 3404; 6514 8. = 139 c) 31210 4. = 508 e) 150 6 = 5843. SZÁMRENDSZEREK 1933. A megadott sorrendet követve írtuk át a számokat: a) 2-es számrendszerben: 11; 1001; 1100; 10001; 10111; 100110; 1011011. b) 3-as számrendszerben: 21;110;1011; 1020; 10100; 10102;

Részletesebben

Egyenletek, egyenlőtlenségek X.

Egyenletek, egyenlőtlenségek X. Egyenletek, egyenlőtlenségek X. DEFINÍCIÓ: (Logaritmus) Ha egy pozitív valós számot adott, 1 - től különböző pozitív alapú hatvány alakban írunk fel, akkor ennek a hatványnak a kitevőjét logaritmusnak

Részletesebben

Komplex számok algebrai alakja

Komplex számok algebrai alakja Komplex számok algebrai alakja Lukács Antal 015. február 8. 1. Alapfeladatok 1. Feladat: Legyen z 1 + 3i és z 5 4i! Határozzuk meg az alábbiakat! (a) z 1 + z (b) 3z z 1 (c) z 1 z (d) Re(i z 1 ) (e) Im(z

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA

SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA 1 ELSŐ GYAKORLAT SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA A feladat elvégzése során a következőket fogjuk gyakorolni: Számrendszerek közti átváltás előjelesen és előjel nélkül. Bináris, decimális, hexadexcimális számrendszer.

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. Matematika I

First Prev Next Last Go Back Full Screen Close Quit. Matematika I Matematika I (Analízis) Készítette: Horváth Gábor Kötelező irodalom: Ács László, Gáspár Csaba: Analízis 1 Oktatási segédanyagok és a tantárgyi követelményrendszer megtalálható a http://rs1.szif.hu/ horvathg/horvathg.html

Részletesebben

Matematika (alsó tagozat)

Matematika (alsó tagozat) Matematika (alsó tagozat) Az értékelés elvei és eszközei A tanév során az értékelés alapja a tanulók állandó megfigyelése. Folyamatos fejlesztő célzatú szóbeli értékelés visszajelzést ad a tanuló számára

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA. 9. Nyelvi előkészítő osztály

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA. 9. Nyelvi előkészítő osztály MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 01. 01. kezdete: Oldal/összes: 1/6 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

Feladatok a logaritmus témaköréhez 11. osztály, középszint

Feladatok a logaritmus témaköréhez 11. osztály, középszint TÁMOP-4-08/-009-00 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a logaritmus témaköréhez osztály, középszint Vasvár, 00 május összeállította: Nagy

Részletesebben

Tanmenetjavaslat. Téma Óraszám Tananyag Fogalmak Összefüggések Eszközök Kitekintés. Helyi érték, alaki érték. Számegyenes.

Tanmenetjavaslat. Téma Óraszám Tananyag Fogalmak Összefüggések Eszközök Kitekintés. Helyi érték, alaki érték. Számegyenes. Heti 4 óra esetén, 37 tanítási hétre összesen 148 óra áll rendelkezésre. A tanmenet 132 óra beosztását tartalmazza. Heti 5 óra esetén összesen 37-tel több órában dolgozhatunk. Ez összesen 185 óra. Itt

Részletesebben

A kompetencia alapú matematika oktatás. tanmenete a 9. osztályban. Készítette Maitz Csaba

A kompetencia alapú matematika oktatás. tanmenete a 9. osztályban. Készítette Maitz Csaba A kompetencia alapú matematika oktatás tanmenete a 9. osztályban Készítette Maitz Csaba Szerkesztési feladatok 1. Síkgeometriai alapfogalmak 2. Egyszerűbb rajzok, szerkesztések körző, vonalzó használata

Részletesebben

5.1.4 Laborgyakorlat: A Windows számológép használata hálózati címeknél

5.1.4 Laborgyakorlat: A Windows számológép használata hálózati címeknél 5.1.4 Laborgyakorlat: A Windows számológép használata hálózati címeknél Célok Átkapcsolás a Windows Számológép két működési módja között. A Windows Számológép használata a decimális (tízes), a bináris

Részletesebben

Alapvető Készségek. Kommunikáció

Alapvető Készségek. Kommunikáció Alapvető Készségek és Kommunikáció a Takarítási Szektorban Gyakorlati Összefoglalás Irányvonalak és Oktatási Anyagok A MUNKÁHOZ SZÜKSÉGES ALAPVETŐ KÉSZSÉGEK Az utóbbi években, Európa országainak többségében,

