A matematikai modellalkotás folyamatáról

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A matematikai modellalkotás folyamatáról"

Átírás

1 Máté László A matematikai modellalkotás folyamatáról 1. A felsőoktatás tömegessé válása olyan problémákat vet fel a matematika oktatásában amelyek a matematikai ismeretszerzés folyamatának az átgondolására inspirálja a felsőoktatásban résztvevő matematikust. Az egyik probléma az, hogy a hallgatóság növekedésével nem tart lépést azok száma akiknek kellő érzékük van a matematikához, a másik pedig, ami nem ujkeletű probléma, hogy a matematikai modellalkotás háttérbe szorul az oktatásban. A matematikai modellalkotás keretében, a lényeges információk szóban, képben majd formulákban történő regisztrálásától eljutunk a matematikai elméletig és eközben a megismerésnek különböző szintjeit és tipusait járjuk be. Matematikai modellalkotáskor szabályosságokat kell észrevenni, a szabályokat szokásos grafikonokban vagy más vizuális formában ábrázolni és végül a matematika nyelvén kell kifejezni. Ez a folyamat különböző megismerési képességeket mozgósit és gazdagabb információt ad a modellről mint a modell pusztán matematikai vizsgálata. Igy többen és jobban értik meg a matematikai elméletet a hallgatóság köréből mint a modellalkotás ismerete nélkül. A matematikai modellalkotást és a matematikai megismerés különböző szintjeit egy egyszerű, a DNS láncok feltérképezésével kapcsolatos modell keretében tárgyaljuk. A probléma igy szól, adott négy jelnek egy sokmilliós hosszúságú láncolata és keresendő ennek egy olyan ábrázolása, amelyből gyors áttekintéssel megállapitható, hogy milyen szavak (jelcsoportok) hiányoznak, vagy szignifikánsan alulreprezentáltak a láncban. Vagyis egy nagyon hosszú jelsorozatot, a DNS lánc szekvenciális modelljét, egyetlen pillantással áttekinthető képpé óhajtunk átalakitani. Ennek egyik megoldását adja a kódok vezérelte káoszjáték, amit Jeffrey-Hao modellnek fogunk nevezni. A következőkben a Jeffrey-Hao modell legegyszerübb változatát épitjük fel, amely csupán az alulreprezentált szavakat mutatja meg. 2. Ebben a modellalkotásban a DNS láncot az a, g, t, c betűkből (a DNS 1

2 láncot alkotó négyféle aminósav nevének kezdőbetűjéből) alkotott nagyon hosszú jelsorozatnak tekintjük. Ezeket a betűket a 0, 1, 2, 3 jelekkel, a négyes számrendszer alapjeleiként fogjuk jelölni. Mivel ekkor a DNS lánc négy külónböző jelnek több milliós láncolata, ezért ezt végtelen jelsorozatnak tekintjük és kódnak nevezzük. Egy véges hosszú jelsorozatot szónak és a kód első n jeléből álló szót a kód n hosszú prefixének nevezzük. A modellalkotás folyamatát a következő lépésekben fogjuk leirni, amelyek egyben megfelelnek a folyamat egyre absztraktabb, matematikusabb szintjeinek. 1. Megadjuk azt az algoritmust, amely a DNS lánc fenti szekvenciális alakját képpé alakitja. 2. Megadjuk adott alulreprezentált szavakhoz tartozó mintahalmaznak a konstrukcióját. Abból tudjuk meg azt, hogy vannak-e és melyek a hiányzó ill. alulreprezentált szavak a DNS láncban, hogy az 1. szerkesztésből nyert halmazt összevetjük a 2. konstrukciójával Megvizsgáljuk a 2.-ben szerkesztett halmazok matematikai tulajdonságait. 4. Megadjuk az eljárás néhany lehetséges általánositását arra az esetre, amikor a különböző jelek száma négynél több. A négyjelű kód képi megjelenitése az egységnégyzetben történik. Az egységnégyzet csúcsai reprezentálják a 0, 1, 2, 3 jeleket és a kódot a következőképpen szerkesztett {P n ; n = 1, 2,...} pontsorozat jeleniti meg (1. ábra). A négyzet θ középpontját összekötjük a kód első jelét reprezentáló k (k {0, 1, 2, 3}) csúcspontjával. Az [θ, k] egyenesszakasz P 1 középpontja lesz a kód első jelének (egyelemű prefix) a képe. Ezután a kód első két jeléből álló prefix képét úgy kapjuk meg, hogy a P 1 pontot összekötjük a kód második jelét reprezentáló k (k {0, 1, 2, 3}) csúcsponttal. A [P 1, k] egyenesszakasz P 2 középpontja lesz a kód első két jeléből álló prefix képe. 2

