2009/2010/I. félév, Prof. Dr. Galántai Aurél BMF NIK IMRI Budapest november 25.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "2009/2010/I. félév, Prof. Dr. Galántai Aurél BMF NIK IMRI Budapest. 2009. november 25."

Átírás

1 SZÁMÍTÁSTUDOMÁNY 2009/2010/I. félév, (el½oadás vázlat) Prof. Dr. Galántai Aurél BMF NIK IMRI Budapest november 25.

2 Tartalomjegyzék TARTALOMJEGYZÉK 3 1. Bevezetés 5 2. Matematikai alapfogalmak Jelölések Relációk és függvények Függvények aszimptotikus jellemzése Gráfok Halmazok számossága Nyelvek és szavak Algoritmusok, kiszámítható függvények és döntési problémák Formális nyelvek és automaták Formális nyelvek Generatív nyelvtanok osztályozása Automaták Véges determinisztikus automaták Véges nem determinisztikus automaták Verem automaták Számítási modellek Turing gépek Turing gépek programozása A Turing gép kiterjesztései Regiszter gépek és a RAM modell Boole-függvények és logikai hálózatok Számítási modellek ekvivalenciája Univerzális Turing gépek Algoritmikus eldönthet½oség és kiszámíthatóság Nyelvek felismerése és eldöntése Turing gépekkel Eldönthetetlen problémák Néhány további eldönthetetlen probléma Turing kiszámítható függvények Primitív rekurzív függvények Parciális rekurzív függvények

3 4 TARTALOMJEGYZÉK 7. Algoritmusok analízise Bevezetés Elméleti eredmények és fogalmak Az oszd meg és uralkodj elv A mester tétel Keresési, rendezési és kiválasztási feladatok Keresési feladatok Rendezési feladatok Alsó becslés a rendezések bonyolultságára Kiválasztási feladatok Aritmetikai algoritmusok Szorzás Osztás Mátrixalgoritmusok Mátrixok és vektorok szorzása Winograd mátrix szorzó algoritmusa Strassen mátrix szorzó algoritmusa Megjegyzések a gyors mátrix szorzásokról Mátrixinvertálás és lineáris egyenletrendszerek A gyors Fourier-transzformáció A gyors Fourier transzformáció alkalmazásai I: a konvolúció A gyors Fourier transzformáció alkalmazásai II: polinomok és egész számok gyorsszorzása Numerikus algoritmusok Egyváltozós polinomegyenletek megoldása Smale és Schönhage eredményei Párhuzamos algoritmusok Párhuzamos számítások modelljei Hatékonysági mutatók Esettanulmányok Párhuzamos bonyolultsági osztályok Számítási bonyolultság Az NP osztály és NP-teljesség Nem-determinisztikus Turing-gépek és az NP osztály NP-teljesség A Blum-Shub-Smale algoritmus modell Függelék A programozás alapfogalmainak egy nemdeterminisztikus, relációelméleti leírása Irodalom

4 BEVEZETÉS 5 1. fejezet Bevezetés "Amit hallok, elfelejtem. Amit látok, emlékezem. Amit csinálok, megértem." Konfuciusz Mi a számítástudomány? Ennek a kérdésnek a pontos megválaszolása - más tudomány területekhez hasonlóan - nehéz feladat, már csak az informatika rohamos mérték½u fejl½odése miatt is. Ide soroljuk az algoritmusok és problémák bonyolultság elméletét, a matematikai logikát, a formális nyelvek elméletét, a programozáselméletet és még sok más területet (lásd pl. ACM Computing Classi cations System, Wikipédia). Az el½oadás f½oként számítási modellekkel, algoritmusok elemzésével (algoritmusok analízisével) és bonyolultságelmélettel foglalkozik. A bonyolultságelmélet számítógép korszak (von Neumann) el½otti el½ozményeit a matematikai logika fejl½odésében kereshetjük, nevezetesen a "bizonyítás" és a "kiszámítható függvény" fogalmának formalizálásával kapcsolatos kutatásokban. Gödel 1930-ban igazolta, hogy egy (aritmetikai, vagy aritmetizálható) logikai rendszeren belül megfogalmazhatók olyan állítások, amelyek igaz, vagy hamis volta (a rendszeren belül) nem igazolható (Gödel, K.: Über formal unentscheidbare Sätze der Principa Mathematica und verwandtere Systeme I ( On formally undecidable propositions of Principia Mathematica and related systems I ), Monatshefte für Mathematik und Physik, 38, 1931, ). Ebben a munkájában Gödel de niálta a (primitív) rekurzív függvény fogalmát is, amely alapvet½o a kiszámítható függvény fogalmának vizsgálatában. Turing 1936-ban bevezette a Turing gép fogalmát, amely mind a kiszámíthatóság-, mind pedig az algoritmuselméletben alapvet½o fontosságú eszköznek bizonyult. (Turing, A.M.: On computable numbers with an application to the Entscheidungsproblem, Proc. London Math. Soc., ser. 2, 42, , ).

5 6 BEVEZETÉS Kurt Gödel ( ) Alan Turing ( ) Az 1936-os évben két másik fontos fogalmat is bevezettek. Alonzo Church de niálta a - kalkulust 1 (A. Church: An unsolvable problem in elementary number theory, American Journal of Mathematics, 58, 1936, ). Church híres tézise azt a sejtést mondja ki, hogy minden számítás az általa megadott rendszerben formalizálható. Ugyancsak 1936-ban S.C Kleene bevezette a -rekurzív függvényeket (S.C. Kleene: General recursive functions of natural numbers, Mathematische Annalen, 112, 1936, ). Alonzo Church ( ) S. C. Kleene ( ) Érdemes megjegyezni, hogy a LISP nyelvet a -kalkulusból fejlesztették ki. Az imperatív programnyelvek (pl. Pascal, C) pedig a -rekurzív függvények implementációinak tekinthet½ok. A rekurzív függvények elméletéhez Péter Rózsa (1936, k-szoros rekurzív függvények) és Kalmár László (1943, elemi függvények) is jelent½osen hozzájárult. A Neumann-elv½u számítógépek elterjedésével kezd½odött a számítástudomány kialakulása is. A bonyolultság elmélet kifejl½odésének f½obb kezdeti lépései S.A. Cook szerint (ACM Turing Award, 1982): 1 A -kalkulusban a függvények jelölése: x 1 ; : : : ; x n [: : :] azt a függvényt jelöli, amelynek változói rendre x 1, x 2,..., x n és értéke [: : :].

6 BEVEZETÉS 7 - Turing (1936): Turing gép, az e ektíven (algoritmikusan) kiszámítható függvény fogalma, kielégithet½oségi probléma, (Church-)Turing hipotézis: Bármely függvény, amely egy jól de niált eljárással kiszámítható, kiszámítható egy Turing géppel is. - Rabin (1959, 1960): Mit jelent az, hogy f-et nehezebb kiszámítani mint g-t? - Hartmanis, Stearns (1965): bonyolultság mértéke, hierarchia tételek. - Cobham (1965): függvények bels½o számítási nehézsége, gépfüggetlen elmélet. - Karp (1972): P osztály (tractability vagy feasibility). - Aho, Ullman, Hopcroft (1974): RAM gép. A bonyolultságelmélet témakörét M. Rabin az 1976-os ACM Turing díj átvételekor tartott el½oadásában a következ½okben foglalta össze. Legyenek adottak a következ½ok: - P probléma osztály, - I 2 P egyedi probléma, - jij a probléma mérete, - AL a P problémát (problémaosztályt) megoldó algoritmus. Az I 2 P problémát megoldva az AL algoritmus egy S I sorozatot hoz létre. Az S I sorozathoz hozzárendelünk bizonyos mértékeket (költséget). A legfontosabb mértékek: (1) Az S I hossza (számítási id½o) (2) Az S I mélysége (a párhuzamosítás mértéke, párhuzamosítás számítási ideje) (3) A memória igény (4) S I teljes "lépésszáma" helyett bizonyos kitüntetett aritmetikai m½uveletek, összehasonlítások, memóriam½uveletek, stb. száma) (5) Az algoritmus hardver implementálásához szükséges áramkör (Boole áramkör) bonyolultsága (kombinatorikus bonyolultság). Tegyük fel, hogy van egy mértékünk az S I számításokhoz. Fontosabb bonyolultsági mértékek: Legrosszabb eset bonyolultság: F AL (n) = max f (S I ) j I 2 P; jij = ng : Átlagos bonyolultság: adott egy p valószín½uség eloszlás minden egyes P n = fi j I 2 P; jij = ng feladat halmazon. Ekkor a mérték: M AL (n) = X I2P n p (I) (S I ) : Algoritmusok analízise alatt azt értjük, hogy adott jij méretfüggvény és (S I ) mérték esetén meghatározzuk a P -t megoldó AL algoritmus F AL (n) legrosszabb eset és M AL (n) átlagos bonyolultságát. Rabin szerint a bonyolultságelmélet legfontosabb kérdései (1976-ban) a következ½ok: 1. Hatékony algoritmusok keresése P megoldására. 2. A P feladatosztály bels½o bonyolultságára alsó becslések keresése. 3. P egzakt megoldásának keresése (már ha van). 4. Közelít½o algoritmusok fejlesztése. 5. A legrosszabb bels½o bonyolultság vizsgálata.