Részletesebben

Mechatronika Modul 5-8

Mechatronika Modul 5-8 Mechatronika Modul 5-8 Jegyzet (Elképzelés) Mechatronikus komponensek Mechatronikus Rendszerek és funkciók Biztonság, üzembe helyezés, hibakeresés Mechatronikus rendszerek távdiagnosztikája és karbantartása

Részletesebben

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai

Részletesebben

Matematika, 1 2. évfolyam

Matematika, 1 2. évfolyam Matematika, 1 2. évfolyam Készítette: Fülöp Mária Budapest, 2014. április 29. 1. évfolyam Az előkészítő időszakot megnyújtottuk (4-6 hét). A feladatok a tanulók tevékenységére épülnek. Az összeadás és

Részletesebben

4. Számelmélet, számrendszerek

4. Számelmélet, számrendszerek I. Elméleti összefoglaló A maradékos osztás tétele: 4. Számelmélet, számrendszerek Legyen a tetszőleges, b pedig nullától különböző egész szám. Ekkor léteznek olyan, egyértelműen meghatározott q és r egész

Részletesebben

Dudás Gabriella Hetényiné Kulcsár Mária Machánné Tatár Rita Sós Mária. sokszínû. 5 gyakorló. kompetenciafejlesztõ munkafüzet. 2.

Dudás Gabriella Hetényiné Kulcsár Mária Machánné Tatár Rita Sós Mária. sokszínû. 5 gyakorló. kompetenciafejlesztõ munkafüzet. 2. Dudás Gabriella Hetényiné Kulcsár Mária Machánné Tatár Rita Sós Mária sokszínû gyakorló kompetenciafejlesztõ munkafüzet. kötet Mozaik Kiadó Szeged, Színesrúd-készlet. Törtek bõvítése és egyszerûsítése

Részletesebben

Comenius Angol - Magyar Két Tanítási Nyelvű Általános Iskola. Matematika tanmenet 2015-2016.

Comenius Angol - Magyar Két Tanítási Nyelvű Általános Iskola. Matematika tanmenet 2015-2016. Comenius Angol - Magyar Két Tanítási Nyelvű Általános Iskola Matematika tanmenet 2015-2016. Tankönyv: Árvainé Lángné Szabados: Sokszínű Matematika 3. /1. és 2. félév/ Árvainé Lángné Szabados: Sokszínű

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Számológép nélkül! százasokra:,,zsinór ; ezresekre:,,lótuszvirág ; tízezresekre:,,ujj ; százezresekre:

Számológép nélkül! százasokra:,,zsinór ; ezresekre:,,lótuszvirág ; tízezresekre:,,ujj ; százezresekre: Számológép nélkül! Manapság az iskolában a matematika órán szinte mindenhez megengedett a számológép használata. Persze mindezen a mai világban már meg se lepődünk, hiszen a mindennapi tevékenységeink

Részletesebben

EXPONENCIÁLIS EGYENLETEK

EXPONENCIÁLIS EGYENLETEK Sokszínű matematika /. oldal. feladat a) = Mivel mindegik hatván alapja hatván, ezért átírjuk a -et és a -ot: = ( ) Alkalmazzuk a hatván hatvána azonosságot! ( ) = A bal oldalon az azonos alapú hatvánok

Részletesebben

148 feladat 20 ) + ( 1 21 + 2 21 + + 20 200 > 1 2. 1022 + 1. 5. Igazoljuk minél rövidebben, hogy a következő egyenlőség helyes: 51 + 1 52 + + 1

148 feladat 20 ) + ( 1 21 + 2 21 + + 20 200 > 1 2. 1022 + 1. 5. Igazoljuk minél rövidebben, hogy a következő egyenlőség helyes: 51 + 1 52 + + 1 148 feladat a Kalmár László Matematikaversenyről 1. ( 1 19 + 2 19 + + 18 19 ) + ( 1 20 + 2 20 + + 19 20 ) + ( 1 21 + 2 21 + + 20 21 ) + ( 1 22 + 2 22 + + 21 22 ) =? Kalmár László Matematikaverseny megyei

Részletesebben

EU-Project Nr. 2005-146319,,MINOS, EU-Project Nr. DE/08/LLP-LDV/TOI/147110,,MINOS**