3

4 Ha már a kód n 1 hosszú prefixének a P n 1 képét megkaptuk, akkor P n, az n hosszúságú prefix képe, a [P n 1, k] egyenesszakasz középpontja lesz. Összegezve: a kód vezérelte káoszjáték a (*) P n+1 = [P n, k] középpontja szerkesztés ismétlése az aktuális k értékekkel (2. ábra). A káoszjáték végeredménye akkor érdekes, ha majdnem üres foltok maradnak a négyzetben (3. ábra). Ezek a (majdnem) üres foltok jelzik, hogy bizonyos szavak nem (alig) fordulnak elő a kódban. Annak felderitésére, hogy melyek ezek a szavak egy másik, ezzel a káoszjátékkal rokon konstrukció szolgál, amely megadja a szavakhoz tartozó mintahalmazokat és amelyeket a szavak portréjának nevezünk. 4. Egy szó portréjának a megrajzolása azzal kezdődik, hogy megszerkesztünk egy négyzetlapot, amely majd meghatározza a szó portréját. Ez a konstrukció is abból áll, hogy a (*) szerkesztést ismételjük ujra meg ujra az aktuális k értékekre de egy négyzetlap minden pontjára. Részletezve: Az egységnégyzet minden P pontját összekötjük a négyzetnek a szó első jelét reprezentáló k csúcspontjával. (Most és a továbbiakban, nyilván elegendő a négyzet negy sarkára elvégezni a szerkesztést.) A kapott négyzetlap a szó első jelének (egyelemű prefix) a képe. Ha már a szó n 1 hosszú prefixének az N n 1 képét megkaptuk, akkor az n hosszú prefix N n képe az a négyzetlap, amelyet úgy kapunk, hogy az N n 1 négyzetlap minden P pontját összekötjük a szó n-edik jelét reprezentáló k csúcsponttal. A szerkesztés eredménye egy 2 l oldalú T 0 négyzetlap, ahol l a szó hosszúsága. T 0 meghatározza a szó portréját (4. ábra). Ismétljük meg a (*) szerkesztést a T 0 pontjaira a k = 0, 1, 2, 3 értékekre. Az igy kapott négy négyzetlap a T 0 -al együtt alkotják a szó 1-portréját (5. ábra). Megismételve m-szer ezt a konstrukciót, az igy kapott négyzetlapok és a T 0 uniója adja a szó m-portréját (6-7 ábra). 3

5

6 Több szó m-portréja az egyes szavak m-portréinak az uniója (8. ábra). Ha m nagy, akkor a négyzetlapokból kialakult mintázat jellemzi a szó hiányát. Ha a kód képében a fehér foltok mintázata megegyezik (nagymértékben hasonlit) bizonyos szavak m-portréjával nagy m esetén, akkor ezek a hiányzó (alulreprrezentált) szavak a kódban. Ilyen például a human immunoglobulin kódja és a 20 m-portréja, ha m > 6 (c=0, g=2 3, 7. ábra). 5. Milyen az m-portrék struktúrája? Úgy látszik, hogy az m-portrék fejlesztése során egymáshoz hasonló, egyre kisebb foltok bukkannak fel, amit határtalan nagyithatóságnak nevezünk és m > 6 értékre az m-portrék már nem változnak. Igy beszélhetünk egy szó, vagy szavak (m-től független) portréjáról (9. ábra). Eddig elemi geometriai eszközöket használtunk. A felsorolt és további tulajdonságok pontos leirására és a portrék részletesebb, pontosabb vizsgálatára szükségünk van egy absztraktabb matematikára, többek között a függvénytan fogalomkörére is. Legyen F k az a függvény, amely az R 2 sik P pontjához a [P, k] egyenesszakasz középpontját rendeli hozzá és ha B az R 2 egy részhalmaza, akkor legyen F k (B) = {F k (P ); P B}. legyen továbbá 3 W (B) = F k (B) k=0 és jelentse a kompoziciót. Ekkor az ω 1... ω n szó portréjában T 0 = F ω1... F ωn ( ), W (T 0 ) a szó 1-portréja és a szó m-portréja m W [k] (T 0 ) k=0 ahol W [k] a W halmazfüggvény k-szoros alkalmazását jelenti. (W [0] (T 0 ) = T 0.) 4

7

8 Ezzel tömören, a függvénytan nyelvén irtuk le az m-portré szerkesztését. Figyelembe véve, hogy m > 6 értékre az m-portrék szemmel láthatóan már nem változnak és hogy végtelen sok halmaz uniója jól meghatározott fogalom a matematikában, egy szó portréját ( ) S = W [k] (T 0 ) k=0 módon értelmezzük. Közvetlen számolással belátható, hogy (**) a következő rekurziv sorozattal is előáll P 0 = P n = W (P n 1 ) T 0 n = 1, 2,... és ezzel magyarázható a határtalan nagyithatóság. Ugyancsak közvetlen számolással W (S) = W (S) T 0 ami azt magyarázza, hogy a portrék nagy m-re már nem változnak szemmel láthatóan. A kapott formulákat, a Jeffrey-Hao modell függvénytani leirását elemezve a portrék olyan fontos tulajdonságait fedezhetjük fel, amelyek elemi geometriai eszközökkel nem is észlelhetők. Ezek közül megemlitjük, hogy az S az egységnégyzet sűrű részhalmaza és az S az egységnégyzettől csupán egy nullamértékű halmazban különbözik és ezeknek a látszatra meglepő tulajdonságoknak is megvan a praktikus vonzatuk. Azt még meg szeretném emliteni, hogy olyan absztrakt tulajdonság, mint a határtalan nagyithatóság, számitógépes grafikai eszközökkel jól szemléltethető, mégpedig úgy hogy m > 6-ra az iterációt és a képernyő ZOOM operációját párhuzamosan működtetjük. 6. Az eljárásnak két féle természetes általánositása van arra az esetre, amikor négynél több különböző jelből álló kóddal van dolgunk. Az egyik általánositás arra épül, hogy a szerkesztés helyett egyszerű aritmetikával is előállithatjuk a kód vezérelte káoszjátékot. Ugyanis ha az n 1 hosszú prefixet reprezentáló P n 1 X-koordinátája (bináris törtben) 0.c 1... c n..., akkor a P n X-koordinátája 5