7 6. A P átlagos bonyolultságának vizsgálata. 7. Szekvenciális algoritmusok fejlesztése P megoldására. 8. Párhuzamos algoritmusok fejlesztése P megoldására. 9. Szoftver algoritmusok fejlesztése. 10. Hardveren implementált algoritmusok. 11. Megoldás valószín½uségi (véletlen) algoritmusokkal. A bonyolultságelmélet mára a számítástudomány központi fontosságú területévé vált. A Rabin által felvázolt kérdések ma is intenzív vizsgálatok tárgyát képezik. Az el½oadás egy bevezetés az alapvet½o fogalmakba és eredményekbe. 8 BEVEZETÉS

8 MATEMATIKAI ALAPFOGALMAK 9 2. fejezet Matematikai alapfogalmak 2.1. Jelölések A halmazok (naív) fogalmát és a velük végezhet½o m½uveleteket ismertnek tételezzük fel. A következ½o jelöléseket használjuk: N - természetes számok halmaza N 0 - nemnegatív egész számok halmaza (N 0 = N [ f0g) Z - egész számok halmaza n p Q - racionális számok halmaza (Q = o) j p; q 2 Z, q 6= 0 q R - valós számok halmaza C - komplex számok halmaza (C = fa + bi j a; b 2 Rg, i = p 1 ) ; - üres halmaz - valódi részhalmaz - részhalmaz jaj - az A halmaz számossága (elemeinek száma) De níció: Egy A 6= ; halmaz hatványhalmazán a 2 A = fx j X Ag halmazrendszert értjük. Értelemszer½uen ;; A 2 2 A. Szokás 2 A helyett a P (A) (power set of A) jelölést is használni. Állítás: Ha jaj = n, akkor 2 A = 2 n. Bizonyítás: Az n elem½u halmaz k elem½u különböz½o részhalmazainak száma k n P és n n k=0 k = 2 n. De níció: A 1 ; A 2 ; : : : ; A n tetsz½oleges halmazok direkt, vagy Descartes féle szorzatán az A 1 A 2 : : : A n = f(a 1 ; : : : ; a n ) j a i 2 A i, i = 1; : : : ; ng halmazt értjük. A direkt szorzat elemei rendezett elem n-esek. A direkt szorzat rövid jelölése: n i=1a i. Ha A 1 = A 2 = = A n = A, akkor használjuk az A n := n i=1a jelölést is. Ílymódon például R n és C n jelöli a valós, illetve komplex elem½u n dimenziós vektorok halmazát.

9 2.2. Relációk és függvények 10 MATEMATIKAI ALAPFOGALMAK De níció: Legyenek A és B tetsz½oleges halmazok. Tetsz½oleges S AB részhalmazt (bináris) relációnak nevezünk. Az a 2 A és b 2 B elemek S relációban állnak egymással (jelölés asb) akkor és csak akkor, ha (a; b) 2 S. A de níciót rövidebben is megadhatjuk: asb () (a; b) 2 S. De níció: Az S A B reláció értelmezési tartománya: D S = fa 2 A j 9b 2 B : (a; b) 2 Sg : De níció: Az S A B reláció értékkészlete: R S = fb 2 B j 9a 2 A : (a; b) 2 Sg : De níció: Az S A B reláció értéke (metszete) egy adott a 2 D S helyen: S (a) = fb 2 B j (a; b) 2 Sg : De níció: Az S A B relációt függvénynek nevezzük, ha js (a)j = 1 (8a 2 D S ): A függvényeket S : A! B formában is megadhatjuk. De níció: Egy S függvényrelációt (teljes) függvénynek nevezünk, ha D S = A és parciális függvénynek, ha D S A és D S 6= A. Két egyszer½u példa relációra: S 1 = f(0; 0) ; (1; 1) ; (2; 4) ; (3; 9) ; (4; 16)g és S 2 = f(small,short) ; (medium,middle) ; (medium,average) ; (large,tall)g: A de níció alapján D S1 = f0; 1; 2; 3; 4g, R S1 = f0; 1; 4; 9; 16g és S 1 (i) = fi 2 g (i 2 D S1 ). Az S 1 reláció függvény. Az S 2 reláció esetén D S2 = fsmall,medium,largeg ; R S2 = fshort,middle,average,tallg: Minthogy S 2 (medium) = fmiddle,averageg, az S 2 reláció nem függvény. Függvényreláció esetén S (a) vagy üres, vagy egyelem½u halmaz. Például az S 1 = x; x 2 j x 2 R R R reláció (teljes) függvény, mert D S1 = R. De az S 2 = x; p x j x 2 R; x 0 R R reláció csak parciális függvény, mert S 2 (x) = ; minden x < 0 számra. Tetsz½oleges S A B relációt felfoghatunk egy S : A! 2 B halmazfüggvénynek is, ugyanis minden a 2 D S esetén S (a) B, azaz S (a) 2 2 B.

10 FÜGGVÉNYEK ASZIMPTOTIKUS JELLEMZÉSE 11 Az f : A! B fügvényt véges függvénynek nevezzük, ha A és B véges halmaz. Az f : f0; 1g n! f0; 1g m tipusú véges függvényeket bináris függvényeknek nevezzük. De níció: Az f : f0; 1g n! f0; 1g függvényt Boole függvénynek nevezzük. A de níció másképpen fogalmazva azt jelenti, hogy f (x 1 ; x 2 ; : : : ; x n ) 2 f0; 1g (x i 2 f0; 1g ; i = 1; : : : ; n): Az alábbi igazság táblázatok megadnak négy alapvet½o Boole függvényt: x y x ^ y x y x _ y x y x y x x Ha a 0 értékhez a hamis, az 1 értékhez pedig az igaz logikai értékeket rendeljük, akkor a fenti táblázatok rendre a logikai és (AND, x^y), vagy (OR, x_y), kizáró vagy (XOR, xy) és negáció (NOT, x) függvényeket adják meg. A negáció függvényt szokás még a :x módon is jelölni. Legyen x; y 2 f0; 1g két logikai változó (vagy állítás)! Ekkor x = 1 x; x ^ y = 1, ha x = y = 1 0, egyébként x _ y = 0, ha x = y = 0 1, egyébként ; x y = 1, ha x + y = 1 0, egyébként : Az XOR felírható még az x y x + y (mod 2) formában is. De níció: A logikai változók :, ^, _ jelekkel felírt kifejezéseit Boole-polinomoknak nevezzük. Állítás: Minden Boole-függvény kifejezhet½o Boole-polinomokkal Függvények aszimptotikus jellemzése A következ½okben aszimptotikus nagyságrendi relációkat de niálunk. De níció: f (n) = O (g (n)) ( f (n) 2 O (g (n))), ha létezik c; n 0 > 0 konstans, hogy jf (n)j c jg (n)j teljesül minden n n 0 számra.

11 y 12 MATEMATIKAI ALAPFOGALMAK x f(x)=o(g(x)) aszimptotika Példa: Megmutatjuk, hogy log n = O (n). Teljes indukcióval igazoljuk: n 1 ) log n n. n = 1 esetén: log 1 = 0 1. Tegyük fel, hogy n 1-re igaz az állítás: log n n. Ekkor log (n + 1) log (2n) = log 2 + log n 1 + n. Példa: Megmutatjuk, hogy 2 n+1 = O (3 n =n). Teljes indukcióval igazoljuk: n 7 ) 2 n+1 3 n =n. n = 7 esetén: 2 8 = =7 312:428. Tegyük fel, hogy n 7 és 2 n+1 3 n =n. Ekkor f(x) c*g(x) 2 n+2 = 2 2 n+1 2 3n n = 2 (n + 1) 3n 3 n+1 n + 1 3n+1 n + 1 ; mert 2(n+1) 3n < 1. Az O (nagy ordó) relációval a következ½o m½uveleteket végezhetjük. Állítás: Ha f 1 (n) 2 O (g 1 (n)) és f 2 2 O (g 2 (n)), akkor f 1 (n)+f 2 (n) = O (jg 1 (n)j + jg 2 (n)j), illetve f 1 (n) + f 2 (n) = O (max fjg 1 (n)j ; jg 2 (n)jg). Bizonyítás: Tegyük fel, hogy n n 0 esetén jf 1 (n)j c 1 jg 1 (n)j és jf 2 (n)j c 2 jg 2 (n)j. Ekkor jf 1 (n) + f 2 (n)j jf 1 (n)j + jf 2 (n)j max fc 1 ; c 2 g max fjg 1 (n)j ; jg 2 (n)jg : Állítás: Ha f 1 (n) 2 O (g 1 (n)) és f 2 2 O (g 2 (n)), akkor f 1 (n) f 2 (n) = O (g 1 (n) g 2 (n)). Állítás: Ha f (n) 2 O (g (n)), akkor cf (n) 2 O (g (n)). További példák: f (x) = x 4 3x 3 + 5x 1973 = O (x 4 ). (n + 1) 2 = n 2 + O (n). f (n) = 4 log n 3 (log n) 2 + n 2 = O (n 2 ) :

