Mechatronikus. Oktatói segédlet (Elképzelés) Rendszerek és funkciók. Készítették:

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Mechatronikus. Oktatói segédlet (Elképzelés) Rendszerek és funkciók. Készítették:"

Átírás

1 Mechatronika Modul 6: Mechatronikus Rendszerek és funkciók Oktatói segédlet (Elképzelés) Készítették: Jerzy Jędrzejewski Wojciech Kwaśny Zbigniew Rodziewicz Andrzej Błażejewski Wroclaw-i Műszaki Egyetem, Gyártástechnológiai és Automatizálási Intézet, Lengyelország Matthias Römer Chemnitz-i Műszaki Egyetem, Szerszámgépek és Gyártási Folyamatok Intézete, Németország Cser Adrienn Corvinus Egyetem, Információtechnológiai Intézet, Magyarország EU-Projekt: MINOS, Európai elképzelés a globális ipari termelésben résztvevő szakemberek mechatronika témakörben történő továbbképzéséről Az Európai Bizottság támogatást nyújtott ennek a projektnek a költségeihez. Ez a kiadvány (közlemény) a szerző nézeteit tükrözi, és az Európai Bizottság nem tehető felelőssé az abban foglaltak bárminemű felhasználásért.

2 A szakmai anyag elkészítésében és kipróbálásában az alábbi magáncégek és intézmények vettek részt Chemnitz-i Műszaki Egyetem, Szerszámgépek és Gyártási Folyamatok Intézete, Németország Projektvezetés Corvinus Egyetem, Informatikai Intézet, Magyarország Stockholm-i Egyetem, Szociológiai Intézet, Svédország Wroclaw-i Műszaki Egyetem, Gyártástechnológiai és Automatizálási Intézet, Lengyelország Henschke Consulting Drezda, Németország Christian Stöhr Unternehmensberatung, Németország Neugebauer und Partner OHG Drezda, Németország Korff Isomatic sp.z.o.o. Wroclaw, Lengyelország Euroregionális Ipari és Kereskedelmi Kamara Jelenia Gora, Lengyelország Dunaferr Dunaújváros, Magyarország Knorr-Bremse Kft. Kecskemét, Magyarország Nemzeti Szakképzési Intézet Budapest, Magyarország Tartalom: Jegyzet, munkafüzet és oktatói segédlet az alábbi témakörökhöz Modul 1: Alapismeretek Modul 2: Interkulturális kompetencia, Projektmenedzsment Modul 3: Folyadékok Modul 4: Elektromos meghajtók és vezérlések Modul 5: Mechatronikus komponensek Modul 6: Mechatronikus rendszerek és funkciók Modul 7: Üzembehelyezés, biztonság, teleservice Modul 8: Távkarbantartás és távdiagnosztika További információ: Technische Universität Chemnitz Institut für Werkzeugmaschinen und Produktionsprozesse (Chemnitz-i Műszaki Egyetem, Szerszámgépek és Gyártási Folyamatok Intézete) Univ.-Prof. Dr.-Ing. habil. Prof. E.h. Dr.-Ing. E.h. Reimund Neugebauer Prof. Dr.-Ing. Dieter Weidlich Reichenhainer Straße 70, Chemnitz, Deutschland Tel.: +49(0) Fax: +49(0) Internet:

3 Minos 1 Induktív érzékelők 1.1 Alapkonstrukció 1. Feladat Hogyan épül fel az induktív érzékelő aktív része? Az induktív szenzor aktív része egy vasmagra tekert, változó mágneses terű tekercs. A mag szerepe nyitott mágneses kör esetén a tekercs mágneses mezejének felerősítése, és annak a mérési terület felé irányítása. Az induktív érzékelő hogyan határozza meg a tekercs és a detektált tárgy távolságát? A szenzor elektromos áramköre az amplitúdó csillapodása alapján határozza meg a tárgytól való távolságot, majd létrehozza a kimeneti jelet. A kimeneti jel általában kétállapotú: a tárgy a szenzor munkaterületén belül vagy kívül helyezkedik el. Előfordulhat azonban analóg jel is, mely fordítottan arányos a tárgynak a szenzortól mért távolságával. Mi a hiszterézis? A hiszterézis az a távolság különbség, mely esetén a szenzor közeledő és távolodó tárgyak esetén reagál. A szenzor állapota ekkor KI-ről BE-re változik, vagy fordítva (l. ábra). A hiszterézis mértéke a szenzor típusától és méretétől függ, de általában nem haladja meg a mérési tartomány 20%-át. Miért előnyös, ha az induktív szenzor hiszterézises? A detekciós rendszer mellett az érzékelő elektromos rendszere egy hiszterézises komparátorból és a kimeneti rendszerből áll. A hiszterézisnek köszönhetően a szenzor kimenetén esetlegesen fellépő interferencia elkerülhető. Interferencia legnagyobb valószínűséggel kapcsoláskor lép fel, mégpedig a detektálandó tárgy instabil helyzete, vibrálása, illetve a tápfeszültség és/vagy a környezeti hőmérséklet változása esetén Adja meg az induktív érzékelő működési frekvenciatartományát! Az induktív szenzorok változó mágneses teret létrehozó LCgenerátora nagyfrekvenciás (HF) generátorok, melyek tipikus tartománya 100 khz és 1 MHz között van. A tekercs átmérőjének növelésével nő a szenzor maximális terhelési áram kapacitása, azonban csökken a működési frekvencia. 3

4 Minos Mekkora az induktív érzékelő működési távolsága, és milyen házakba épül be? Az átlagos induktív szenzorok mérési területe nem haladja meg a 60 mm-t. A szenzorok háza eltérő lehet, léteznek hengeres (fém) és prizmás (műanyag) házak, így a szenzor a működési helyén optimálisan installálható. Hogy definiáljuk az érzékelő névleges érzékelési távolságát? A szenzor előlapjától a tárgynak az áramkör átváltását előidéző távolságát névleges érzékelési távolságnak (S n ) nevezzük. Ez az érték szerepel a katalógusokban. Az érzékelő névleges érzékelési távolsága mely tárgyra van meghatározva? A névleges érzékelési távolság (S n ) értékét az EN szabvány szerint egy négyzet alakú acél lemezzel (St37) határozzák meg, melynek oldalhossza megegyezik a szenzor átmérőjével, és vastagsága 1 mm. Mi a valós érzékelési távolság? A valós érzékelési távolságot (S r ) a gyártás során határozzák meg, és némileg eltérhet a névleges érzékelési távolságtól. A A névleges érzékelési feszültség és a nominális környezeti hőmérséklet esetén ez 0,9 S n S r 1,1 S n. Mi szenzor működési távolsága? A működési távolság a fémes tárgytól való azon biztonságos távolságnak felel meg, mely esetén a hibátlan működés garantálható. Az ajánlott működési távolság S a 0,8 S n. Milyen elemek befolyásolják az induktív érzékelő működési tartományát? A szenzor névleges érzékelési távolsága függ a ház átmérőjétől, pontosabban a tekercs átmérőjétől és a mag tulajdonságaitól. Így tehát a kisebb házba beépített szenzorok működési tartománya kisebb, mint a nagyobb méretű szenzoroké. Léteznek azonban speciális szenzor kivitelezési típusok, melyek növelik a működési tartományt. Induktív érzékelők esetén milyen szerepe van a redukciós tényezőnek? A detektált tárgy az áramkör rezonanciáját anyagától függő mértékben csillapítja. Az arany, réz vagy alumínium, melyek elektromos vezetőképessége nagyobb az St37 es acélé, a rezgést kisebb mértékben csillapítják. 4

