2009/2010/I. félév, Prof. Dr. Galántai Aurél BMF NIK IMRI Budapest november 25.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "2009/2010/I. félév, Prof. Dr. Galántai Aurél BMF NIK IMRI Budapest. 2009. november 25."

Átírás

1 SZÁMÍTÁSTUDOMÁNY 2009/2010/I. félév, (el½oadás vázlat) Prof. Dr. Galántai Aurél BMF NIK IMRI Budapest november 25.

2 Tartalomjegyzék TARTALOMJEGYZÉK 3 1. Bevezetés 5 2. Matematikai alapfogalmak Jelölések Relációk és függvények Függvények aszimptotikus jellemzése Gráfok Halmazok számossága Nyelvek és szavak Algoritmusok, kiszámítható függvények és döntési problémák Formális nyelvek és automaták Formális nyelvek Generatív nyelvtanok osztályozása Automaták Véges determinisztikus automaták Véges nem determinisztikus automaták Verem automaták Számítási modellek Turing gépek Turing gépek programozása A Turing gép kiterjesztései Regiszter gépek és a RAM modell Boole-függvények és logikai hálózatok Számítási modellek ekvivalenciája Univerzális Turing gépek Algoritmikus eldönthet½oség és kiszámíthatóság Nyelvek felismerése és eldöntése Turing gépekkel Eldönthetetlen problémák Néhány további eldönthetetlen probléma Turing kiszámítható függvények Primitív rekurzív függvények Parciális rekurzív függvények

3 4 TARTALOMJEGYZÉK 7. Algoritmusok analízise Bevezetés Elméleti eredmények és fogalmak Az oszd meg és uralkodj elv A mester tétel Keresési, rendezési és kiválasztási feladatok Keresési feladatok Rendezési feladatok Alsó becslés a rendezések bonyolultságára Kiválasztási feladatok Aritmetikai algoritmusok Szorzás Osztás Mátrixalgoritmusok Mátrixok és vektorok szorzása Winograd mátrix szorzó algoritmusa Strassen mátrix szorzó algoritmusa Megjegyzések a gyors mátrix szorzásokról Mátrixinvertálás és lineáris egyenletrendszerek A gyors Fourier-transzformáció A gyors Fourier transzformáció alkalmazásai I: a konvolúció A gyors Fourier transzformáció alkalmazásai II: polinomok és egész számok gyorsszorzása Numerikus algoritmusok Egyváltozós polinomegyenletek megoldása Smale és Schönhage eredményei Párhuzamos algoritmusok Párhuzamos számítások modelljei Hatékonysági mutatók Esettanulmányok Párhuzamos bonyolultsági osztályok Számítási bonyolultság Az NP osztály és NP-teljesség Nem-determinisztikus Turing-gépek és az NP osztály NP-teljesség A Blum-Shub-Smale algoritmus modell Függelék A programozás alapfogalmainak egy nemdeterminisztikus, relációelméleti leírása Irodalom

4 BEVEZETÉS 5 1. fejezet Bevezetés "Amit hallok, elfelejtem. Amit látok, emlékezem. Amit csinálok, megértem." Konfuciusz Mi a számítástudomány? Ennek a kérdésnek a pontos megválaszolása - más tudomány területekhez hasonlóan - nehéz feladat, már csak az informatika rohamos mérték½u fejl½odése miatt is. Ide soroljuk az algoritmusok és problémák bonyolultság elméletét, a matematikai logikát, a formális nyelvek elméletét, a programozáselméletet és még sok más területet (lásd pl. ACM Computing Classi cations System, Wikipédia). Az el½oadás f½oként számítási modellekkel, algoritmusok elemzésével (algoritmusok analízisével) és bonyolultságelmélettel foglalkozik. A bonyolultságelmélet számítógép korszak (von Neumann) el½otti el½ozményeit a matematikai logika fejl½odésében kereshetjük, nevezetesen a "bizonyítás" és a "kiszámítható függvény" fogalmának formalizálásával kapcsolatos kutatásokban. Gödel 1930-ban igazolta, hogy egy (aritmetikai, vagy aritmetizálható) logikai rendszeren belül megfogalmazhatók olyan állítások, amelyek igaz, vagy hamis volta (a rendszeren belül) nem igazolható (Gödel, K.: Über formal unentscheidbare Sätze der Principa Mathematica und verwandtere Systeme I ( On formally undecidable propositions of Principia Mathematica and related systems I ), Monatshefte für Mathematik und Physik, 38, 1931, ). Ebben a munkájában Gödel de niálta a (primitív) rekurzív függvény fogalmát is, amely alapvet½o a kiszámítható függvény fogalmának vizsgálatában. Turing 1936-ban bevezette a Turing gép fogalmát, amely mind a kiszámíthatóság-, mind pedig az algoritmuselméletben alapvet½o fontosságú eszköznek bizonyult. (Turing, A.M.: On computable numbers with an application to the Entscheidungsproblem, Proc. London Math. Soc., ser. 2, 42, , ).

5 6 BEVEZETÉS Kurt Gödel ( ) Alan Turing ( ) Az 1936-os évben két másik fontos fogalmat is bevezettek. Alonzo Church de niálta a - kalkulust 1 (A. Church: An unsolvable problem in elementary number theory, American Journal of Mathematics, 58, 1936, ). Church híres tézise azt a sejtést mondja ki, hogy minden számítás az általa megadott rendszerben formalizálható. Ugyancsak 1936-ban S.C Kleene bevezette a -rekurzív függvényeket (S.C. Kleene: General recursive functions of natural numbers, Mathematische Annalen, 112, 1936, ). Alonzo Church ( ) S. C. Kleene ( ) Érdemes megjegyezni, hogy a LISP nyelvet a -kalkulusból fejlesztették ki. Az imperatív programnyelvek (pl. Pascal, C) pedig a -rekurzív függvények implementációinak tekinthet½ok. A rekurzív függvények elméletéhez Péter Rózsa (1936, k-szoros rekurzív függvények) és Kalmár László (1943, elemi függvények) is jelent½osen hozzájárult. A Neumann-elv½u számítógépek elterjedésével kezd½odött a számítástudomány kialakulása is. A bonyolultság elmélet kifejl½odésének f½obb kezdeti lépései S.A. Cook szerint (ACM Turing Award, 1982): 1 A -kalkulusban a függvények jelölése: x 1 ; : : : ; x n [: : :] azt a függvényt jelöli, amelynek változói rendre x 1, x 2,..., x n és értéke [: : :].

6 BEVEZETÉS 7 - Turing (1936): Turing gép, az e ektíven (algoritmikusan) kiszámítható függvény fogalma, kielégithet½oségi probléma, (Church-)Turing hipotézis: Bármely függvény, amely egy jól de niált eljárással kiszámítható, kiszámítható egy Turing géppel is. - Rabin (1959, 1960): Mit jelent az, hogy f-et nehezebb kiszámítani mint g-t? - Hartmanis, Stearns (1965): bonyolultság mértéke, hierarchia tételek. - Cobham (1965): függvények bels½o számítási nehézsége, gépfüggetlen elmélet. - Karp (1972): P osztály (tractability vagy feasibility). - Aho, Ullman, Hopcroft (1974): RAM gép. A bonyolultságelmélet témakörét M. Rabin az 1976-os ACM Turing díj átvételekor tartott el½oadásában a következ½okben foglalta össze. Legyenek adottak a következ½ok: - P probléma osztály, - I 2 P egyedi probléma, - jij a probléma mérete, - AL a P problémát (problémaosztályt) megoldó algoritmus. Az I 2 P problémát megoldva az AL algoritmus egy S I sorozatot hoz létre. Az S I sorozathoz hozzárendelünk bizonyos mértékeket (költséget). A legfontosabb mértékek: (1) Az S I hossza (számítási id½o) (2) Az S I mélysége (a párhuzamosítás mértéke, párhuzamosítás számítási ideje) (3) A memória igény (4) S I teljes "lépésszáma" helyett bizonyos kitüntetett aritmetikai m½uveletek, összehasonlítások, memóriam½uveletek, stb. száma) (5) Az algoritmus hardver implementálásához szükséges áramkör (Boole áramkör) bonyolultsága (kombinatorikus bonyolultság). Tegyük fel, hogy van egy mértékünk az S I számításokhoz. Fontosabb bonyolultsági mértékek: Legrosszabb eset bonyolultság: F AL (n) = max f (S I ) j I 2 P; jij = ng : Átlagos bonyolultság: adott egy p valószín½uség eloszlás minden egyes P n = fi j I 2 P; jij = ng feladat halmazon. Ekkor a mérték: M AL (n) = X I2P n p (I) (S I ) : Algoritmusok analízise alatt azt értjük, hogy adott jij méretfüggvény és (S I ) mérték esetén meghatározzuk a P -t megoldó AL algoritmus F AL (n) legrosszabb eset és M AL (n) átlagos bonyolultságát. Rabin szerint a bonyolultságelmélet legfontosabb kérdései (1976-ban) a következ½ok: 1. Hatékony algoritmusok keresése P megoldására. 2. A P feladatosztály bels½o bonyolultságára alsó becslések keresése. 3. P egzakt megoldásának keresése (már ha van). 4. Közelít½o algoritmusok fejlesztése. 5. A legrosszabb bels½o bonyolultság vizsgálata.