12 y y FÜGGVÉNYEK ASZIMPTOTIKUS JELLEMZÉSE 13 Az f (n) = O (1) azt jelöli, hogy f (n) felülr½ol korlátos. De níció: f (n) = (g (n)) ( f (n) 2 (g (n))), ha létezik c; n 0 > 0 konstans, hogy jf (n)j c jg (n)j teljesül minden n n 0 számra x f(x)=(g(x)) aszimptotika f(x) c*g(x) Példa: (1=2) n 2 5n = (n 2 ), mert 1 2 n2 5n =n 2 = n 4 ; n 20. De níció: f (n) = (g (n)) ( f (n) 2 (g (n))), ha létezik c 1 ; c 2 ; n 0 > 0 konstans, hogy c 1 jg (n)j jf (n)j c 2 jg (n)j teljesül minden n n 0 számra. Alternatív de níció: f (n) = (g (n)), f (n) = O (g (n)) ^ g (n) = O (f (n)) f(x) c1*g(x) c2*g(x) x f(x)=(g(x)) aszimptotika

13 y 14 MATEMATIKAI ALAPFOGALMAK Példa: 2n 2 + 3n log n log n + 3 = (n 2 ), mert 1 2n2 + 3n log n log n + 3 n 2 = log n n log n n n 2 3; ha n elég nagy. Állítás: p (n) = P d i=0 a in i = n d, ha a d 6= 0. De níció: f (n) = o (g (n)) ( f (n) 2 o (g (n))), ha g (n) csak véges sok helyen nulla és f (n) lim n!1 g (n) = 0: sqrt(x) log(x) log(x)/sqrt(x) f(x)=o(g(x)) aszimptotika x Példák: log n = o (n), n log n = o (n 2 ), de n log n = O (n 2 ) és n log n = O (n 3 ). Melyik becslés jobb? 2n 2 = O (n 2 ), de 2n 2 6= o (n 2 ) De níció: f (n) g (n), ha f (n) lim n!1 g (n) = 1: Példa: p n + log n p n.

14 2.4. Gráfok GRÁFOK 15 De níció: A gráf pontokból és a pontokat összeköt½o vonalakból álló alakzat. A gráf pontjait szögpontoknak, vagy csúcsoknak nevezzük. A gráf két szögpontját összeköt½o olyan vonalat, amely nem megy át más szögponton, élnek nevezzük. A szögpontok halmazát V (vertex), az élek halmazát E (edge) jelöli. A G gráfot a G = (V; E) pár adja meg. Egy e 2 E élt a rendezetlen [u; v] pár ad meg, ahol u; v 2 V. Az u és v csúcsok az e él végpontjai. Az [u; u] 2 E élt huroknak nevezzük. Az e; e 0 2 E éleket többszörös éleknek nevezzük, ha ugyanazt a két pontot kötik össze, azaz e = [u; v] és e 0 = [u; v]. A hurkot és többszös éleket nem tartalmazó gráfokat egyszer½u gráfoknak nevezzük egyébként pedig multigráfnak. De níció: Az u 2 V csúcs (u) fokán az u csúcsot tartalmazó élek számát érjük. Ha (u) = 0, akkor az u csúcsot izoláltnak nevezzük. De níció: A G gráf üres, ha E = ;. Teljes a gráf, ha minden szögpontpár éllel van összekötve. De níció: Az u; v 2 V csúcsokat összeköt½o n hosszúságú vonalnak nevezzük az egymáshoz csatlakozó f[v i 1 ; v i ]g n i=1 élek sorozatát, ha v 0 = u és v n = v. A vonal zárt, ha v 0 = v n. A vonalat útnak nevezzük, ha a v 0 ; v 1 ; : : : ; v n csúcsok a v 0 = v n lehet½oség kivételével egymástól különböznek. A zárt utat körnek nevezzük. De níció: A gráf összefügg½o, ha bármely két szögpontját út köti össze. Következmény: Ha egy gráf nem összefügg½o, akkor van legalább egy olyan szögpontja, amelyb½ol nem vezet út az összes többi szögpontba. De níció: Azok a szögpontok, amelyek egy adott szögpontból úttal elérhet½ok, a hozzájuk illeszked½o élekkel együtt a gráf egy összefügg½o komponensét alkotják. De níció: Az olyan összefügg½o gráfot, amelyben nincsen kör, fának nevezzük. Ha a fának n csúcsa van, akkor pontosan n 1 éle van. De níció: A G gráfot cimkézettnek nevezzük, ha az éleihez adatokat rendelünk. Ha minden e éléhez egy w (e) 0 számot rendelünk, akkor súlyozott gráfról beszélünk. De níció: A G gráfot végesnek nevezzük, ha V és E véges halmazok. De níció: A G s = (V s ; E s ) gráf a G = (V; E) gráf részgráfja, ha V s V és E s E.

15 16 MATEMATIKAI ALAPFOGALMAK A A E D B C D B C A B C B 3 4 A E 3 D E F C 6 D Irányítatlan gráfok De níció: A G = (V; E) gráfot irányítottnak vagy digráfnak (directed graph) nevezzük, ha minden élét irányítjuk. Ekkor E rendezett párok halmaza. Az e = [u; v] 2 E élnek u a kezd½opontja és v a végpontja. Egy u 2 V csúcspont be (u) bemen½o foka, vagy be-foka az u szögpontban végz½od½o élek száma. Az u csúcspont ki (u) kimen½o foka, vagy ki-foka az u pontból induló élek száma. Az u 2 V csúcspontot forrásnak nevezzük, ha ki (u) > 0, de be (u) = 0. csúcspont nyel½o, ha ki (u) = 0, de be (u) > 0. Az u 2 V Az irányított vonal, út és kör de níciója hasonló az eredeti defínícióhoz azzal az eltéréssel, hogy az út (és a kör) esetén az élek irányítása meg kell, hogy egyezzen a vonal irányításával. Az v csúcs elérhet½o az u csúcsból, ha létezik u-ból induló és v-ben végz½od½o irányított út. De níció: A G = (V; E) irányított gráf összefügg½o, ha az irányítások elhagyásával kapott gráf összefügg½o. De níció: A G = (V; E) irányított gráf er½osen összefügg½o, ha bármely u; v 2 V csúcsot irányított él köt össze. De níció: A G = (V; E) irányított gráf aciklikus, ha irányított kört nem tartalmaz.

16 HALMAZOK SZÁMOSSÁGA 17 A D B C Irányított gráf A gráfok és relációk szoros kapcsolatban állnak egymással: 1. Legyen G = (V; E) irányított gráf. Ez megfeleltethet½o egy R V V relációnak: R = f(u; v) j e = [u; v] 2 Eg : 2. Legyen R A B reláció. Ez megfeleltethet½o egy (V; E) gráfnak: V = A [ B; E = fe = [u; v] j (u; v) 2 Rg : A logikai áramkörök aciklikus irányított gráfoknak feleltethet½ok meg. Az alábbi két ábra ilyen logikai áramköröket mutat be. 2 v 8 1 v 5 1 v o 6 v 7 2 v 3 v 4 o v 4 1 v 5 v 1 v 2 v 1 v 2 v Halmazok számossága Egy A halmaz számosságán a halmaz elemeinek jaj-val jelölt "számát" értjük. Ha A elemeinek száma véges, akkor jaj egy meghatározott egész számot, az elemek tényleges számát jelenti.

