A lineáris modellektől a nemlineáris kevert modellekig R-ben

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A lineáris modellektől a nemlineáris kevert modellekig R-ben"

Átírás

1 A lineáris modellektől a nemlineáris kevert modellekig R-ben Harnos Andrea Szent István Egyetem, Állatorvostudományi Kar Biomatematika Tanszék

2 Tartalom Bevezetés Modellezés Az általános lineáris modell Általánosított lineáris modellek Additív modellek Kevert modellek Nemlineáris kevert modell

3 Sweave A kurzus diái Fritz Leisch s Sweave rendszerével készültek. Ebben a L A TEX és R kódok egyetlen fájlban szerkeszthetők. Egy Sweave fájlból (.Rnw kiterjesztésű általában) olyan L A TEX forrás fájl készíthető, amely tartalmazza az R inputokat, outputokat és ábrákat. Egy Sweave fájlból az R kódok automatikusan kinyerhetők.

4 A kurzus anyagához felhasznált könyvek és egyéb anyagok Brian S. Everitt, Torsten Hothorn: A Handbook of Statistical Analysis Using R (Chapman and Hall/CRC, 2006) José C. Pinheiro, Douglas M. Bates: Mixed Effects Models in S and S-PLUS (Springer, 2000) Julian J. Faraway: Extending the Linear Model with R. Generalized Linear, Mixed Effects and Nonparametric Regression Models (Chapman and Hall/CRC, 2006) Douglas M. Bates: Mixed-effects models in R. user!2006, Vienna, Austria, June 14, 2006

5 Felhasznált adatok pupa.txt mass.csv land-use.csv

6 Zerynthia polyxena

7 pupa.txt, mass.csv Az adatok egy olyan kísérletből származnak, amelyben lepkék (Zerynthia polyxena) imágóinak méret változatosságát vizsgálták. A lárvákat kísérletileg manipulált hőmérsékletű környezetben tartották. A KÍSÉRLET 1. faktor: TEMPR Fejlődő hernyók környezetének hőmérséklete hűtött szobahőmérséklet melegített 2. faktor: FOOD Táplálékellátottság limitált nem limitált A hernyók tömegét a kikeléstől a bábozódásig mérték. Referencia: J. Kis, F. Kassai, L. Peregovits (nem közölt adatok)

8 Változók BOX a dobozok azonosítója, amelyben a hernyókat tartották FOOD Táplálékellátottság limited limitált adlibitum nem limitált TEMPR A fejlődő hernyók környezetének hőmérséklete cooled hűtött room szobahőmérsékletű heated melegített PUPAMASS bábtömeg (g) 1 héttel a bábozódás után STARTMASS kezdeti tömeg (g)

9 Lepkebáb adatok > pupa[1:5, ] BOX FOOD TEMPR PUPAMASS STARTMASS limited cooled limited cooled limited cooled limited cooled limited cooled > str(pupa) data.frame : 58 obs. of 5 variables: $ BOX : int $ FOOD : Factor w/ 2 levels "adlibitum","limited": $ TEMPR : Factor w/ 3 levels "cooled","heated",..: $ PUPAMASS : num $ STARTMASS: num

10 land-use.csv Az adatok egy olyan kutatásból származnak, melyben a mezőgazdaság intenzifikációjának őszi gabona növényekre való hatását vizsgálták a Nagy-Alföldön, szikes talajú területeken. 5 gazda, illetve szövetkezet különböző intenzifikációval kezelt földjeit vizsgálták. 7 földhasználati intenzitás kategóriát állapítottak meg a felhasznált szerves- és műtrágya valamint növényvédő szer mennyisége alapján (kérdőíves felmérés a vizsgálatok előtt).

11 land-use.csv 3 őszi gabona földet vizsgáltak minden intenzitás szintből. Minden területen kijelöltek db 5 1 m-es egymástól 5 m-re egy vonalba eső kvadrátból álló transzektet, egyet a terület szélén, a másikat pedig 50 m-rel beljebb. Ezzel az elrendezéssel figyelembe vehető a lokális térbeli heterogenitás, ami nagyban meghatározza a biodiverzitási mintázatot. Referencia: Anikó Kovács, Péter Batáry, András Báldi, Andrea Harnos: Weed species richness and cover along an intensification gradient in Central-Hungarian cereal fields (a Weed Research-be beküldve)

12 Extenzíven használt gabonaföld

13 Extenzíven használt gabonaföld széle

14 Intenzíven használt gabonaföld

15 Intenzíven használt gabonaföld széle

16 Egy elemzés lépései A probléma hátterének megértése. Kérdésfeltevés. Elemző módszerek kiválasztása (adatgyűjtés előtt!) Adatgyűjtés. Az adatok elemezhető formába hozása! Exploratív elemzések (leíró statisztikák, grafikonok). A fő elemzés (modellezés). Interpretáció. Az eredmények közlése.

17 Milyen egy jó modell? Tisztáznia kell a dolgokat és nem összezavarni. Parszimóniára kell törekednie. Things should be made as simple as possible - but no simpler. A. Einstein Általánosítható. az eredményeknek nemcsak a mintánkra kell érvényesnek lennie, hanem arra a statisztikai populációra is, amelyből a megfigyeléseink származnak.

18 A modellezés folyamata Kiinduló modell illesztése. A modell redukálása. Modellellenőrzés. Modell megváltoztatása, ha szükséges. Új modell illesztése. Modellredukció. Modellellenőrzés....

19 Az általános lineáris modell General Linear Model Egy cél-, vagy függő változó (outcome, response) egyéb változóktól (effects) való függését vizsgáljuk. Az általános lineáris modell speciális esetei: Egyszerű Lineáris Regresszió Simple Linear Regression; ANOVA; ANCOVA; stb.

20 A modell általános felírása A lineáris modell: Y = β 0 + β 1 X 1 + β 2 X β p X p + ɛ, Vagy mátrix egyenlet formájában: Y = Xβ + ɛ, ahol Y célváltozó, β 0 intercept vagy konstans, β i ismeretlen paraméterek, X 1,..., X p magyarázó változók (prediktorok), lehetnek folytonosak (kovariánsok) vagy kvalitatív (faktor) változók. Indikátor (dummy) változók. ɛ A megfigyelt értékeknek és a modell szisztematikus részének a különbsége (mérési hiba vagy nem magyarázott hatás).

21 A modell praktikus alakja PUPAMASS = β 0 +β 1 STARTMASS+β 2 1 (TEMPR=high) + + β 3 1 (TEMPR=room) + ɛ β 4 1 (TEMPR=cooled) hiányzik (túlparaméterezettség) Wilkinson-Rogers formula: PUPAMASS = STARTMASS + TEMPR, ahol a TEMPR egy factor.