9 0.0c 1... c n..., ha k = 0, 1 0.1c 1... c n... ha k = 2, 3. Ezt figyelembe véve akárhány dimenzióban (ill. 2 k ) végrehajthatók a szerkesztések abban az értelemben, hogy a pontok koordinátáit állitjuk elő. Ebben az általánositásban különösen érdekes az, amikor a kód nyolc különböző jelet tartalmaz. Ekkor három dimenzióban, az egységkockában történik a káoszjáték és az eredmény a 3D grafika ismert módszereivel tehető egyetlen pillantással áttekinthető képpé. Praktikus szempontból érdekesebb általánositás az amikor nem lépünk ki az R 2 sikból. A jeleket 4-es számrendszerbe irjuk. Legyen a jelek száma 4 m. Ekkor a megfelelő szerkesztésben csak minden m-edik pontot jelöljük be (a szerkesztés m 1 lépese után), mivel ekkor csak minden m-edik pont értelmezhető. Hátránya ennek az általánositásnak, hogy ekkor a k-portré nagyon pici részekből áll és ezért a képernyő ZOOM operációja is szükségeltetik. MEGJEGYZÉS. Érdekes lenne leirt matematikai modellalkotási folyamatot didaktikai szempontból is megvizsgálni. Az elemi geometriától kezdve a halmazfüggvényeken át az n-dimenziós Euklideszi térig különböző absztrakciós szintek szerepelnek. Ezen kivül geometriai, globális jellegű gondolatmenet éppúgy szerepet kap a tárgyalásban, mint algoritmikus konstrukciók és hagyományos levezetések, igy ez a munka más és más kognitiv képességeket és gondolkodási stilust igényel és mozgósit a tanulókban. LINKEK 1. hao/haoleechaos.pdf 2. frame/ima Fractals 3. mate 6

5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus.

5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus. 5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus. Optimalis feszítőfák Egy összefüggő, irányítatlan

Részletesebben

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai

Részletesebben

Matematika (alsó tagozat)

Matematika (alsó tagozat) Matematika (alsó tagozat) Az értékelés elvei és eszközei A tanév során az értékelés alapja a tanulók állandó megfigyelése. Folyamatos fejlesztő célzatú szóbeli értékelés visszajelzést ad a tanuló számára

Részletesebben

Automaták és formális nyelvek

Automaták és formális nyelvek Automaták és formális nyelvek Bevezetés a számítástudomány alapjaiba 1. Formális nyelvek 2006.11.13. 1 Automaták és formális nyelvek - bevezetés Automaták elmélete: információs gépek általános absztrakt

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 063 ÉRETTSÉGI VIZSGA 006. február. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók Formai előírások: A dolgozatot

Részletesebben

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem 1 / 36 Bevezetés A komplex számok értelmezése Definíció: Tekintsük a valós számpárok R2 halmazát és értelmezzük ezen a halmazon a következo két

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI MATEMATIKA ÚTMUTATÓ ÉRETTSÉGI VIZSGA KÖZÉPSZINT% ÍRÁSBELI. ÉRETTSÉGI VIZSGA 2006. február 21. OKTATÁSI MINISZTÉRIUM

JAVÍTÁSI-ÉRTÉKELÉSI MATEMATIKA ÚTMUTATÓ ÉRETTSÉGI VIZSGA KÖZÉPSZINT% ÍRÁSBELI. ÉRETTSÉGI VIZSGA 2006. február 21. OKTATÁSI MINISZTÉRIUM Matematika középszint Javítási-értékelési útmutató 063 MATEMATIKA KÖZÉPSZINT% ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ ÉRETTSÉGI VIZSGA 006. február. OKTATÁSI MINISZTÉRIUM Fontos tudnivalók

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen

Részletesebben

Geometria 1 normál szint

Geometria 1 normál szint Geometria 1 normál szint Naszódi Márton nmarci@math.elte.hu www.math.elte.hu/ nmarci ELTE TTK Geometriai Tsz. Budapest Geometria 1 p.1/4 Vizsga 1. Írásban, 90 perc. 2. Index nélkül nem lehet vizsgázni!

Részletesebben

5. A kiterjesztési elv, nyelvi változók

5. A kiterjesztési elv, nyelvi változók 5. A kiterjesztési elv, nyelvi változók Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 A kiterjesztési elv 2 Nyelvi változók A kiterjesztési elv 237 A KITERJESZTÉSI ELV A

Részletesebben

ADATMODELLEZÉS. Az egyed-kapcsolat modell

ADATMODELLEZÉS. Az egyed-kapcsolat modell ADATMODELLEZÉS Az egyed-kapcsolat modell AZ ADATMODELLEZÉSRŐL Amikor egy adatbázist hozunk létre, a valóság valamilyen szeletéről szeretnénk eltárolni adatokat Elengedhetetlen, hogy valamilyen modellalkotási

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha

Részletesebben

2013.11.25. H=0 H=1. Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban,

2013.11.25. H=0 H=1. Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban, Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban, akkor a i (gyakorisága) = k i a i relatív gyakorisága: A jel információtartalma:

Részletesebben

MATEMATIKA HELYI TANTERV Kéttannyelvű magyar-francia előkészítő év számára

MATEMATIKA HELYI TANTERV Kéttannyelvű magyar-francia előkészítő év számára MATEMATIKA HELYI TANTERV Kéttannyelvű magyar-francia előkészítő év számára Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési,