EU-Project Nr. 2005-146319,,MINOS, EU-Project Nr. DE/08/LLP-LDV/TOI/147110,,MINOS** Mechatronika Modul 10: Robotika Jegyzet Készítették: Petr Blecha Zden k Kolíbal Radek Knoflí ek Aleš Pochylý Tomáš Kubela Radim Blecha Tomáš B ezina Brno-i M szaki Egyetem, Gépészmérnöki Kar Gyártási Gépek,

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2011. május 3. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2011. május 3. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika középszint

Részletesebben

SZÁMÍTÁSOK A TÁBLÁZATBAN

SZÁMÍTÁSOK A TÁBLÁZATBAN SZÁMÍTÁSOK A TÁBLÁZATBAN Az Excelben az egyszerű adatok bevitelén kívül számításokat is végezhetünk. Ezeket a cellákba beírt képletek segítségével oldjuk meg. A képlet: olyan egyenlet, amely a munkalapon

Részletesebben

MATEMATIKA 1-2. ÉVFOLYAM

MATEMATIKA 1-2. ÉVFOLYAM A Nemzeti Alaptantervhez illeszkedő tankönyv-, taneszköz-, és Nemzeti Közoktatási Portál fejlesztése TÁMOP-3.1.2-B/13-2013-0001 MATEMATIKA 1-2. ÉVFOLYAM Kiadványok 1. évfolyam Tankönyv I-II. kötet Munkafüzet

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 11 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

I. Racionális szám fogalma és tulajdonságai

I. Racionális szám fogalma és tulajdonságai 2. modul: MŰVELETEK A RACIONÁLIS SZÁMOK KÖRÉBEN 9 I. Racionális szám fogalma és tulajdonságai Természetes számok 0; 1; 2; 3; 4; 5; 6; 7, 8; 9; 10; 11; 12... Módszertani megjegyzés: Ráhangolódás, csoportalakítás

Részletesebben

I. ALAPALGORITMUSOK. I. Pszeudokódban beolvas n prim igaz minden i 2,gyök(n) végezd el ha n % i = 0 akkor prim hamis

I. ALAPALGORITMUSOK. I. Pszeudokódban beolvas n prim igaz minden i 2,gyök(n) végezd el ha n % i = 0 akkor prim hamis I. ALAPALGORITMUSOK 1. Prímszámvizsgálat Adott egy n természetes szám. Írjunk algoritmust, amely eldönti, hogy prímszám-e vagy sem! Egy számról úgy fogjuk eldönteni, hogy prímszám-e, hogy megvizsgáljuk,

Részletesebben

Add meg az összeadásban szereplő számok elnevezéseit!

Add meg az összeadásban szereplő számok elnevezéseit! 1. 2. 3. 4. Add meg az összeadásban szereplő számok elnevezéseit! Add meg a kivonásban szereplő számok elnevezéseit! Add meg a szorzásban szereplő számok elnevezéseit! Add meg az osztásban szereplő számok

Részletesebben

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat

Részletesebben

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam 1. félév Gondolkozás, számolás - halmazok, műveletek halmazokkal, intervallumok - racionális számok, műveletek racionális számokkal, zárójel

Részletesebben

IT - Alapismeretek. Feladatgyűjtemény

IT - Alapismeretek. Feladatgyűjtemény IT - Alapismeretek Feladatgyűjtemény Feladatok PowerPoint 2000 1. FELADAT TÖRTÉNETI ÁTTEKINTÉS Pótolja a hiányzó neveket, kifejezéseket! Az első négyműveletes számológépet... készítette. A tárolt program

Részletesebben

MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5.

MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5. MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5. I. rész Fontos tudnivalók A megoldások sorrendje tetszőleges. A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet

Részletesebben

Melléklet a Matematika című részhez

Melléklet a Matematika című részhez Melléklet a Matematika című részhez Az arányosság bemutatása Az első könyvsorozatban 7. osztály, Tk-2 és Tk-3-ban 6. osztály, Tk-3b-ben 5. osztály(!), Tk-4-ben ismét 6. osztály, és végül Tk-4b-ben 5-6.