7 6. A P átlagos bonyolultságának vizsgálata. 7. Szekvenciális algoritmusok fejlesztése P megoldására. 8. Párhuzamos algoritmusok fejlesztése P megoldására. 9. Szoftver algoritmusok fejlesztése. 10. Hardveren implementált algoritmusok. 11. Megoldás valószín½uségi (véletlen) algoritmusokkal. A bonyolultságelmélet mára a számítástudomány központi fontosságú területévé vált. A Rabin által felvázolt kérdések ma is intenzív vizsgálatok tárgyát képezik. Az el½oadás egy bevezetés az alapvet½o fogalmakba és eredményekbe. 8 BEVEZETÉS

8 MATEMATIKAI ALAPFOGALMAK 9 2. fejezet Matematikai alapfogalmak 2.1. Jelölések A halmazok (naív) fogalmát és a velük végezhet½o m½uveleteket ismertnek tételezzük fel. A következ½o jelöléseket használjuk: N - természetes számok halmaza N 0 - nemnegatív egész számok halmaza (N 0 = N [ f0g) Z - egész számok halmaza n p Q - racionális számok halmaza (Q = o) j p; q 2 Z, q 6= 0 q R - valós számok halmaza C - komplex számok halmaza (C = fa + bi j a; b 2 Rg, i = p 1 ) ; - üres halmaz - valódi részhalmaz - részhalmaz jaj - az A halmaz számossága (elemeinek száma) De níció: Egy A 6= ; halmaz hatványhalmazán a 2 A = fx j X Ag halmazrendszert értjük. Értelemszer½uen ;; A 2 2 A. Szokás 2 A helyett a P (A) (power set of A) jelölést is használni. Állítás: Ha jaj = n, akkor 2 A = 2 n. Bizonyítás: Az n elem½u halmaz k elem½u különböz½o részhalmazainak száma k n P és n n k=0 k = 2 n. De níció: A 1 ; A 2 ; : : : ; A n tetsz½oleges halmazok direkt, vagy Descartes féle szorzatán az A 1 A 2 : : : A n = f(a 1 ; : : : ; a n ) j a i 2 A i, i = 1; : : : ; ng halmazt értjük. A direkt szorzat elemei rendezett elem n-esek. A direkt szorzat rövid jelölése: n i=1a i. Ha A 1 = A 2 = = A n = A, akkor használjuk az A n := n i=1a jelölést is. Ílymódon például R n és C n jelöli a valós, illetve komplex elem½u n dimenziós vektorok halmazát.

9 2.2. Relációk és függvények 10 MATEMATIKAI ALAPFOGALMAK De níció: Legyenek A és B tetsz½oleges halmazok. Tetsz½oleges S AB részhalmazt (bináris) relációnak nevezünk. Az a 2 A és b 2 B elemek S relációban állnak egymással (jelölés asb) akkor és csak akkor, ha (a; b) 2 S. A de níciót rövidebben is megadhatjuk: asb () (a; b) 2 S. De níció: Az S A B reláció értelmezési tartománya: D S = fa 2 A j 9b 2 B : (a; b) 2 Sg : De níció: Az S A B reláció értékkészlete: R S = fb 2 B j 9a 2 A : (a; b) 2 Sg : De níció: Az S A B reláció értéke (metszete) egy adott a 2 D S helyen: S (a) = fb 2 B j (a; b) 2 Sg : De níció: Az S A B relációt függvénynek nevezzük, ha js (a)j = 1 (8a 2 D S ): A függvényeket S : A! B formában is megadhatjuk. De níció: Egy S függvényrelációt (teljes) függvénynek nevezünk, ha D S = A és parciális függvénynek, ha D S A és D S 6= A. Két egyszer½u példa relációra: S 1 = f(0; 0) ; (1; 1) ; (2; 4) ; (3; 9) ; (4; 16)g és S 2 = f(small,short) ; (medium,middle) ; (medium,average) ; (large,tall)g: A de níció alapján D S1 = f0; 1; 2; 3; 4g, R S1 = f0; 1; 4; 9; 16g és S 1 (i) = fi 2 g (i 2 D S1 ). Az S 1 reláció függvény. Az S 2 reláció esetén D S2 = fsmall,medium,largeg ; R S2 = fshort,middle,average,tallg: Minthogy S 2 (medium) = fmiddle,averageg, az S 2 reláció nem függvény. Függvényreláció esetén S (a) vagy üres, vagy egyelem½u halmaz. Például az S 1 = x; x 2 j x 2 R R R reláció (teljes) függvény, mert D S1 = R. De az S 2 = x; p x j x 2 R; x 0 R R reláció csak parciális függvény, mert S 2 (x) = ; minden x < 0 számra. Tetsz½oleges S A B relációt felfoghatunk egy S : A! 2 B halmazfüggvénynek is, ugyanis minden a 2 D S esetén S (a) B, azaz S (a) 2 2 B.

10 FÜGGVÉNYEK ASZIMPTOTIKUS JELLEMZÉSE 11 Az f : A! B fügvényt véges függvénynek nevezzük, ha A és B véges halmaz. Az f : f0; 1g n! f0; 1g m tipusú véges függvényeket bináris függvényeknek nevezzük. De níció: Az f : f0; 1g n! f0; 1g függvényt Boole függvénynek nevezzük. A de níció másképpen fogalmazva azt jelenti, hogy f (x 1 ; x 2 ; : : : ; x n ) 2 f0; 1g (x i 2 f0; 1g ; i = 1; : : : ; n): Az alábbi igazság táblázatok megadnak négy alapvet½o Boole függvényt: x y x ^ y x y x _ y x y x y x x Ha a 0 értékhez a hamis, az 1 értékhez pedig az igaz logikai értékeket rendeljük, akkor a fenti táblázatok rendre a logikai és (AND, x^y), vagy (OR, x_y), kizáró vagy (XOR, xy) és negáció (NOT, x) függvényeket adják meg. A negáció függvényt szokás még a :x módon is jelölni. Legyen x; y 2 f0; 1g két logikai változó (vagy állítás)! Ekkor x = 1 x; x ^ y = 1, ha x = y = 1 0, egyébként x _ y = 0, ha x = y = 0 1, egyébként ; x y = 1, ha x + y = 1 0, egyébként : Az XOR felírható még az x y x + y (mod 2) formában is. De níció: A logikai változók :, ^, _ jelekkel felírt kifejezéseit Boole-polinomoknak nevezzük. Állítás: Minden Boole-függvény kifejezhet½o Boole-polinomokkal Függvények aszimptotikus jellemzése A következ½okben aszimptotikus nagyságrendi relációkat de niálunk. De níció: f (n) = O (g (n)) ( f (n) 2 O (g (n))), ha létezik c; n 0 > 0 konstans, hogy jf (n)j c jg (n)j teljesül minden n n 0 számra.