Részletesebben

Tartalomjegyzék. Köszönetnyilvánítás. 1. Az alapok 1

Tartalomjegyzék. Köszönetnyilvánítás. 1. Az alapok 1 Köszönetnyilvánítás Bevezetés Kinek szól a könyv? Elvárt előismeretek A könyv témája A könyv használata A megközelítés alapelvei Törekedjünk az egyszerűségre! Ne optimalizáljunk előre! Felhasználói interfészek

Részletesebben

2. Logika gyakorlat Függvények és a teljes indukció

2. Logika gyakorlat Függvények és a teljes indukció 2. Logika gyakorlat Függvények és a teljes indukció Folláth János Debreceni Egyetem - Informatika Kar 2012/13. I. félév Áttekintés 1 Függvények Relációk Halmazok 2 Természetes számok Formulák Definíció

Részletesebben

Gráfelméleti feladatok. c f

Gráfelméleti feladatok. c f Gráfelméleti feladatok d e c f a b gráf, csúcsok, élek séta: a, b, c, d, e, c, a, b, f vonal: c, d, e, c, b, a út: f, b, a, e, d (walk, lanţ) (trail, lanţ simplu) (path, lanţ elementar) 1 irányított gráf,

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

MATEMATIKA ÉRETTSÉGI 2006. február 21. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2006. február 21. KÖZÉPSZINT I. MATEMATIKA ÉRETTSÉGI 006. február 1. KÖZÉPSZINT I. 1) Mennyi annak a mértani sorozatnak a hányadosa, amelynek harmadik tagja 5, hatodik tagja pedig 40? ( pont) 3 1 5 a a q 5 6 1 40 a a q Innen q Összesen:

Részletesebben

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás.

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás. Prímszámok A (pozitív) prímszámok sorozata a következő: 2, 3, 5, 7, 11, 13, 17, 19,... 1. Tétel. Végtelen sok prímszám van. Első bizonyítás. (Euklidész) Tegyük fel, hogy állításunk nem igaz, tehát véges

Részletesebben

Kódolás. A számítógép adatokkal dolgozik. Értelmezzük az adat és az információ fogalmát.

Kódolás. A számítógép adatokkal dolgozik. Értelmezzük az adat és az információ fogalmát. Kódolás A számítógép adatokkal dolgozik. Értelmezzük az adat és az információ fogalmát. Mi az információ? Az információ egy értelmes közlés, amely új ismeretet, új tudást ad. (Úgy is fogalmazhatunk, hogy

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 061 ÉRETTSÉGI VIZSGA 006. május 9. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók Formai előírások: A dolgozatot

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS Matematika PRÉ megoldókulcs 0. január. MTEMTIK PRÓBÉRETTSÉGI MEGOLDÓKULCS = KÖZÉP SZINT = I. rész: z alábbi feladat megoldása kötelező volt! ) Oldd meg az alábbi egyenletet a valós számok halmazán! tg

Részletesebben

Matematika tanmenet 12. osztály (heti 4 óra)

Matematika tanmenet 12. osztály (heti 4 óra) Matematika tanmenet 12. osztály (heti 4 óra) Tankönyv: Ábrahám Gábor Dr. Kosztolányiné Nagy Erzsébet Tóth Julianna: Matematika 12. középszint Példatárak: Fuksz Éva Riener Ferenc: Érettségi feladatgyűjtemény

Részletesebben

A zsebrádiótól Turán tételéig

A zsebrádiótól Turán tételéig Jegyzetek egy matekóráról Lejegyezte és kiegészítésekkel ellátta: Meszéna Balázs A katedrán: Pataki János A gráfokat rengeteg életszagú példa megoldásában tudjuk segítségül hívni. Erre nézzünk egy példát:

Részletesebben

NP-teljesség röviden

NP-teljesség röviden NP-teljesség röviden Bucsay Balázs earthquake[at]rycon[dot]hu http://rycon.hu 1 Turing gépek 1/3 Mi a turing gép? 1. Definíció. [Turing gép] Egy Turing-gép formálisan egy M = (K, Σ, δ, s) rendezett négyessel

Részletesebben

5. foglalkozás. Húsz találgatás Információelmélet

5. foglalkozás. Húsz találgatás Információelmélet 5. foglalkozás Húsz találgatás Információelmélet Röviden Mennyi információ van egy 1000 oldalas könyvben? Egy 1000 oldalas telefonkönyvben vagy 1000 üres lapon vagy Tolkien A Gyűrűk Ura könyvében van több

Részletesebben

Függőségek felismerése és attribútum halmazok lezártja

Függőségek felismerése és attribútum halmazok lezártja Függőségek felismerése és attribútum halmazok lezártja Elméleti összefoglaló Függőségek: mezők közötti érték kapcsolatok leírása. A Funkcionális függőség (FD=Functional Dependency): Ha R két sora megegyezik

Részletesebben

Halmazok; a matematikai logika elemei 1.1. A halmaz fogalma; jelölések

Halmazok; a matematikai logika elemei 1.1. A halmaz fogalma; jelölések 1 Halmazok; a matematikai logika elemei 1.1. A halmaz fogalma; jelölések A matematikában alapfogalmaknak tekintjük azokat a fogalmakat, amelyeket nem határozunk meg, nem definiálunk más fogalmak segítségével

Részletesebben

Analízis. 11 12. évfolyam. Szerkesztette: Surányi László. 2015. július 5.