17 18 MATEMATIKAI ALAPFOGALMAK Ha azonban A elemeinek száma végtelen, akkor jaj jelentését egy osztályozás segítségével jellemezzük. De níció: Két A és B halmazt azonos, vagy egyenl½o számosságúnak nevezünk ( jaj = jbj), ha elemeik között kölcsönösen egyértelm½u megfeleltetés létesíthet½o. Az jaj = jbj egyenl½o számosság összefüggés egy ekvivalencia reláció, amely a halmazok egy természetes osztályozását indukálja. Az azonos számosságú halmazokat azonos osztályba soroljuk. Ezek jellemz½oje hogy az azonos osztályhoz tartozó halmazok elemszáma azonos, míg a különböz½o osztályokhoz tartozó halmazok elemszáma különböz½o. A halmaz számossága ebben az értelemben annak az osztálynak a megjelölése, amelyhez tartozik. Jegyezzük meg, hogy a most bevezetett számosság fogalom nincs ellentmondásban azzal, hogy véges elemszámú halmazok számossága elemeik száma. Az egyenl½o számosság reláció ugyanis a véges halmazokat az n = 0; 1; 2; : : : elem½u halmazok osztályaiba sorolja és ezeket az osztályokat az elemek tényleges véges számával tudjuk azonosítani. De níció: jaj jbj, ha van olyan C B részhalmaz, amelyre jaj = jcj. Könnyen belátható, hogy A B esetén jaj jbj. Fennállnak a következ½o relációk: a) jaj jbj ^ jbj jcj ) jaj jcj; b) jaj jbj ^ jbj jaj ) jaj = jbj. Cantor igazolta, hogy bármely két halmaz számossága nagyságrendi viszonyba állítható. A legkisebb végtelen számosság a természetes számok N 0 -al jelölt számossága. De níció: Egy A halmazt megszámlálható számosságúnak nevezünk, ha számossága a természetes számok N halmazának számosságával egyenl½o. Véges sok véges vagy megszámlálható halmaz uniója is megszámlálható. Megszámlálható halmazok végtelen részhalmazai is megszámlálhatók. Ennek megfelel½oen a természetes számok összes végtelen részhalmazának számossága megegyezik N számosságával. Pl. az összes páros természetes számok halmaza felírható az fn = 2k j k = 1; 2; : : :g alakban, ahol a k! 2k leképezés kölcsönösen egyértelm½u megfeleltetést hoz létre a két halmaz között. Könnyen igazolható, hogy az N N 0 Z Q valódi tartalmazás ellenére ezen halmazok számossága azonos: jnj = jn 0 j = jzj = jqj 0. A ( 1; 1) R részhalmaz számossága ugyancsak megegyezik R számosságával: az x! x 1 jxj leképezés kölcsönösen egyértelm½u megfeleltetést létesít a két halmaz között. A fenti példák azt mutatják, hogy végtelen halmazok valódi végtelen részhalmazainak megegyezhet a számossága a tartalmazó halmaz számosságával. Ez a tulajdonság a végtelen halmazok egyik jellemz½o sajátossága, amely nem igaz véges halmazok esetére. De níció: jaj < jbj, ha jaj jbj és jaj 6= jbj. A valós számok R halmazát kontinuum számosságúnak nevezzük, amelyre fennáll, hogy jrj 0. A valós számok halmazának számossága nem megszámlálhatóan végtelen. Tétel (Cantor): jxj < 2 X. Bizonyítás: Véges halmazokra az állítást korábban igazoltuk. Tegyük fel, hogy X 6= ;. A 2 X hatványhalmaz tartalmazza X összes egy elem½u részhalmazát, ezért jxj 2 X. Most már csak azt

18 HALMAZOK SZÁMOSSÁGA 19 kell igazolnunk, hogy jxj 6= 2 X, ha X 6= ;. Tegyük fel ennek az ellenkez½ojét. Ekkor léteznie kell egy kölcsönösen egyértelm½u f : X! 2 X megfeleltetésnek (pont-halmaz leképezésnek) a két halmaz között. Vizsgáljuk az A = fx 2 X j x =2 f (x)g halmazt, amely azon X-beli x elemek halmaza, amelyek nincsenek benne az x-hez rendelt f (x) 2 2 X halmazban. Minthogy A 2 2 X, létezik egy a 2 X, hogy f (a) = A. Az a elemre nem teljesülhet a 2 A = f (a), mert A pontosan azon y elemek halmaza, amelyekre y =2 f (y). Másrészt az a =2 A = f (a) reláció sem lehetséges, mert akkor a 2 A lenne, ami megint ellentmond A de níciójának. Tehát az azonos számosság feltevésével ellentmondásra jutottunk, vagyis jxj 6= 2 X. Az N összes véges részhalmazának 2 N hatványhalmazára tehát fennáll, hogy 2 N > jnj. A 2 N halmaz 1 -el jelöljük. A Cantortól származó kontinuum hipotézis azt mondja ki, hogy nincs olyan nem megszámlálhatóan végtelen A halmaz, amelynek 0 és jrj között van. A hipotézist az jrj = 2 N alakban is meg lehet adni. Gödel 1938-ban igazolta, hogy a kontinuum hipotézist a Zermelo-Fraenkel féle (ZF) axiómarendszerben nem lehet megcáfolni. Paul Cohen (1934-) ban azt bizonyította, hogy a kontinuum hipotézist igazolni sem lehet a ZF axiómarendszerben. Ennek következtében a probléma eldönthetetlen a ZF axiómarendszerben. A megszámlálható (felsorolható) halmaz fogalmának különösen fontos szerepe van az algoritmuselméleti vizsgálatokban. A következ½okben ennek egy fontos vonatkozását próbáljuk kiemelni. Egy halmazt felsorolhatónak (megszámlálhatónak) nevezzük, ha a tagjai felsorolhatók a következ½o értelemben: elhelyezhet½ok egy listában, amelynek van els½o, második, stb. tagja és a halmaz minden eleme el½obb vagy utóbb felt½unik a listán. A nulla elemmel rendelkez½o ; üres halmazt ebben az értelemben felsorolhatónak tekintjük. A halmaz elemeit felsoroló lista véges vagy végtelen. Egy végtelen halmazt, amelynek elemei felsorolhatók felsorolhatóan (vagy megszámlálhatóan) végtelennek nevezzük. A természetes számok N halmaza felsorolható. Egy lehetséges felsorolása: 1; 2; 3; : : : ; n; n + 1; : : :. Nem fogadható el felsorolásként például az 1; 3; 5; 7; : : : ; 2; 4; 6; : : : lista, amely els½obb felsorolja a páratlan, majd a páros számokat. A megkövetelt felsorolásban ugyanis a halmaz minden elemének fel kell t½unnie valamilyen n-edik elemként, ahol n véges. Példa: Az N 2 = N N halmaz felsorolható. A halmaz (i; j) alakú számpárokból (i; n 2 N) áll. A halmaz elemeinek egy lehetséges felsorolása a következ½o: (1; 1) ; (1; 2) ; (2; 1) ; (1; 3) ; (2; 2) ; (3; 1) ; (1; 4) ; (2; 3) ; (3; 2) ; (4; 1) ; : : : Itt a felsorolás (rendezés) elve az, hogy (i; j) párokat egy mindkét irányban végtelen mátrixba rendezzük (i=sorindex, j=oszlopindex), majd a ferde átlók mentén felsoroljuk az ábrán jelzett módon:

19 20 MATEMATIKAI ALAPFOGALMAK (1,1) (1,2) (1,3) (1,4) (1,5)... (2,1) (2,2) (2,3) (2,4) (2,5)... (3,1) (3,2) (3,3) (3,4) (3,5)... (4,1) (4,2) (4,3) (4,4) (4,5)... (5,1) (5,2) (5,3) (5,4) (5,5) Az (i; j) párok felsorolása Vegyük észre, hogy a ferde átlókban szerepl½o elempárok összege konstans: 2 az els½o átlóban, 3 a második átlóban, 4 a harmadik átlóban, és így tovább. A felépítésb½ol világos, hogy bármely kiválasztott (m; n) pár a felsorolásban szerepelni fog j (m; n)-edik tagként. Az i-edik ferde átló elemeinek összege i + 1, elemeinek száma pedig i. Az (m; n) pár elemeinek összege m + n, ami az elemet az (m + n 1)-edik átlóba sorolja. Az els½o m + n 2 átló elemeinek száma: (m + n 2) (m + n 1) (m + n 2) = : 2 Az (m; n) pár a saját átlójában az m-edik elem lesz. Tehát az (m; n) pár sorszáma a fenti felsorolásban: (m + n 2) (m + n 1) j (m; n) = + m = m2 + 2mn + n 2 m 3n + 2 : 2 2 Állítás: Ha az A és B halmazok felsorolhatók (megszámlálhatók), akkor A B is felsorolható (megszámlálható). Bizonyítás: A példa alapján eljárva az A és B halmaz elemeit el½oször külön-külön felsoroljuk: a 1 ; a 2 ; : : : ; a m ; : : :, illetve b 1 ; b 2 ; : : : ; b n ; : : : Ezután az (a i ; b j ) elempárokat az (i; j) indexek alapján sorbarendezzük az el½obb látott módon. Az állítás alapján könnyen beláthatjuk, hogy N k is felsorolható (megszámlálható) Nyelvek és szavak De níció: Tetsz½oleges véges 6= ; halmazt ábécének nevezünk. A ábécé elemeit a bet½uinek (szimbólumainak) nevezzük.