Részletesebben

1. Komplex szám rendje

1. Komplex szám rendje 1. Komplex szám rendje A rend fogalma A 1-nek két darab egész kitevőjű hatványa van: 1 és 1. Az i-nek 4 van: i, i 2 = 1, i 3 = i, i 4 = 1. Innentől kezdve ismétlődik: i 5 = i, i 6 = i 2 = 1, stb. Négyesével

Részletesebben

OECD adatlap - Tanmenet

OECD adatlap - Tanmenet OECD adatlap - Tanmenet Iskola neve: IV. Béla Általános Iskola Iskola címe: 3664, Járdánháza IV. Béla út 131. Tantárgy: Matematika Tanár neve: Lévai Gyula Csoport életkor (év): 13 Kitöltés dátuma 2003.

Részletesebben

1. A komplex számok definíciója

1. A komplex számok definíciója 1. A komplex számok definíciója A számkör bővítése Tétel Nincs olyan n természetes szám, melyre n + 3 = 1. Bizonyítás Ha n természetes szám, akkor n+3 3. Ezért bevezettük a negatív számokat, közöttük van

Részletesebben

Tematikus terv. Az iskola neve: Dátum: 2014. A tanulási-tanítási egység témája: tizedes törtek

Tematikus terv. Az iskola neve: Dátum: 2014. A tanulási-tanítási egység témája: tizedes törtek Tematikus terv A pedagógus neve: Az iskola neve: Dátum: 2014. Műveltségi terület: matematika A tanulási-tanítási egység témája: tizedes tör A pedagógus szakja: matematika Tantárgy: matematika Osztály:

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen

Részletesebben

találhatók. A memória-szervezési modell mondja meg azt, hogy miként

találhatók. A memória-szervezési modell mondja meg azt, hogy miként Memória címzési módok Egy program futása során (legyen szó a program vezérléséről vagy adatkezelésről) a program utasításai illetve egy utasítás argumentumai a memóriában találhatók. A memória-szervezési

Részletesebben

I. Egyenlet fogalma, algebrai megoldása

I. Egyenlet fogalma, algebrai megoldása 11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel

Részletesebben

6. OSZTÁLY. Az évi munka szervezése, az érdeklõdés felkeltése Feladatok a 6. osztály anyagából. Halmazok Ismétlés (halmaz megadása, részhalmaz)

6. OSZTÁLY. Az évi munka szervezése, az érdeklõdés felkeltése Feladatok a 6. osztály anyagából. Halmazok Ismétlés (halmaz megadása, részhalmaz) 6. OSZTÁLY Óraszám 1. 1. Az évi munka szervezése, az érdeklõdés felkeltése a 6. osztály anyagából Tk. 13/elsõ mintapélda 42/69 70. 96/elsõ mintapélda 202/16. 218/69. 2 3. 2 3. Halmazok Ismétlés (halmaz

Részletesebben

MEGOLDÓKULCSOK. 1. feladatsor (1. osztály)

MEGOLDÓKULCSOK. 1. feladatsor (1. osztály) MEGOLDÓKULCSOK 1. feladatsor (1. osztály) 1. feladat 8 9 10 14 15 16 10 11 12 18 19 20 1. pontdoboz: Hibátlan számszomszédok írása 1 pont, hiba 0 pont. 2. feladat 20 17 14 11 8 5 2 2. pontdoboz: Szabályfelismerésért

Részletesebben

Árvainé Libor Ildikó Lángné Juhász Szilvia Szabados Anikó. Második félév. Tizenegyedik, javított kiadás Mozaik Kiadó Szeged, 2013

Árvainé Libor Ildikó Lángné Juhász Szilvia Szabados Anikó. Második félév. Tizenegyedik, javított kiadás Mozaik Kiadó Szeged, 2013 Árvainé Libor Ildikó Lángné Juhász Szilvia Szabados Anikó Második félév Tizenegyedik, javított kiadás Mozaik Kiadó Szeged, 0 SZORZÁS ÉS OSZTÁS -VEL Mesélj a képrõl! Hány kerékpár és kerék van a képen?