22 Modell formulák R-ben Általános forma: y tényező1+tényező2+... Interakció a:b, a*b=a+b+a:b Speciális tagok: offset, -1 (nincs konstans) Példák: y x y x1+x2+x3 y f1 y f1 f2 y f1 x - Egyszerű Lineáris Regresszió - Többszörös Lineáris Regresszió - Egytényezős ANOVA - Kéttényezős ANOVA interakcióval - ANCOVA

23 Lepkebáb adatok > pupa[1:5, ] BOX FOOD TEMPR PUPAMASS STARTMASS limited cooled limited cooled limited cooled limited cooled limited cooled > str(pupa) data.frame : 58 obs. of 5 variables: $ BOX : int $ FOOD : Factor w/ 2 levels "adlibitum","limited": $ TEMPR : Factor w/ 3 levels "cooled","heated",..: $ PUPAMASS : num $ STARTMASS: num

24 Változók BOX a dobozok azonosítója, amelyben a hernyókat tartották FOOD Táplálékellátottság limited limitált adlibitum nem limitált TEMPR A fejlődő hernyók környezetének hőmérséklete cooled hűtött room szobahőmérsékletű heated melegített PUPAMASS bábtömeg (g) 1 héttel a bábozódás után STARTMASS kezdeti tömeg (g)

25 Exploratív elemzések 1. lépés: Adatok leíró statisztikái és grafikonjai. Numerikus áttekintés: > summary(pupa) BOX FOOD TEMPR PUPAMASS Min. : 39.0 adlibitum:32 cooled:19 Min. : st Qu.: limited :26 heated:22 1st Qu.: Median : room :17 Median : Mean : Mean : rd Qu.: rd Qu.: Max. : Max. : STARTMASS Min. : st Qu.: Median : Mean : rd Qu.: Max. :

26 Grafikus sűrűségfüggvény becslések Hisztogram: durva becslés - érzékeny az osztályintervallumok megválasztására. Kernel sűrűség becslés: jobb. Simított hisztogram.

27 Hisztogram >hist(pupamass,main="bábtömeg egy héttel a bábozódás után",xlab="tömeg (g)") Bábtömeg egy héttel a bábozódás után 15 Frequency Tömeg (g)

28 Simított hisztogram >plot(density(pupamass),main="bábtömeg egy héttel a bábozódás után"); rug(pupamass) Bábtömeg egy héttel a bábozódás után Density N = 58 Bandwidth =

29 Boxplotok Kvalitatív és kvantitatv változók kapcsolata. Faktor kombinációk is lehetnek a vízszintes tengelyen. Különbségek és interakciók becslése.

30 Boxplot >boxplot(pupamass (TEMPR:FOOD),col=2:4, names=c("ca","ha","ra","cl","hl","rl")) CA HA RA CL HL RL

31 Hegedűábra vioplot(pupamass[food=="adlibitum"], PUPAMASS[FOOD=="limited"], col="white", names=c("ad libitum", "limited")) ad libitum limited

32 Interakciós ábra A célváltozó különböző faktor kombinációk szerinti átlagait ill. más leíró statisztikáit rajzolja ki így ábrázolva a lehetséges interakciókat (nem additív hatásokat). Ha a vonalak többé-kevésbé párhuzamosak, akkor nem várunk interakciót.

33 Interakciós ábra >interaction.plot(tempr,food,pupamass) mean of PUPAMASS FOOD adlibitum limited cooled heated room TEMPR

34 Szórásdiagram >plot(pupamass STARTMASS,main="PUPAMASS-STARTMASS Szórásdiagram", xlab="startmass",ylab="pupamass",pch=".") PUPAMASS STARTMASS Szórásdiagram STARTMASS PUPAMASS

35 Feltételes szórásdiagram >coplot(pupamass STARTMASSTEMPR*FOOD, xlab="startmass",ylab="pupamass",pch=20) Given : TEMPR cooled heated room PUPAMASS adlibitum limited Given : FOOD STARTMASS

36 Egyszerű Lineáris Regresszió 1. modell: PUPAMASS = β 0 + β 1 STARTMASS + ɛ > mod1.lm <- lm(pupamass ~ STARTMASS) > summary(mod1.lm) Call: lm(formula = PUPAMASS ~ STARTMASS) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(>t) (Intercept) <2e-16 STARTMASS Residual standard error: on 56 degrees of freedom Multiple R-Squared: , Adjusted R-squared: F-statistic: on 1 and 56 DF, p-value:

37 Szórásdiagram az illesztett egyenessel >abline(mod1.lm) PUPAMASS STARTMASS szórásdiagram STARTMASS PUPAMASS

38 Kéttényezős ANOVA > mod2.lm <- lm(pupamass ~ FOOD + TEMPR) > anova(mod2.lm) Analysis of Variance Table Response: PUPAMASS Df Sum Sq Mean Sq F value Pr(>F) FOOD e-14 TEMPR Residuals

39 Kéttényezős ANOVA interakcióval > mod3.lm <- lm(pupamass ~ FOOD * TEMPR) > anova(mod3.lm) Analysis of Variance Table Response: PUPAMASS Df Sum Sq Mean Sq F value Pr(>F) FOOD e-13 TEMPR FOOD:TEMPR Residuals

40 Kéttényezős ANOVA interakcióval és kovariánssal > mod4.lm <- lm(pupamass ~ FOOD * TEMPR + STARTMASS) > anova(mod4.lm) Analysis of Variance Table Response: PUPAMASS Df Sum Sq Mean Sq F value Pr(>F) FOOD e-13 TEMPR STARTMASS FOOD:TEMPR Residuals

41 Hipotézisvizsgálatok A modell egy vagy több prediktorának szignifikanciáját állapítjuk meg. Ha a hibatagok függetlenek és normális eloszlásúak. Két beágyazott modell (a szűkebb modell magyarázó változóinak halmaza részhalmaza a bővebb modellének) összehasonlítható egy F-teszttel: anova(model1, model2).

42 Hipotézisvizsgálatok Egy általánosan végzett tesz az aktuális modell nullmodellhez való hasonlítása (nincsenek prediktorok, csak a konstans (intercept)): anova(model). (A modell egészének szignifikanciája.) Egyedi prediktorok F-próbával, vagy egy t-próbával summary(model) tesztelhetők. Kerüljük a t-tesztek használatát kettőnél több szintű kvalitatív predictorok (faktorok) esetén!

43 A modellezés céljai Predikció: Megfigyelünk új X-eket és a hozzá tartozó Y -t szeretnénk megbecsülni. A predikciós teljesítmény javul az olyan változók eltávolításáaval, amik nem nagyon játszanak szerepet. Automatikus változó szelekciók jól működhetnek. A változók közötti kapcsolat megértése. Manuális szelekció jobb. Gyakran mindkettő célunk. Nam tanácsos teljesen automatikus szelekciós módszerekre hagyatkozni.

44 Változó szelekciós módszerek I. Akaike Information Criterion (AIC) AIC = 2logLik + 2p, ahol p a paraméterek száma. Általános, normál lineáris modelleken túl is használható. A step() függvény ezt használja. Lépésenkénti keresés a lehetséges modellek terében. Szekvenciálisan távolít el (vagy vesz be) változókat. Minimalizálja az AIC-ot.

45 Változó szelekciós módszerek II. Tesztelésen alapulnak. F -teszttel hasonlítják össze a beágyazott modelleket. Nem igazán jó módszer: a beválasztott változók sorrendje nagyon számít. Rosszabb, mint a kritériumra épülő módszerek. Manuális változó szelekcióra használható. drop1(model,test="f")

46 Automatikus változó szelekció > mod5.lm <- step(mod4.lm, trace = 0) > anova(mod5.lm) Analysis of Variance Table Response: PUPAMASS Df Sum Sq Mean Sq F value Pr(>F) FOOD e-14 Residuals

47 Két modell összehasonlítása > anova(mod4.lm, mod5.lm) Analysis of Variance Table Model 1: PUPAMASS ~ FOOD * TEMPR + STARTMASS Model 2: PUPAMASS ~ FOOD Res.Df RSS Df Sum of Sq F Pr(>F) Nincs szignifikáns különbség a modellek között. Válasszuk a szűkebb modellt!