5 Minos Ez az érzékelési tartomány csökkenését okozza. Ha például a detektált tárgy bronz, az St37 es acélra meghatározott érzékelési távolságot egy redukciós tényező segítségével kell módosítani: 0,5 S n. Az érzékelő kialakítása hogyan befolyásolja annak érzékenységét? Hengeres házban két alaptípus létezik: - Árnyékolt: a rezonáns áramkör induktív tekercse egy köpenyen belül helyezkedik el, mégpedig úgy, hogy a köpeny fémes felülete a szenzor frontális része. - Árnyékolatlan: A tekercs kinyúlik a házból, és egy kiegészítő műanyag sapka árnyékolja. A kinyúló tekercses szenzorok érzékenysége a detektálandó tárgy irányába nagyobb, azonban ezáltal a környező más tárgyakat is jobban érzékeli. Milyen szabályokat érdemes betartani az egymáshoz közel levő árnyékolt érzékelők felszerelésekor? Az árnyékolt hengeres szenzor nem érzékeny az őt körülvevő fémes tárgyakra, csak a közvetlenül előtte elhelyezett tárgyakat észleli. Ennek eredményeként ezeket a szenzorokat fémes elemek közé is beszerelhetjük. A szenzor frontális felületétől számítva a szabad tartomány 3S n.kell legyen Két, egymáshoz közel elhelyezkedő szenzor kölcsönös egymásra hatásának elkerülésére a köztük levő távolság legyen legalább az egyik szenzor átmérőjének kétszerese. Milyen szabályokat érdemes betartani az egymáshoz közel levő árnyékolatlan érzékelők felszerelésekor? Az árnyékolatlan hengeres szenzor érzékeny az őt körülvevő fémes tárgyakra, tehát a szabd terület oldalirányba is kiterjed, itt sem helyezkedhet el más tárgy. Az interferencia elkerülése végett a két szenzor távolsága itt legalább az átmérő háromszorosa legyen. Mit értünk az érzékelő kimenetének maximális átváltási frekvenciáján? Minden szenzor műszaki dokumentációja nyújt információt a kimenet maximális átváltási frekvenciáját illetően, mivel ez az adott szenzor jellemzője. A szenzor kimeneti állapotának átváltását jellemzi, ha egy St37-es acélból készült tárgy ciklikusan be- majd kilép az érzékelési távolságból. A frekvencia meghatározása az EN /IEC szabvány alapján történik. 5

6 Minos 1.2 Speciális szenzorok A szabványos laptól eltérő tárgyak esetén milyen maximális átváltási frekvencia értékekre számíthatunk? A mérés eredménye mindig függ a tekercset csillapító tárgy méretétől, annak a szenzortól való távolságától és a tárgy sebességétől. A standard lemeznél kisebb tárgy vagy kisebb tárgyak közötti távolság esetén a maximális átváltási frekvencia csökkenése várható. 2. Feladat Ismertesse a gyűrű érzékelők működésének elvét! Az induktív gyűrű-érzékelők működése egy nagy frekvenciás generátoron alapszik, mely a furaton belül mágneses teret hoz létre. A tekercs toroid nagy teljesítményű maggal rendelkezik, mely minőségi faktora jobb, mint a vasmagos tekercseké. Tetszőleges fémes tárgy jelenléte a rezgések amplitúdójának csökkentésén keresztül aktiválja a szenzort. Az amplitúdócsökkenést egy komparátor ismeri fel, ami a küszöb érték átlépésekor átváltja a kimeneti állapotot. Léteznek korlátozások a gyűrűs érzékelők által észlelhető tárgyak méretére vonatkozólag? A szenzor aktiválásához a csillapítás egy adott szintje szükséges. Ha a detektálandó tárgyak túl kicsik, elképzelhető, hogy a csillapítás mértéke is túl csekély lesz. Érthető tehát, hogy minden szenzorméret esetén létezik egy minimális hossz vagy átmérő, ami felett a detektálandó tárgy biztos felismerése garantálható. Léteznek korlátozások a gyűrűs érzékelők által észlelhető tárgyak pályájára vonatkozólag? A gyűrű-érzékelő előnye, hogy a detektálandó tárgyak mozgása pályájának nem kell szükségszerűen azonosnak lenniük. A gyűrű kialakítás lehetővé teszi a térbeli orientációtól független érzékelést. Milyen negatív hatással lehetnek az erős mágneses terek az induktív érzékelők működésére? Az érzékelők erős mágneses mezőben (például hegesztő berendezések közelében) való felszerelése a kimenti állapot ellenőrizhetetlen viselkedésének veszélyével jár, mely a mágneses mező a mag szaturációs intenzitására kifejtett hatás a következménye. A keletkező plusz áram zavarja az oszcillátor működését és a kimeneti állapot véletlenszerű átkapcsolásához vezethet. 6

7 Minos Hogyan védhetjük az induktív érzékelőket az erős mágneses terekkel szemben? A hibás működés elkerülése érdekében ezek az érzékelők különleges elektronikus áramkörrel és kis mágneses permeabilitású maggal rendelkeznek. Az ilyen, speciális szinterelt vasból készült magokat csak a tipikus vasmagokénál sokszorosan sűrűbb mágneses mező szaturál. Tehát az ilyen maggal rendelkező szenzorok sokkal kevésbé érzékenyek a külső interferenciára, mivel saját mágneses terük koncentrált és irányított. A külső mágneses mezőkkel szemben a mag nélküli szenzorok a legkevésbé érzékenyek. Itt a tekercs nem-mágneses, műanyag orsóra van feltekerve. Hogyan védjük az ívhegesztő berendezések közelében működő az induktív érzékelőket? A hegesztési folyamat alapvetően sok szikrával jár, mely károsíthatja az érzékelő házát, valamint az aktív felületet. A szikrák miatt az ilyen alkalmazásokra tervezett szenzorok Teflon bronz bevonatúak, első felületük pedig hőálló műanyaggal (Duraplast ) védett. Nevezzen meg néhány különleges működési körülményre tervezett érzékelő típust! Léteznek nagy nyomás, magas hőmérséklet, kémiailag agresszív környezet, olaj, nagy páratartalom esetére tervezett, vagy miniatűr érzékelők is. Milyen jellemzőkkel kell rendelkezniük a magas nyomáson működő induktív érzékelőknek? Nagy nyomású környezetben működő szenzorok felépítésének a belső elektronika védelme érdekében robusztusnak és jól tömítettnek kell lennie. A tekercset és a magot a frontális oldalát egy vastag, kopásálló kerámia korong védi. A tekercs védelmére egy kicsit hátrébb helyezkedik el ezáltal a lecsökken a működési tartomány. Ennek kiküszöbölésére egy módosított, nagyobb működési tartományt biztosító áramkörre van szükség. Mutassa be a NAMUR induktív érzékelők működésének elvét! A NAMUR induktív szenzorok olyan két vezetékes érzékelők, melyek belső ellenállása fémes tárgy érzékelésekor megváltozik: a nincs fémes tárgy helyzethez kicsi, a fémes tárgy detektálva helyzethez pedig nagy ellenállás tartozik. Ezek az érzékelők külső erősítőkkel működnek. A NAMUR induktív érzékelők egy részlegesen csillapított tekerccsel rendelkező oszcillátorból és egy demodulátorból állnak. A detektált tárgy és a szenzor távolságának változása a 7

8 Minos kiadott áram változásává alakul, melyet a külső erősítő kétállapotú jellé alakít. Sorolja fel a NAMUR induktív érzékelők fő jellemzőit! A NAMUR induktív érzékelők kimeneti jelei szigorúan meghatározott tartományban mozoghatnak. AZ EN (korábban EN 50227) szabvány szerint ez a tartomány 1,2 matől 2,1 ma-ig terjed. Minden DC erősítőről táplált NAMUR érzékelő áramkarakterisztikája megegyezik, és a szigorúan meghatározott átváltási hiszterézis 0,2 ma. A NAMUR induktív érzékelők milyen működési körülmények között használhatóak? A NAMUR szenzorok robbanásveszélyes környezetben csak szikraálló jelváltó erősítővel használhatók. Lehetséges a szenzor biztonsági előírásoknak nem megfelelő erősítővel való használata is, ám ekkor az erősítőnek a veszélyes tartományon kívül kell elhelyezkednie. Mi a különbség az analóg kimenetű és a kétállapotú érzékelők között? A kétállapotú érzékelők csak a céltárgy jelenlétét vagy hiányát érzékelik. Ezzel szemben az analóg szenzorok a céltárgy elhelyezkedését is érzékelik. Egy tárgy távolságának S n -ről nullára változása a kimeneti jel 0-ról 20 ma-re való változásának felel meg. Mutassa be az induktív analóg érzékelők felépítését! Az induktív analóg érzékelők egy tekercset tartalmazó fejből, egy generátorból, egy linearizációs rendszerből és egy kimeneti rendszerből állnak. 1.3 Érzékelők kapcsolása és tápellátása 3. Feladat Az egyenfeszültség mekkora ingadozása megengedhető induktív érzékelők esetén? Az egyenáramú érzékelők általában adapterek segítségével működnek, melyek kimeneti feszültsége fluktuál. A feszültség értékének túl nagy fluktuációja az induktív szenzorok váratlan viselkedéséhez vezethet. A hibátlan működés biztosítása érdekében a tápfeszültség változása nem haladhatja meg az átlagérték 10%-át. 8