Részletesebben

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2 Komplex számok A valós számok és a számegyenes pontjai között kölcsönösen egyértelmű megfeleltetés létesíthető. A számfogalom a számegyenes pontjainak körében nem bővíthető tovább. A számfogalom bővítését

Részletesebben

Matematika tanmenet 10. osztály (heti 3 óra) A gyökvonás 14 óra

Matematika tanmenet 10. osztály (heti 3 óra) A gyökvonás 14 óra Matematika tanmenet 10. osztály (heti 3 óra) Tankönyv: Ábrahám Gábor Dr. Kosztolányiné Nagy Erzsébet Tóth Julianna: Matematika 10. Példatárak: Fuksz Éva Riener Ferenc: É rettségi feladatgyűjtemény matematikából

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2012. május 25. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2012. május 25. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS

Részletesebben

1. óra Tanévi feladatok balesetvédelem, baleset megelőzés 2. óra Ismétlés. 3. óra

1. óra Tanévi feladatok balesetvédelem, baleset megelőzés 2. óra Ismétlés. 3. óra 1. óra Tanévi feladatok balesetvédelem, baleset megelőzés 2. óra Ismétlés Informatikai alapismeretek (fogalmak): Információ (Új ismeretet jelent, amely a megszerzőjének szükséges és érthető) Informatika

Részletesebben

Érettségi előkészítő emelt szint 11-12. évf. Matematika. 11. évfolyam. Tematikai egység/fejlesztési cél

Érettségi előkészítő emelt szint 11-12. évf. Matematika. 11. évfolyam. Tematikai egység/fejlesztési cél Emelt szintű matematika érettségi előkészítő 11. évfolyam Tematikai egység/fejlesztési cél Órakeret 72 óra Kötelező Szabad Összesen 1. Gondolkodási módszerek Halmazok, matematikai logika, kombinatorika,

Részletesebben

Számítások, hivatkozások

Számítások, hivatkozások Bevezetés Ebben a fejezetben megismerkedünk az Excel programban alkalmazható különböző hivatkozásokkal (relatív, vegyes, abszolút). Képesek leszünk különböző alapszintű számítások elvégzésére, képletek

Részletesebben

MATEMATIKA TANMENET 6.OSZTÁLY KÉSZÍTETTE: KULCSÁRNÉ BALÁZSI ERIKA

MATEMATIKA TANMENET 6.OSZTÁLY KÉSZÍTETTE: KULCSÁRNÉ BALÁZSI ERIKA MATEMATIKA TANMENET 6.OSZTÁLY KÉSZÍTETTE: KULCSÁRNÉ BALÁZSI ERIKA JELÖLÉSEK: Nem szakrendszerű órák jelölése zöld színnel, számok a programterv A 6. évfolyam tanmenetből valók Infokommunikációs technológia

Részletesebben

A matematikai feladatok és megoldások konvenciói

A matematikai feladatok és megoldások konvenciói A matematikai feladatok és megoldások konvenciói Kozárné Fazekas Anna Kántor Sándor Matematika és Informatika Didaktikai Konferencia - Szatmárnémeti 2011. január 28-30. Konvenciók Mindenki által elfogadott

Részletesebben

TANMENET javaslat. a szorobánnal számoló. osztály számára. Vajdáné Bárdi Magdolna tanítónő

TANMENET javaslat. a szorobánnal számoló. osztály számára. Vajdáné Bárdi Magdolna tanítónő 3 TANMENET javaslat a szorobánnal számoló 3. osztály számára Szerkesztette: Dr. Vajda József - Összeállította az Első Szorobán Alapítvány megbízásából: Vajdáné Bárdi Magdolna tanítónő Makó, 2001. 2010.

Részletesebben

Az Excel táblázatkezelő program használata a matematika és a statisztika tantárgyak oktatásában

Az Excel táblázatkezelő program használata a matematika és a statisztika tantárgyak oktatásában Az Excel táblázatkezelő program használata a matematika és a statisztika tantárgyak oktatásában Hódiné Szél Margit SZTE MGK 1 A XXI. században az informatika rohamos terjedése miatt elengedhetetlen, hogy

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2014. május 20. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2014. május 20. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2015. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2015. május 5. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika középszint

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI 1. FELADATSORHOZ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI 1. FELADATSORHOZ JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI 1. FELADATSORHOZ Formai előírások: A dolgozatot a vizsgázó által használt színűtől eltérő színű tollal kell javítani, és a tanári gyakorlatnak

Részletesebben

Perényi Marcell Hardver

Perényi Marcell Hardver Perényi Marcell Hardver Tiniinformatika sorozat Hardver Perényi Marcell TypoTEX Kiadó 2001 Tiniinformatika sorozat Sorozatszerkesztő: Győri Sándor A kötet megjelenését támogatta a SUN Microsystems Magyarország

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2012. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2012. május 8. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika középszint

Részletesebben

Az írásbeli eredménye 75%-ban, a szóbeli eredménye 25%-ban számít a végső értékelésnél.