48 Manuális változó szelekció > drop1(mod4.lm, test = "F") Single term deletions Model: PUPAMASS ~ FOOD * TEMPR + STARTMASS Df Sum of Sq RSS AIC F value Pr(F) <none> STARTMASS e FOOD:TEMPR e

49 Konfidencia-intervallumok Tartományok a paraméterek lehetséges értékeire. A hatásnagyságok becslésére hasznosabb, mint a p-érték. A p-értékek a statisztikai szignifikanciát mutatják, nem pedig a gyakorlati jelentőséget. > confint(mod4.lm) 2.5 % 97.5 % (Intercept) FOODlimited TEMPRheated TEMPRroom STARTMASS FOODlimited:TEMPRheated FOODlimited:TEMPRroom

50 Diagnosztika A lineáris modell feltételeinek ellenőrzése. Korrekt-e a modell szisztematikus része (linearitás)? A modell véletlen részét (ɛ) tekintve: konstans variancia, korrelálatlanság, normalitás. Torzító pontok keresése (olyan pontok, amelyeknek a többi pontnál sokkal nagyobb hatása van az illesztett modellre).

51 Diagnosztikus módszerek Lehetnek numerikusak vagy grafikusak. Általában a grafikus módszereket preferáljuk, mert informatívabbak. reziduális ábrák, normalitást ellenőrző ábrák. Gyakorlatilag lehetetlen megállapítani egy modellről, hogy teljesen korrekt-e. A diagnosztikák célja: leellenőrizni, hogy a modell nem durván rossz-e. Több figyelmet kell fordítani arra, hogy ne kövessünk el nagy hibákat, mint arra, hogy a modellünk optimális-e. Négy hasznos ábra: plot(model)

52 Diagnosztikus ábrák Residuals Residuals vs Fitted Standardized residuals Normal Q Q Fitted values Theoretical Quantiles Standardized residuals Scale Location Standardized residuals Residuals vs Leverage Cook's distance Fitted values Leverage

53 Illeszkedés ellenőrzése >plot(mod4.lm,1,pch=20) Residuals Residuals vs Fitted Fitted values lm(pupamass ~ FOOD * TEMPR + STARTMASS)

54 Reziduumok normalitása >plot(mod4.lm,2,pch=20) Normal Q Q Standardized residuals Theoretical Quantiles lm(pupamass ~ FOOD * TEMPR + STARTMASS)

55 A variancia állandóságának ellenőrzése >plot(mod4.lm,3,pch=20) Fitted values Standardized residuals lm(pupamass ~ FOOD * TEMPR + STARTMASS) Scale Location

56 Torzító pontok keresése >plot(mod4.lm,5,pch=20) Residuals vs Leverage 33 Standardized residuals Cook's distance Leverage lm(pupamass ~ FOOD * TEMPR + STARTMASS)

57 Hogy detektáljuk a problémákat? Illeszkedés ellenőrzése: A reziduumokban nem lehet trend (y = 0). Ha van, meg kell változtatni a modellt (transzformáció, nemlineáris modell etc). Reziduumok normalitása: QQ-ábra. A reziduumokat az "ideális" normális eloszlású megfigyelésekhez hasonlítjuk. Normális eloszlás esetén a pontok lineáris trendet követnek (y = x). Egyébként ferdeséget jeleznek. Scale-location ábra: a variancia homogenitását lehet vele ellenőrizni.

58 Hogy detektáljuk a problémákat? Residuals vs. Leverage ábra: Torzító pontok keresése. A pontoknak az adott Cook távolság (Cook s distance) szinteken belül kell lennie. A számozott pontok lehetnek gyanúsak. Cook-féle távolság: az illeszkedés megváltozásának standardizált mértéke, ha az adott megfigyelést kivesszük az adatok közül.

59 Cook s distance plot >plot(mod4.lm,4,pch=20) Cook's distance Cook's distance Obs. number lm(pupamass ~ FOOD * TEMPR + STARTMASS)

60 Lineáris modell - korlátok Nagyon sok kapcsolatot nem írható le egyszerű lineáris modellel, mivel a függő változó lehet nem folytonos (és nem normális) eloszlású (pl. gyakoriságok, bináris adatok); a magyarázó változók hatása a függő változóra lehet, hogy nem lineáris; a megfigyelési egységek lehet, hogy nem függetlenek; a variancia lehet, hogy nem konstans.

61 Általánosított lineáris modellek (Generalized Linear Models) Az általános lineáris modell általánosítása: Megengedi, hogy az eloszlás nem normális legyen (pl. Poisson, binomiális ill., multinomiális (exponenciális eloszláscsalád)). A variancia állandóságának feltétele sem olyan szigorú, mint a hagyományos lineáris modelleknél.

62 Hogy általánosít ez a módszer? A függő változót most is a magyarázó változók lineáris kombinációjából becsüljük. A függő és magyarázó változók egy ún. link függvénnyel vannak összekapcsolva: η = β 0 + β 1 X 1 + β 2 X β k X k, lineáris egyenlet, ahol η lineáris prediktor, X magyarázó változók, β együtthatók. Maximum likelihood (ML) módszerrel illesztünk. g(y ) = η link függvény. glm(formula, family = gaussian,...) Súgó a függvény családról:?family

63 Gyakorisági adatok regressziója (count regression) A függő változó gyakorisági adat (pozitív egész). Ha az összes lehetőség egy adott korlátos szám, akkor binomiális modellt használunk. Van-nincs (0-1) adatok esetén a binomiális modell használatos (logisztikus regresszió). Ha a gyakoriságok elegendően nagyok, akkor az általános lineáris modell is jó lehet. Egyéb esetekben a Poisson és - kevésbé gyakran - a negatív binomiális modell használható.

64 Poisson regresszió Ha Y Poisson eloszlású µ > 0 várható értékkel, akkor: P (Y = y) = eµ µ y, y = 0, 1, 2,... y! E(Y ) = var(y ) = µ.

65 Honnan származhatnak Poisson-eloszlású adatok? Ha a gyakoriságok egy előre rögzített számú megfigyelésből származnak, akkor a függő változót binomiálisként modellezhetjük. Kis siker valószínűségek, és nagyszámú összes lehetőség esetén alkalmazhatjuk a Poisson közelítést. (Pl. ritka incidenciája egy adott fajnak egy földrajzi területen.) Ha gyakoriságokat számolunk egy adott időintervallumban, területen, térrészben, anyagmennyiségben, és a siker valószínűsége arányos az intervallum hosszával, térrész térfogatával stb., és független más eseményektől. (Pl. bejövő telefonhívások, földrengések száma stb.) Fontos: Poisson-eloszlású véletlen változók összege is Poisson. (Hasznos, ha csak aggregált adataink vannak.)

66 Földhasználati példa 36 mintavételi terület esetén vannak adataink a következőkről: Weedcover Az adott transzekt teljes gyomborítottsága százalékosan. Totspeciesnb A gyomnövény fajok száma. N input Éves nitrogén bevitel. Transectpos A transzekt elhelyezkedése a földterületen. 0 - a transzekt közvetlenül a terület szélén helyezkedik el, 1 - belül van. Transect pair Ugyanahhoz a földhöz tartozó transzekt párok azonosítója.

67 Földhasználati példa Noncrop area A tanulmányozott transzekt körül húzott 500 m sugarú körbe eső nem művelt terület százalékos aránya (főleg füves terület, de lehet erdős, beépített, mocsaras vagy nyílt vizes terület). Modellezni szeretnénk a gyomnövény fajok számát és a gyomborítottságot a nitrogén bevitel, a nem művelt terület aránya és a transzekt pozíció függvényében.