11 y 12 MATEMATIKAI ALAPFOGALMAK x f(x)=o(g(x)) aszimptotika Példa: Megmutatjuk, hogy log n = O (n). Teljes indukcióval igazoljuk: n 1 ) log n n. n = 1 esetén: log 1 = 0 1. Tegyük fel, hogy n 1-re igaz az állítás: log n n. Ekkor log (n + 1) log (2n) = log 2 + log n 1 + n. Példa: Megmutatjuk, hogy 2 n+1 = O (3 n =n). Teljes indukcióval igazoljuk: n 7 ) 2 n+1 3 n =n. n = 7 esetén: 2 8 = =7 312:428. Tegyük fel, hogy n 7 és 2 n+1 3 n =n. Ekkor f(x) c*g(x) 2 n+2 = 2 2 n+1 2 3n n = 2 (n + 1) 3n 3 n+1 n + 1 3n+1 n + 1 ; mert 2(n+1) 3n < 1. Az O (nagy ordó) relációval a következ½o m½uveleteket végezhetjük. Állítás: Ha f 1 (n) 2 O (g 1 (n)) és f 2 2 O (g 2 (n)), akkor f 1 (n)+f 2 (n) = O (jg 1 (n)j + jg 2 (n)j), illetve f 1 (n) + f 2 (n) = O (max fjg 1 (n)j ; jg 2 (n)jg). Bizonyítás: Tegyük fel, hogy n n 0 esetén jf 1 (n)j c 1 jg 1 (n)j és jf 2 (n)j c 2 jg 2 (n)j. Ekkor jf 1 (n) + f 2 (n)j jf 1 (n)j + jf 2 (n)j max fc 1 ; c 2 g max fjg 1 (n)j ; jg 2 (n)jg : Állítás: Ha f 1 (n) 2 O (g 1 (n)) és f 2 2 O (g 2 (n)), akkor f 1 (n) f 2 (n) = O (g 1 (n) g 2 (n)). Állítás: Ha f (n) 2 O (g (n)), akkor cf (n) 2 O (g (n)). További példák: f (x) = x 4 3x 3 + 5x 1973 = O (x 4 ). (n + 1) 2 = n 2 + O (n). f (n) = 4 log n 3 (log n) 2 + n 2 = O (n 2 ) :

12 y y FÜGGVÉNYEK ASZIMPTOTIKUS JELLEMZÉSE 13 Az f (n) = O (1) azt jelöli, hogy f (n) felülr½ol korlátos. De níció: f (n) = (g (n)) ( f (n) 2 (g (n))), ha létezik c; n 0 > 0 konstans, hogy jf (n)j c jg (n)j teljesül minden n n 0 számra x f(x)=(g(x)) aszimptotika f(x) c*g(x) Példa: (1=2) n 2 5n = (n 2 ), mert 1 2 n2 5n =n 2 = n 4 ; n 20. De níció: f (n) = (g (n)) ( f (n) 2 (g (n))), ha létezik c 1 ; c 2 ; n 0 > 0 konstans, hogy c 1 jg (n)j jf (n)j c 2 jg (n)j teljesül minden n n 0 számra. Alternatív de níció: f (n) = (g (n)), f (n) = O (g (n)) ^ g (n) = O (f (n)) f(x) c1*g(x) c2*g(x) x f(x)=(g(x)) aszimptotika

13 y 14 MATEMATIKAI ALAPFOGALMAK Példa: 2n 2 + 3n log n log n + 3 = (n 2 ), mert 1 2n2 + 3n log n log n + 3 n 2 = log n n log n n n 2 3; ha n elég nagy. Állítás: p (n) = P d i=0 a in i = n d, ha a d 6= 0. De níció: f (n) = o (g (n)) ( f (n) 2 o (g (n))), ha g (n) csak véges sok helyen nulla és f (n) lim n!1 g (n) = 0: sqrt(x) log(x) log(x)/sqrt(x) f(x)=o(g(x)) aszimptotika x Példák: log n = o (n), n log n = o (n 2 ), de n log n = O (n 2 ) és n log n = O (n 3 ). Melyik becslés jobb? 2n 2 = O (n 2 ), de 2n 2 6= o (n 2 ) De níció: f (n) g (n), ha f (n) lim n!1 g (n) = 1: Példa: p n + log n p n.

14 2.4. Gráfok GRÁFOK 15 De níció: A gráf pontokból és a pontokat összeköt½o vonalakból álló alakzat. A gráf pontjait szögpontoknak, vagy csúcsoknak nevezzük. A gráf két szögpontját összeköt½o olyan vonalat, amely nem megy át más szögponton, élnek nevezzük. A szögpontok halmazát V (vertex), az élek halmazát E (edge) jelöli. A G gráfot a G = (V; E) pár adja meg. Egy e 2 E élt a rendezetlen [u; v] pár ad meg, ahol u; v 2 V. Az u és v csúcsok az e él végpontjai. Az [u; u] 2 E élt huroknak nevezzük. Az e; e 0 2 E éleket többszörös éleknek nevezzük, ha ugyanazt a két pontot kötik össze, azaz e = [u; v] és e 0 = [u; v]. A hurkot és többszös éleket nem tartalmazó gráfokat egyszer½u gráfoknak nevezzük egyébként pedig multigráfnak. De níció: Az u 2 V csúcs (u) fokán az u csúcsot tartalmazó élek számát érjük. Ha (u) = 0, akkor az u csúcsot izoláltnak nevezzük. De níció: A G gráf üres, ha E = ;. Teljes a gráf, ha minden szögpontpár éllel van összekötve. De níció: Az u; v 2 V csúcsokat összeköt½o n hosszúságú vonalnak nevezzük az egymáshoz csatlakozó f[v i 1 ; v i ]g n i=1 élek sorozatát, ha v 0 = u és v n = v. A vonal zárt, ha v 0 = v n. A vonalat útnak nevezzük, ha a v 0 ; v 1 ; : : : ; v n csúcsok a v 0 = v n lehet½oség kivételével egymástól különböznek. A zárt utat körnek nevezzük. De níció: A gráf összefügg½o, ha bármely két szögpontját út köti össze. Következmény: Ha egy gráf nem összefügg½o, akkor van legalább egy olyan szögpontja, amelyb½ol nem vezet út az összes többi szögpontba. De níció: Azok a szögpontok, amelyek egy adott szögpontból úttal elérhet½ok, a hozzájuk illeszked½o élekkel együtt a gráf egy összefügg½o komponensét alkotják. De níció: Az olyan összefügg½o gráfot, amelyben nincsen kör, fának nevezzük. Ha a fának n csúcsa van, akkor pontosan n 1 éle van. De níció: A G gráfot cimkézettnek nevezzük, ha az éleihez adatokat rendelünk. Ha minden e éléhez egy w (e) 0 számot rendelünk, akkor súlyozott gráfról beszélünk. De níció: A G gráfot végesnek nevezzük, ha V és E véges halmazok. De níció: A G s = (V s ; E s ) gráf a G = (V; E) gráf részgráfja, ha V s V és E s E.

15 16 MATEMATIKAI ALAPFOGALMAK A A E D B C D B C A B C B 3 4 A E 3 D E F C 6 D Irányítatlan gráfok De níció: A G = (V; E) gráfot irányítottnak vagy digráfnak (directed graph) nevezzük, ha minden élét irányítjuk. Ekkor E rendezett párok halmaza. Az e = [u; v] 2 E élnek u a kezd½opontja és v a végpontja. Egy u 2 V csúcspont be (u) bemen½o foka, vagy be-foka az u szögpontban végz½od½o élek száma. Az u csúcspont ki (u) kimen½o foka, vagy ki-foka az u pontból induló élek száma. Az u 2 V csúcspontot forrásnak nevezzük, ha ki (u) > 0, de be (u) = 0. csúcspont nyel½o, ha ki (u) = 0, de be (u) > 0. Az u 2 V Az irányított vonal, út és kör de níciója hasonló az eredeti defínícióhoz azzal az eltéréssel, hogy az út (és a kör) esetén az élek irányítása meg kell, hogy egyezzen a vonal irányításával. Az v csúcs elérhet½o az u csúcsból, ha létezik u-ból induló és v-ben végz½od½o irányított út. De níció: A G = (V; E) irányított gráf összefügg½o, ha az irányítások elhagyásával kapott gráf összefügg½o. De níció: A G = (V; E) irányított gráf er½osen összefügg½o, ha bármely u; v 2 V csúcsot irányított él köt össze. De níció: A G = (V; E) irányított gráf aciklikus, ha irányított kört nem tartalmaz.

16 HALMAZOK SZÁMOSSÁGA 17 A D B C Irányított gráf A gráfok és relációk szoros kapcsolatban állnak egymással: 1. Legyen G = (V; E) irányított gráf. Ez megfeleltethet½o egy R V V relációnak: R = f(u; v) j e = [u; v] 2 Eg : 2. Legyen R A B reláció. Ez megfeleltethet½o egy (V; E) gráfnak: V = A [ B; E = fe = [u; v] j (u; v) 2 Rg : A logikai áramkörök aciklikus irányított gráfoknak feleltethet½ok meg. Az alábbi két ábra ilyen logikai áramköröket mutat be. 2 v 8 1 v 5 1 v o 6 v 7 2 v 3 v 4 o v 4 1 v 5 v 1 v 2 v 1 v 2 v Halmazok számossága Egy A halmaz számosságán a halmaz elemeinek jaj-val jelölt "számát" értjük. Ha A elemeinek száma véges, akkor jaj egy meghatározott egész számot, az elemek tényleges számát jelenti.