Analízis. 11 12. évfolyam. Szerkesztette: Surányi László. 2015. július 5. Analízis 11 12. évfolyam Szerkesztette: Surányi László 2015. július 5. Technikai munkák (MatKönyv project, TEX programozás, PHP programozás, tördelés...) Dénes Balázs, Grósz Dániel, Hraskó András, Kalló

Részletesebben

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA A TÁMOP 3.1.4. EU-s pályázat megvalósításához a matematika (9. b/fizika) tárgy tanmenete a matematika kompetenciaterület A típusú

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 080 ÉRETTSÉGI VIZSGA 009. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

A Riemann-Siegel zeta függvény kiugró értékeinek keresése. A matematikai egyik legnehezebb problémája, avagy a prímszámok misztériuma

A Riemann-Siegel zeta függvény kiugró értékeinek keresése. A matematikai egyik legnehezebb problémája, avagy a prímszámok misztériuma A Riemann-Siegel zeta függvény kiugró értékeinek keresése A matematikai egyik legnehezebb problémája, avagy a prímszámok misztériuma 2013 A probléma fontossága és hatása a hétköznapi életre A prímszámok

Részletesebben

1. A komplex számok definíciója

1. A komplex számok definíciója 1. A komplex számok definíciója A számkör bővítése Tétel Nincs olyan n természetes szám, melyre n + 3 = 1. Bizonyítás Ha n természetes szám, akkor n+3 3. Ezért bevezettük a negatív számokat, közöttük van

Részletesebben

Információ megjelenítés Számítógépes ábrázolás. Dr. Iványi Péter

Információ megjelenítés Számítógépes ábrázolás. Dr. Iványi Péter Információ megjelenítés Számítógépes ábrázolás Dr. Iványi Péter Raszterizáció OpenGL Mely pixelek vannak a primitíven belül fragment generálása minden ilyen pixelre Attribútumok (pl., szín) hozzárendelése

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 091 ÉRETTSÉGI VIZSGA 011. május 3. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben Tartalom Előszó 13 1. Halmazok; a matematikai logika elemei 15 1.1. A halmaz fogalma; jelölések 15 1.2. Részhalmazok; komplementer halmaz 16 1.3. Halmazműveletek 17 1.4. A halmazok ekvivalenciája 20 1.5.

Részletesebben

GRÁFELMÉLET. 7. előadás. Javító utak, javító utak keresése, Edmonds-algoritmus

GRÁFELMÉLET. 7. előadás. Javító utak, javító utak keresése, Edmonds-algoritmus GRÁFELMÉLET 7. előadás Javító utak, javító utak keresése, Edmonds-algoritmus Definíció: egy P utat javító útnak nevezünk egy M párosításra nézve, ha az út páratlan hosszú, kezdő- és végpontjai nem párosítottak,

Részletesebben

MATEMATIKA. 9-10. évfolyam. Célok és feladatok

MATEMATIKA. 9-10. évfolyam. Célok és feladatok MATEMATIKA 9-10. évfolyam Célok és feladatok A matematikatanítás célja és ennek kapcsán feladata, hogy megalapozza a tanulók korszerő, alkalmazásra képes matematikai mőveltségét, biztosítsa a többi tantárgy

Részletesebben

Információ megjelenítés Alapok

Információ megjelenítés Alapok Információ megjelenítés Alapok Szavak és képek Duális kódolás elmélete (Paivio) Szerkezetek Vizuális Vizuális Rendszer Képi információ Imagens Nem-verbális válasz Szóbeli Halló Rendszer Információ beszédből

Részletesebben

Görbe- és felületmodellezés. Szplájnok Felületmodellezés

Görbe- és felületmodellezés. Szplájnok Felületmodellezés Görbe- és felületmodellezés Szplájnok Felületmodellezés Spline (szplájn) Spline: Szakaszosan, parametrikus polinomokkal leírt görbe A spline nevét arról a rugalmasan hajlítható vonalzóról kapta, melyet

Részletesebben

L'Hospital-szabály. 2015. március 15. ln(x 2) x 2. ln(x 2) = ln(3 2) = ln 1 = 0. A nevez határértéke: lim. (x 2 9) = 3 2 9 = 0.

L'Hospital-szabály. 2015. március 15. ln(x 2) x 2. ln(x 2) = ln(3 2) = ln 1 = 0. A nevez határértéke: lim. (x 2 9) = 3 2 9 = 0. L'Hospital-szabály 25. március 5.. Alapfeladatok ln 2. Feladat: Határozzuk meg a határértéket! 3 2 9 Megoldás: Amint a korábbi határértékes feladatokban, els ként most is a határérték típusát kell megvizsgálnunk.

Részletesebben

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait.

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. 2. VEKTORTÉR A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. Legyen K egy test és V egy nem üres halmaz,

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0711 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

Amortizációs költségelemzés

Amortizációs költségelemzés Amortizációs költségelemzés Amennyiben műveleteknek egy M 1,...,M m sorozatának a futási idejét akarjuk meghatározni, akkor egy lehetőség, hogy külön-külön minden egyes művelet futási idejét kifejezzük

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

Azonosító jel: ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM

Azonosító jel: ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika középszint írásbeli vizsga I. összetevő

Részletesebben

Zárthelyi dolgozat feladatainak megoldása 2003. õsz

Zárthelyi dolgozat feladatainak megoldása 2003. õsz Zárthelyi dolgozat feladatainak megoldása 2003. õsz 1. Feladat 1. Milyen egységeket rendelhetünk az egyedi információhoz? Mekkora az átváltás közöttük? Ha 10-es alapú logaritmussal számolunk, a mértékegység

Részletesebben

Matematika kerettantervek 2012. augusztus 31.