68 Az adatok struktúrája > str(land) data.frame : 42 obs. of 10 variables: $ SampleArea : Factor w/ 42 levels "AG30E ","AG30I ",..: $ Weedcover : int $ Totspeciesnb : int $ Intensity : int $ N_input : int $ Herbicide_use: int $ Transectpos : Factor w/ 2 levels "0","1": $ Transect_pair: int $ Noncrop_area : int $ Farmer : Factor w/ 5 levels "AG","ET","NL",..:

69 Density plot >plot(density(totspeciesnb)) density.default(x = Totspeciesnb) Density N = 42 Bandwidth = 4.453

70 Boxplot >plot(totspeciesnb Transectpos) Totspeciesnb Transectpos

71 Hegedűábra >vioplot(totspeciesnb[transectpos==0],totspeciesnb[transectpos== col="white")

72 Szórásdiagram >plot(totspeciesnb Noncrop area) Noncrop_area Totspeciesnb

73 Feltételes szórásdiagram >coplot(totspeciesnb Noncrop areatransectpos,pch=20) Noncrop_area Totspeciesnb 0 1 Given : Transectpos

74 Interakciós ábra >interaction.plot(as.factor(n-input),transectpos,totspeciesnb) mean of Totspeciesnb Transectpos as.factor(n_input)

75 Lineáris modell > mod1.lm <- lm(totspeciesnb ~ N_input * Transectpos + + Noncrop_area) > summary(mod1.lm) Call: lm(formula = Totspeciesnb ~ N_input * Transectpos + Noncrop_area) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(>t) (Intercept) e-09 N_input Transectpos Noncrop_area N_input:Transectpos Residual standard error: on 37 degrees of freedom Multiple R-Squared: , Adjusted R-squared: F-statistic: on 4 and 37 DF, p-value: 1.172e-06

76 Reziduum vs. becsült érték ábra >plot(mod1.lm,1,pch=20) Fitted values Residuals lm(totspeciesnb ~ N_input * Transectpos + Noncrop_area) Residuals vs Fitted

77 Normalitás vizsgálat (Normal QQ-plot) >plot(mod1.lm,2) Theoretical Quantiles Standardized residuals lm(totspeciesnb ~ N_input * Transectpos + Noncrop_area) Normal Q Q

78 Szórás-becsült érték ábra (Scale-location plot) >plot(mod1.lm,3,pch=20) Fitted values Standardized residuals lm(totspeciesnb ~ N_input * Transectpos + Noncrop_area) Scale Location

79 Problémák Enyhén nemlineáris trend. Nem konstans variancis. Enyhén nem normális eloszlású hibatag. Próbáljuk meg transzformálni az adatokat, pl. logaritmus transzformáció!

80 Lineáris modell log transzformált függő változóval > mod2.lm <- lm(log(totspeciesnb + 1) ~ N_input * Transectpos + + Noncrop_area) > summary(mod2.lm) Call: lm(formula = log(totspeciesnb + 1) ~ N_input * Transectpos + Noncrop_area) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(>t) (Intercept) 3.406e e < 2e-16 N_input e e Transectpos e e Noncrop_area 4.777e e N_input:Transectpos e e Residual standard error: on 37 degrees of freedom Multiple R-Squared: , Adjusted R-squared: F-statistic: on 4 and 37 DF, p-value: 2.685e-07

81 Reziduum vs. becsült érték ábra >plot(mod2.lm,1,pch=20) Fitted values Residuals lm(log(totspeciesnb + 1) ~ N_input * Transectpos + Noncrop_area) Residuals vs Fitted

82 Normal QQ-plot >plot(mod2.lm,2,pch=20) Theoretical Quantiles Standardized residuals lm(log(totspeciesnb + 1) ~ N_input * Transectpos + Noncrop_area) Normal Q Q

83 Scale-location plot >plot(mod2.lm,3,pch=20) Fitted values Standardized residuals lm(log(totspeciesnb + 1) ~ N_input * Transectpos + Noncrop_area) Scale Location

84 A két modell összehasonlítása > summary(mod1.lm)$adj.r.squared [1] > summary(mod2.lm)$adj.r.squared [1] Nem nagy javulás. Jobb illeszkedés. Nehézkes interpretáció.

85 Poisson modell > mod1.pois <- glm(totspeciesnb ~ N_input * Transectpos + + Noncrop_area, family = poisson) > mod1.pois Call: glm(formula = Totspeciesnb ~ N_input * Transectpos + Noncrop_area Coefficients: (Intercept) N_input Transectpos Noncrop_area N_input:Transectpos Degrees of Freedom: 41 Total (i.e. Null); Null Deviance: Residual Deviance: AIC: Residual

86 summary(mod1.pois) Call: glm(formula = Totspeciesnb ~ N_input * Transectpos + Noncrop_area, family = poisson) Deviance Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error z value Pr(>z) (Intercept) < 2e-16 N_input Transectpos e-08 Noncrop_area N_input:Transectpos (Dispersion parameter for poisson family taken to be 1) Null deviance: on 41 degrees of freedom Residual deviance: on 37 degrees of freedom AIC: Number of Fisher Scoring iterations: 4

87 Hatások tesztelése A summary(model) közelítő Wald teszteket csinál. Az SE-k lehet, hogy túlbecsültek, és így elvesztünk szignifikáns eredményeket. A deviancia alapú tesztek jobbak. A deviancia azt méri, hogy a modell mennyire van közel a tökéleteshez. (A lineáris modell esetén: deviancia = RSS.) Chi 2 eloszlású. A determinációs együttható (R-négyzet a lineáris modelleknél): > 1-77/198 [1]

88 Anova a Poisson modellre > anova(mod1.pois, test = "Chi") Analysis of Deviance Table Model: poisson, link: log Response: Totspeciesnb Terms added sequentially (first to last) Df Deviance Resid. Df Resid. Dev P(>Chi) NULL N_input e-05 Transectpos e-22 Noncrop_area N_input:Transectpos

89 Poisson modell interakciókkal > mod2.pois <- glm(totspeciesnb ~ (N_input + Noncrop_area + + Transectpos)^2, family = poisson) > anova(mod2.pois, test = "Chi") Analysis of Deviance Table Model: poisson, link: log Response: Totspeciesnb Terms added sequentially (first to last) Df Deviance Resid. Df Resid. Dev P(>Chi) NULL N_input e-05 Noncrop_area Transectpos e-22 N_input:Noncrop_area N_input:Transectpos Noncrop_area:Transectpos

90 A két modell összehasonlítása > anova(mod1.pois, mod2.pois, test = "Chi") Analysis of Deviance Table Model 1: Totspeciesnb ~ N_input * Transectpos + Noncrop_area Model 2: Totspeciesnb ~ (N_input + Noncrop_area + Transectpos)^2 Resid. Df Resid. Dev Df Deviance P(>Chi)

91 Modell szelekció > drop1(mod2.pois, test = "Chi") Single term deletions Model: Totspeciesnb ~ (N_input + Noncrop_area + Transectpos)^2 Df Deviance AIC LRT Pr(Chi) <none> N_input:Noncrop_area N_input:Transectpos Noncrop_area:Transectpos

92 Diagnosztikus ábrák Predicted values Residuals Residuals vs Fitted Theoretical Quantiles Std. deviance resid. Normal Q Q Predicted values Std. deviance resid. Scale Location Leverage Std. deviance resid. Cook's distance Residuals vs Leverage

93 Illeszkedés ellenőrzése >plot(mod1.pois,1,pch=20) Predicted values Residuals glm(totspeciesnb ~ N_input * Transectpos + Noncrop_area) Residuals vs Fitted

94 Parciális reziduális ábrák >library(gam) > par(mfrow=c(1,3),pty="s") >plot.gam(mod1.pois,resid=t,pch=20) >par(mfrow=c(1,1)) N_input partial for N_input partial for Transectpos Transectpos Noncrop_area partial for Noncrop_area

95 Illeszkedés ellenőrzése Az ábrák majdnem ugyanúgy használhatók, mint a lineáris modell esetén. A normalitás általában nem teljesül tökéletesen. A parciális reziduálisok ellenőrzésére a plot.gam használható a gam csomagból.