20 NYELVEK ÉS SZAVAK 21 Példák: bool = f0; 1g, a Boole ábécé, lat = fa; b; c; : : : ; zg, a latin ábécé, keyboard = lat [ fa; B; : : : ; Z; t; >; <; (; ); : : : ;!g, klaviatúra nyelve, t a szóköz jel, m = f0; 1; 2; : : : ; m 1g, m 1 egész, az m alapú számrendszer ábécéje, logic = f0; 1; x; (; ); ^; _; :g, Boole formulák ábécéje. De níció: A ábécé jeleinek tetsz½oleges véges sorozatát feletti szónak nevezzük. A w szó jwj hossza a w-ben lév½o jelek száma. A w = x 1 x 2 : : : x n szót felfoghatjuk a n halmaz egy (x 1 ; x 2 ; : : : ; x n ) elemének is, amelyb½ol a zárójeleket és az elválasztójeleket elhagyjuk. A w = x 1 x 2 : : : x n szó hossza: jwj = n. A "szavakkal" különböz½o objektumokat reprezentálhatunk: számokat, képleteket, gráfokat és programokat. Például az x = x 1 x 2 : : : x n ; x i 2 bool (i = 1; 2; : : : ; n) szót az N (x) = P n i=1 2n i x i nemnegatív szám bináris el½oállításának tekinthetjük. De níció: Jelöljön G = (V; E) egy irányított gráfot, amelyben V a csúcsok és E f(v i ; v j ) j v i ; v j 2 V; v i 6= v j g az élek halmaza. Legyen jv j = n a csúcsok száma. A gráf M G = [a ij ] n i;j=1 szomszédsági) mátrixát az 1; ha (vi ; v a ij = j ) 2 E 0; ha (v i ; v j ) =2 E el½oírással adjuk meg. Tekintsük az alábbi gráfot! adjacencia (v. v 1 v 2 v 3 v 4

2009/2010/II. félév, Prof. Dr. Galántai Aurél Óbudai Egyetem NIK IMRI Budapest

2009/2010/II. félév, Prof. Dr. Galántai Aurél Óbudai Egyetem NIK IMRI Budapest SZÁMÍTÁSTUDOMÁNY 2009/2010/II. félév, (el½oadás vázlat) Prof. Dr. Galántai Aurél Óbudai Egyetem NIK IMRI Budapest 2010-05-6 2 Tartalomjegyzék 1. Bevezetés 5 2. Matematikai alapfogalmak 9 2.1. Jelölések........................................

Részletesebben

A Formális nyelvek vizsga teljesítése. a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon:

A Formális nyelvek vizsga teljesítése. a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon: A Formális nyelvek vizsga teljesítése a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon: 1. Öt kis kérdés megválaszolása egyenként 6 pontért, melyet minimum 12

Részletesebben

ALGORITMUS ELMÉLET 2016/2017 I. félév,

ALGORITMUS ELMÉLET 2016/2017 I. félév, ALGORITMUS ELMÉLET 2016/2017 I. félév, (el½oadás vázlat) Prof. Dr. Galántai Aurél Óbudai Egyetem NIK Alkalmazott Informatikai Intézet Budapest 2016-09-10 2 Tartalomjegyzék 1. Bevezetés 5 2. Matematikai

Részletesebben

Automaták mint elfogadók (akceptorok)

Automaták mint elfogadók (akceptorok) Automaták mint elfogadók (akceptorok) Ha egy iniciális Moore-automatában a kimenőjelek halmaza csupán kételemű: {elfogadom, nem fogadom el}, és az utolsó kimenőjel dönti el azt a kérdést, hogy elfogadható-e

Részletesebben

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé.

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. HA 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) HA 2 Halmazok HA 3 Megjegyzések A halmaz, az elem és az eleme fogalmakat nem definiáljuk, hanem alapfogalmaknak

Részletesebben

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1 Halmazok 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 2 A fejezet legfontosabb elemei Halmaz megadási módjai Halmazok közti műveletek (metszet,

Részletesebben

Chomsky-féle hierarchia

Chomsky-féle hierarchia http://www.ms.sapientia.ro/ kasa/formalis.htm Chomsky-féle hierarchia G = (N, T, P, S) nyelvtan: 0-s típusú (általános vagy mondatszerkezetű), ha semmilyen megkötést nem teszünk a helyettesítési szabályaira.

Részletesebben

NP-teljesség röviden

NP-teljesség röviden NP-teljesség röviden Bucsay Balázs earthquake[at]rycon[dot]hu http://rycon.hu 1 Turing gépek 1/3 Mi a turing gép? 1. Definíció. [Turing gép] Egy Turing-gép formálisan egy M = (K, Σ, δ, s) rendezett négyessel

Részletesebben

Atomataelmélet: A Rabin Scott-automata

Atomataelmélet: A Rabin Scott-automata A 19. óra vázlata: Atomataelmélet: A Rabin Scott-automata Az eddigieken a formális nyelveket generatív szempontból vizsgáltuk, vagyis a nyelvtan (generatív grammatika) szemszögéből. A generatív grammatika

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 4 IV. FÜGGVÉNYEk 1. LEkÉPEZÉSEk, függvények Definíció Legyen és két halmaz. Egy függvény -ből -ba egy olyan szabály, amely minden elemhez pontosan egy elemet rendel hozzá. Az

Részletesebben

ZH feladatok megoldásai

ZH feladatok megoldásai ZH feladatok megoldásai A CSOPORT 5. Írja le, hogy milyen szabályokat tartalmazhatnak az egyes Chomskynyelvosztályok (03 típusú nyelvek)! (4 pont) 3. típusú, vagy reguláris nyelvek szabályai A ab, A a

Részletesebben

A számítógépes nyelvészet elmélete és gyakorlata. Formális nyelvek elmélete

A számítógépes nyelvészet elmélete és gyakorlata. Formális nyelvek elmélete A számítógépes nyelvészet elmélete és gyakorlata Formális nyelvek elmélete Nyelv Nyelvnek tekintem a mondatok valamely (véges vagy végtelen) halmazát; minden egyes mondat véges hosszúságú, és elemek véges

Részletesebben

A matematika nyelvér l bevezetés

A matematika nyelvér l bevezetés A matematika nyelvér l bevezetés Wettl Ferenc 2012-09-06 Wettl Ferenc () A matematika nyelvér l bevezetés 2012-09-06 1 / 19 Tartalom 1 Matematika Matematikai kijelentések 2 Logikai m veletek Állítások

Részletesebben

Automaták és formális nyelvek

Automaták és formális nyelvek Automaták és formális nyelvek Bevezetés a számítástudomány alapjaiba 1. Formális nyelvek 2006.11.13. 1 Automaták és formális nyelvek - bevezetés Automaták elmélete: információs gépek általános absztrakt

Részletesebben

HALMAZELMÉLET feladatsor 1.

HALMAZELMÉLET feladatsor 1. HALMAZELMÉLET feladatsor 1. Egy (H,, ) algebrai struktúra háló, ha (H, ) és (H, ) kommutatív félcsoport, és teljesül az ún. elnyelési tulajdonság: A, B H: A (A B) = A, A (A B) = A. A (H,, ) háló korlátos,

Részletesebben

Itt és a továbbiakban a számhalmazokra az alábbi jelöléseket használjuk:

Itt és a továbbiakban a számhalmazokra az alábbi jelöléseket használjuk: 1. Halmazok, relációk, függvények 1.A. Halmazok A halmaz bizonyos jól meghatározott dolgok (tárgyak, fogalmak), a halmaz elemeinek az összessége. Azt, hogy az a elem hozzátartozik az A halmazhoz így jelöljük:

Részletesebben

dr. Szalkai István Pannon Egyetem, Veszprém, Matematika Tanszék augusztus 12.

dr. Szalkai István Pannon Egyetem, Veszprém, Matematika Tanszék augusztus 12. Számosságok dr. Szalkai István Pannon Egyetem, Veszprém, Matematika Tanszék 2012. augusztus 12. nszamossagnszamoss2www.tex, 2012.08.12., 02:50 1. Bevezetés Ebben a rövid jegyzetben els½osorban a végtelen

Részletesebben

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI 4. Fuzzy relációk Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 Klasszikus relációk Halmazok Descartes-szorzata Relációk 2 Fuzzy relációk Fuzzy relációk véges alaphalmazok

Részletesebben

Formális Nyelvek - 1. Előadás

Formális Nyelvek - 1. Előadás Formális Nyelvek - 1. Előadás Csuhaj Varjú Erzsébet Algoritmusok és Alkalmazásaik Tanszék Informatikai Kar Eötvös Loránd Tudományegyetem H-1117 Budapest Pázmány Péter sétány 1/c E-mail: csuhaj@inf.elte.hu

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 3 III. MEGFELELTETÉSEk, RELÁCIÓk 1. BEVEZETÉS Emlékeztetünk arra, hogy az rendezett párok halmazát az és halmazok Descartes-féle szorzatának nevezzük. Más szóval az és halmazok

Részletesebben

Házi feladatok megoldása. Nyelvtani transzformációk. Házi feladatok megoldása. Házi feladatok megoldása. Formális nyelvek, 6. gyakorlat.