9 Minos 1.4 Biztonság és védelem Hogyan védjük a szenzort a tápfeszültség hirtelen csúcsai ellen? Az ilyen csúcsok elkerülése végett a stabilizált adapterek, vagy egy nagyobb jelsimító kondenzátor használata javasolt. Mi a különbség az NO és NC típusú érzékelők között? Mindkét típusú kimenet esetén rendelkezésre áll a NO normál esetben nyitott, és NC normál esetben zárt funkció. Az NO típus esetén a szenzor az áramot bekapcsolja, az NC típus pedig ki. Mi határozza meg a maximálisan sorba kapcsolható érzékelők számát? A sorba kapcsolt szenzorok maximális száma a tápfeszültség nagyságától, az érzékelők kimenetén lévő feszültségeséstől és a kapcsolódó terhelés paramétereitől függ. A szenzorok kimenetén lévő feszültségeséssel csökkentett tápfeszültség értékének mindig meg kell haladnia a kapcsolódó terhelés minimális működési feszültségét. Lehetséges a váltófeszültségű érzékelők közvetlenül a hálózati feszültségre történő csatlakoztatása? A váltóáramú érzékelőket nem szabad közvetlenül rákapcsolni az AC adapterre sem, ez ugyanis a szenzor belső áramköreit károsítaná. A váltóáramú érzékelőket az R L terhelő ellenállással sorba kell kapcsolni. 4. Feladat Az egyenfeszültségű érzékelők kimenetei mely nem-kívánatos hatásoktól védettek? A legtöbb egyenáramú érzékelő esetén a kimenetek az alábbi negatív következményekkel járó események ellen védettek: - a tápfeszültségre történő téves irányú csatlakoztatás - a kikapcsolást követő túlfeszültség a kimeneten - rövid és nem-ciklikus impulzusok a tápvezetéken keresztül - túlzott kimeneti áram és rövidzárlat A DC érzékelők kimenetének esetleges rövidzárlata veszélyezteti a szenzor működését? Az egyenáramú szenzorok elektromos áramköreinek rövidzárlata magát a szenzort nem károsítja, még ismételt és tartós esetben sem, mivel a rövidzárlat alatt a szenzor diódái kikapcsolt állapotban vannak. A rövidzár kiküszöbölése után az érzékelő hibátlanul működik. 9

10 Minos Mikor szükséges az érzékelő árnyékolásának földelése? Fém házban található érzékelők esetén, amennyiben azok tápfeszültsége az emberre veszélyes, földelésre van szükség. Milyen óvintézkedéseket kell tennünk az érzékelő elektromos áramköreiben fellépő szivárgási áramok kiküszöbölésére? Ha egy közelítéskapcsoló KI állapotban van, az áramkörben szivárgási áram jelenik meg, mely az érzékelő hibás működését eredményezheti. Ennek elkerülése végett egy további R p ellenállást kapcsolunk párhuzamosan magával a terheléssel. Ez az ellenállás ekkor felveszi a szivárgási áramot, mivel ennek értéke kisebb, mint az ellenállás működéséhez szükséges áram. 10

Mechatronika Modul 5: Mechatronikus komponensek

Mechatronika Modul 5: Mechatronikus komponensek Mechatronika Modul 5: Mechatronikus komponensek Oktatói segédlet (Elképzelés) Készítették: Wojciech Kwaśny Andrzej Błażejewski Wroclaw-i Műszaki Egyetem, Gyártástechnológiai és Automatizálási Intézet,

Részletesebben

Mechatronika Modul 4: Elektromos meghatók És vezérlések

Mechatronika Modul 4: Elektromos meghatók És vezérlések Mechatronika Modul 4: Elektromos meghatók És vezérlések Munkafüzet (Elképzelés) Készítették: Matthias Römer Chemnitz-i Műszaki Egyetem, Szerszámgépek és Gyártási Folyamatok Intézete, Németország Cser Adrienn

Részletesebben

Mechatronika Modul 5: Mechatronikus komponensek

Mechatronika Modul 5: Mechatronikus komponensek Mechatronika Modul 5: Mechatronikus komponensek Munkafüzet (Elképzelés) Készítették: Wojciech Kwaśny Andrzej Błażejewski Wroclaw-i Műszaki Egyetem, Gyártástechnológiai és Automatizálási Intézet, Lengyelország

Részletesebben

Mechatronika Modul 4: Elektromos meghatók És vezérlések

Mechatronika Modul 4: Elektromos meghatók És vezérlések Mechatronika Modul 4: Elektromos meghatók És vezérlések Oktatói segédlet (Elképzelés) Készítették: Matthias Römer Chemnitz-i Műszaki Egyetem, Szerszámgépek és Gyártási Folyamatok Intézete, Németország

Részletesebben

Mechatronikus. Jegyzet (Elképzelés) Rendszerek és funkciók. Készítették:

Mechatronikus. Jegyzet (Elképzelés) Rendszerek és funkciók. Készítették: Mechatronika Modul 6: Mechatronikus Rendszerek és funkciók Jegyzet (Elképzelés) Készítették: Jerzy Jędrzejewski Wojciech Kwaśny Zbigniew Rodziewicz Andrzej Błażejewski Wroclaw-i Műszaki Egyetem, Gyártástechnológiai

Részletesebben

Mechatronika Modul 1: Alapismeretek

Mechatronika Modul 1: Alapismeretek Mechatronika Modul : Alapismeretek Oktatói segédlet (Elképzelés) Készítették: Matthias Römer Chemnitz-i Műszaki Egyetem, Szerszámgépek és Gyártási Folyamatok Intézete, Németország Cser Adrienn Corvinus

Részletesebben

Mechatronika. Modul 2 (Rész 2): Projektmenedzsment. Munkafüzet (Elképzelés) Készítették:

Mechatronika. Modul 2 (Rész 2): Projektmenedzsment. Munkafüzet (Elképzelés) Készítették: Mechatronika Modul 2 (Rész 2): Projektmenedzsment Munkafüzet (Elképzelés) Készítették: Christian Stöhr Christian Stöhr Unternehmensberatung, Németország Andre Henschke Henschke Consulting Drezda, Németország

Részletesebben

Mechatronika Modul 5: Mechatronikus komponensek

Mechatronika Modul 5: Mechatronikus komponensek Mechatronika Modul 5: Mechatronikus komponensek Jegyzet (Elképzelés) Készítették: Wojciech Kwaśny Andrzej Błażejewski Wroclaw-i Műszaki Egyetem, Gyártástechnológiai és Automatizálási Intézet, engyelország

Részletesebben

Mechatronika Modul 3: Folyadékok

Mechatronika Modul 3: Folyadékok Mechatronika Modul 3: Folyadékok Munkafüzet (Elképzelés) Készítették: Matthias Römer Chemnitz-i Műszaki Egyetem, Szerszámgépek és Gyártási Folyamatok Intézete, Németország Cser Adrienn Corvinus Egyetem,

Részletesebben

Mechatronika Modul 12: Interfészek Munkafüzet www.minos-mechatronic.eu

Mechatronika Modul 12: Interfészek Munkafüzet www.minos-mechatronic.eu Mechatronika Modul 12: Interfészek Munkafüzet (Koncepció) Dr. Gabriele Neugebauer Dipl.-Ing. Matthias Römer Neugebauer und Partner OHG, Németország Európai elképzelés a globális ipari termelésben résztvev