17 18 MATEMATIKAI ALAPFOGALMAK Ha azonban A elemeinek száma végtelen, akkor jaj jelentését egy osztályozás segítségével jellemezzük. De níció: Két A és B halmazt azonos, vagy egyenl½o számosságúnak nevezünk ( jaj = jbj), ha elemeik között kölcsönösen egyértelm½u megfeleltetés létesíthet½o. Az jaj = jbj egyenl½o számosság összefüggés egy ekvivalencia reláció, amely a halmazok egy természetes osztályozását indukálja. Az azonos számosságú halmazokat azonos osztályba soroljuk. Ezek jellemz½oje hogy az azonos osztályhoz tartozó halmazok elemszáma azonos, míg a különböz½o osztályokhoz tartozó halmazok elemszáma különböz½o. A halmaz számossága ebben az értelemben annak az osztálynak a megjelölése, amelyhez tartozik. Jegyezzük meg, hogy a most bevezetett számosság fogalom nincs ellentmondásban azzal, hogy véges elemszámú halmazok számossága elemeik száma. Az egyenl½o számosság reláció ugyanis a véges halmazokat az n = 0; 1; 2; : : : elem½u halmazok osztályaiba sorolja és ezeket az osztályokat az elemek tényleges véges számával tudjuk azonosítani. De níció: jaj jbj, ha van olyan C B részhalmaz, amelyre jaj = jcj. Könnyen belátható, hogy A B esetén jaj jbj. Fennállnak a következ½o relációk: a) jaj jbj ^ jbj jcj ) jaj jcj; b) jaj jbj ^ jbj jaj ) jaj = jbj. Cantor igazolta, hogy bármely két halmaz számossága nagyságrendi viszonyba állítható. A legkisebb végtelen számosság a természetes számok N 0 -al jelölt számossága. De níció: Egy A halmazt megszámlálható számosságúnak nevezünk, ha számossága a természetes számok N halmazának számosságával egyenl½o. Véges sok véges vagy megszámlálható halmaz uniója is megszámlálható. Megszámlálható halmazok végtelen részhalmazai is megszámlálhatók. Ennek megfelel½oen a természetes számok összes végtelen részhalmazának számossága megegyezik N számosságával. Pl. az összes páros természetes számok halmaza felírható az fn = 2k j k = 1; 2; : : :g alakban, ahol a k! 2k leképezés kölcsönösen egyértelm½u megfeleltetést hoz létre a két halmaz között. Könnyen igazolható, hogy az N N 0 Z Q valódi tartalmazás ellenére ezen halmazok számossága azonos: jnj = jn 0 j = jzj = jqj 0. A ( 1; 1) R részhalmaz számossága ugyancsak megegyezik R számosságával: az x! x 1 jxj leképezés kölcsönösen egyértelm½u megfeleltetést létesít a két halmaz között. A fenti példák azt mutatják, hogy végtelen halmazok valódi végtelen részhalmazainak megegyezhet a számossága a tartalmazó halmaz számosságával. Ez a tulajdonság a végtelen halmazok egyik jellemz½o sajátossága, amely nem igaz véges halmazok esetére. De níció: jaj < jbj, ha jaj jbj és jaj 6= jbj. A valós számok R halmazát kontinuum számosságúnak nevezzük, amelyre fennáll, hogy jrj 0. A valós számok halmazának számossága nem megszámlálhatóan végtelen. Tétel (Cantor): jxj < 2 X. Bizonyítás: Véges halmazokra az állítást korábban igazoltuk. Tegyük fel, hogy X 6= ;. A 2 X hatványhalmaz tartalmazza X összes egy elem½u részhalmazát, ezért jxj 2 X. Most már csak azt

18 HALMAZOK SZÁMOSSÁGA 19 kell igazolnunk, hogy jxj 6= 2 X, ha X 6= ;. Tegyük fel ennek az ellenkez½ojét. Ekkor léteznie kell egy kölcsönösen egyértelm½u f : X! 2 X megfeleltetésnek (pont-halmaz leképezésnek) a két halmaz között. Vizsgáljuk az A = fx 2 X j x =2 f (x)g halmazt, amely azon X-beli x elemek halmaza, amelyek nincsenek benne az x-hez rendelt f (x) 2 2 X halmazban. Minthogy A 2 2 X, létezik egy a 2 X, hogy f (a) = A. Az a elemre nem teljesülhet a 2 A = f (a), mert A pontosan azon y elemek halmaza, amelyekre y =2 f (y). Másrészt az a =2 A = f (a) reláció sem lehetséges, mert akkor a 2 A lenne, ami megint ellentmond A de níciójának. Tehát az azonos számosság feltevésével ellentmondásra jutottunk, vagyis jxj 6= 2 X. Az N összes véges részhalmazának 2 N hatványhalmazára tehát fennáll, hogy 2 N > jnj. A 2 N halmaz 1 -el jelöljük. A Cantortól származó kontinuum hipotézis azt mondja ki, hogy nincs olyan nem megszámlálhatóan végtelen A halmaz, amelynek 0 és jrj között van. A hipotézist az jrj = 2 N alakban is meg lehet adni. Gödel 1938-ban igazolta, hogy a kontinuum hipotézist a Zermelo-Fraenkel féle (ZF) axiómarendszerben nem lehet megcáfolni. Paul Cohen (1934-) ban azt bizonyította, hogy a kontinuum hipotézist igazolni sem lehet a ZF axiómarendszerben. Ennek következtében a probléma eldönthetetlen a ZF axiómarendszerben. A megszámlálható (felsorolható) halmaz fogalmának különösen fontos szerepe van az algoritmuselméleti vizsgálatokban. A következ½okben ennek egy fontos vonatkozását próbáljuk kiemelni. Egy halmazt felsorolhatónak (megszámlálhatónak) nevezzük, ha a tagjai felsorolhatók a következ½o értelemben: elhelyezhet½ok egy listában, amelynek van els½o, második, stb. tagja és a halmaz minden eleme el½obb vagy utóbb felt½unik a listán. A nulla elemmel rendelkez½o ; üres halmazt ebben az értelemben felsorolhatónak tekintjük. A halmaz elemeit felsoroló lista véges vagy végtelen. Egy végtelen halmazt, amelynek elemei felsorolhatók felsorolhatóan (vagy megszámlálhatóan) végtelennek nevezzük. A természetes számok N halmaza felsorolható. Egy lehetséges felsorolása: 1; 2; 3; : : : ; n; n + 1; : : :. Nem fogadható el felsorolásként például az 1; 3; 5; 7; : : : ; 2; 4; 6; : : : lista, amely els½obb felsorolja a páratlan, majd a páros számokat. A megkövetelt felsorolásban ugyanis a halmaz minden elemének fel kell t½unnie valamilyen n-edik elemként, ahol n véges. Példa: Az N 2 = N N halmaz felsorolható. A halmaz (i; j) alakú számpárokból (i; n 2 N) áll. A halmaz elemeinek egy lehetséges felsorolása a következ½o: (1; 1) ; (1; 2) ; (2; 1) ; (1; 3) ; (2; 2) ; (3; 1) ; (1; 4) ; (2; 3) ; (3; 2) ; (4; 1) ; : : : Itt a felsorolás (rendezés) elve az, hogy (i; j) párokat egy mindkét irányban végtelen mátrixba rendezzük (i=sorindex, j=oszlopindex), majd a ferde átlók mentén felsoroljuk az ábrán jelzett módon:

19 20 MATEMATIKAI ALAPFOGALMAK (1,1) (1,2) (1,3) (1,4) (1,5)... (2,1) (2,2) (2,3) (2,4) (2,5)... (3,1) (3,2) (3,3) (3,4) (3,5)... (4,1) (4,2) (4,3) (4,4) (4,5)... (5,1) (5,2) (5,3) (5,4) (5,5) Az (i; j) párok felsorolása Vegyük észre, hogy a ferde átlókban szerepl½o elempárok összege konstans: 2 az els½o átlóban, 3 a második átlóban, 4 a harmadik átlóban, és így tovább. A felépítésb½ol világos, hogy bármely kiválasztott (m; n) pár a felsorolásban szerepelni fog j (m; n)-edik tagként. Az i-edik ferde átló elemeinek összege i + 1, elemeinek száma pedig i. Az (m; n) pár elemeinek összege m + n, ami az elemet az (m + n 1)-edik átlóba sorolja. Az els½o m + n 2 átló elemeinek száma: (m + n 2) (m + n 1) (m + n 2) = : 2 Az (m; n) pár a saját átlójában az m-edik elem lesz. Tehát az (m; n) pár sorszáma a fenti felsorolásban: (m + n 2) (m + n 1) j (m; n) = + m = m2 + 2mn + n 2 m 3n + 2 : 2 2 Állítás: Ha az A és B halmazok felsorolhatók (megszámlálhatók), akkor A B is felsorolható (megszámlálható). Bizonyítás: A példa alapján eljárva az A és B halmaz elemeit el½oször külön-külön felsoroljuk: a 1 ; a 2 ; : : : ; a m ; : : :, illetve b 1 ; b 2 ; : : : ; b n ; : : : Ezután az (a i ; b j ) elempárokat az (i; j) indexek alapján sorbarendezzük az el½obb látott módon. Az állítás alapján könnyen beláthatjuk, hogy N k is felsorolható (megszámlálható) Nyelvek és szavak De níció: Tetsz½oleges véges 6= ; halmazt ábécének nevezünk. A ábécé elemeit a bet½uinek (szimbólumainak) nevezzük.