Az írásbeli eredménye 75%-ban, a szóbeli eredménye 25%-ban számít a végső értékelésnél. Matematika A vizsga leírása: írásbeli és szóbeli vizsgarészből áll. A matematika írásbeli vizsga egy 45 perces feladatlap írásbeli megoldásából áll. Az írásbeli feladatlap tartalmi jellemzői az alábbiak:

Részletesebben

Feladatok MATEMATIKÁBÓL II.

Feladatok MATEMATIKÁBÓL II. Feladatok MATEMATIKÁBÓL a 12. évfolyam számára II. 1. Alakítsuk át a következő kifejezéseket úgy, hogy teljes négyzetek jelenjenek meg: a) x 2 2x + b) x 2 6x + 10 c) x 2 + x + 1 d) x 2 12x + 11 e) 2x 2

Részletesebben

S z á m í t á s t e c h n i k a i a l a p i s m e r e t e k

S z á m í t á s t e c h n i k a i a l a p i s m e r e t e k S z á m í t á s t e c h n i k a i a l a p i s m e r e t e k T a r t a l o m Mintafeladatok... 4 Számrendszerek, logikai mőveletek... 4 Gyakorló feladatok... 19 Számrendszerek, logikai mőveletek... 19 Megoldások...

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2015. május 19. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2015. május 19. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0511 ÉRETTSÉGI VIZSGA 005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 180 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 051 ÉRETTSÉGI VIZSGA 005. május 9. MATEMATIKA KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 180 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók

Részletesebben

Számold meg a pontokat A bináris számok

Számold meg a pontokat A bináris számok 1. Foglalkozás Számold meg a pontokat A bináris számok Tartalom A számítógépekben az adatokat nullák és egyesek sorozataként tároljuk és továbbítjuk. Hogyan tudjuk ábrázolni a szavakat és a számokat pusztán

Részletesebben

KÖZÉPSZINTŰ MATEMATIKA ÉRETTSÉGI FELADATOK GYŰJTEMÉNYE

KÖZÉPSZINTŰ MATEMATIKA ÉRETTSÉGI FELADATOK GYŰJTEMÉNYE KÖZÉPSZINTŰ MATEMATIKA ÉRETTSÉGI FELADATOK GYŰJTEMÉNYE KÉSZÍTETTE BRÓSCH ZOLTÁN 2015.08.29. Előszó,,Önmagáért szeretem a matematikát, s szeretem mindmáig, mert nem tűri a képmutatást és a homályt, azt

Részletesebben

az Excel for Windows programban

az Excel for Windows programban az Excel for Windows táblázatkezelőblázatkezel programban Mit nevezünk nk képletnek? A táblt blázatkezelő programok nagy előnye, hogy meggyorsítj tják és könnyebbé teszik a felhasználó számára a számítási

Részletesebben

5. A kiterjesztési elv, nyelvi változók

5. A kiterjesztési elv, nyelvi változók 5. A kiterjesztési elv, nyelvi változók Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 A kiterjesztési elv 2 Nyelvi változók A kiterjesztési elv 237 A KITERJESZTÉSI ELV A

Részletesebben

Könnyebb-a a középszintű érettségi a régi házi érettségi vizsgánál? II.

Könnyebb-a a középszintű érettségi a régi házi érettségi vizsgánál? II. Könnyebb-a a középszintű érettségi a régi házi érettségi vizsgánál? II. Írta: dr. Majoros Mária Ebben a tanulmányban a jelenlegi érettségin kitűzött feladatokat olyan szempontból fogom összehasonlítani,

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2011. október 17. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2011. október 17. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS

Részletesebben

MATEMATIKA VERSENY --------------------

MATEMATIKA VERSENY -------------------- Eötvös Károly Közös Fenntartású Általános Iskola 2013. és Alapfokú Művészetoktatási Intézmény 831 Vonyarcvashegy, Fő u. 8/1. 2. osztály MATEMATIKA VERSENY -------------------- név Olvasd el figyelmesen,

Részletesebben

A III. forduló megoldásai

A III. forduló megoldásai A III. forduló megoldásai 1. Egy dobozban pénzérmék és golyók vannak, amelyek vagy ezüstből, vagy aranyból készültek. A dobozban lévő tárgyak 20%-a golyó, a pénzérmék 40%-a ezüst. A dobozban levő tárgyak

Részletesebben