Részletesebben

Mechatronika Modul 5-8

Mechatronika Modul 5-8 Mechatronika Modul 5-8 Munkafüzet Oktatói segédlet Mechatronikus komponensek Mechatronikus Rendszerek és funkciók Mechatronikus rendszerek távdiagnosztikája és karbantartása EU-Projekt: 2005-146319 MINOS,

Részletesebben

Mechatronika Modul 1: Alapismeretek

Mechatronika Modul 1: Alapismeretek Mechatronika Modul 1: Alapismeretek Jegyzet (Elképzelés) Készítették: Matthias Römer Chemnitz-i Műszaki Egyetem, Szerszámgépek és Gyártási Folyamatok Intézete, Németország Cser Adrienn Corvinus Egyetem,

Részletesebben

Modul 2 (Rész 1): Interkulturális kompetencia

Modul 2 (Rész 1): Interkulturális kompetencia Mechatronika Modul 2 (Rész 1): Interkulturális kompetencia Munkafüzet (Elképzelés) Készítették: Christian Stöhr Christian Stöhr Unternehmensberatung, Németország Andre Henschke Henschke Consulting Drezda,

Részletesebben

Mechatronika Modul 5-8

Mechatronika Modul 5-8 Mechatronika Modul 5-8 Jegyzet (Elképzelés) Mechatronikus komponensek Mechatronikus Rendszerek és funkciók Biztonság, üzembe helyezés, hibakeresés Mechatronikus rendszerek távdiagnosztikája és karbantartása

Részletesebben

EU-Project Nr. 2005-146319,,MINOS, EU-Project Nr. DE/08/LLP-LDV/TOI/147110,,MINOS**

EU-Project Nr. 2005-146319,,MINOS, EU-Project Nr. DE/08/LLP-LDV/TOI/147110,,MINOS** Mechatronika Modul 10: Robotika Munkafüzet Készítették: Petr Blecha Zden k Kolíbal Radek Knoflí ek Aleš Pochylý Tomáš Kubela Radim Blecha Tomáš B ezina Brno-i M szaki Egyetem, Gépészmérnöki Kar Gyártási

Részletesebben

Mechatronika Modul 3: Folyadékok

Mechatronika Modul 3: Folyadékok Mechatronika Modul 3: Folyadékok Oktatói segédlet (Elképzelés) Készítették: Matthias Römer Chemnitz-i Műszaki Egyetem, Szerszámgépek és Gyártási Folyamatok Intézete, Németország Cser Adrienn Corvinus Egyetem,

Részletesebben

Modul 2 (Rész 1): Interkulturális kompetencia

Modul 2 (Rész 1): Interkulturális kompetencia Mechatronika Modul 2 (Rész 1): Interkulturális kompetencia Jegyzet (Elképzelés) Készítették: Christian Stöhr Christian Stöhr Unternehmensberatung, Németország Andre Henschke Henschke Consulting Drezda,

Részletesebben

Mechatronika. Modul 12: Interfészek. Jegyzet. Készítették: Dr. Gabriele Neugebauer Dipl.-Ing. Matthias Römer

Mechatronika. Modul 12: Interfészek. Jegyzet. Készítették: Dr. Gabriele Neugebauer Dipl.-Ing. Matthias Römer Mechatronika Modul 12: Interfészek Jegyzet Készítették: Dr. Gabriele Neugebauer Dipl.-Ing. Matthias Römer Neugebauer und Partner OHG, Németország EU-Project Nr. 2005-146319,,MINOS, EU-Project Nr. DE/08/LLP-LDV/TOI/147110,,MINOS**

Részletesebben

Modul 2 (Rész 1): Interkulturális kompetencia

Modul 2 (Rész 1): Interkulturális kompetencia Mechatronika Modul 2 (Rész 1): Interkulturális kompetencia Oktatói segédlet (Elképzelés) Készítették: Christian Stöhr Christian Stöhr Unternehmensberatung, Németország Andre Henschke Henschke Consulting

Részletesebben

Bekötési diagramok. Csatlakozó típusok

Bekötési diagramok. Csatlakozó típusok Namur típus Bekötési diagramok C típus (3-4 vezetékes) Áram [ma] Az érzékelő 5 30Vdc tápfeszültséggel működtethető Kapcsolási távolság Sn [mm] B típus (2 vezetékes - D.C) A típus (2 vezetékes - A.C) Csatlakozó

Részletesebben

Mechatronika Biztonság, üzembe helyezés, hibakeresés

Mechatronika Biztonság, üzembe helyezés, hibakeresés Mechatronika Modul 7: Biztonság, üzembe helyezés, hibakeresés Jegyzet (Elképzelés) Készítették: Matthias Römer Chemnitz-i Műszaki Egyetem, Szerszámgépek és Gyártási Folyamatok Intézete, Németország Cser

Részletesebben

Bekötési diagramok. Csatlakozó típusok

Bekötési diagramok. Csatlakozó típusok Bekötési diagramok A típus (2 vezetékes - A.C) C típus (3-4 vezetékes) R típus (relés) Csatlakozó típusok 1: H (M12) 3: K (Mod 12) 1 = barna / + 3 = kék / - 4 = fekete / NPN-PNP kimenet / NO 2 = fehér

Részletesebben

Mechatronika. Modul 2 (Rész 2): Projektmenedzsment. Oktatói segédlet (Elképzelés) Készítették:

Mechatronika. Modul 2 (Rész 2): Projektmenedzsment. Oktatói segédlet (Elképzelés) Készítették: Mechatronika Modul 2 (Rész 2): Projektmenedzsment Oktatói segédlet (Elképzelés) Készítették: Christian Stöhr Christian Stöhr Unternehmensberatung, Németország Andre Henschke Henschke Consulting Drezda,

Részletesebben

Mechatronika Modul 4: Elektromos meghatók És vezérlések

Mechatronika Modul 4: Elektromos meghatók És vezérlések Mechatronika Modul 4: Elektromos meghatók És vezérlések Jegyzet (Elképzelés) Készítették: Matthias Römer Chemnitz-i Műszaki Egyetem, Szerszámgépek és Gyártási Folyamatok Intézete, Németország Cser Adrienn

Részletesebben

Közösségen belüli migráció

Közösségen belüli migráció Mechatronika Modul: Közösségen belüli migráció Munkafüzet Andre Henschke Henschke Consulting, Németország EU-Projekt Nr. DE/08/LLP-LdV/TOI/147110 MINOS ++, 2008-2010 Európai innovációtranszfer projekt

Részletesebben

2.) Fajlagos ellenállásuk nagysága alapján állítsd sorrendbe a következő fémeket! Kezd a legjobban vezető fémmel!

2.) Fajlagos ellenállásuk nagysága alapján állítsd sorrendbe a következő fémeket! Kezd a legjobban vezető fémmel! 1.) Hány Coulomb töltést tartalmaz a 72 Ah ás akkumulátor? 2.) Fajlagos ellenállásuk nagysága alapján állítsd sorrendbe a következő fémeket! Kezd a legjobban vezető fémmel! a.) alumínium b.) ezüst c.)

Részletesebben

1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés

1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt 2017. május 13. szombat Teszt feladatok 2017 Előzetes megtekintés Kezdés ideje 2017. május 9., kedd, 16:54 Állapot Befejezte Befejezés dátuma 2017.

Részletesebben

Minden mérésre vonatkozó minimumkérdések

Minden mérésre vonatkozó minimumkérdések Minden mérésre vonatkozó minimumkérdések 1) Definiálja a rendszeres hibát 2) Definiálja a véletlen hibát 3) Definiálja az abszolút hibát 4) Definiálja a relatív hibát 5) Hogyan lehet az abszolút-, és a

Részletesebben

Hálózati egyenirányítók, feszültségsokszorozók Egyenirányító kapcsolások

Hálózati egyenirányítók, feszültségsokszorozók Egyenirányító kapcsolások Hálózati egyenirányítók, feszültségsokszorozók Egyenirányító kapcsolások Egyenirányítás: egyenáramú komponenst nem tartalmazó jelből egyenáramú összetevő előállítása. Nemlineáris áramköri elemet tartalmazó

Részletesebben

7. L = 100 mh és r s = 50 Ω tekercset 12 V-os egyenfeszültségű áramkörre kapcsolunk. Mennyi idő alatt éri el az áram az állandósult értékének 63 %-át?

