A lineáris modellektől a nemlineáris kevert modellekig R-ben

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A lineáris modellektől a nemlineáris kevert modellekig R-ben"

Átírás

1 A lineáris modellektől a nemlineáris kevert modellekig R-ben Harnos Andrea Szent István Egyetem, Állatorvostudományi Kar Biomatematika Tanszék <Harnos.Andrea@gmail.com>

2 Tartalom Bevezetés Modellezés Az általános lineáris modell Általánosított lineáris modellek Additív modellek Kevert modellek Nemlineáris kevert modell

3 Sweave A kurzus diái Fritz Leisch s Sweave rendszerével készültek. Ebben a L A TEX és R kódok egyetlen fájlban szerkeszthetők. Egy Sweave fájlból (.Rnw kiterjesztésű általában) olyan L A TEX forrás fájl készíthető, amely tartalmazza az R inputokat, outputokat és ábrákat. Egy Sweave fájlból az R kódok automatikusan kinyerhetők.

4 A kurzus anyagához felhasznált könyvek és egyéb anyagok Brian S. Everitt, Torsten Hothorn: A Handbook of Statistical Analysis Using R (Chapman and Hall/CRC, 2006) José C. Pinheiro, Douglas M. Bates: Mixed Effects Models in S and S-PLUS (Springer, 2000) Julian J. Faraway: Extending the Linear Model with R. Generalized Linear, Mixed Effects and Nonparametric Regression Models (Chapman and Hall/CRC, 2006) Douglas M. Bates: Mixed-effects models in R. user!2006, Vienna, Austria, June 14, 2006

5 Felhasznált adatok pupa.txt mass.csv land-use.csv

6 Zerynthia polyxena

7 pupa.txt, mass.csv Az adatok egy olyan kísérletből származnak, amelyben lepkék (Zerynthia polyxena) imágóinak méret változatosságát vizsgálták. A lárvákat kísérletileg manipulált hőmérsékletű környezetben tartották. A KÍSÉRLET 1. faktor: TEMPR Fejlődő hernyók környezetének hőmérséklete hűtött szobahőmérséklet melegített 2. faktor: FOOD Táplálékellátottság limitált nem limitált A hernyók tömegét a kikeléstől a bábozódásig mérték. Referencia: J. Kis, F. Kassai, L. Peregovits (nem közölt adatok)

8 Változók BOX a dobozok azonosítója, amelyben a hernyókat tartották FOOD Táplálékellátottság limited limitált adlibitum nem limitált TEMPR A fejlődő hernyók környezetének hőmérséklete cooled hűtött room szobahőmérsékletű heated melegített PUPAMASS bábtömeg (g) 1 héttel a bábozódás után STARTMASS kezdeti tömeg (g)

9 Lepkebáb adatok > pupa[1:5, ] BOX FOOD TEMPR PUPAMASS STARTMASS limited cooled limited cooled limited cooled limited cooled limited cooled > str(pupa) data.frame : 58 obs. of 5 variables: $ BOX : int $ FOOD : Factor w/ 2 levels "adlibitum","limited": $ TEMPR : Factor w/ 3 levels "cooled","heated",..: $ PUPAMASS : num $ STARTMASS: num

10 land-use.csv Az adatok egy olyan kutatásból származnak, melyben a mezőgazdaság intenzifikációjának őszi gabona növényekre való hatását vizsgálták a Nagy-Alföldön, szikes talajú területeken. 5 gazda, illetve szövetkezet különböző intenzifikációval kezelt földjeit vizsgálták. 7 földhasználati intenzitás kategóriát állapítottak meg a felhasznált szerves- és műtrágya valamint növényvédő szer mennyisége alapján (kérdőíves felmérés a vizsgálatok előtt).

11 land-use.csv 3 őszi gabona földet vizsgáltak minden intenzitás szintből. Minden területen kijelöltek db 5 1 m-es egymástól 5 m-re egy vonalba eső kvadrátból álló transzektet, egyet a terület szélén, a másikat pedig 50 m-rel beljebb. Ezzel az elrendezéssel figyelembe vehető a lokális térbeli heterogenitás, ami nagyban meghatározza a biodiverzitási mintázatot. Referencia: Anikó Kovács, Péter Batáry, András Báldi, Andrea Harnos: Weed species richness and cover along an intensification gradient in Central-Hungarian cereal fields (a Weed Research-be beküldve)

12 Extenzíven használt gabonaföld

13 Extenzíven használt gabonaföld széle

14 Intenzíven használt gabonaföld

15 Intenzíven használt gabonaföld széle

16 Egy elemzés lépései A probléma hátterének megértése. Kérdésfeltevés. Elemző módszerek kiválasztása (adatgyűjtés előtt!) Adatgyűjtés. Az adatok elemezhető formába hozása! Exploratív elemzések (leíró statisztikák, grafikonok). A fő elemzés (modellezés). Interpretáció. Az eredmények közlése.