Matematika kerettantervek 2012. augusztus 31. Matematika kerettantervek 2012. augusztus 31. dr. Frigyesi Miklós bizottsági elnök Régi és új a NAT-ban Ami visszaszorul: Írásbeli műveletvégzés Magas szintű algebrai rutin Ötletes egyenletek, egyenlőtlenségek

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 051 ÉRETTSÉGI VIZSGA 005. május 9. MATEMATIKA KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 180 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók

Részletesebben

Bevezetés a programozásba

Bevezetés a programozásba Bevezetés a programozásba 1. Előadás Bevezetés, kifejezések http://digitus.itk.ppke.hu/~flugi/ Egyre precízebb A programozás természete Hozzál krumplit! Hozzál egy kiló krumplit! Hozzál egy kiló krumplit

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2009. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2009. május 5. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Matematika középszint

Részletesebben

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat

Részletesebben

MODELLEK ÉS ALGORITMUSOK ELŐADÁS

MODELLEK ÉS ALGORITMUSOK ELŐADÁS MODELLEK ÉS ALGORITMUSOK ELŐADÁS Szerkesztette: Balogh Tamás 214. december 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

0644. MODUL SZÁMELMÉLET. Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA

0644. MODUL SZÁMELMÉLET. Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA 0644. MODUL SZÁMELMÉLET Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA 0644. Számelmélet Közös osztók, közös többszörösök Tanári útmutató MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2012. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2012. május 8. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika középszint

Részletesebben

3. MINTAFELADATSOR KÖZÉPSZINT

3. MINTAFELADATSOR KÖZÉPSZINT Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz MATEMATIKA 3. MINTAFELADATSOR KÖZÉPSZINT 2015 I. Időtartam: 45 perc Oktatáskutató

Részletesebben

Hálózati folyamok. Tétel: A maximális folyam értéke megegyezik a minimális vágás értékével.

Hálózati folyamok. Tétel: A maximális folyam értéke megegyezik a minimális vágás értékével. Hálózati folyamok Definíció: Legyen G = (V,E) egy irányított gráf, adott egy c: E R + {0} ún. kapacitásfüggvény, amely minden (u,v) ε E élhez hozzárendel egy nem negatív c(u,v) kapacitást. A gráfnak van

Részletesebben

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám.

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám. 1 Az utazó ügynök problémája Utazó ügynök feladat Adott n számú város és a városokat összekötő utak, amelyeknek ismert a hossza. Adott továbbá egy ügynök, akinek adott városból kiindulva, minden várost

Részletesebben

Matematika kisérettségi

Matematika kisérettségi Matematika kisérettségi 2010. május 11. I. rész Fontos tudnivalók 1. A feladatok megoldására 30 percet fordíthat, az idő elteltével a munkát be kell fejeznie. 2. A megoldások sorrendje tetszőleges. 3.

Részletesebben

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk)

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) 1. Térelemek Geometria a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) b. Def: félegyenes, szakasz, félsík, féltér. c. Kölcsönös helyzetük: i. pont és (egyenes vagy

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2012. október 16. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2012. október 16. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika középszint

Részletesebben

MATEMATIKA ÉRETTSÉGI 2013. május 7. KÖZÉPSZINT

MATEMATIKA ÉRETTSÉGI 2013. május 7. KÖZÉPSZINT MATEMATIKA ÉRETTSÉGI 01. május 7. KÖZÉPSZINT 1) Az A és B halmazokról tudjuk, hogy B\ A 1; ; 4; 7. Elemeinek felsorolásával adja meg az A halmazt! A ; 5; 6; 8; 9 I. AB 1; ; ; 4; 5; 6; 7; 8; 9 és ) Egy

Részletesebben

MATEMATIKA C 12. évfolyam 4. modul Még egyszer!

MATEMATIKA C 12. évfolyam 4. modul Még egyszer! MATEMATIKA C 1. évfolyam 4. modul Még egyszer! Készítette: Kovács Károlyné Matematika C 1. évfolyam 4. modul: Még eygszer! Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok

Részletesebben

Matematika kisérettségi I. rész 45 perc NÉV:...

Matematika kisérettségi I. rész 45 perc NÉV:... Matematika kisérettségi I. rész 45 perc NÉV:... 1. Az A halmaz elemei a háromnál nagyobb egyjegyű számok, a B halmaz elemei pedig a húsznál kisebb pozitív páratlan számok. Sorolja fel az halmaz elemeit!

Részletesebben

54. Mit nevezünk rombusznak? A rombusz olyan négyszög,

54. Mit nevezünk rombusznak? A rombusz olyan négyszög, 52. Sorold fel a deltoid tulajdonságait! 53. Hogy számoljuk ki a deltoid területét? A deltoid egyik átlója a deltoid Átlói. A szimmetriaátló a másik átlót és a deltoid szögét. A szimmetriatengely két ellentétes

Részletesebben

Az osztályozó vizsgák tematikája matematikából

Az osztályozó vizsgák tematikája matematikából Az osztályozó vizsgák tematikája matematikából Matematikából osztályozó vizsgára kötelezhető az a tanuló, aki magántanuló, vagy akinek a hiányzása eléri az össz óraszám 30%-át. Az írásbeli vizsga időtartama

Részletesebben

Szakértelem a jövő záloga

Szakértelem a jövő záloga 1211 Budapest, Posztógyár út. LEKTORI VÉLEMÉNY Moduláris tananyagfejlesztés Modul száma, megnevezése: Szerző neve: Lektor neve: Imagine Logo programozás Babos Gábor Újváry Angelika, Szabó Imre Sorszám