7. L = 100 mh és r s = 50 Ω tekercset 12 V-os egyenfeszültségű áramkörre kapcsolunk. Mennyi idő alatt éri el az áram az állandósult értékének 63 %-át? 1. Jelöld H -val, ha hamis, I -vel ha igaz szerinted az állítás!...két elektromos töltés között fellépő erőhatás nagysága arányos a két töltés nagyságával....két elektromos töltés között fellépő erőhatás

Részletesebben

Az Ön kézikönyve OMRON E2E-Y http://hu.yourpdfguides.com/dref/2887201

Az Ön kézikönyve OMRON E2E-Y http://hu.yourpdfguides.com/dref/2887201 Elolvashatja az ajánlásokat a felhasználói kézikönyv, a műszaki vezető, illetve a telepítési útmutató. Megtalálja a választ minden kérdésre az a felhasználói kézikönyv (információk, leírások, biztonsági

Részletesebben

Bekötési diagramok. Csatlakozó típusok. 2: A.C. típus. 2 vezetékes (Emitter) 1 = L1 3 = N

Bekötési diagramok. Csatlakozó típusok. 2: A.C. típus. 2 vezetékes (Emitter) 1 = L1 3 = N Bekötési diagramok FT18EL FT13 D.C. FT18 A.C FT18SPFT18SMFTQ D.C. FTQ (relés) 1: NPN/PNP típus 2 vezetékes (Emitter) 1 = Barna / + 3 = Kék / 4 vezetékes 1 = Barna / + 3 = Kék / 4 = Fekete / NPNPNP kimenet/no

Részletesebben

OMRON INDUKTÍV KÖZELÍTÉSKAPCSOLÓK E2A

OMRON INDUKTÍV KÖZELÍTÉSKAPCSOLÓK E2A OMRON INDUKTÍV KÖZELÍTÉSKAPCSOLÓK E2A E2A Hengeres kivitelû, fémtokozású, induktív közelítéskapcsoló, beépített LED-állapotjelzõvel A hagyományos OMRON típusoknál 1,5... 2-szer nagyobb érzékelési Jól látható

Részletesebben

33 522 01 0000 00 00 Elektronikai műszerész Elektronikai műszerész

33 522 01 0000 00 00 Elektronikai műszerész Elektronikai műszerész A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

Mechatronika. Modul 12: Interfészek. Oktatói segédlet. (Koncepció) Dr. Gabriele Neugebauer Dipl.-Ing. Matthias Römer

Mechatronika. Modul 12: Interfészek. Oktatói segédlet. (Koncepció) Dr. Gabriele Neugebauer Dipl.-Ing. Matthias Römer Mechatronika Modul 12: Interfészek Oktatói segédlet (Koncepció) Dr. Gabriele Neugebauer Dipl.-Ing. Matthias Römer Neugebauer und Partner OHG, Németország Európai elképzelés a globális ipari termelésben

Részletesebben

ikerfém kapcsoló Eloadás Iváncsy Tamás termisztor â Közvetett védelem: áramvédelem

ikerfém kapcsoló Eloadás Iváncsy Tamás termisztor â Közvetett védelem: áramvédelem â Közvetlen motorvédelem: hovédelem ikerfém kapcsoló kis teljesítményen: közvetlenül kapcsolja a motort nagy teljesítményen: kivezetéssel muködteti a 3 fázisú kapcsolót Iváncsy Tamás termisztor â Közvetett

Részletesebben

OMRON FOTOELEKTROMOS KAPCSOLÓK E3NT

OMRON FOTOELEKTROMOS KAPCSOLÓK E3NT E3NT Tárgyreflexiós érzékelõ háttér- és elõtér elnyomással 3 m-es érzékelési távolság (tárgyreflexiós) 16 m-es érzékelési távolság (prizmás) Analóg kimenetes típusok Homloklapfûtéssel ellátott kivitelek

Részletesebben

Mechatronika. Modul 2 (Rész 2): Projektmenedzsment. Jegyzet (Elképzelés) Készítették:

Mechatronika. Modul 2 (Rész 2): Projektmenedzsment. Jegyzet (Elképzelés) Készítették: Mechatronika Modul 2 (Rész 2): Projektmenedzsment Jegyzet (Elképzelés) Készítették: Christian Stöhr Christian Stöhr Unternehmensberatung, Németország Andre Henschke Henschke Consulting Drezda, Németország

Részletesebben

Mechatronika Modul 3: Folyadékok

Mechatronika Modul 3: Folyadékok Mechatronika Modul 3: Folyadékok Jegyzet (Elképzelés) Készítették: Matthias Römer Chemnitz-i Műszaki Egyetem, Szerszámgépek és Gyártási Folyamatok Intézete, Németország Cser Adrienn Corvinus Egyetem, Információtechnológiai

Részletesebben

Multi-20 modul. Felhasználói dokumentáció 1.1. Készítette: Parrag László. Jóváhagyta: Rubin Informatikai Zrt.

Multi-20 modul. Felhasználói dokumentáció 1.1. Készítette: Parrag László. Jóváhagyta: Rubin Informatikai Zrt. Multi-20 modul Felhasználói dokumentáció. Készítette: Parrag László Jóváhagyta: Rubin Informatikai Zrt. 49 Budapest, Egressy út 7-2. telefon: +36 469 4020; fax: +36 469 4029 e-mail: info@rubin.hu; web:

Részletesebben

Jelgenerátorok ELEKTRONIKA_2

Jelgenerátorok ELEKTRONIKA_2 Jelgenerátorok ELEKTRONIKA_2 TEMATIKA Jelgenerátorok osztályozása. Túlvezérelt erősítők. Feszültségkomparátorok. Visszacsatolt komparátorok. Multivibrátor. Pozitív visszacsatolás. Oszcillátorok. RC oszcillátorok.

Részletesebben

TB6600 V1 Léptetőmotor vezérlő

TB6600 V1 Léptetőmotor vezérlő TB6600 V1 Léptetőmotor vezérlő Mikrolépés lehetősége: 1, 1/2, 1/4, 1/8, 1/16. A vezérlő egy motor meghajtására képes 0,5-4,5A között állítható motoráram Tápellátás: 12-45V közötti feszültséget igényel

Részletesebben

Dr. Hegedűs János: Kétállapotú, elektronikus közelítéskapcsolók

Dr. Hegedűs János: Kétállapotú, elektronikus közelítéskapcsolók 1 Dr. Hegedűs János: Kétállapotú, elektronikus közelítéskapcsolók Bevezetés: A Mechatronikában az érzékelők (szenzorok) szinte minden fajtáját alkalmazzák. Ebben a segédletben ezek közül az elektronikus

Részletesebben

33 522 04 1000 00 00 Villanyszerelő 4 Villanyszerelő 4

33 522 04 1000 00 00 Villanyszerelő 4 Villanyszerelő 4 A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

M ű veleti erő sítő k I.

M ű veleti erő sítő k I. dátum:... a mérést végezte:... M ű veleti erő sítő k I. mérési jegyző könyv 1. Visszacsatolás nélküli kapcsolások 1.1. Kösse az erősítő invertáló bemenetét a tápfeszültség 0 potenciálú kimenetére! Ezt

Részletesebben

E3S-CT11 E3S-CT61 E3S-CR11 E3S-CR61 E3S-CD11 E3S-CD61 E3S-CD12 E3S-CD62

E3S-CT11 E3S-CT61 E3S-CR11 E3S-CR61 E3S-CD11 E3S-CD61 E3S-CD12 E3S-CD62 OMRON FOTOELEKTROMOS KAPCSOLÓK E3S-C E3S-C Olaj- és vízálló fotokapcsoló fémtokozásban, nagy érzékelési távolsággal Megfelel a következõ szabványoknak: IP67, NEMA 6P, IP67G (olajálló) PNP vagy NPN kimenet

Részletesebben

Különösen hosszú élettartamot biztosító minőség napi felhasználás mellett is

Különösen hosszú élettartamot biztosító minőség napi felhasználás mellett is Henger alakú közelítéskapcsoló E2A Különösen hosszú élettartamot biztosító minőség napi felhasználás mellett is Széleskörű felhasználhatóság a moduláris kialakításnak köszönhetően Hosszú élettartamra tervezve

Részletesebben

Teljesítményerősítők ELEKTRONIKA_2

Teljesítményerősítők ELEKTRONIKA_2 Teljesítményerősítők ELEKTRONIKA_2 TEMATIKA Az emitterkövető kapcsolás. Az A osztályú üzemmód. A komplementer emitterkövető. A B osztályú üzemmód. AB osztályú erősítő. D osztályú erősítő. 2012.04.18. Dr.