17 Milyen egy jó modell? Tisztáznia kell a dolgokat és nem összezavarni. Parszimóniára kell törekednie. Things should be made as simple as possible - but no simpler. A. Einstein Általánosítható. az eredményeknek nemcsak a mintánkra kell érvényesnek lennie, hanem arra a statisztikai populációra is, amelyből a megfigyeléseink származnak.

18 A modellezés folyamata Kiinduló modell illesztése. A modell redukálása. Modellellenőrzés. Modell megváltoztatása, ha szükséges. Új modell illesztése. Modellredukció. Modellellenőrzés....

19 Az általános lineáris modell General Linear Model Egy cél-, vagy függő változó (outcome, response) egyéb változóktól (effects) való függését vizsgáljuk. Az általános lineáris modell speciális esetei: Egyszerű Lineáris Regresszió Simple Linear Regression; ANOVA; ANCOVA; stb.

20 A modell általános felírása A lineáris modell: Y = β 0 + β 1 X 1 + β 2 X β p X p + ɛ, Vagy mátrix egyenlet formájában: Y = Xβ + ɛ, ahol Y célváltozó, β 0 intercept vagy konstans, β i ismeretlen paraméterek, X 1,..., X p magyarázó változók (prediktorok), lehetnek folytonosak (kovariánsok) vagy kvalitatív (faktor) változók. Indikátor (dummy) változók. ɛ A megfigyelt értékeknek és a modell szisztematikus részének a különbsége (mérési hiba vagy nem magyarázott hatás).

21 A modell praktikus alakja PUPAMASS = β 0 +β 1 STARTMASS+β 2 1 (TEMPR=high) + + β 3 1 (TEMPR=room) + ɛ β 4 1 (TEMPR=cooled) hiányzik (túlparaméterezettség) Wilkinson-Rogers formula: PUPAMASS = STARTMASS + TEMPR, ahol a TEMPR egy factor.

22 Modell formulák R-ben Általános forma: y tényező1+tényező2+... Interakció a:b, a*b=a+b+a:b Speciális tagok: offset, -1 (nincs konstans) Példák: y x y x1+x2+x3 y f1 y f1 f2 y f1 x - Egyszerű Lineáris Regresszió - Többszörös Lineáris Regresszió - Egytényezős ANOVA - Kéttényezős ANOVA interakcióval - ANCOVA

23 Lepkebáb adatok > pupa[1:5, ] BOX FOOD TEMPR PUPAMASS STARTMASS limited cooled limited cooled limited cooled limited cooled limited cooled > str(pupa) data.frame : 58 obs. of 5 variables: $ BOX : int $ FOOD : Factor w/ 2 levels "adlibitum","limited": $ TEMPR : Factor w/ 3 levels "cooled","heated",..: $ PUPAMASS : num $ STARTMASS: num

24 Változók BOX a dobozok azonosítója, amelyben a hernyókat tartották FOOD Táplálékellátottság limited limitált adlibitum nem limitált TEMPR A fejlődő hernyók környezetének hőmérséklete cooled hűtött room szobahőmérsékletű heated melegített PUPAMASS bábtömeg (g) 1 héttel a bábozódás után STARTMASS kezdeti tömeg (g)

25 Exploratív elemzések 1. lépés: Adatok leíró statisztikái és grafikonjai. Numerikus áttekintés: > summary(pupa) BOX FOOD TEMPR PUPAMASS Min. : 39.0 adlibitum:32 cooled:19 Min. : st Qu.: limited :26 heated:22 1st Qu.: Median : room :17 Median : Mean : Mean : rd Qu.: rd Qu.: Max. : Max. : STARTMASS Min. : st Qu.: Median : Mean : rd Qu.: Max. :

26 Grafikus sűrűségfüggvény becslések Hisztogram: durva becslés - érzékeny az osztályintervallumok megválasztására. Kernel sűrűség becslés: jobb. Simított hisztogram.