Házi feladatok megoldása. Nyelvtani transzformációk. Házi feladatok megoldása. Házi feladatok megoldása. Formális nyelvek, 6. gyakorlat. Nyelvtani transzformációk Formális nyelvek, 6. gyakorlat a. S (S) SS ε b. S XS ε és X (S) c. S (SS ) Megoldás: Célja: A nyelvtani transzformációk bemutatása Fogalmak: Megszorított típusok, normálformák,

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

1. tétel - Gráfok alapfogalmai

1. tétel - Gráfok alapfogalmai 1. tétel - Gráfok alapfogalmai 1. irányítatlan gráf fogalma A G (irányítatlan) gráf egy (Φ, E, V) hátmas, ahol E az élek halmaza, V a csúcsok (pontok) halmaza, Φ: E {V-beli rendezetlen párok} illeszkedési

Részletesebben

A valós számok halmaza

A valós számok halmaza VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben

Részletesebben

Házi feladatok megoldása. Nyelvek használata adatszerkezetek, képek leírására

Házi feladatok megoldása. Nyelvek használata adatszerkezetek, képek leírására Nyelvek használata adatszerkezetek, képek leírására Formális nyelvek, 2. gyakorlat 1. feladat Módosított : belsejében lehet _ jel is. Kezdődhet, de nem végződhet vele, két aláhúzás nem lehet egymás mellett.

Részletesebben

13.1.Állítás. Legyen " 2 C primitív n-edik egységgyök és K C olyan számtest, amelyre " =2 K, ekkor K(") az x n 1 2 K[x] polinomnak a felbontási teste

13.1.Állítás. Legyen  2 C primitív n-edik egységgyök és K C olyan számtest, amelyre  =2 K, ekkor K() az x n 1 2 K[x] polinomnak a felbontási teste 13. GYÖKB½OVÍTÉS GALOIS CSOPORTJA, POLINOMOK GYÖKEINEK ELÉRHET½OSÉGE 13.1.Állítás. Legyen " 2 C primitív n-edik egységgyök és K C olyan számtest, amelyre " =2 K, ekkor K(") az x n 1 2 K[x] polinomnak a

Részletesebben

Kibernetika korábbi vizsga zárthelyi dolgozatokból válogatott tesztkérdések Figyelem! Az alábbi tesztek csak mintául szolgálnak a tesztkérdések megoldásához, azaz a bemagolásuk nem jelenti a tananyag elsajátítását

Részletesebben

A relációelmélet alapjai

A relációelmélet alapjai A relációelmélet alapjai A reláció latin eredet szó, jelentése kapcsolat. A reláció, két vagy több nem feltétlenül különböz halmaz elemei közötti viszonyt, kapcsolatot fejez ki. A reláció értelmezése gráffal

Részletesebben

Relációk. 1. Descartes-szorzat. 2. Relációk

Relációk. 1. Descartes-szorzat. 2. Relációk Relációk Descartes-szorzat. Relációk szorzata, inverze. Relációk tulajdonságai. Ekvivalenciareláció, osztályozás. Részbenrendezés, Hasse-diagram. 1. Descartes-szorzat 1. Deníció. Tetsz leges két a, b objektum

Részletesebben

Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel! függvények RE 1 Relációk Függvények függvények RE 2 Definíció Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor

Részletesebben

Algoritmuselmélet 18. előadás

Algoritmuselmélet 18. előadás Algoritmuselmélet 18. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Május 7. ALGORITMUSELMÉLET 18. ELŐADÁS 1 Közelítő algoritmusok

Részletesebben

9. előadás. Programozás-elmélet. Programozási tételek Elemi prog. Sorozatszámítás Eldöntés Kiválasztás Lin. keresés Megszámolás Maximum.

9. előadás. Programozás-elmélet. Programozási tételek Elemi prog. Sorozatszámítás Eldöntés Kiválasztás Lin. keresés Megszámolás Maximum. Programozási tételek Programozási feladatok megoldásakor a top-down (strukturált) programtervezés esetén három vezérlési szerkezetet használunk: - szekvencia - elágazás - ciklus Eddig megismertük az alábbi

Részletesebben

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a Feladatok, amelyek gráfokkal oldhatók meg ) A königsbergi hidak problémája (Euler-féle probléma) a b d c A megfelelő gráf: d a b c ) Egy szórakoztató feladat (Hamilton-féle probléma) Helyezzük el az,,,...,

Részletesebben

RE 1. Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

RE 1. Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel! RE 1 Relációk Függvények RE 2 Definíció: Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor azt mondjuk, hogy

Részletesebben

30. ERŐSEN ÜSSZEFÜGGŐ KOMPONENSEK

30. ERŐSEN ÜSSZEFÜGGŐ KOMPONENSEK 30. ERŐSEN ÜSSZEFÜGGŐ KOMPONENSEK A gráfos alkalmazások között is találkozunk olyan problémákkal, amelyeket megoldását a részekre bontott gráfon határozzuk meg, majd ezeket alkalmas módon teljes megoldássá

Részletesebben

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám.

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám. 1 Az utazó ügynök problémája Utazó ügynök feladat Adott n számú város és a városokat összekötő utak, amelyeknek ismert a hossza. Adott továbbá egy ügynök, akinek adott városból kiindulva, minden várost

Részletesebben

Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése

Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése Dr. Kallós Gábor 2014 2015 1 Az Ordó jelölés Azt mondjuk, hogy az f(n) függvény eleme az Ordó(g(n)) halmaznak, ha van olyan c konstans (c

Részletesebben

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz A vizsga menete: a vizsga írásbeli és szóbeli részből áll. Az írásbeli beugrón az alábbi kérdések közül szerepel összesen 12 darab, mindegyik egy pontot

Részletesebben

A digitális számítás elmélete

A digitális számítás elmélete A digitális számítás elmélete 1. előadás szept. 19. Determinisztikus véges automaták 1. Példa: Fotocellás ajtó m m m k b s = mindkét helyen = kint = bent = sehol k k b s m csukva b nyitva csukva nyitva

Részletesebben

Gráfelméleti feladatok. c f

Gráfelméleti feladatok. c f Gráfelméleti feladatok d e c f a b gráf, csúcsok, élek séta: a, b, c, d, e, c, a, b, f vonal: c, d, e, c, b, a út: f, b, a, e, d (walk, lanţ) (trail, lanţ simplu) (path, lanţ elementar) 1 irányított gráf,

Részletesebben

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.

Részletesebben

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás.

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás. Prímszámok A (pozitív) prímszámok sorozata a következő: 2, 3, 5, 7, 11, 13, 17, 19,... 1. Tétel. Végtelen sok prímszám van. Első bizonyítás. (Euklidész) Tegyük fel, hogy állításunk nem igaz, tehát véges

Részletesebben

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem 1 / 36 Bevezetés A komplex számok értelmezése Definíció: Tekintsük a valós számpárok R2 halmazát és értelmezzük ezen a halmazon a következo két

Részletesebben

Bevezetés. 1. fejezet. Algebrai feladatok. Feladatok

Bevezetés. 1. fejezet. Algebrai feladatok. Feladatok . fejezet Bevezetés Algebrai feladatok J. A számok gyakran használt halmazaira a következ jelöléseket vezetjük be: N a nemnegatív egész számok, N + a pozitív egész számok, Z az egész számok, Q a racionális

Részletesebben

Analízis előadás és gyakorlat vázlat

Analízis előadás és gyakorlat vázlat Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 2010-11. I. Félév 2 1. fejezet Számhalmazok és tulajdonságaik 1.1. Nevezetes számhalmazok ➀ a) jelölése: N b)

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 8. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Elemi számelmélet Diszkrét matematika I. középszint

Részletesebben

Gráfelméleti alapfogalmak

Gráfelméleti alapfogalmak 1 Gráfelméleti alapfogalmak Gráf (angol graph= rajz): pontokból és vonalakból álló alakzat. pontok a gráf csúcsai, a vonalak a gráf élei. GRÁ Irányítatlan gráf Vegyes gráf Irányított gráf G H Izolált pont

Részletesebben

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 12.

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 12. Algoritmuselmélet NP-teljes problémák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 12. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet

Részletesebben

2. Logika gyakorlat Függvények és a teljes indukció

2. Logika gyakorlat Függvények és a teljes indukció 2. Logika gyakorlat Függvények és a teljes indukció Folláth János Debreceni Egyetem - Informatika Kar 2012/13. I. félév Áttekintés 1 Függvények Relációk Halmazok 2 Természetes számok Formulák Definíció

Részletesebben

Felvételi tematika INFORMATIKA

Felvételi tematika INFORMATIKA Felvételi tematika INFORMATIKA 2016 FEJEZETEK 1. Természetes számok feldolgozása számjegyenként. 2. Számsorozatok feldolgozása elemenként. Egydimenziós tömbök. 3. Mátrixok feldolgozása elemenként/soronként/oszloponként.