20 NYELVEK ÉS SZAVAK 21 Példák: bool = f0; 1g, a Boole ábécé, lat = fa; b; c; : : : ; zg, a latin ábécé, keyboard = lat [ fa; B; : : : ; Z; t; >; <; (; ); : : : ;!g, klaviatúra nyelve, t a szóköz jel, m = f0; 1; 2; : : : ; m 1g, m 1 egész, az m alapú számrendszer ábécéje, logic = f0; 1; x; (; ); ^; _; :g, Boole formulák ábécéje. De níció: A ábécé jeleinek tetsz½oleges véges sorozatát feletti szónak nevezzük. A w szó jwj hossza a w-ben lév½o jelek száma. A w = x 1 x 2 : : : x n szót felfoghatjuk a n halmaz egy (x 1 ; x 2 ; : : : ; x n ) elemének is, amelyb½ol a zárójeleket és az elválasztójeleket elhagyjuk. A w = x 1 x 2 : : : x n szó hossza: jwj = n. A "szavakkal" különböz½o objektumokat reprezentálhatunk: számokat, képleteket, gráfokat és programokat. Például az x = x 1 x 2 : : : x n ; x i 2 bool (i = 1; 2; : : : ; n) szót az N (x) = P n i=1 2n i x i nemnegatív szám bináris el½oállításának tekinthetjük. De níció: Jelöljön G = (V; E) egy irányított gráfot, amelyben V a csúcsok és E f(v i ; v j ) j v i ; v j 2 V; v i 6= v j g az élek halmaza. Legyen jv j = n a csúcsok száma. A gráf M G = [a ij ] n i;j=1 szomszédsági) mátrixát az 1; ha (vi ; v a ij = j ) 2 E 0; ha (v i ; v j ) =2 E el½oírással adjuk meg. Tekintsük az alábbi gráfot! adjacencia (v. v 1 v 2 v 3 v 4

A Formális nyelvek vizsga teljesítése. a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon:

A Formális nyelvek vizsga teljesítése. a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon: A Formális nyelvek vizsga teljesítése a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon: 1. Öt kis kérdés megválaszolása egyenként 6 pontért, melyet minimum 12

Részletesebben

Automaták mint elfogadók (akceptorok)

Automaták mint elfogadók (akceptorok) Automaták mint elfogadók (akceptorok) Ha egy iniciális Moore-automatában a kimenőjelek halmaza csupán kételemű: {elfogadom, nem fogadom el}, és az utolsó kimenőjel dönti el azt a kérdést, hogy elfogadható-e

Részletesebben

Chomsky-féle hierarchia

Chomsky-féle hierarchia http://www.ms.sapientia.ro/ kasa/formalis.htm Chomsky-féle hierarchia G = (N, T, P, S) nyelvtan: 0-s típusú (általános vagy mondatszerkezetű), ha semmilyen megkötést nem teszünk a helyettesítési szabályaira.

Részletesebben

NP-teljesség röviden

NP-teljesség röviden NP-teljesség röviden Bucsay Balázs earthquake[at]rycon[dot]hu http://rycon.hu 1 Turing gépek 1/3 Mi a turing gép? 1. Definíció. [Turing gép] Egy Turing-gép formálisan egy M = (K, Σ, δ, s) rendezett négyessel

Részletesebben

Atomataelmélet: A Rabin Scott-automata

Atomataelmélet: A Rabin Scott-automata A 19. óra vázlata: Atomataelmélet: A Rabin Scott-automata Az eddigieken a formális nyelveket generatív szempontból vizsgáltuk, vagyis a nyelvtan (generatív grammatika) szemszögéből. A generatív grammatika

Részletesebben

Automaták és formális nyelvek

Automaták és formális nyelvek Automaták és formális nyelvek Bevezetés a számítástudomány alapjaiba 1. Formális nyelvek 2006.11.13. 1 Automaták és formális nyelvek - bevezetés Automaták elmélete: információs gépek általános absztrakt

Részletesebben

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI 4. Fuzzy relációk Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 Klasszikus relációk Halmazok Descartes-szorzata Relációk 2 Fuzzy relációk Fuzzy relációk véges alaphalmazok

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 3 III. MEGFELELTETÉSEk, RELÁCIÓk 1. BEVEZETÉS Emlékeztetünk arra, hogy az rendezett párok halmazát az és halmazok Descartes-féle szorzatának nevezzük. Más szóval az és halmazok

Részletesebben

Házi feladatok megoldása. Nyelvtani transzformációk. Házi feladatok megoldása. Házi feladatok megoldása. Formális nyelvek, 6. gyakorlat.

Házi feladatok megoldása. Nyelvtani transzformációk. Házi feladatok megoldása. Házi feladatok megoldása. Formális nyelvek, 6. gyakorlat. Nyelvtani transzformációk Formális nyelvek, 6. gyakorlat a. S (S) SS ε b. S XS ε és X (S) c. S (SS ) Megoldás: Célja: A nyelvtani transzformációk bemutatása Fogalmak: Megszorított típusok, normálformák,

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

A valós számok halmaza

A valós számok halmaza VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben

Részletesebben

Kibernetika korábbi vizsga zárthelyi dolgozatokból válogatott tesztkérdések Figyelem! Az alábbi tesztek csak mintául szolgálnak a tesztkérdések megoldásához, azaz a bemagolásuk nem jelenti a tananyag elsajátítását

Részletesebben

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a Feladatok, amelyek gráfokkal oldhatók meg ) A königsbergi hidak problémája (Euler-féle probléma) a b d c A megfelelő gráf: d a b c ) Egy szórakoztató feladat (Hamilton-féle probléma) Helyezzük el az,,,...,

Részletesebben

Gráfelméleti feladatok. c f

Gráfelméleti feladatok. c f Gráfelméleti feladatok d e c f a b gráf, csúcsok, élek séta: a, b, c, d, e, c, a, b, f vonal: c, d, e, c, b, a út: f, b, a, e, d (walk, lanţ) (trail, lanţ simplu) (path, lanţ elementar) 1 irányított gráf,

Részletesebben

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám.

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám. 1 Az utazó ügynök problémája Utazó ügynök feladat Adott n számú város és a városokat összekötő utak, amelyeknek ismert a hossza. Adott továbbá egy ügynök, akinek adott városból kiindulva, minden várost

Részletesebben

Relációk. 1. Descartes-szorzat. 2. Relációk

Relációk. 1. Descartes-szorzat. 2. Relációk Relációk Descartes-szorzat. Relációk szorzata, inverze. Relációk tulajdonságai. Ekvivalenciareláció, osztályozás. Részbenrendezés, Hasse-diagram. 1. Descartes-szorzat 1. Deníció. Tetsz leges két a, b objektum

Részletesebben

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás.

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás. Prímszámok A (pozitív) prímszámok sorozata a következő: 2, 3, 5, 7, 11, 13, 17, 19,... 1. Tétel. Végtelen sok prímszám van. Első bizonyítás. (Euklidész) Tegyük fel, hogy állításunk nem igaz, tehát véges

Részletesebben

A digitális számítás elmélete

A digitális számítás elmélete A digitális számítás elmélete 1. előadás szept. 19. Determinisztikus véges automaták 1. Példa: Fotocellás ajtó m m m k b s = mindkét helyen = kint = bent = sehol k k b s m csukva b nyitva csukva nyitva

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen

Részletesebben

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz A vizsga menete: a vizsga írásbeli és szóbeli részből áll. Az írásbeli beugrón az alábbi kérdések közül szerepel összesen 12 darab, mindegyik egy pontot

Részletesebben

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem 1 / 36 Bevezetés A komplex számok értelmezése Definíció: Tekintsük a valós számpárok R2 halmazát és értelmezzük ezen a halmazon a következo két

Részletesebben

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.

Részletesebben

Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t

Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t Ellenőrző kérdések 2. Kis dolgozat kérdései 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t 37. Ha t szintű indexet használunk,

Részletesebben

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 12.