27 Hisztogram >hist(pupamass,main="bábtömeg egy héttel a bábozódás után",xlab="tömeg (g)") Bábtömeg egy héttel a bábozódás után 15 Frequency Tömeg (g)

28 Simított hisztogram >plot(density(pupamass),main="bábtömeg egy héttel a bábozódás után"); rug(pupamass) Bábtömeg egy héttel a bábozódás után Density N = 58 Bandwidth =

29 Boxplotok Kvalitatív és kvantitatv változók kapcsolata. Faktor kombinációk is lehetnek a vízszintes tengelyen. Különbségek és interakciók becslése.

30 Boxplot >boxplot(pupamass (TEMPR:FOOD),col=2:4, names=c("ca","ha","ra","cl","hl","rl")) CA HA RA CL HL RL

31 Hegedűábra vioplot(pupamass[food=="adlibitum"], PUPAMASS[FOOD=="limited"], col="white", names=c("ad libitum", "limited")) ad libitum limited

32 Interakciós ábra A célváltozó különböző faktor kombinációk szerinti átlagait ill. más leíró statisztikáit rajzolja ki így ábrázolva a lehetséges interakciókat (nem additív hatásokat). Ha a vonalak többé-kevésbé párhuzamosak, akkor nem várunk interakciót.

33 Interakciós ábra >interaction.plot(tempr,food,pupamass) mean of PUPAMASS FOOD adlibitum limited cooled heated room TEMPR

34 Szórásdiagram >plot(pupamass STARTMASS,main="PUPAMASS-STARTMASS Szórásdiagram", xlab="startmass",ylab="pupamass",pch=".") PUPAMASS STARTMASS Szórásdiagram STARTMASS PUPAMASS

35 Feltételes szórásdiagram >coplot(pupamass STARTMASSTEMPR*FOOD, xlab="startmass",ylab="pupamass",pch=20) Given : TEMPR cooled heated room PUPAMASS adlibitum limited Given : FOOD STARTMASS

36 Egyszerű Lineáris Regresszió 1. modell: PUPAMASS = β 0 + β 1 STARTMASS + ɛ > mod1.lm <- lm(pupamass ~ STARTMASS) > summary(mod1.lm) Call: lm(formula = PUPAMASS ~ STARTMASS) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(>t) (Intercept) <2e-16 STARTMASS Residual standard error: on 56 degrees of freedom Multiple R-Squared: , Adjusted R-squared: F-statistic: on 1 and 56 DF, p-value:

37 Szórásdiagram az illesztett egyenessel >abline(mod1.lm) PUPAMASS STARTMASS szórásdiagram STARTMASS PUPAMASS

38 Kéttényezős ANOVA > mod2.lm <- lm(pupamass ~ FOOD + TEMPR) > anova(mod2.lm) Analysis of Variance Table Response: PUPAMASS Df Sum Sq Mean Sq F value Pr(>F) FOOD e-14 TEMPR Residuals

39 Kéttényezős ANOVA interakcióval > mod3.lm <- lm(pupamass ~ FOOD * TEMPR) > anova(mod3.lm) Analysis of Variance Table Response: PUPAMASS Df Sum Sq Mean Sq F value Pr(>F) FOOD e-13 TEMPR FOOD:TEMPR Residuals

40 Kéttényezős ANOVA interakcióval és kovariánssal > mod4.lm <- lm(pupamass ~ FOOD * TEMPR + STARTMASS) > anova(mod4.lm) Analysis of Variance Table Response: PUPAMASS Df Sum Sq Mean Sq F value Pr(>F) FOOD e-13 TEMPR STARTMASS FOOD:TEMPR Residuals

41 Hipotézisvizsgálatok A modell egy vagy több prediktorának szignifikanciáját állapítjuk meg. Ha a hibatagok függetlenek és normális eloszlásúak. Két beágyazott modell (a szűkebb modell magyarázó változóinak halmaza részhalmaza a bővebb modellének) összehasonlítható egy F-teszttel: anova(model1, model2).