96 Túlszóródás Poisson változó esetén az átlag és a variancia megegyezik. A variancia függvényt az átlag teljesen meghatározza, nem szabad paraméter. Az ún. diszperziós paraméter 1. Gyakran túlságosan szigorú ez a feltétel. Gyakran túlszóródás (overdispersion) van. A túlszóródást a reziduális deviancia és a hozzá tartozó szabadsági fokból határozható meg. Többé-kevésbé egynelőnek kell lenniük. Ha nagyon különbözőek, akkor az ún. quasilikelihood módszert használhatjuk, amellyel a modellparaméterek a hiba eloszlás teljes ismerete nélkül határozhatók meg.

97 A diszperziós paraméter ellenőrzése > deviance(mod1.pois)/df.residual(mod1.pois) [1]

98 Null deviance: on 41 degrees of freedom Residual deviance: on 37 degrees of freedom Poisson modell túlszóródással > mod1.qpois <- glm(totspeciesnb ~ N_input * Transectpos + + Noncrop_area, family = quasipoisson) > summary(mod1.qpois) Call: glm(formula = Totspeciesnb ~ N_input * Transectpos + Noncrop_area, family = quasipoisson) Deviance Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(>t) (Intercept) < 2e-16 N_input Transectpos Noncrop_area N_input:Transectpos (Dispersion parameter for quasipoisson family taken to be )

Segítség az outputok értelmezéséhez

Segítség az outputok értelmezéséhez Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró

Részletesebben

1., Egy területen véletlenszerűen kihelyezet kvadrátokban megszámlálták az Eringium maritimum (tengerparti ördögszekér) egyedeit.

1., Egy területen véletlenszerűen kihelyezet kvadrátokban megszámlálták az Eringium maritimum (tengerparti ördögszekér) egyedeit. 1., Egy területen véletlenszerűen kihelyezet kvadrátokban megszámlálták az Eringium maritimum (tengerparti ördögszekér) egyedeit. 1., Határozza meg az átlagos egyedszámot és a szórást. Egyedszám (x i )

Részletesebben

π = P(y bekövetkezik)

π = P(y bekövetkezik) Biomatematika (SZIE ÁOTK, 2011. tavasz) 1 A logit modell (=logisztikus regresszió) Ha a függő változó (y ) dichotom (=két lehetséges értéke van, pl. túlélés-halál, siker-kudarc stb.), akkor általában azt

Részletesebben

Logisztikus regresszió

Logisztikus regresszió Logisztikus regresszió Bekövetkezés esélye Valószínűség (P): 0 és 1 közötti valós szám, az esemény bekövetkezésének esélyét fejezi ki. Fej dobásának esélye: 1:2 = 1 2 = 0,5. Odds/esélyérték (O): a tét

Részletesebben

Korreláció és lineáris regresszió

Korreláció és lineáris regresszió Korreláció és lineáris regresszió Két folytonos változó közötti összefüggés vizsgálata Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi Fizika és Statisztika I. előadás 2016.11.02.

Részletesebben

ISMÉTELT MÉRÉSES MODELLEK R-KÖRNYEZETBEN

ISMÉTELT MÉRÉSES MODELLEK R-KÖRNYEZETBEN ISMÉTELT MÉRÉSES MODELLEK R-KÖRNYEZETBEN Virág Katalin Szegedi Tudományegyetem Általános Orvostudományi Kar, Orvosi Fizikai és Orvosi Informatikai Intézet A kutatás a TÁMOP 4.2.4.A/2-11-1-2012-0001 azonosító

Részletesebben

Varianciaanalízis 4/24/12

Varianciaanalízis 4/24/12 1. Feladat Egy póker kártya keverő gép a kártyákat random módon választja ki. A vizsgálatban 1600 választott kártya színei az alábbi gyakorisággal fordultak elő. Vizsgáljuk meg, hogy a kártyák kiválasztása

Részletesebben

Likelihood, deviancia, Akaike-féle információs kritérium

Likelihood, deviancia, Akaike-féle információs kritérium Többváltozós statisztika (SZIE ÁOTK, 2011. ősz) 1 Likelihood, deviancia, Akaike-féle információs kritérium Likelihood függvény Az adatokhoz paraméteres modellt illesztünk. A likelihood függvény a megfigyelt

Részletesebben

Többváltozós lineáris regressziós modell feltételeinek

Többváltozós lineáris regressziós modell feltételeinek Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p

Részletesebben

Több laboratórium összehasonlítása, körmérés

Több laboratórium összehasonlítása, körmérés Több oratórium összehasonlítása, körmérés colorative test, round robin a rendszeres hibák ellenőrzése, számszerűsítése Statistical Manual of AOAC, W. J. Youden: Statistical Techniques for Colorative Tests,

Részletesebben

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás

Részletesebben

Több valószínűségi változó együttes eloszlása, korreláció

Több valószínűségi változó együttes eloszlása, korreláció Tartalomjegzék Előszó... 6 I. Valószínűségelméleti és matematikai statisztikai alapok... 8 1. A szükséges valószínűségelméleti és matematikai statisztikai alapismeretek összefoglalása... 8 1.1. Alapfogalmak...

Részletesebben

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése 4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

Idősoros elemzés. Ferenci Tamás, ft604@hszk.bme.hu 2009. január 7.

Idősoros elemzés. Ferenci Tamás, ft604@hszk.bme.hu 2009. január 7. Idősoros elemzés Ferenci Tamás, ft604@hszk.bme.hu 2009. január 7. A felhasznált adatbázisról Elemzésemhez a tanszéki honlapon rendelkezésre bocsátott TimeSeries.xls idősoros adatgyűjtemény egyik idősorát,

Részletesebben

Idősoros elemzés minta

Idősoros elemzés minta Idősoros elemzés minta Ferenci Tamás, tamas.ferenci@medstat.hu A felhasznált adatbázisról Elemzésemhez a francia frank árfolyamának 1986.01.03. és 1993.12.31. közötti értékeit használtam fel, mely idősorban

Részletesebben

Többtényezős regresszió (az adatelemzésben): log(ϑ i ) közelítése a i + b 1,i X 1 + b 2,i X b J,i X J alakban,

Többtényezős regresszió (az adatelemzésben): log(ϑ i ) közelítése a i + b 1,i X 1 + b 2,i X b J,i X J alakban, Kabos: Adatelemzés GLM példák-1 Többtényezős regresszió (az adatelemzésben): Y közelítése b 1 X 1 + b 2 X 2 +... + b J X J alakban, y n = b 1 x n,1 + b 2 x n,2 +... + b J x n,j + ε n, n = 1, 2,.., N, ahol

Részletesebben

Biometria az orvosi gyakorlatban. Regresszió Túlélésanalízis

Biometria az orvosi gyakorlatban. Regresszió Túlélésanalízis SZDT-09 p. 1/36 Biometria az orvosi gyakorlatban Regresszió Túlélésanalízis Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Logisztikus regresszió

Részletesebben

STATISZTIKA PRÓBAZH 2005

STATISZTIKA PRÓBAZH 2005 STATISZTIKA PRÓBAZH 2005 1. FELADATSOR: számítógépes feladatok (még bővülni fog számítógép nélkül megoldandó feladatokkal is) Használjuk a Dislexia Excel fájlt (internet: http:// starts.ac.uk)! 1.) Hasonlítsuk

Részletesebben

Matematikai statisztika c. tárgy oktatásának célja és tematikája

Matematikai statisztika c. tárgy oktatásának célja és tematikája Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:

Részletesebben

2012. április 18. Varianciaanaĺızis

2012. április 18. Varianciaanaĺızis 2012. április 18. Varianciaanaĺızis Varianciaanaĺızis (analysis of variance, ANOVA) Ismételt méréses ANOVA Kérdések: (1) van-e különbség a csoportok között (t-próba általánosítása), (2) van-e hatása a

Részletesebben

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége [GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell

Részletesebben

AZ ÁLTALÁNOSÍTOTT LINEÁRIS MODELL ÉS BIZTOSÍTÁSI ALKALMAZÁSAI

AZ ÁLTALÁNOSÍTOTT LINEÁRIS MODELL ÉS BIZTOSÍTÁSI ALKALMAZÁSAI MÓDSZERTANI TANULMÁNYOK AZ ÁLTALÁNOSÍTOTT LINEÁRIS MODELL ÉS BIZTOSÍTÁSI ALKALMAZÁSAI A biztosítási károk alakulásának modellezésére jól alkalmazható az általánosított lineáris modell, amely alkalmas arra,

Részletesebben

: az i -ik esélyhányados, i = 2, 3,..I

: az i -ik esélyhányados, i = 2, 3,..I Kabos: Adatelemzés Ordinális logisztikus regresszió-1 Többtényezős regresszió (az adatelemzésben): Y közelítése b 1 X 1 + b 2 X 2 +... + b J X J alakban, y n = b 1 x n,1 + b 2 x n,2 +... + b J x n,j +

Részletesebben

Döntési fák. (Klasszifikációs és regressziós fák: (Classification And Regression Trees: CART ))

Döntési fák. (Klasszifikációs és regressziós fák: (Classification And Regression Trees: CART )) Döntési fák (Klasszifikációs és regressziós fák: (Classification And Regression Trees: CART )) Rekurzív osztályozó módszer, Klasszifikációs és regressziós fák folytonos, kategóriás, illetve túlélés adatok

Részletesebben

Diszkriminancia-analízis

Diszkriminancia-analízis Diszkriminancia-analízis az SPSS-ben Petrovics Petra Doktorandusz Diszkriminancia-analízis folyamata Feladat Megnyitás: Employee_data.sav Milyen tényezőktől függ a dolgozók beosztása? Nem metrikus Független

Részletesebben

Heckman modell. Szelekciós modellek alkalmazásai.

Heckman modell. Szelekciós modellek alkalmazásai. Heckman modell. Szelekciós modellek alkalmazásai. Mikroökonometria, 12. hét Bíró Anikó A tananyag a Gazdasági Versenyhivatal Versenykultúra Központja és a Tudás-Ökonómia Alapítvány támogatásával készült

Részletesebben

Bevezetés az ökonometriába

Bevezetés az ökonometriába Bevezetés az ökonometriába Többváltozós lineáris regresszió: modellszelekció Ferenci Tamás MSc 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Negyedik előadás, 2010. október

Részletesebben

Biostatisztika Összefoglalás

Biostatisztika Összefoglalás Biostatisztika Összefoglalás A biostatisztika vizsga A biostatisztika vizsga az Orvosi fizika és statisztika I. fizika vizsgájával egy napon történik. A vizsga keretében 30 perc alatt 0 kérdésre kell válaszolni

Részletesebben

Bevezetés az ökonometriába

Bevezetés az ökonometriába Bevezetés az ökonometriába Többváltozós regresszió: nemlineáris modellek Ferenci Tamás MSc 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Hetedik előadás, 2010. november 10.

Részletesebben

Adatok statisztikai értékelésének főbb lehetőségei

Adatok statisztikai értékelésének főbb lehetőségei Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,

Részletesebben

Korreláció, regresszió. Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet

Korreláció, regresszió. Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet Korreláció, regresszió Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet Két folytonos változó közötti kapcsolat Tegyük fel, hogy 6 hallgató a következő válaszokat adta egy felmérés

Részletesebben

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell Példa STATISZTIKA Egy gazdálkodó k kukorica hibrid termesztése között választhat. Jelöljük a fajtákat A, B, C, D-vel. Döntsük el, hogy a hibridek termesztése esetén azonos terméseredményre számíthatunk-e.

Részletesebben

Több diszkrét kimenet multinomiális és feltételes logit modellek

Több diszkrét kimenet multinomiális és feltételes logit modellek Több diszkrét kimenet multinomiális és feltételes logit modellek Mikroökonometria, 9. hét Bíró Anikó A tananyag a Gazdasági Versenyhivatal Versenykultúra Központa és a Tudás-Ökonómia Alapítvány támogatásával

Részletesebben

Biostatisztika VIII. Mátyus László. 19 October

Biostatisztika VIII. Mátyus László. 19 October Biostatisztika VIII Mátyus László 19 October 2010 1 Ha σ nem ismert A gyakorlatban ritkán ismerjük σ-t. Ha kiszámítjuk s-t a minta alapján, akkor becsülhetjük σ-t. Ez további bizonytalanságot okoz a becslésben.

Részletesebben

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 7. Előadás Egyenletes eloszlás Binomiális eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell /56 Matematikai statisztika Reprezentatív mintavétel

Részletesebben

Mérési adatok illesztése, korreláció, regresszió

Mérési adatok illesztése, korreláció, regresszió Mérési adatok illesztése, korreláció, regresszió Korreláció, regresszió Két változó mennyiség közötti kapcsolatot vizsgálunk. Kérdés: van-e kapcsolat két, ugyanabban az egyénben, állatban, kísérleti mintában,

Részletesebben

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 15. Nemparaméteres próbák Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date: November

Részletesebben

Gyakorlat: Sztochasztikus idősor-elemzés alapfogalmai II. Egységgyök-folyamatok és tesztek. Dr. Dombi Ákos

Gyakorlat: Sztochasztikus idősor-elemzés alapfogalmai II. Egységgyök-folyamatok és tesztek. Dr. Dombi Ákos Gyakorlat: Sztochasztikus idősor-elemzés alapfogalmai II. Egységgyök-folyamatok és tesztek Dr. Dombi Ákos (dombi@finance.bme.hu) ESETTANULMÁNY 1. Feladat: OTP részvény átlagárfolyamának (Y=AtlAr) stacionaritás

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:

Részletesebben

Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg

Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg LMeasurement.tex, March, 00 Mérés Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg a mérendő mennyiségben egy másik, a mérendővel egynemű, önkényesen egységnek választott

Részletesebben

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( ) Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:

Részletesebben

Esetelemzések az SPSS használatával

Esetelemzések az SPSS használatával Esetelemzések az SPSS használatával 1. Tekintsük az spearman.sav állományt, amely egy harminc tehenet számláló állomány etetés- és fejéskori nyugtalansági sorrendjét tartalmazza. Vizsgáljuk meg, hogy van-e

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

Biomatematika 13. Varianciaanaĺızis (ANOVA)

Biomatematika 13. Varianciaanaĺızis (ANOVA) Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 13. Varianciaanaĺızis (ANOVA) Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date:

Részletesebben

Hátrányok: A MANOVA elvégzésének lépései:

Hátrányok: A MANOVA elvégzésének lépései: MANOVA Tulajdonságok: Hasonló az ANOVÁ-hoz Több függő változó A függő változók korreláltak és a lineáris kombinációnak értelme van. Azt teszteli, hogy k populációban a függő változók egy lineáris kombinációjának

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.