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 12. Algoritmuselmélet NP-teljes problémák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 12. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet

Részletesebben

2. Logika gyakorlat Függvények és a teljes indukció

2. Logika gyakorlat Függvények és a teljes indukció 2. Logika gyakorlat Függvények és a teljes indukció Folláth János Debreceni Egyetem - Informatika Kar 2012/13. I. félév Áttekintés 1 Függvények Relációk Halmazok 2 Természetes számok Formulák Definíció

Részletesebben

Nagyordó, Omega, Theta, Kisordó

Nagyordó, Omega, Theta, Kisordó A növekedés nagyságrendje, számosság Logika és számításelmélet, 6. gyakorlat 2009/10 II. félév Számításelmélet (6. gyakorlat) A növekedés nagyságrendje, számosság 2009/10 II. félév 1 / 1 Nagyordó, Omega,

Részletesebben

5. A kiterjesztési elv, nyelvi változók

5. A kiterjesztési elv, nyelvi változók 5. A kiterjesztési elv, nyelvi változók Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 A kiterjesztési elv 2 Nyelvi változók A kiterjesztési elv 237 A KITERJESZTÉSI ELV A

Részletesebben

Tesztkérdések az ALGORITMUSELMÉLET tárgyból, 2001/2002 2. félév

Tesztkérdések az ALGORITMUSELMÉLET tárgyból, 2001/2002 2. félév 1. oldal, összesen: 6 Tesztkérdések az ALGORITMUSELMÉLET tárgyból, 2001/2002 2. félév NÉV:... 1. Legyenek,Q,M páronként diszjunkt halmazok; /= Ř, Q > 2, M = 3. Egyszalagos, determinisztikus Turing gépnek

Részletesebben

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait.

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. 2. VEKTORTÉR A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. Legyen K egy test és V egy nem üres halmaz,

Részletesebben

GRÁFELMÉLET. 7. előadás. Javító utak, javító utak keresése, Edmonds-algoritmus

GRÁFELMÉLET. 7. előadás. Javító utak, javító utak keresése, Edmonds-algoritmus GRÁFELMÉLET 7. előadás Javító utak, javító utak keresése, Edmonds-algoritmus Definíció: egy P utat javító útnak nevezünk egy M párosításra nézve, ha az út páratlan hosszú, kezdő- és végpontjai nem párosítottak,

Részletesebben

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai

Részletesebben

Matematika B/1. Tartalomjegyzék. 1. Célkit zések. 2. Általános követelmények. 3. Rövid leírás. 4. Oktatási módszer. Biró Zsolt. 1.

Matematika B/1. Tartalomjegyzék. 1. Célkit zések. 2. Általános követelmények. 3. Rövid leírás. 4. Oktatási módszer. Biró Zsolt. 1. Matematika B/1 Biró Zsolt Tartalomjegyzék 1. Célkit zések 1 2. Általános követelmények 1 3. Rövid leírás 1 4. Oktatási módszer 1 5. Követelmények, pótlások 2 6. Program (el adás) 2 7. Program (gyakorlat)

Részletesebben

19. AZ ÖSSZEHASONLÍTÁSOS RENDEZÉSEK MŰVELETIGÉNYÉNEK ALSÓ KORLÁTJAI

19. AZ ÖSSZEHASONLÍTÁSOS RENDEZÉSEK MŰVELETIGÉNYÉNEK ALSÓ KORLÁTJAI 19. AZ ÖSSZEHASONLÍTÁSOS RENDEZÉSEK MŰVELETIGÉNYÉNEK ALSÓ KORLÁTJAI Ebben a fejezetben aszimptotikus (nagyságrendi) alsó korlátot adunk az összehasonlításokat használó rendező eljárások lépésszámára. Pontosabban,

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

Általános algoritmustervezési módszerek

Általános algoritmustervezési módszerek Általános algoritmustervezési módszerek Ebben a részben arra mutatunk példát, hogy miként használhatóak olyan általános algoritmustervezési módszerek mint a dinamikus programozás és a korlátozás és szétválasztás

Részletesebben

Analízisfeladat-gyűjtemény IV.

Analízisfeladat-gyűjtemény IV. Oktatási segédanyag a Programtervező matematikus szak Analízis. című tantárgyához (003 004. tanév tavaszi félév) Analízisfeladat-gyűjtemény IV. (Függvények határértéke és folytonossága) Összeállította

Részletesebben

ELEMI PROGRAMOZÁSI TÉTELEK

ELEMI PROGRAMOZÁSI TÉTELEK ELEMI PROGRAMOZÁSI TÉTELEK 1. FELADATMEGOLDÁS PROGRAMOZÁSI TÉTELEKKEL 1.1 A programozási tétel fogalma A programozási tételek típusalgoritmusok, amelyek alkalmazásával garantáltan helyes megoldást adhatunk

Részletesebben

Bináris keres fák kiegyensúlyozásai. Egyed Boglárka

Bináris keres fák kiegyensúlyozásai. Egyed Boglárka Eötvös Loránd Tudományegyetem Természettudományi Kar Bináris keres fák kiegyensúlyozásai BSc szakdolgozat Egyed Boglárka Matematika BSc, Alkalmazott matematikus szakirány Témavezet : Fekete István, egyetemi

Részletesebben

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása 1 Információk 2 A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin Elérhetőség mesko.katalin@tfk.kefo.hu Fogadóóra: szerda 9:50-10:35 Számonkérés időpontok Április 25. 9 00 Május 17. 9 00 Június

Részletesebben

Adatszerkezetek 2. Dr. Iványi Péter

Adatszerkezetek 2. Dr. Iványi Péter Adatszerkezetek 2. Dr. Iványi Péter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér (root) Nincsennek hurkok!!! 2 Bináris fák Azokat

Részletesebben

Németh László Matematikaverseny, Hódmezővásárhely. 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa

Németh László Matematikaverseny, Hódmezővásárhely. 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa Németh László Matematikaverseny, Hódmezővásárhely 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa Feladatok csak szakközépiskolásoknak Sz 1. A C csúcs értelemszerűen az AB oldal felező

Részletesebben

Matematika emelt szintû érettségi témakörök 2013. Összeállította: Kovácsné Németh Sarolta (gimnáziumi tanár)

Matematika emelt szintû érettségi témakörök 2013. Összeállította: Kovácsné Németh Sarolta (gimnáziumi tanár) Matematika emelt szintû érettségi témakörök 013 Összeállította: Kovácsné Németh Sarolta (gimnáziumi tanár) Tájékoztató vizsgázóknak Tisztelt Vizsgázó! A szóbeli vizsgán a tétel címében megjelölt téma kifejtését

Részletesebben

Alap fatranszformátorok I. Oyamaguchi [3], Dauchet és társai [1] és Engelfriet [2] bebizonyították hogy egy tetszőleges alap

Alap fatranszformátorok I. Oyamaguchi [3], Dauchet és társai [1] és Engelfriet [2] bebizonyították hogy egy tetszőleges alap Alap fatranszformátorok I Vágvölgyi Sándor Oyamaguchi [3], Dauchet és társai [1] és Engelfriet [2] bebizonyították hogy egy tetszőleges alap termátíró rendszerről eldönthető hogy összefolyó-e. Mindannyian

Részletesebben

Matematikai logika 1 A MATEMATIKAI LOGIKA ALAPJAI. Pécsi Tudományegyetem, 2005. Bevezetés

Matematikai logika 1 A MATEMATIKAI LOGIKA ALAPJAI. Pécsi Tudományegyetem, 2005. Bevezetés Matematikai logika 1 A MATEMATIKAI LOGIKA ALAPJAI Dr. Tóth László Pécsi Tudományegyetem, 2005 Bevezetés A logika a gondolkodás általános törvényszerűségeit, szabályait vizsgálja. A matematikai logika a

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben

Halmazok; a matematikai logika elemei 1.1. A halmaz fogalma; jelölések

Halmazok; a matematikai logika elemei 1.1. A halmaz fogalma; jelölések 1 Halmazok; a matematikai logika elemei 1.1. A halmaz fogalma; jelölések A matematikában alapfogalmaknak tekintjük azokat a fogalmakat, amelyeket nem határozunk meg, nem definiálunk más fogalmak segítségével

Részletesebben

Párhuzamos algoritmusmodellek Herendi, Tamás Nagy, Benedek

Párhuzamos algoritmusmodellek Herendi, Tamás Nagy, Benedek Párhuzamos algoritmusmodellek Herendi, Tamás Nagy, Benedek Párhuzamos algoritmusmodellek írta Herendi, Tamás és Nagy, Benedek Szerzői jog 2014 Typotex Kiadó Kivonat Összefoglaló: Napjainkban a számítások

Részletesebben

A matematika nyelvéről bevezetés

A matematika nyelvéről bevezetés A matematika nyelvéről bevezetés Wettl Ferenc 2006. szeptember 19. Wettl Ferenc () A matematika nyelvéről bevezetés 2006. szeptember 19. 1 / 17 Tartalom 1 Matematika Kijelentő mondatok Matematikai kijelentések

Részletesebben

5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus.