Részletesebben

Ajánlott elemi feladatok az AAO tárgyhoz 41 feladat

Ajánlott elemi feladatok az AAO tárgyhoz 41 feladat Ajánlott elemi feladatok az AAO tárgyhoz 41 feladat Ha a feladat értelmezésével kapcsolatban probléma merül fel a vizsgán, meg kell kérdezni a vizsgáztató tanárt a megoldás megkezdés eltt. A feladatokat

Részletesebben

Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t

Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t Ellenőrző kérdések 2. Kis dolgozat kérdései 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t 37. Ha t szintű indexet használunk,

Részletesebben

Függvény fogalma, jelölések 15

Függvény fogalma, jelölések 15 DOLGO[Z]ZATOK 9.. 1. Függvény fogalma, jelölések 1 1. Az alábbi hozzárendelések közül melyek függvények? a) A magyarországi megyékhez hozzárendeljük a székhelyüket. b) Az egész számokhoz hozzárendeljük

Részletesebben

Feladatok: 1. Add meg a következ balreguláris nyelvtannak megfelel jobbreguláris nyelvtant!

Feladatok: 1. Add meg a következ balreguláris nyelvtannak megfelel jobbreguláris nyelvtant! Feladatok: 1. Add meg a következ balreguláris nyelvtannak megfelel jobbreguláris nyelvtant! Megoldás: S b A a Ezzel a feladattal az volt a gondom, hogy a könyvben tanultak alapján elkezdtem levezetni,

Részletesebben

Nagyordó, Omega, Theta, Kisordó

Nagyordó, Omega, Theta, Kisordó A növekedés nagyságrendje, számosság Logika és számításelmélet, 6. gyakorlat 2009/10 II. félév Számításelmélet (6. gyakorlat) A növekedés nagyságrendje, számosság 2009/10 II. félév 1 / 1 Nagyordó, Omega,

Részletesebben

0,424 0,576. f) P (X 2 = 3) g) P (X 3 = 1) h) P (X 4 = 1 vagy 2 X 2 = 2) i) P (X 7 = 3, X 4 = 1, X 2 = 2 X 0 = 2) j) P (X 7 = 3, X 4 = 1, X 2 = 2)

0,424 0,576. f) P (X 2 = 3) g) P (X 3 = 1) h) P (X 4 = 1 vagy 2 X 2 = 2) i) P (X 7 = 3, X 4 = 1, X 2 = 2 X 0 = 2) j) P (X 7 = 3, X 4 = 1, X 2 = 2) Legyen adott a P átmenetvalószín ség mátrix és a ϕ 0 kezdeti eloszlás Kérdés, hogy miként lehetne meghatározni az egyes állapotokban való tartózkodás valószín ségét az n-edik lépés múlva Deniáljuk az n-lépéses

Részletesebben

BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai

BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai 1.a. A B B A 2.a. (A B) C A (B C) 3.a. A (A B) A 4.a. I A I 5.a. A (B C) (A B) (A C) 6.a. A A I 1.b. A B B A 2.b. (A B) C A (B C) 3.b. A

Részletesebben

Turing-gépek. Számításelmélet (7. gyakorlat) Turing-gépek 2009/10 II. félév 1 / 1

Turing-gépek. Számításelmélet (7. gyakorlat) Turing-gépek 2009/10 II. félév 1 / 1 Turing-gépek Logika és számításelmélet, 7. gyakorlat 2009/10 II. félév Számításelmélet (7. gyakorlat) Turing-gépek 2009/10 II. félév 1 / 1 A Turing-gép Az algoritmus fogalmának egy intuitív definíciója:

Részletesebben

Formális Nyelvek - 1.

Formális Nyelvek - 1. Formális Nyelvek - 1. Csuhaj Varjú Erzsébet Algoritmusok és Alkalmazásaik Tanszék Informatikai Kar Eötvös Loránd Tudományegyetem H-1117 Budapest Pázmány Péter sétány 1/c E-mail: csuhaj@inf.elte.hu 1 A

Részletesebben

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex A sorozat fogalma Definíció. A természetes számok N halmazán értelmezett függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet a valós számok halmaza, valós számsorozatról beszélünk, mígha az

Részletesebben

Tesztkérdések az ALGORITMUSELMÉLET tárgyból, 2001/2002 2. félév

Tesztkérdések az ALGORITMUSELMÉLET tárgyból, 2001/2002 2. félév 1. oldal, összesen: 6 Tesztkérdések az ALGORITMUSELMÉLET tárgyból, 2001/2002 2. félév NÉV:... 1. Legyenek,Q,M páronként diszjunkt halmazok; /= Ř, Q > 2, M = 3. Egyszalagos, determinisztikus Turing gépnek

Részletesebben

Bevezetés a programozásba I.

Bevezetés a programozásba I. Bevezetés a programozásba I. 3. gyakorlat Tömbök, programozási tételek Surányi Márton PPKE-ITK 2010.09.21. ZH! PlanG-ból papír alapú zárthelyit írunk el reláthatólag október 5-én! Tömbök Tömbök Eddig egy-egy

Részletesebben

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait.

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. 2. VEKTORTÉR A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. Legyen K egy test és V egy nem üres halmaz,

Részletesebben

0 ; a k ; :::) = ( 0: x = (0; 1; 0; 0; :::; 0; :::) = (0; 1)

0 ; a k ; :::) = ( 0: x = (0; 1; 0; 0; :::; 0; :::) = (0; 1) 3. EGYVÁLTOZÓS POLINOMOK 3.A.De níció. Komplex számok egy f = (a 0 ; a 1 ; :::; a k ; :::) végtelen sorozatáról azt mondjuk, hogy polinom, ha létezik olyan m 0 egész, hogy minden k m indexre a k = 0. Az

Részletesebben

A Matematika I. előadás részletes tematikája

A Matematika I. előadás részletes tematikája A Matematika I. előadás részletes tematikája 2005/6, I. félév 1. Halmazok és relációk 1.1 Műveletek halmazokkal Definíciók, fogalmak: halmaz, elem, üres halmaz, halmazok egyenlősége, részhalmaz, halmazok

Részletesebben

Kiterjesztések sek szemantikája

Kiterjesztések sek szemantikája Kiterjesztések sek szemantikája Példa D Integer = {..., -1,0,1,... }; D Boolean = { true, false } D T1... T n T = D T 1... D Tn D T Az összes függvf ggvény halmaza, amelyek a D T1,..., D Tn halmazokból

Részletesebben

5. A kiterjesztési elv, nyelvi változók

5. A kiterjesztési elv, nyelvi változók 5. A kiterjesztési elv, nyelvi változók Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 A kiterjesztési elv 2 Nyelvi változók A kiterjesztési elv 237 A KITERJESZTÉSI ELV A

Részletesebben

Matematika III. 2. Eseményalgebra Prof. Dr. Závoti, József

Matematika III. 2. Eseményalgebra Prof. Dr. Závoti, József Matematika III. 2. Eseményalgebra Prof. Dr. Závoti, József Matematika III. 2. : Eseményalgebra Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027 Tananyagfejlesztéssel

Részletesebben

Shor kvantum-algoritmusa diszkrét logaritmusra

Shor kvantum-algoritmusa diszkrét logaritmusra Ivanyos Gábor MTA SZTAKI Debrecen, 20 január 2. Tartalom és kvantum-áramkörök 2 A diszkrét log probléma Kvantum bit Állapot: a B = C 2 komplex euklideszi tér egy egységvektora: az a 0 + b szuperpozíció

Részletesebben

Permutációk véges halmazon (el adásvázlat, február 12.)

Permutációk véges halmazon (el adásvázlat, február 12.) Permutációk véges halmazon el adásvázlat 2008 február 12 Maróti Miklós Ennek az el adásnak a megértéséhez a következ fogalmakat kell tudni: ismétlés nélküli variáció leképezés indulási és érkezési halmaz

Részletesebben

SCILAB programcsomag segítségével

SCILAB programcsomag segítségével Felhasználói függvények de niálása és függvények 3D ábrázolása SCILAB programcsomag segítségével 1. Felhasználói függvények de niálása A Scilab programcsomag rengeteg matematikai függvényt biztosít a számítások

Részletesebben

OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk.

OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk. Osztók és többszörösök 1783. A megadott számok elsõ tíz többszöröse: 3: 3 6 9 12 15 18 21 24 27 30 4: 4 8 12 16 20 24 28 32 36 40 5: 5 10 15 20 25 30 35 40 45 50 6: 6 12 18 24 30 36 42 48 54 60 1784. :

Részletesebben

Matematika B/1. Tartalomjegyzék. 1. Célkit zések. 2. Általános követelmények. 3. Rövid leírás. 4. Oktatási módszer. Biró Zsolt. 1.