Részletesebben

Túlélés analízis. Probléma:

Túlélés analízis. Probléma: 1 Probléma: Túlélés analízis - Túlélési idő vizsgálata speciális vizsgálati módszereket igényel (pl. két csoport között az idők átlagait nem lehet direkt módon összehasonlítani) - A túlélési idő nem normális

Részletesebben

Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat

Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi fizika és statisztika I. előadás 2016.11.09 Orvosi

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.22. Valószínűségi változó Véletlentől függő számértékeket (értékek sokasága) felvevő változókat valószínűségi változóknak nevezzük(jelölés: ξ, η, x). (pl. x =

Részletesebben

Grafikonok az R-ben március 7.

Grafikonok az R-ben március 7. Normális eloszlás Grafikonok az R-ben 2012. március 7. Vendégelőadás módosított és végleges időpontja 2012. április 10., 3 óra. Új könyv a tankönyvtárban! Dalgaard, Peter (2008). Introductory statistics

Részletesebben

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat

Részletesebben

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Factor Analysis

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Factor Analysis Factor Analysis Factor analysis is a multiple statistical method, which analyzes the correlation relation between data, and it is for data reduction, dimension reduction and to explore the structure. Aim

Részletesebben

6. Előadás. Vereb György, DE OEC BSI, október 12.

6. Előadás. Vereb György, DE OEC BSI, október 12. 6. Előadás Visszatekintés: a normális eloszlás Becslés, mintavételezés Reprezentatív minta A statisztika, mint változó Paraméter és Statisztika Torzítatlan becslés A mintaközép eloszlása - centrális határeloszlás

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt

Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt Galbács Gábor KIUGRÓ ADATOK KISZŰRÉSE STATISZTIKAI TESZTEKKEL Dixon Q-tesztje Gyakori feladat az analitikai kémiában, hogy kiugrónak

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.08. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)

Részletesebben

Matematikai geodéziai számítások 6.

Matematikai geodéziai számítások 6. Matematikai geodéziai számítások 6. Lineáris regresszió számítás elektronikus távmérőkre Dr. Bácsatyai, László Matematikai geodéziai számítások 6.: Lineáris regresszió számítás elektronikus távmérőkre

Részletesebben

Esetelemzés az SPSS használatával

Esetelemzés az SPSS használatával Esetelemzés az SPSS használatával A gepj.sav fileban négy különböző típusú, összesen 80 db gépkocsi üzemanyag fogyasztási adatai találhatók. Vizsgálja meg, hogy befolyásolja-e az üzemanyag fogyasztás mértékét

Részletesebben

Khi-négyzet eloszlás. Statisztika II., 3. alkalom

Khi-négyzet eloszlás. Statisztika II., 3. alkalom Khi-négyzet eloszlás Statisztika II., 3. alkalom A khi négyzet eloszlást (Pearson) leggyakrabban kategorikus adatok elemzésére használjuk. N darab standard normális eloszlású változó négyzetes összegeként

Részletesebben

LINEÁRIS REGRESSZIÓ (I. MODELL) ÉS KORRELÁCIÓ FELADATOK

LINEÁRIS REGRESSZIÓ (I. MODELL) ÉS KORRELÁCIÓ FELADATOK LINEÁRIS REGRESSZIÓ (I. MODELL) ÉS KORRELÁCIÓ FELADATOK 2004 november 29. 1.) Lisztbogarak súlyvesztése 9 lisztbogár-csapat súlyát megmérték, (mindegyik 25 bogárból állt, mert egyenként túl kis súlyúak

Részletesebben

11. elıadás ( lecke) 21. lecke. Korreláció és Regresszió (folytatás) Lineáris-e a tendencia? Linearizálható nem-lineáris regressziós függvények

11. elıadás ( lecke) 21. lecke. Korreláció és Regresszió (folytatás) Lineáris-e a tendencia? Linearizálható nem-lineáris regressziós függvények Korreláció és Regresszió (folytatás) 11. elıadás (21-22. lecke) Lineáris-e a tendencia? Linearizálható nem-lineáris regressziós függvények 21. lecke Linearitás ellenırzésének egyéb lehetıségei Konfidencia

Részletesebben

Kutatásmódszertan és prezentációkészítés

Kutatásmódszertan és prezentációkészítés Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I

Részletesebben

III. Kvantitatív változók kapcsolata (korreláció, regresszió)

III. Kvantitatív változók kapcsolata (korreláció, regresszió) III. Kvantitatív változók kapcsolata (korreláció, regresszió) Tartalom Változók kapcsolata Kétdimenziós minta (pontdiagram) Regressziós előrejelzés (predikció) Korreláció Tanuló Kétdimenziós minta Tanulással

Részletesebben

Véletlenszám generátorok és tesztelésük HORVÁTH BÁLINT

Véletlenszám generátorok és tesztelésük HORVÁTH BÁLINT Véletlenszám generátorok és tesztelésük HORVÁTH BÁLINT Mi a véletlen? Determinisztikus vs. Véletlen esemény? Véletlenszám: számok sorozata, ahol véletlenszerűen követik egymást az elemek Pszeudo-véletlenszám

Részletesebben

Standardizálás, transzformációk

Standardizálás, transzformációk Standardizálás, transzformációk A transzformációk ugynúgy mennek, mint egyváltozós esetben. Itt még fontosabbak a linearitás miatt. Standardizálás átskálázás. Centrálás: kivonjuk minden változó átlagát,

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

Bemenet modellezése II.

Bemenet modellezése II. Bemenet modellezése II. Vidács Attila 2005. november 3. Hálózati szimulációs technikák, 2005/11/3 1 Kiszolgálási id k modellezése Feladat: Egy bemeneti modell felállítása egy egy kiszolgálós sorbanállási

Részletesebben

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból

Részletesebben

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika Bevezetés 1. előadás, 2015. február 11. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Heti 2 óra előadás + 2 óra

Részletesebben

Modellkiválasztás és struktúrák tanulása

Modellkiválasztás és struktúrák tanulása Modellkiválasztás és struktúrák tanulása Szervezőelvek keresése Az unsupervised learning egyik fő célja Optimális reprezentációk Magyarázatok Predikciók Az emberi tanulás alapja Általános strukturális

Részletesebben

Adatelemzés SAS Enterprise Guide használatával. Soltész Gábor solteszgabee[at]gmail.com

Adatelemzés SAS Enterprise Guide használatával. Soltész Gábor solteszgabee[at]gmail.com Adatelemzés SAS Enterprise Guide használatával Soltész Gábor solteszgabee[at]gmail.com Tartalom SAS Enterprise Guide bemutatása Kezelőfelület Adatbeolvasás Szűrés, rendezés Új változó létrehozása Elemzések

Részletesebben

Az állat becsült kor. teljes súly. teljes hossz orrtól. törzs hossza. pocak körkörös méret. hátsó láb hossza kör

Az állat becsült kor. teljes súly. teljes hossz orrtól. törzs hossza. pocak körkörös méret. hátsó láb hossza kör Korreláció- és regresszió-analízis Az X és Y véletlen változók között az alábbi ábrákon pozitív összefüggés nem lineáris összefüggés negatív összefüggés van Előfordulhat, hogy X és Y között van kapcsolat,

Részletesebben

STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai

STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai Változékonyság (szóródás) STATISZTIKA I. 5. Előadás Szóródási mutatók A középértékek a sokaság elemeinek értéknagyságbeli különbségeit eltakarhatják. A változékonyság az azonos tulajdonságú, de eltérő

Részletesebben

Ismételt méréses multifaktoriális varianciaanaĺızis (repeated measures MANOVA) 2012. szeptember 19.

Ismételt méréses multifaktoriális varianciaanaĺızis (repeated measures MANOVA) 2012. szeptember 19. Ismételt méréses multifaktoriális varianciaanaĺızis (repeated measures MANOVA) 2012. szeptember 19. Varianciaanaĺızis Adott egy parametrikus függő változó és egy vagy több kategoriális független változó.