Részletesebben

= Φ B(t = t) Φ B (t = 0) t

= Φ B(t = t) Φ B (t = 0) t 4. Gyakorlat 32B-3 Egy ellenállású, r sugarú köralakú huzalhurok a B homogén mágneses erőtér irányára merőleges felületen fekszik. A hurkot gyorsan, t idő alatt 180 o -kal átforditjuk. Számitsuk ki, hogy

Részletesebben

Orvosi jelfeldolgozás. Információ. Információtartalom. Jelek osztályozása De, mi az a jel?

Orvosi jelfeldolgozás. Információ. Információtartalom. Jelek osztályozása De, mi az a jel? Orvosi jelfeldolgozás Információ De, mi az a jel? Jel: Információt szolgáltat (információ: új ismeretanyag, amely csökkenti a bizonytalanságot).. Megjelent.. Panasza? információ:. Egy beteg.. Fáj a fogam.

Részletesebben

TULAJDONSÁGOK LEÍRÁS. Működési módok. Maszkoláselleni tulajdonság

TULAJDONSÁGOK LEÍRÁS. Működési módok. Maszkoláselleni tulajdonság COBALT COBALT Plus COBALT Pro DIGITÁLIS DUÁLTECHNOLÓGIÁS MOZGÁSÉRZÉKELŐ cobalt_hu 07/15 A COBALT / COBALT Plus / COBALT Pro a védett területen történő mozgás érzékelését teszi lehetővé. Ez a kézikönyv

Részletesebben

OMRON BIZTONSÁGI FÉNYFÜGGÖNYÖK F3SN-A

OMRON BIZTONSÁGI FÉNYFÜGGÖNYÖK F3SN-A OMRON BIZTONSÁGI FÉNYFÜGGÖNYÖK F3SN-A F3SN-A 4-es kategóriájú fényfüggöny, mely megfelel a vonatkozó IEC és EN szabványoknak magasság = Fényfüggöny magasság 189... 1822 mm védett magasság 7 m illetve 10

Részletesebben

CORONA ER TÖBBSUGARAS ELEKTRONIKUS VÍZMÉRŐ

CORONA ER TÖBBSUGARAS ELEKTRONIKUS VÍZMÉRŐ ALKALMAZÁSI TERÜLET Teljesen elektronikus szárnykerekes vízmérő beépített rádiómodullal, hideg- és melegvíz felhasználás mérésére. Nagyon pontos adatrögzítés minden számlázási adatról 90 C közeghőmérsékletig.

Részletesebben

TxBlock-USB Érzékelőfejbe építhető hőmérséklet távadó

TxBlock-USB Érzékelőfejbe építhető hőmérséklet távadó TxBlock-USB Érzékelőfejbe építhető hőmérséklet távadó Bevezetés A TxBlock-USB érzékelőfejbe építhető, kétvezetékes hőmérséklet távadó, 4-20mA kimenettel. Konfigurálása egyszerűen végezhető el, speciális

Részletesebben

Programozható vezérlő rendszerek. Elektromágneses kompatibilitás II.

Programozható vezérlő rendszerek. Elektromágneses kompatibilitás II. Elektromágneses kompatibilitás II. EMC érintkező védelem - az érintkezők nyitása és zárása során ún. átívelések jönnek létre - ezek csökkentik az érintkezők élettartamát - és nagyfrekvenciás EM sugárzások

Részletesebben

Négyszög - Háromszög Oszcillátor Mérése Mérési Útmutató

Négyszög - Háromszög Oszcillátor Mérése Mérési Útmutató ÓBUDAI EGYETEM Kandó Kálmán Villamosmérnöki Kar Híradástechnika Intézet Négyszög - Háromszög Oszcillátor Mérése Mérési Útmutató A mérést végezte: Neptun kód: A mérés időpontja: A méréshez szükséges eszközök:

Részletesebben

WESAN WP E WOLTMAN ELEKTRONIKUS VÍZMÉRŐ

WESAN WP E WOLTMAN ELEKTRONIKUS VÍZMÉRŐ ALKALMAZÁSI TERÜLET Teljesen elektronikus nagyvízmérő hidegvíz (30 C-ig) fogyasztások pontos mérésére jellemzően nagy térfogatáramok esetén, alacsony nyomásveszteség mellett. JELLEMZÖK 4 Cserélhető, önállóan

Részletesebben

Az Ön kézikönyve OMRON E2A

Az Ön kézikönyve OMRON E2A Elolvashatja az ajánlásokat a felhasználói kézikönyv, a műszaki vezető, illetve a telepítési útmutató. Megtalálja a választ minden kérdésre az a felhasználói kézikönyv (információk, leírások, biztonsági

Részletesebben

Közösségen belüli migráció

Közösségen belüli migráció Mechatronika Modul: Közösségen belüli migráció Jegyzet Andre Henschke Henschke Consulting, Németország EU-projekt Nr. DE/08/LLP-LdV/TOI/147110 MINOS ++, 2008-2010 Európai innovációtranszfer projekt a globalizált

Részletesebben

Használható segédeszköz: szabványok, táblázatok, gépkönyvek, számológép

Használható segédeszköz: szabványok, táblázatok, gépkönyvek, számológép A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 34 522 02 Elektromos gép- és készülékszerelő

Részletesebben

1. feladat R 1 = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V. Megoldás. R t1 R 3 R 1. R t2 R 2

1. feladat R 1 = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V. Megoldás. R t1 R 3 R 1. R t2 R 2 1. feladat = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V U 1 R 2 R 3 R t1 R t2 U 2 R 2 a. Számítsd ki az R t1 és R t2 ellenállásokon a feszültségeket! b. Mekkora legyen az U 2

Részletesebben

Elektronika I. Gyakorló feladatok

Elektronika I. Gyakorló feladatok Elektronika I. Gyakorló feladatok U I Feszültséggenerátor jelképe: Áramgenerátor jelképe: 1. Vezesse le a terheletlen feszültségosztóra vonatkozó összefüggést: 2. Vezesse le a terheletlen áramosztóra vonatkozó

Részletesebben

ROG4K. EM210 fogyasztásmérő áramérzékelő ( A) Előnyök. Leírás

ROG4K. EM210 fogyasztásmérő áramérzékelő ( A) Előnyök. Leírás ROG4K EM210 fogyasztásmérő áramérzékelő (20-4000 A) Leírás Az áramérzékelő működése Rogowski elven alapul, EM210 fogyasztásmérővel együtt kell használni ( EM210 72D MV5 és EM210 72D MV6 verzió) egy-két

Részletesebben

VSF-118 / 128 / 124 / 144 9 1U fejállomási aktív műholdas elosztók

VSF-118 / 128 / 124 / 144 9 1U fejállomási aktív műholdas elosztók VSF-118 / 128 / 124 / 144 9 1U fejállomási aktív műholdas elosztók A VSF-1xx műholdas KF elosztó család, a műholdvevő LNB-ről érkező SAT KF jelek veszteség nélküli, illetve alacsony beiktatási csillapítással

Részletesebben

Vibranivo VN VN 2000 VN 5000 VN 6000 Sorozat. Használati útmutató

Vibranivo VN VN 2000 VN 5000 VN 6000 Sorozat. Használati útmutató Vibranivo VN 1000 VN 2000 VN 5000 VN 6000 Sorozat Használati útmutató 010516 1 UWT GmbH Westendstraße 5 Tel.: +49 (0)831 57123-0 Internet:www.uwt.de D-87488 Betzigau Fax: +49 (0)831 76879 E-Mail: info@uwt.de