Részletesebben

DuneHD.hu. Kompatibilis médialejátszók: Dune HD Center Dune BD Prime Dune HD Base 2.0 Dune HD Base 3.0 Dune BD Prime 3.0

DuneHD.hu. Kompatibilis médialejátszók: Dune HD Center Dune BD Prime Dune HD Base 2.0 Dune HD Base 3.0 Dune BD Prime 3.0 A Zappiti egy donationware, vagyis ingyenes program, mellyel kibővítheted Dune médialejátszód képességeit. A leírás a Zappiti 1.2.1 Beta változata alapján készült. Kompatibilis médialejátszók: Dune HD

Részletesebben

Csíkos Csaba. Szegedi Tudományegyetem BTK Neveléstudományi Intézet

Csíkos Csaba. Szegedi Tudományegyetem BTK Neveléstudományi Intézet Csíkos Csaba Szegedi Tudományegyetem BTK Neveléstudományi Intézet Előadásvázlat A problémaalapú tanulás értelmezése Módszerek Feladatok A matematikai gondolkodás fejlesztésének lehetőségei a problémaalapú

Részletesebben

Algoritmus terv 3. Fejezet: Folyamatok meghatározása

Algoritmus terv 3. Fejezet: Folyamatok meghatározása This image cannot currently be displayed. Algoritmus terv 3. Fejezet: Folyamatok meghatározása 1. Algoritmus általános áttekintése 2. Inputok és outputok definiálása 3. Folyamatok meghatározása 4. ozási

Részletesebben

Matematika Mozaik Kiadó. 5. osztály

Matematika Mozaik Kiadó. 5. osztály Matematika Mozaik Kiadó 5. osztály Tematikai egység címe órakeret Gondolkodási módszerek, halmazok, matematikai logika, 3+folyamatos kombinatorika, gráfok Számtan, algebra 78 Függvények, az analízis elemei

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0801 ÉRETTSÉGI VIZSGA 2008. május 6. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben

7. osztály. SNI felmentett követelmények Számítógép ki-bekapcsolása, Operációs rendszer grafikus felületének használata

7. osztály. SNI felmentett követelmények Számítógép ki-bekapcsolása, Operációs rendszer grafikus felületének használata 7. osztály Évi óraszám: 37 óra Órakeret Javasolt óraszámfelosztás témakörök szerint: I. Hardware, karbantartás 5 óra II. Internet, adatgyűjtés 6 óra III. Perifériák használata 5 óra IV. Szövegszerkesztés

Részletesebben

Matematika. 5-8. évfolyam

Matematika. 5-8. évfolyam Matematika 5-8. évfolyam Szandaszőlősi Általános és Alapfokú Művészeti Iskola 2013 Ajánlás Az átdolgozásnál felhasznált dokumentumok: NAT 2012 (110/2012.(VI.4.) Kormányrendelet EMMI kerettanterv 51/2012.

Részletesebben

Függvények határértéke és folytonossága

Függvények határértéke és folytonossága Függvények határértéke és folytonossága 7. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Függvények határértéke p. / Függvény határértéke az x 0 helyen Definíció. Legyen D R, f

Részletesebben

WISC-IV Intelligencia teszt bemutatása esetismertetéssel

WISC-IV Intelligencia teszt bemutatása esetismertetéssel 26. Oroszi Zsuzsanna: WISC-IV Intelligencia teszt bemutatása esetismertetéssel A Weschler intelligenciatesztek a gyermek és felnőtt-korúak kognitív képességeinek átfogó és megbízható feltárását szolgálják.

Részletesebben

I. rész. Feladatsor. 2. Andi keresett két olyan számot, amelyre teljesül, hogy a < b. Igaz-e, hogy a < b?

I. rész. Feladatsor. 2. Andi keresett két olyan számot, amelyre teljesül, hogy a < b. Igaz-e, hogy a < b? 1. Feladatsor I. rész 1. Adott két halmaz. A a 9-nél kisebb páros pozitív egészek; B a 30-nál kisebb, 6-tal osztható pozitív egészek halmaza. Adja meg az A B és a B \ A halmazokat!. Andi keresett két olyan

Részletesebben

Klett Kiadó Kft, Makara Ágnes, J. Fodor Ágnes

Klett Kiadó Kft, Makara Ágnes, J. Fodor Ágnes 2013.03.28. 1. Bevezetés, ajánlás Tisztelt Kalandtúrát vezető Tanárnő, Tanár úr! A Klett Kiadó segítséget kíván nyújtani Önnek az EMMI által előírt helyi kerettanterv előállításához. A következő lapokon

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0631 É RETTSÉGI VIZSGA 006. október 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Formai előírások: Fontos tudnivalók

Részletesebben

A technikai elemzés alapjai

A technikai elemzés alapjai TheBetBulls.com 1 A technikai elemzés alapjai Bevezetés Dow elmélet Trendek Ellenállás és támasz Trendvonal Csatorna Korrekció Elliott hullám-elmélet TheBetBulls.com 2 Dow elmélet Tovább gondolva a részvények

Részletesebben

P R Ó B A É R E T T S É G I 2 0 0 4. m á j u s KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

P R Ó B A É R E T T S É G I 2 0 0 4. m á j u s KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ P R Ó B A É R E T T S É G I 0 0 4. m á j u s MATEMATIKA KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Formai előírások: A dolgozatot a vizsgázó által használt színűtől eltérő színű tollal kell javítani, és a

Részletesebben

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a Feladatok, amelyek gráfokkal oldhatók meg ) A königsbergi hidak problémája (Euler-féle probléma) a b d c A megfelelő gráf: d a b c ) Egy szórakoztató feladat (Hamilton-féle probléma) Helyezzük el az,,,...,

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2011. május 3. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2011. május 3. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika középszint

Részletesebben

EGYSZERŰSÉG ÉS ÁTTEKINTHETŐSÉG AZ ÜZLETI ANALITIKÁBAN CRS PORTÁL AVENSOFT KFT. 1072 BUDAPEST, RÁKÓCZI ÚT 42. WWW.CRSPORTAL.HU WWW.AVENSOFT.