Matematika B/1. Tartalomjegyzék. 1. Célkit zések. 2. Általános követelmények. 3. Rövid leírás. 4. Oktatási módszer. Biró Zsolt. 1. Matematika B/1 Biró Zsolt Tartalomjegyzék 1. Célkit zések 1 2. Általános követelmények 1 3. Rövid leírás 1 4. Oktatási módszer 1 5. Követelmények, pótlások 2 6. Program (el adás) 2 7. Program (gyakorlat)

Részletesebben

Algoritmuselmélet 2. előadás

Algoritmuselmélet 2. előadás Algoritmuselmélet 2. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Február 12. ALGORITMUSELMÉLET 2. ELŐADÁS 1 Buborék-rendezés

Részletesebben

A SZÁMÍTÁSTUDOMÁNY ALAPJAI

A SZÁMÍTÁSTUDOMÁNY ALAPJAI Írta: ÉSIK ZOLTÁN A SZÁMÍTÁSTUDOMÁNY ALAPJAI Egyetemi tananyag 2011 COPYRIGHT: 2011 2016, Dr. Ésik Zoltán, Szegedi Tudományegyetem Természettudományi és Informatikai Kar Számítástudomány Alapjai Tanszék

Részletesebben

Algoritmusok helyességének bizonyítása. A Floyd-módszer

Algoritmusok helyességének bizonyítása. A Floyd-módszer Algoritmusok helyességének bizonyítása A Floyd-módszer Algoritmusok végrehajtása Egy A algoritmus esetében a változókat három változótípusról beszélhetünk, melyeket az X, Y és Z vektorokba csoportosítjuk

Részletesebben

A valós számok halmaza 5. I. rész MATEMATIKAI ANALÍZIS

A valós számok halmaza 5. I. rész MATEMATIKAI ANALÍZIS A valós számok halmaza 5 I rész MATEMATIKAI ANALÍZIS 6 A valós számok halmaza A valós számok halmaza 7 I A valós számok halmaza A valós számokra vonatkozó axiómák A matematika lépten-nyomon felhasználja

Részletesebben

19. AZ ÖSSZEHASONLÍTÁSOS RENDEZÉSEK MŰVELETIGÉNYÉNEK ALSÓ KORLÁTJAI

19. AZ ÖSSZEHASONLÍTÁSOS RENDEZÉSEK MŰVELETIGÉNYÉNEK ALSÓ KORLÁTJAI 19. AZ ÖSSZEHASONLÍTÁSOS RENDEZÉSEK MŰVELETIGÉNYÉNEK ALSÓ KORLÁTJAI Ebben a fejezetben aszimptotikus (nagyságrendi) alsó korlátot adunk az összehasonlításokat használó rendező eljárások lépésszámára. Pontosabban,

Részletesebben

Általános algoritmustervezési módszerek

Általános algoritmustervezési módszerek Általános algoritmustervezési módszerek Ebben a részben arra mutatunk példát, hogy miként használhatóak olyan általános algoritmustervezési módszerek mint a dinamikus programozás és a korlátozás és szétválasztás

Részletesebben

Formális nyelvek és gépek (definíciós és tétel lista - 09/10/2)

Formális nyelvek és gépek (definíciós és tétel lista - 09/10/2) Formális nyelvek és gépek (definíciós és tétel lista - 09/10/2) ábécé: Ábécének nevezünk egy tetszőleges véges szimbólumhalmazt. Jelölése: X, Y betű: Az ábécé elemeit betűknek hívjuk. szó: Az X ábécé elemeinek

Részletesebben

Függvényhatárérték és folytonosság

Függvényhatárérték és folytonosság 8. fejezet Függvényhatárérték és folytonosság Valós függvények és szemléltetésük D 8. n-változós valós függvényen (n N + ) olyan f függvényt értünk amelynek értelmezési tartománya (Dom f ) az R n halmaznak

Részletesebben

Analízisfeladat-gyűjtemény IV.

Analízisfeladat-gyűjtemény IV. Oktatási segédanyag a Programtervező matematikus szak Analízis. című tantárgyához (003 004. tanév tavaszi félév) Analízisfeladat-gyűjtemény IV. (Függvények határértéke és folytonossága) Összeállította

Részletesebben

GRÁFELMÉLET. 7. előadás. Javító utak, javító utak keresése, Edmonds-algoritmus

GRÁFELMÉLET. 7. előadás. Javító utak, javító utak keresése, Edmonds-algoritmus GRÁFELMÉLET 7. előadás Javító utak, javító utak keresése, Edmonds-algoritmus Definíció: egy P utat javító útnak nevezünk egy M párosításra nézve, ha az út páratlan hosszú, kezdő- és végpontjai nem párosítottak,

Részletesebben

Bánsághi Anna 2014 Bánsághi Anna 1 of 68

Bánsághi Anna 2014 Bánsághi Anna 1 of 68 IMPERATÍV PROGRAMOZÁS Bánsághi Anna anna.bansaghi@mamikon.net 3. ELŐADÁS - PROGRAMOZÁSI TÉTELEK 2014 Bánsághi Anna 1 of 68 TEMATIKA I. ALAPFOGALMAK, TUDOMÁNYTÖRTÉNET II. IMPERATÍV PROGRAMOZÁS Imperatív

Részletesebben

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek Lineáris algebra 2 Filip Ferdinánd filipferdinand@bgkuni-obudahu sivabankihu/jegyzetek 2015 december 7 Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 1 / 37 Az el adás vázlata Determináns Determináns

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai

Részletesebben

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása 1 Információk 2 A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin Elérhetőség mesko.katalin@tfk.kefo.hu Fogadóóra: szerda 9:50-10:35 Számonkérés időpontok Április 25. 9 00 Május 17. 9 00 Június

Részletesebben

Adatszerkezetek 2. Dr. Iványi Péter

Adatszerkezetek 2. Dr. Iványi Péter Adatszerkezetek 2. Dr. Iványi Péter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér (root) Nincsennek hurkok!!! 2 Bináris fák Azokat

Részletesebben

4. SOROK. a n. a k (n N) a n = s, azaz. a n := lim

4. SOROK. a n. a k (n N) a n = s, azaz. a n := lim Példák.. Geometriai sor. A aq n = a + aq + aq 2 +... 4. SOROK 4. Definíció, konvergencia, divergencia, összeg Definíció. Egy ( ) (szám)sorozat elemeit az összeadás jelével összekapcsolva kapott a + a 2

Részletesebben

ELEMI PROGRAMOZÁSI TÉTELEK

ELEMI PROGRAMOZÁSI TÉTELEK ELEMI PROGRAMOZÁSI TÉTELEK 1. FELADATMEGOLDÁS PROGRAMOZÁSI TÉTELEKKEL 1.1 A programozási tétel fogalma A programozási tételek típusalgoritmusok, amelyek alkalmazásával garantáltan helyes megoldást adhatunk

Részletesebben

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? 6. Függvények I. Nulladik ZH-ban láttuk: 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? f x g x cos x h x x ( ) sin x (A) Az f és a h. (B) Mindhárom. (C) Csak az f.

Részletesebben

Halmazok; a matematikai logika elemei 1.1. A halmaz fogalma; jelölések

Halmazok; a matematikai logika elemei 1.1. A halmaz fogalma; jelölések 1 Halmazok; a matematikai logika elemei 1.1. A halmaz fogalma; jelölések A matematikában alapfogalmaknak tekintjük azokat a fogalmakat, amelyeket nem határozunk meg, nem definiálunk más fogalmak segítségével

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév 1. forduló haladók III. kategória

Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév 1. forduló haladók III. kategória Bolyai János Matematikai Társulat Oktatásért Közalapítvány támogatásával Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév 1. forduló haladók III. kategória Megoldások és javítási útmutató 1. Határozzuk

Részletesebben

Opkut deníciók és tételek

Opkut deníciók és tételek Opkut deníciók és tételek Készítette: Bán József Deníciók 1. Deníció (Lineáris programozási feladat). Keressük meg adott lineáris, R n értelmezési tartományú függvény, az ún. célfüggvény széls értékét

Részletesebben

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al: Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x

Részletesebben

Matematika emelt szintû érettségi témakörök 2013. Összeállította: Kovácsné Németh Sarolta (gimnáziumi tanár)

Matematika emelt szintû érettségi témakörök 2013. Összeállította: Kovácsné Németh Sarolta (gimnáziumi tanár) Matematika emelt szintû érettségi témakörök 013 Összeállította: Kovácsné Németh Sarolta (gimnáziumi tanár) Tájékoztató vizsgázóknak Tisztelt Vizsgázó! A szóbeli vizsgán a tétel címében megjelölt téma kifejtését

Részletesebben

Számítógép és programozás 2

Számítógép és programozás 2 Számítógép és programozás 2 8. Előadás Megoldhatóság, hatékonyság http://digitus.itk.ppke.hu/~flugi/ Elméleti áttekintés a SzámProg 1 tárgyból Algoritmikus eldönthetőség kérdése Bizonyíthatóság kérdése,

Részletesebben

http://www.ms.sapientia.ro/~kasa/formalis.htm

http://www.ms.sapientia.ro/~kasa/formalis.htm Formális nyelvek és fordítóprogramok http://www.ms.sapientia.ro/~kasa/formalis.htm Könyvészet 1. Csörnyei Zoltán, Kása Zoltán, Formális nyelvek és fordítóprogramok, Kolozsvári Egyetemi Kiadó, 2007. 2.

Részletesebben