Részletesebben

Kültéri szünetmentes tápegységek térfigyelő rendszerekhez

Kültéri szünetmentes tápegységek térfigyelő rendszerekhez Kültéri szünetmentes tápegységek térfigyelő rendszerekhez Általános leírás A térfigyelő rendszerek megfelelő hatékonyságú üzemeltetésének feltétele, hogy a rendszer minden eleme lehetőség szerinti legkevesebb

Részletesebben

24 VAC (3 VA), 100 115 VAC (4 VA), 200 230 VAC (5 VA) Maximális névleges bemeneti érték 10 100%-a

24 VAC (3 VA), 100 115 VAC (4 VA), 200 230 VAC (5 VA) Maximális névleges bemeneti érték 10 100%-a K8AB-AS Egyfázisú áramrelé Ezek az egyfázisú áramrelék a túláramok és áramesések figyelésére szolgálnak. Egyetlen relé lehetővé teszi a kézi és az automatikus nyugtázást. Az indítászárolási és a kapcsolási

Részletesebben

2000 Szentendre, Bükköspart 74 WWW.MEVISOR.HU. MeviMR 3XC magnetorezisztív járműérzékelő szenzor

2000 Szentendre, Bükköspart 74 WWW.MEVISOR.HU. MeviMR 3XC magnetorezisztív járműérzékelő szenzor MeviMR 3XC Magnetorezisztív járműérzékelő szenzor MeviMR3XC járműérzékelő szenzor - 3 dimenzióban érzékeli a közelében megjelenő vastömeget. - Könnyű telepíthetőség. Nincs szükség az aszfalt felvágására,

Részletesebben

Energiaminőség- és energiamérés LINETRAXX PEM330/333

Energiaminőség- és energiamérés LINETRAXX PEM330/333 Energiaminőség- és energiamérés LINETRAXX PEM330/333 1/6 Műszer jellemzői Pontossági osztály IEC 62053-22szerint: 0.5 S Mért jellemzők Fázisfeszültségek (V) U L1, U L2, U L3 Vonali feszültségek (V) U L1L2,

Részletesebben

Mérési útmutató Periodikus, nem szinusz alakú jelek értékelése, félvezetős egyenirányítók

Mérési útmutató Periodikus, nem szinusz alakú jelek értékelése, félvezetős egyenirányítók BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁYI EGYETEM VILLAMOSMÉRÖKI ÉS IFORMATIKAI KAR VILLAMOS EERGETIKA TASZÉK Mérési útmutató Periodikus, nem szinusz alakú jelek értékelése, félvezetős egyenirányítók vizsgálata

Részletesebben

Túlfeszültség-védelmi eszköz, MSR-védelem Ex-térségekhez. 424 Megrendelés esetén kérjük, hogy mindig tüntesse fel a rendelési számot.

Túlfeszültség-védelmi eszköz, MSR-védelem Ex-térségekhez. 424 Megrendelés esetén kérjük, hogy mindig tüntesse fel a rendelési számot. Túlfeszültség-védelmi eszköz, MSR-védelem Ex-térségekhez 424 Sorolható védőkészülék, 4-eres rendszerhez, 5 V-os kivitel 427 Sorolható védőkészülék, 4-eres rendszerhez, 24 V-os kivitel 428 Sorolható védőkészülék,

Részletesebben

LI 2 W = Induktív tekercsek és transzformátorok

LI 2 W = Induktív tekercsek és transzformátorok Induktív tekercsek és transzformátorok A tekercsek olyan elektronikai alkatrészek, amelyek mágneses terükben jelentős elektromos energiát képesek felhalmozni. A mágneses tér a tekercset alkotó vezetéken

Részletesebben

11-12. évfolyam. A tantárgy megnevezése: elektrotechnika. Évi óraszám: 69. Tanítási hetek száma: 37 + 32. Tanítási órák száma: 1 óra/hét

11-12. évfolyam. A tantárgy megnevezése: elektrotechnika. Évi óraszám: 69. Tanítási hetek száma: 37 + 32. Tanítási órák száma: 1 óra/hét ELEKTROTECHNIKA (VÁLASZTHATÓ) TANTÁRGY 11-12. évfolyam A tantárgy megnevezése: elektrotechnika Évi óraszám: 69 Tanítási hetek száma: 37 + 32 Tanítási órák száma: 1 óra/hét A képzés célja: Választható tantárgyként

Részletesebben

Sorbaépíthető jelző, működtető és vezérlőkészülékek

Sorbaépíthető jelző, működtető és vezérlőkészülékek w Lépcsőházi automaták w Schrack-Info Lépcsőházi automaták TIMON, VOWA, BZ BZ327350 w Lépcsőházi automata TIMON w Schrack-Info Energiamegtakarítási funkció Beállítható kapcsolási idő 0,5-30 perc Alacsony

Részletesebben

EGYENÁRAMÚ TÁPEGYSÉGEK

EGYENÁRAMÚ TÁPEGYSÉGEK dátum:... a mérést végezte:... EGYENÁRAMÚ TÁPEGYSÉGEK m é r é s i j e g y z k ö n y v 1/A. Mérje meg az adott hálózati szabályozható (toroid) transzformátor szekunder tekercsének minimálisan és maximálisan

Részletesebben

TERMOPTO. Mechanikus relék helyett potenciál-leválasztás sorkapocs formájában PUSH IN csatlakozástechnikával. Funkcionális elektronika TERMOPTO

TERMOPTO. Mechanikus relék helyett potenciál-leválasztás sorkapocs formájában PUSH IN csatlakozástechnikával. Funkcionális elektronika TERMOPTO Funkcionális elektronika TERMOPTO TERMOPTO A LED-es állapotjelzés a kapcsolási állapotról ad információt. Mechanikus relék helyett potenciál-leválasztás sorkapocs formájában PUSH IN csatlakozástechnikával

Részletesebben

CTX 3 ipari mágneskapcsolók 3P

CTX 3 ipari mágneskapcsolók 3P CTX 3 ipari mágneskapcsolók 3P 9 és 100 A között 4 160 96 4 161 26 4 161 46 4 161 56 4 161 86 4 161 96 Műszaki jellemzők (60. oldal) Geometriai méretek és koordinációs táblázatok, e-katalógusban Megfelel

Részletesebben

Kaméleon K860. IAS Automatika Kft www.iasautomatika.hu

Kaméleon K860. IAS Automatika Kft www.iasautomatika.hu Kaméleon K860 Univerzális Digitális Szabályozó A K860 szabályozók általános automatizálási feladatokra kifejlesztett digitális szabályozók. Épületgépészeti alkalmazásokra kiválóan alkalmasak, gazdaságos

Részletesebben

WESAN WPV E WOLTMAN ELEKTRONIKUS VÍZMÉRŐ

WESAN WPV E WOLTMAN ELEKTRONIKUS VÍZMÉRŐ ALKALMAZÁSI TERÜLET Woltman rendszerű nagyvízmérő ingadozó téfogatáramok mérésére, elektronikus számlálóval. JELLEMZŐK 4 Önállóan hitelesített, egy egysében cserélhető mérőbetét: mérőbetét a főmérőhöz,

Részletesebben

ZL180 Kétmotoros vezérlés 24V-os mototokhoz

ZL180 Kétmotoros vezérlés 24V-os mototokhoz KLING Mérnöki, Ipari és Kereskedelmi Kft 1106 BUDAPEST Gránátos utca 6. Tel.: 433-16-66 Fax: 262-28-08 www.kling.hu E-mail: kling@kling.hu Magyarországi Képviselet ZL180 Kétmotoros vezérlés 24V-os mototokhoz

Részletesebben

Villamos tér. Elektrosztatika. A térnek az a része, amelyben a. érvényesülnek.

Villamos tér. Elektrosztatika. A térnek az a része, amelyben a. érvényesülnek. III. VILLAMOS TÉR Villamos tér A térnek az a része, amelyben a villamos erőhatások érvényesülnek. Elektrosztatika A nyugvó és időben állandó villamos töltések által keltett villamos tér törvényeivel foglalkozik.