5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus. 5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus. Optimalis feszítőfák Egy összefüggő, irányítatlan

Részletesebben

MATEMATIKA 5 8. ALAPELVEK, CÉLOK

MATEMATIKA 5 8. ALAPELVEK, CÉLOK MATEMATIKA 5 8. ALAPELVEK, CÉLOK Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről.

Részletesebben

Matematikai és matematikai statisztikai alapismeretek

Matematikai és matematikai statisztikai alapismeretek Kézirat a Matematikai és matematikai statisztikai alapismeretek című előadáshoz Dr. Győri István NEVELÉSTUDOMÁNYI PH.D. PROGRM 1999/2000 1 1. MTEMTIKI LPOGLMK 1.1. Halmazok Halmazon mindig bizonyos dolgok

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

http://www.ms.sapientia.ro/~kasa/formalis.htm

http://www.ms.sapientia.ro/~kasa/formalis.htm Formális nyelvek és fordítóprogramok http://www.ms.sapientia.ro/~kasa/formalis.htm Könyvészet 1. Csörnyei Zoltán, Kása Zoltán, Formális nyelvek és fordítóprogramok, Kolozsvári Egyetemi Kiadó, 2007. 2.

Részletesebben

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005.

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. 1 Diszkrét matematika II., 4. el adás Skalárszorzat, norma, szög, távolság Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. március 1 A téma jelent sége

Részletesebben

1. Olvassuk be két pont koordinátáit: (x1, y1) és (x2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki.

1. Olvassuk be két pont koordinátáit: (x1, y1) és (x2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki. Számítás:. Olvassuk be két pont koordinátáit: (, y) és (2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki. 2. Olvassuk be két darab két dimenziós vektor komponenseit: (a, ay) és (b, by). Határozzuk

Részletesebben

MATEMATIKA Emelt szint 9-12. évfolyam

MATEMATIKA Emelt szint 9-12. évfolyam MATEMATIKA Emelt szint 9-12. évfolyam évfolyam 9. 10. 11. 12. óra/tanév 216 216 216 224 óra/hét 6 6 6 7 Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről

Részletesebben

Egyenletek, egyenlőtlenségek VII.

Egyenletek, egyenlőtlenségek VII. Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós

Részletesebben

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját!

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját! Taylor-polinomok 205. április.. Alapfeladatok. Feladat: Írjuk fel az fx) = e 2x függvény másodfokú Maclaurinpolinomját! Megoldás: A feladatot kétféle úton is megoldjuk. Az els megoldásban induljunk el

Részletesebben

1. Bevezetés. A számítógéptudomány ezt a problémát a feladat elvégzéséhez szükséges erőforrások (idő, tár, program,... ) mennyiségével méri.

1. Bevezetés. A számítógéptudomány ezt a problémát a feladat elvégzéséhez szükséges erőforrások (idő, tár, program,... ) mennyiségével méri. Számításelmélet Dr. Olajos Péter Miskolci Egyetem Alkalmazott Matematika Tanszék e mail: matolaj@uni-miskolc.hu 2011/12/I. Készült: Péter Gács and László Lovász: Complexity of Algorithms (Lecture Notes,

Részletesebben

PROGRAMOZÁS 1. kötet TERVEZÉS

PROGRAMOZÁS 1. kötet TERVEZÉS Gregorics Tibor PROGRAMOZÁS 1. kötet TERVEZÉS egyetemi jegyzet 2011 1 ELŐSZÓ TARTALOM ELŐSZÓ... 4 BEVEZETÉS... 6 I. RÉSZ PROGRAMOZÁSI FOGALMAK... 9 1. ALAPFOGALMAK... 10 1.1. Az adatok típusa... 10 1.2.

Részletesebben

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül A Borel Cantelli lemma és annak általánosítása. A valószínűségszámítás egyik fontos eredménye a Borel Cantelli lemma. Először informálisan ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az

Részletesebben

Tömbök kezelése. Példa: Vonalkód ellenőrzőjegyének kiszámítása

Tömbök kezelése. Példa: Vonalkód ellenőrzőjegyének kiszámítása Tömbök kezelése Példa: Vonalkód ellenőrzőjegyének kiszámítása A számokkal jellemzett adatok, pl. személyi szám, adószám, taj-szám, vonalkód, bankszámlaszám esetében az elírásból származó hibát ún. ellenőrző

Részletesebben

1. Feladat: beolvas két számot úgy, hogy a-ba kerüljön a nagyobb

1. Feladat: beolvas két számot úgy, hogy a-ba kerüljön a nagyobb 1. Feladat: beolvas két számot úgy, hogy a-ba kerüljön a nagyobb #include main() { int a, b; printf( "a=" ); scanf( "%d", &a ); printf( "b=" ); scanf( "%d", &b ); if( a< b ) { inttmp = a; a =

Részletesebben

Formális nyelvek és automaták előadások

Formális nyelvek és automaták előadások VÁRTERÉSZ MAGDA Formális nyelvek és automaták előadások 2005/06-os tanév 1. félév Tartalomjegyzék 1. Előzetes tudnivalók 4 2. Bevezetés 15 3. Ábécé, szó, formális nyelv 17 4. Műveletek nyelvekkel 24 4.1.

Részletesebben

Emlékeztető: LR(0) elemzés. LR elemzések (SLR(1) és LR(1) elemzések)

Emlékeztető: LR(0) elemzés. LR elemzések (SLR(1) és LR(1) elemzések) Emlékeztető Emlékeztető: LR(0) elemzés A lexikális által előállított szimbólumsorozatot balról jobbra olvassuk, a szimbólumokat az vermébe tesszük. LR elemzések (SLR() és LR() elemzések) Fordítóprogramok

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. Matematika I

First Prev Next Last Go Back Full Screen Close Quit. Matematika I Matematika I (Analízis) Készítette: Horváth Gábor Kötelező irodalom: Ács László, Gáspár Csaba: Analízis 1 Oktatási segédanyagok és a tantárgyi követelményrendszer megtalálható a http://rs1.szif.hu/ horvathg/horvathg.html

Részletesebben

MATEMATIKA A és B variáció

MATEMATIKA A és B variáció MATEMATIKA A és B variáció A Híd 2. programban olyan fiatalok vesznek részt, akik legalább elégséges érdemjegyet kaptak matematikából a hatodik évfolyam végén. Ezzel együtt az adatok azt mutatják, hogy

Részletesebben

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak!

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak! Magyar Ifjúság 6 V SOROZATOK a) Három szám összege 76 E három számot tekinthetjük egy mértani sorozat három egymás után következő elemének vagy pedig egy számtani sorozat első, negyedik és hatodik elemének

Részletesebben

MATEMATIKA TANTERV Bevezetés Összesen: 432 óra Célok és feladatok

MATEMATIKA TANTERV Bevezetés Összesen: 432 óra Célok és feladatok MATEMATIKA TANTERV Bevezetés A matematika tanítását minden szakmacsoportban és minden évfolyamon egységesen heti három órában tervezzük Az elsı évfolyamon mindhárom órát osztálybontásban tartjuk, segítve

Részletesebben

15. LINEÁRIS EGYENLETRENDSZEREK

15. LINEÁRIS EGYENLETRENDSZEREK 15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

Partíció probléma rekurzíómemorizálással

Partíció probléma rekurzíómemorizálással Partíció probléma rekurzíómemorizálással A partíciószám rekurzív algoritmusa Ω(2 n ) műveletet végez, pedig a megoldandó részfeladatatok száma sokkal kisebb O(n 2 ). A probléma, hogy bizonyos már megoldott

Részletesebben

I. Egyenlet fogalma, algebrai megoldása

I. Egyenlet fogalma, algebrai megoldása 11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel

Részletesebben

Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR. Analízis I. példatár. (kidolgozott megoldásokkal) elektronikus feladatgyűjtemény

Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR. Analízis I. példatár. (kidolgozott megoldásokkal) elektronikus feladatgyűjtemény Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Analízis I. példatár kidolgozott megoldásokkal) elektronikus feladatgyűjtemény Összeállította: Lengyelné Dr. Szilágyi Szilvia Miskolc, 013. Köszönetnyilvánítás

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2

Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2 Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Két iskola tanulói műveltségi vetélkedőn vettek részt. A 100

Részletesebben

hogy a megismert fogalmakat és tételeket változatos területeken használhatjuk Az adatok, táblázatok, grafikonok értelmezésének megismerése nagyban

hogy a megismert fogalmakat és tételeket változatos területeken használhatjuk Az adatok, táblázatok, grafikonok értelmezésének megismerése nagyban MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika

Részletesebben

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam 1. félév Gondolkozás, számolás - halmazok, műveletek halmazokkal, intervallumok - racionális számok, műveletek racionális számokkal, zárójel

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 5 V ELEmI ALGEbRA 1 BINÁRIS műveletek Definíció Az halmazon definiált bináris művelet egy olyan függvény, amely -ből képez -be Ha akkor az elempár képét jelöljük -vel, a művelet

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. (Derivált)

First Prev Next Last Go Back Full Screen Close Quit. (Derivált) Valós függvények (3) (Derivált) . Legyen a belső pontja D f -nek. Ha létezik és véges a f(x) f(a) x a x a = f (a) () határérték, akkor f differenciálható a-ban. Az f (a) szám az f a-beli differenciálhányadosa.