EGYSZERŰSÉG ÉS ÁTTEKINTHETŐSÉG AZ ÜZLETI ANALITIKÁBAN CRS PORTÁL AVENSOFT KFT. 1072 BUDAPEST, RÁKÓCZI ÚT 42. WWW.CRSPORTAL.HU WWW.AVENSOFT. CRS PORTÁL AVENSOFT KFT. 1072 BUDAPEST, RÁKÓCZI ÚT 42. WWW.CRSPORTAL.HU WWW.AVENSOFT.HU EGYSZERŰ KEZELHETŐSÉG ÁTTEKINTHETŐ LOGIKA A CRS Portál egy olyan, web alapú üzleti intelligencia (BI) megoldás, amely

Részletesebben

Garay János Általános Iskola és Alapfokú Művészetoktatási Intézmény. Helyi tanterv Matematika 5-8. évfolyam. Alapelvek, célok

Garay János Általános Iskola és Alapfokú Művészetoktatási Intézmény. Helyi tanterv Matematika 5-8. évfolyam. Alapelvek, célok MATEMATIKA Alapelvek, célok Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról, mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről.

Részletesebben

BEVEZETŐ MATEMATIKA 5-8. Célok, feladatok:

BEVEZETŐ MATEMATIKA 5-8. Célok, feladatok: BEVEZETŐ Célok, feladatok: Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről.

Részletesebben

Kereső algoritmusok a diszkrét optimalizálás problémájához

Kereső algoritmusok a diszkrét optimalizálás problémájához Kereső algoritmusok a diszkrét optimalizálás problémájához A. Grama, A. Gupta, G. Karypis és V. Kumar: Introduction to Parallel Computing, Addison Wesley, 2003. könyv anyaga alapján A kereső eljárások

Részletesebben

3 2 x 1 = 5. (9 pont) 2. Mekkora a szabályos kilencszög kerülete és területe, ha a legrövidebb átlója 85? (11 pont)

3 2 x 1 = 5. (9 pont) 2. Mekkora a szabályos kilencszög kerülete és területe, ha a legrövidebb átlója 85? (11 pont) 1997 Írásbeli érettségi-felvételi feladatok 1. Oldja meg a következő egyenletet a valós számok halmazán: 3 2 x 1 2 2 x 1 + 2 2x 1 3 2 x 1 = 5. (9 pont) 2 2. Mekkora a szabályos kilencszög kerülete és területe,

Részletesebben

Választható matematika 5-8. évfolyam

Választható matematika 5-8. évfolyam 1. Tantárgyi címoldal Választható matematika 5-8. évfolyam Helyi tantárgyi tanterv A tantárgy nevelési és fejlesztési célrendszere megvalósításának iskolai keretei: a választható matematika tantárgy oktatása

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 11 ÉRETTSÉGI VIZSGA 01. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fontos tudnivalók Formai előírások: 1.

Részletesebben

INFORMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI

INFORMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI 1. oldal, összesen: 6 oldal INFORMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI A vizsga formája Középszinten: gyakorlati és szóbeli. Emeltszinten: gyakorlati és szóbeli. Az informatika érettségi vizsga

Részletesebben

Tartalomjegyzék Algoritmusok - pszeudókód... 1 42

Tartalomjegyzék Algoritmusok - pszeudókód... 1 42 Tartalomjegyzék Algoritmusok - pszeudókód... 1 42 Abszolút érték...1 Hányados ismételt kivonással...1 Legnagyobb közös osztó... 1 2 Páros számok szűrése...2 Palindrom számok...2 Orosz szorzás...3 Minimum

Részletesebben

Titkosírás. Biztos, hogy titkos? Szabó István előadása. Az életben sok helyen használunk titkosítást (mobil, internet, jelszavak...

Titkosírás. Biztos, hogy titkos? Szabó István előadása. Az életben sok helyen használunk titkosítást (mobil, internet, jelszavak... Biztos, hogy titkos? Szabó István előadása Az életben sok helyen használunk titkosítást (mobil, internet, jelszavak...) Története Az ókortól kezdve rengeteg feltört titkosírás létezik. Monoalfabetikus

Részletesebben

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2008. május 6. 8:00. Az írásbeli vizsga időtartama: 240 perc

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2008. május 6. 8:00. Az írásbeli vizsga időtartama: 240 perc ÉRETTSÉGI VIZSGA 2008. május 6. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2008. május 6. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 05 ÉRETTSÉGI VIZSGA 005. május 0. MATEMATIKA EMELT SZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 40 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók

Részletesebben

Integrált terméktervezési gyakorlat

Integrált terméktervezési gyakorlat Integrált terméktervezési gyakorlat Előadja Molnár László Péter 2009.02.04. Miért fontos ez a tárgy? Összefoglalja a tanultakat betekintést nyerhetünk egy tervezési folyamat fázisaiba lemérhetjük, hogy

Részletesebben