Részletesebben

A valószínűségszámítás elemei

A valószínűségszámítás elemei A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:

Részletesebben

A maximum likelihood becslésről

A maximum likelihood becslésről A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának

Részletesebben

Populációbecslés és monitoring. Eloszlások és alapstatisztikák

Populációbecslés és monitoring. Eloszlások és alapstatisztikák Populációbecslés és monitoring Eloszlások és alapstatisztikák Eloszlások Az eloszlás megadja, hogy milyen valószínűséggel kapunk egy adott intervallumba tartozó értéket, ha egy olyan populációból veszünk

Részletesebben

Egyszempontos variancia analízis. Statisztika I., 5. alkalom

Egyszempontos variancia analízis. Statisztika I., 5. alkalom Statisztika I., 5. alkalom Számos t-próba versus variancia analízis Kreativitás vizsgálata -nık -férfiak ->kétmintás t-próba I. Fajú hiba=α Kreativitás vizsgálata -informatikusok -építészek -színészek

Részletesebben

Osztályozás, regresszió. Nagyméretű adathalmazok kezelése Tatai Márton

Osztályozás, regresszió. Nagyméretű adathalmazok kezelése Tatai Márton Osztályozás, regresszió Nagyméretű adathalmazok kezelése Tatai Márton Osztályozási algoritmusok Osztályozás Diszkrét értékkészletű, ismeretlen attribútumok értékének meghatározása ismert attribútumok értéke

Részletesebben

Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető!

Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető! BGF KKK Módszertani Intézeti Tanszéki Osztály Budapest, 2012.. Név:... Neptun kód:... Érdemjegy:..... STATISZTIKA II. VIZSGADOLGOZAT Feladatok 1. 2. 3. 4. 5. 6. Összesen Szerezhető pontszám 21 20 7 22

Részletesebben

Statisztikai szoftverek esszé

Statisztikai szoftverek esszé Statisztikai szoftverek esszé Dávid Nikolett Szeged 2011 1 1. Helyzetfelmérés Adott egy kölcsön.txt nevű adatfájl, amely információkkal rendelkezik az ügyfelek életkoráról, családi állapotáról, munkaviszonyáról,

Részletesebben

Kabos: Statisztika II. ROC elemzések 10.1. Szenzitivitás és specificitás a jelfeldolgozás. és ilyenkor riaszt. Máskor nem.

Kabos: Statisztika II. ROC elemzések 10.1. Szenzitivitás és specificitás a jelfeldolgozás. és ilyenkor riaszt. Máskor nem. Kabos: Statisztika II. ROC elemzések 10.1 ROC elemzések Szenzitivitás és specificitás a jelfeldolgozás szóhasználatával A riasztóberendezés érzékeli, ha támadás jön, és ilyenkor riaszt. Máskor nem. TruePositiveAlarm:

Részletesebben

A nyelvészeti kísérletekben egy személytől szinte mindig többféle. Ismert módszer az ismételt méréses ANOVA, ahol a független

A nyelvészeti kísérletekben egy személytől szinte mindig többféle. Ismert módszer az ismételt méréses ANOVA, ahol a független Kevert modellek Ismételt méréses varianciaanaĺızis A nyelvészeti kísérletekben egy személytől szinte mindig többféle információt szokás begyűjteni ismételt méréses módszerek. Ismert módszer az ismételt

Részletesebben

Reiczigel Jenő, 2006 1

Reiczigel Jenő, 2006 1 Reiczigel Jenő, 2006 1 Egytényezős (egyszempontos) varianciaelemzés k független minta (k kezelés vagy k csoport), a célváltozó minden csoportban normális eloszlású, a szórások azonosak, az átlagok vagy

Részletesebben

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó. 2010. június

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó. 2010. június GAZDASÁGSTATISZTIKA GAZDASÁGSTATISZTIKA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi

Részletesebben

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

Tárgy- és névmutató. C Cox & Snell R négyzet 357 Cramer-V 139, , 151, 155, 159 csoportok közötti korrelációs mátrix 342 csúcsosság 93 95, 102

Tárgy- és névmutató. C Cox & Snell R négyzet 357 Cramer-V 139, , 151, 155, 159 csoportok közötti korrelációs mátrix 342 csúcsosság 93 95, 102 Tárgy- és névmutató A a priori kontraszt 174 175 a priori kritérium 259, 264, 276 adatbevitel 43, 47, 49 52 adatbeviteli nézet (data view) 45 adat-elôkészítés 12, 37, 62 adatgyûjtés 12, 15, 19, 20, 23,

Részletesebben

Az OECD PISA adatbázis elemzése

Az OECD PISA adatbázis elemzése Az OECD PISA adatbázis elemzése A program Emlékeztető a múlt hétről A PISA val kapcsolatos honlapok tartalma és az online elérhető dokumentáció A PISA adatbázisának felépítése A PISA makróinak használata,

Részletesebben

Sztochasztikus kapcsolatok

Sztochasztikus kapcsolatok Sztochasztikus kapcsolatok Petrovics Petra PhD Hallgató Ismérvek közötti kapcsolat (1) Függvényszerű az egyik ismérv szerinti hovatartozás egyértelműen meghatározza a másik ismérv szerinti hovatartozást.

Részletesebben

Ökonometria. Logisztikus regresszió. Ferenci Tamás 1 Nyolcadik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék

Ökonometria. Logisztikus regresszió. Ferenci Tamás 1 Nyolcadik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék Ferenci Tamás 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Nyolcadik fejezet Tartalom V. esettanulmány 1 V. esettanulmány Csődelőrejelzés 2 Általános gondolatok 3 becslése

Részletesebben

Matematika gyógyszerészhallgatók számára. A kollokvium főtételei tanév

Matematika gyógyszerészhallgatók számára. A kollokvium főtételei tanév Matematika gyógyszerészhallgatók számára A kollokvium főtételei 2015-2016 tanév A1. Függvénytani alapfogalmak. Kölcsönösen egyértelmű függvények és inverzei. Alkalmazások. Alapfogalmak: függvény, kölcsönösen

Részletesebben

DÖNTÉSHOZATALI MODELLEZŐ ESZKÖZ TRANSZNACIONÁLIS ALKALMAZÁSA

DÖNTÉSHOZATALI MODELLEZŐ ESZKÖZ TRANSZNACIONÁLIS ALKALMAZÁSA STATISZTIKAI DÖNTÉSMEGALAPOZÁSI MODELL DÖNTÉSHOZATALI MODELLEZŐ ESZKÖZ TRANSZNACIONÁLIS ALKALMAZÁSA BUDAPEST, XVIII. KERÜLET, VECSÉS BUDAPEST, 2014 1 BUDAPEST XVIII. KERÜLET PESTSZENTLŐRINC-PESTSZENTIMRE

Részletesebben

Ökonometria. Dummy változók használata. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Hetedik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék

Ökonometria. Dummy változók használata. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Hetedik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék Dummy változók használata Ferenci Tamás 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Hetedik fejezet Tartalom IV. esettanulmány 1 IV. esettanulmány Uniós országok munkanélkülisége

Részletesebben

és az közös tanfolyama. Készült az AKCIÓ Osztrák-Magyar Alapítvány támogatásával (1999-2001)

és az közös tanfolyama. Készült az AKCIÓ Osztrák-Magyar Alapítvány támogatásával (1999-2001) A regressziószámítás gyakorlati kérdései A Szent István Egyetem Állatorvosi Kar Biomatematikai és Számítástechnikai Tanszék, Budapest és az Bécsi Állatorvosi Egyetem Biofizika és Biostatisztika Tanszék,

Részletesebben