Részletesebben

Energiaminőség- és energiamérés LINETRAXX PEM330/333

Energiaminőség- és energiamérés LINETRAXX PEM330/333 Energiaminőség- és energiamérés LINETRAXX PEM330/333 1/6 Jellemzők Az univerzális mérőkészülék alkalmas villamos hálózat elektromos mennyiségeinek mérésére, megjelenítésére és tárolására. A megjelenített

Részletesebben

1. Visszacsatolás nélküli kapcsolások

1. Visszacsatolás nélküli kapcsolások 1. Visszacsatolás nélküli kapcsolások 1.1. Kösse az erõsítõ invertáló bemenetét a tápfeszültség 0 potenciálú kimenetére! Ezt nevezzük földnek. A nem invertáló bemenetre kösse egy potenciométer középsõ

Részletesebben

MINTA Írásbeli Záróvizsga Mechatronikai mérnök MSc. Debrecen,

MINTA Írásbeli Záróvizsga Mechatronikai mérnök MSc. Debrecen, MINTA Írásbeli Záróvizsga Mechatronikai mérnök MSc Debrecen, 2017. 01. 03. Név: Neptun kód: Megjegyzések: A feladatok megoldásánál használja a géprajz szabályait, valamint a szabványos áramköri elemeket.

Részletesebben

A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III. 28.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.

A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III. 28.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III. 28.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 523 01 Automatikai technikus

Részletesebben

NOVOTECHNICA. LAB 9 Mágneses hurokérzékelõ Szerelési és karbantartási utasítása

NOVOTECHNICA. LAB 9 Mágneses hurokérzékelõ Szerelési és karbantartási utasítása NOVOTECHNICA LAB 9 Mágneses hurokérzékelõ Szerelési és karbantartási utasítása Változat: 01/2001 Dátum: Fordította: 2001. május Dvorák László -2 - -3 - - 4 - Frekvencia Érzékenység BOOST (NÖVELÉS) OUT3

Részletesebben

Mérés és adatgyűjtés

Mérés és adatgyűjtés Mérés és adatgyűjtés 4. óra - levelező Mingesz Róbert Szegedi Tudományegyetem 2011. március 18. MA lev - 4. óra Verzió: 1.3 Utolsó frissítés: 2011. május 15. 1/51 Tartalom I 1 A/D konverterek alkalmazása

Részletesebben

OMRON KÜLÖNLEGES SZENZOROK. ZX Nagy pontosságú pozíciómérõ eszközök. Típusválaszték

OMRON KÜLÖNLEGES SZENZOROK. ZX Nagy pontosságú pozíciómérõ eszközök. Típusválaszték ZX KÜLÖNLEGES SZENZOROK OMRON ZX Nagy pontosságú pozíciómérõ eszközök Kétsoros kijelzõvel ellátott erõsítõ 2 µm-es ismétlési pontosság (lézeres) 1 µm-es ismétlési pontosság (induktív) 500 mm-es maximális

Részletesebben

H-2040 Budaörs, Komáromi u. 22. Pf. 296. Telefon: +36 23 365280, Fax: +36 23 365087

H-2040 Budaörs, Komáromi u. 22. Pf. 296. Telefon: +36 23 365280, Fax: +36 23 365087 MŰSZER AUTOMATIKA KFT. H-2040 Budaörs, Komáromi u. 22. Pf. 296. Telefon: +36 23 365280, Fax: +36 23 365087 Telephely: H-2030 Érd, Alsó u.10. Pf.56.Telefon: +36 23 365152 Fax: +36 23 365837 www.muszerautomatika.hu

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2014. október 13. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2014. október 13. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

(Az 1. példa adatai Uray-Szabó: Elektrotechnika c. (Nemzeti Tankönyvkiadó) könyvéből vannak.)

(Az 1. példa adatai Uray-Szabó: Elektrotechnika c. (Nemzeti Tankönyvkiadó) könyvéből vannak.) Egyenáramú gépek (Az 1. példa adatai Uray-Szabó: Elektrotechnika c. (Nemzeti Tankönyvkiadó) könyvéből vannak.) 1. Párhuzamos gerjesztésű egyenáramú motor 500 V kapocsfeszültségű, párhuzamos gerjesztésű

Részletesebben

Transzformátor rezgés mérés. A BME Villamos Energetika Tanszéken

Transzformátor rezgés mérés. A BME Villamos Energetika Tanszéken Transzformátor rezgés mérés A BME Villamos Energetika Tanszéken A valóság egyszerűsítése, modellezés. A mérés tervszerűen végrehajtott tevékenység, ezért a bonyolult valóságos rendszert először egyszerűsítik.

Részletesebben

Felhasználói kézikönyv

Felhasználói kézikönyv Felhasználói kézikönyv 6688F Digitális Szigetelési Ellenállás Mérő TARTALOMJEGYZÉK 1. Bevezetés... 2 2. Biztonsági figyelmeztetések... 2 3. Műszaki jellemzők... 2 4. Előlap és kezelőszervek... 3 5. Mérési

Részletesebben

W BEÁLLÍTHATÓ IDŐ TARTOMÁNY. 10min 30s - 10min 30min 90s - 30min 30min - 10h 90min - 30h. 72min - 1d 216min - 3d 12h - 10d 36h - 30d

W BEÁLLÍTHATÓ IDŐ TARTOMÁNY. 10min 30s - 10min 30min 90s - 30min 30min - 10h 90min - 30h. 72min - 1d 216min - 3d 12h - 10d 36h - 30d ZR6MF052 W SCHRACK INFO 16 funkció 16 időzítési tartomány Külső potenciométer csatlakoztatási lehetőség Univerzális tápfeszültség 24-240 V AC/DC 2 váltóérintkező 22,5 mm széles Ipari tokozat W FUNKCIÓK

Részletesebben

A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése.

A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése. A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése. Eszközszükséglet: tanulói tápegység funkcionál generátor tekercsek digitális

Részletesebben

Programozható Vezérlő Rendszerek. Hardver

Programozható Vezérlő Rendszerek. Hardver Programozható Vezérlő Rendszerek Hardver Hardver-bemeneti kártyák 12-24 Vdc 100-120 Vac 10-60 Vdc 12-24 Vac/dc 5 Vdc (TTL) 200-240 Vac 48 Vdc 24 Vac Belül 5V DC!! 2 Hardver-bemeneti kártyák Potenciál ingadozások

Részletesebben

Elmozdulás mérés BELEON KRISZTIÁN BELEON KRISTIÁN - MÉRÉSELMÉLET - ELMOZDULÁSMÉRÉS 1

Elmozdulás mérés BELEON KRISZTIÁN BELEON KRISTIÁN - MÉRÉSELMÉLET - ELMOZDULÁSMÉRÉS 1 Elmozdulás mérés BELEON KRISZTIÁN 2016.11.17. 2016.11.17. BELEON KRISTIÁN - MÉRÉSELMÉLET - ELMOZDULÁSMÉRÉS 1 Mérési eljárás szerint Rezisztív Induktív Kapacitív Optikai Mágneses 2016.11.17. BELEON KRISTIÁN

Részletesebben

E3X-DA-N FOTOELEKTROMOS KAPCSOLÓ OMRON

E3X-DA-N FOTOELEKTROMOS KAPCSOLÓ OMRON E3X-DA-N FOTOELEKTROMOS KAPCSOLÓ OMRON Nagyteljesítményű Hengeres kialakítású, digitális fémtokozású fotokapcsoló közelítéskapcsoló száloptikához Digitális kijelzőn látható a pillanatnyi érzékelési állapot

Részletesebben

Az elektromágneses tér energiája

Az elektromágneses tér energiája Az elektromágneses tér energiája Az elektromos tér energiasűrűsége korábbról: Hasonlóképpen, a mágneses tér energiája: A tér egy adott pontjában az elektromos és mágneses terek együttes energiasűrűsége

Részletesebben

DC üzemi feszültség Feszültségtűrés DC -20% / +30% Megengedett felhullám-tartalom 5% Max. áramfelvétel Védettség 0-20

DC üzemi feszültség Feszültségtűrés DC -20% / +30% Megengedett felhullám-tartalom 5% Max. áramfelvétel Védettség 0-20 1 00123681 Építési mód Ülékes szelep Vezérlés analóg Tanúsítványok CE Megfelelősségi nyilatkozat Környezeti hőmérséklet min./max. +5 C / +50 C Közeghőmérséklet min./max. +5 C / +50 C Közeg Sűrített levegő

Részletesebben