Részletesebben

Diszkrét matematika I. gyakorlat

Diszkrét matematika I. gyakorlat Vizsgafeladatok megoldása 2012. december 5. Tartalom Teljes feladatsor #1 1 Teljes feladatsor #1 2 Teljes feladatsor #2 3 Teljes feladatsor #3 4 Teljes feladatsor #4 5 Válogatott feladatok 6 Végső bölcsesség

Részletesebben

Valasek Gábor valasek@inf.elte.hu

Valasek Gábor valasek@inf.elte.hu Számítógépes Grafika Valasek Gábor valasek@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2013/2014. őszi félév ( Eötvös LorándSzámítógépes TudományegyetemInformatikai Grafika Kar) 2013/2014.

Részletesebben

Készítette: Ernyei Kitti. Halmazok

Készítette: Ernyei Kitti. Halmazok Halmazok Jelölések: A halmazok jele általában nyomtatott nagybetű: A, B, C Az x eleme az A halmaznak: Az x nem eleme az A halmaznak: Az A halmaz az a, b, c elemekből áll: A halmazban egy elemet csak egyszer

Részletesebben

9. Tétel Els - és másodfokú egyenl tlenségek. Pozitív számok nevezetes közepei, ezek felhasználása széls érték-feladatok megoldásában

9. Tétel Els - és másodfokú egyenl tlenségek. Pozitív számok nevezetes közepei, ezek felhasználása széls érték-feladatok megoldásában 9. Tétel Els - és másodfokú egyenl tlenségek. Pozitív számok nevezetes közepei, ezek felhasználása széls érték-feladatok megoldásában Bevezet : A témakörben els - és másodfokú egyenl tlenségek megoldásának

Részletesebben

Matematika. Specializáció. 11 12. évfolyam

Matematika. Specializáció. 11 12. évfolyam Matematika Specializáció 11 12. évfolyam Ez a szakasz az eddigi matematikatanulás 12 évének szintézisét adja. Egyben kiteljesíti a kapcsolatokat a többi tantárggyal, a mindennapi élet matematikaigényes

Részletesebben

Budapesti M szaki és Gazdaságtudományi Egyetem Automatizálási és Alkalmazott Informatikai Tanszék INFORMATIKA 2 AUTOMATÁK ÉS NYELVEK.

Budapesti M szaki és Gazdaságtudományi Egyetem Automatizálási és Alkalmazott Informatikai Tanszék INFORMATIKA 2 AUTOMATÁK ÉS NYELVEK. Budapesti M szaki és Gazdaságtudományi Egyetem Automatizálási és Alkalmazott Informatikai Tanszék INFORMATIKA 2 AUTOMATÁK ÉS NYELVEK Vajk István 2010. március Tartalomjegyzék 1. Fejezet Automaták és nyelvek

Részletesebben

MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY A) KOMPETENCIÁK

MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY A) KOMPETENCIÁK MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY Az érettségi követelményeit két szinten határozzuk meg: - középszinten a mai társadalomban tájékozódni és alkotni tudó ember matematikai ismereteit kell

Részletesebben

Analízis. 11 12. évfolyam. Szerkesztette: Surányi László. 2015. július 5.

Analízis. 11 12. évfolyam. Szerkesztette: Surányi László. 2015. július 5. Analízis 11 12. évfolyam Szerkesztette: Surányi László 2015. július 5. Technikai munkák (MatKönyv project, TEX programozás, PHP programozás, tördelés...) Dénes Balázs, Grósz Dániel, Hraskó András, Kalló

Részletesebben

Mátrixjátékok tiszta nyeregponttal

Mátrixjátékok tiszta nyeregponttal 1 Mátrixjátékok tiszta nyeregponttal 1. Példa. Két játékos Aladár és Bendegúz rendelkeznek egy-egy tetraéderrel, melyek lapjaira rendre az 1, 2, 3, 4 számokat írták. Egy megadott jelre egyszerre felmutatják

Részletesebben

AUTOMATÁK ÉS FORMÁLIS NYELVEK PÉLDATÁR

AUTOMATÁK ÉS FORMÁLIS NYELVEK PÉLDATÁR Írta: ÉSIK ZOLTÁN GOMBÁS ÉVA IVÁN SZABOLCS AUTOMATÁK ÉS FORMÁLIS NYELVEK PÉLDATÁR Egyetemi tananyag 2011 COPYRIGHT: 2011 2016, Dr. Ésik Zoltán, Dr. Gombás Éva és Dr. Iván Szabolcs, Szegedi Tudományegyetem

Részletesebben

Reguláris kifejezések 1.

Reguláris kifejezések 1. Reguláris kifejezések 1. A nyelvtechnológia eszközei és nyersanyagai 1. gyakorlat A beadandó feladatok be vannak keretezve! 1.1. Miért hívják reguláris kifejezésnek? (!) Az elméleti és a gyakorlati reguláris

Részletesebben

MATEMATIKA TANMENET. 9. osztály. 4 óra/hét. Budapest, 2014. szeptember

MATEMATIKA TANMENET. 9. osztály. 4 óra/hét. Budapest, 2014. szeptember MATEMATIKA TANMENET 9. osztály 4 óra/hét Budapest, 2014. szeptember 2 Évi óraszám: 144 óra Heti óraszám: 4 óra Ismerkedés, év elejei feladatok, szintfelmérő írása 2 óra I. Kombinatorika, halmazok 13 óra

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

1. Algebrai alapok: Melyek műveletek az alábbiak közül?

1. Algebrai alapok: Melyek műveletek az alábbiak közül? 1. Algebrai alapok: Művelet: Egy H nemüres halmazon értelmezett (kétváltozós) műveleten egy H H H függvényt értünk, azaz egy olyan leképezést, amely bármely a,b H elempárhoz egyértelműen hozzárendel egy

Részletesebben

Mveletek a relációs modellben. A felhasználónak szinte állandó jelleggel szüksége van az adatbázisban eltárolt adatok egy részére.

Mveletek a relációs modellben. A felhasználónak szinte állandó jelleggel szüksége van az adatbázisban eltárolt adatok egy részére. Mveletek a relációs modellben A felhasználónak szinte állandó jelleggel szüksége van az adatbázisban eltárolt adatok egy részére. Megfogalmaz egy kérést, amelyben leírja, milyen adatokra van szüksége,

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

FRAKTÁLGEOMETRIA. Metrikus terek, szeparábilitás, kompaktság. Czirbusz Sándor czirbusz@gmail.com. Komputeralgebra Tanszék ELTE Informatika Kar

FRAKTÁLGEOMETRIA. Metrikus terek, szeparábilitás, kompaktság. Czirbusz Sándor czirbusz@gmail.com. Komputeralgebra Tanszék ELTE Informatika Kar Metrikus terek, szeparábilitás, kompaktság Czirbusz Sándor czirbusz@gmail.com Komputeralgebra Tanszék ELTE Informatika Kar 2010. március 7. Vázlat 1 Szeparábilitás Definíciók A szeparábilitás ekvivalens

Részletesebben

Intergrált Intenzív Matematika Érettségi

Intergrált Intenzív Matematika Érettségi . Adott a mátri, determináns determináns, ahol,, d Számítsd ki:. b) Igazold, hogy a b c. Adott a az 6 0 egyenlet megoldásai. a). c) Számítsd ki a d determináns értékét. d c a b determináns, ahol abc,,.

Részletesebben

A matematikai feladatok és megoldások konvenciói

A matematikai feladatok és megoldások konvenciói A matematikai feladatok és megoldások konvenciói Kozárné Fazekas Anna Kántor Sándor Matematika és Informatika Didaktikai Konferencia - Szatmárnémeti 2011. január 28-30. Konvenciók Mindenki által elfogadott

Részletesebben