42 Hipotézisvizsgálatok Egy általánosan végzett tesz az aktuális modell nullmodellhez való hasonlítása (nincsenek prediktorok, csak a konstans (intercept)): anova(model). (A modell egészének szignifikanciája.) Egyedi prediktorok F-próbával, vagy egy t-próbával summary(model) tesztelhetők. Kerüljük a t-tesztek használatát kettőnél több szintű kvalitatív predictorok (faktorok) esetén!

43 A modellezés céljai Predikció: Megfigyelünk új X-eket és a hozzá tartozó Y -t szeretnénk megbecsülni. A predikciós teljesítmény javul az olyan változók eltávolításáaval, amik nem nagyon játszanak szerepet. Automatikus változó szelekciók jól működhetnek. A változók közötti kapcsolat megértése. Manuális szelekció jobb. Gyakran mindkettő célunk. Nam tanácsos teljesen automatikus szelekciós módszerekre hagyatkozni.

44 Változó szelekciós módszerek I. Akaike Information Criterion (AIC) AIC = 2logLik + 2p, ahol p a paraméterek száma. Általános, normál lineáris modelleken túl is használható. A step() függvény ezt használja. Lépésenkénti keresés a lehetséges modellek terében. Szekvenciálisan távolít el (vagy vesz be) változókat. Minimalizálja az AIC-ot.

45 Változó szelekciós módszerek II. Tesztelésen alapulnak. F -teszttel hasonlítják össze a beágyazott modelleket. Nem igazán jó módszer: a beválasztott változók sorrendje nagyon számít. Rosszabb, mint a kritériumra épülő módszerek. Manuális változó szelekcióra használható. drop1(model,test="f")

46 Automatikus változó szelekció > mod5.lm <- step(mod4.lm, trace = 0) > anova(mod5.lm) Analysis of Variance Table Response: PUPAMASS Df Sum Sq Mean Sq F value Pr(>F) FOOD e-14 Residuals

47 Két modell összehasonlítása > anova(mod4.lm, mod5.lm) Analysis of Variance Table Model 1: PUPAMASS ~ FOOD * TEMPR + STARTMASS Model 2: PUPAMASS ~ FOOD Res.Df RSS Df Sum of Sq F Pr(>F) Nincs szignifikáns különbség a modellek között. Válasszuk a szűkebb modellt!

48 Manuális változó szelekció > drop1(mod4.lm, test = "F") Single term deletions Model: PUPAMASS ~ FOOD * TEMPR + STARTMASS Df Sum of Sq RSS AIC F value Pr(F) <none> STARTMASS e FOOD:TEMPR e

49 Konfidencia-intervallumok Tartományok a paraméterek lehetséges értékeire. A hatásnagyságok becslésére hasznosabb, mint a p-érték. A p-értékek a statisztikai szignifikanciát mutatják, nem pedig a gyakorlati jelentőséget. > confint(mod4.lm) 2.5 % 97.5 % (Intercept) FOODlimited TEMPRheated TEMPRroom STARTMASS FOODlimited:TEMPRheated FOODlimited:TEMPRroom

50 Diagnosztika A lineáris modell feltételeinek ellenőrzése. Korrekt-e a modell szisztematikus része (linearitás)? A modell véletlen részét (ɛ) tekintve: konstans variancia, korrelálatlanság, normalitás. Torzító pontok keresése (olyan pontok, amelyeknek a többi pontnál sokkal nagyobb hatása van az illesztett modellre).

51 Diagnosztikus módszerek Lehetnek numerikusak vagy grafikusak. Általában a grafikus módszereket preferáljuk, mert informatívabbak. reziduális ábrák, normalitást ellenőrző ábrák. Gyakorlatilag lehetetlen megállapítani egy modellről, hogy teljesen korrekt-e. A diagnosztikák célja: leellenőrizni, hogy a modell nem durván rossz-e. Több figyelmet kell fordítani arra, hogy ne kövessünk el nagy hibákat, mint arra, hogy a modellünk optimális-e. Négy hasznos ábra: plot(model)

52 Diagnosztikus ábrák Residuals Residuals vs Fitted Standardized residuals Normal Q Q Fitted values Theoretical Quantiles Standardized residuals Scale Location Standardized residuals Residuals vs Leverage Cook's distance Fitted values Leverage

53 Illeszkedés ellenőrzése >plot(mod4.lm,1,pch=20) Residuals Residuals vs Fitted Fitted values lm(pupamass ~ FOOD * TEMPR + STARTMASS)

54 Reziduumok normalitása >plot(mod4.lm,2,pch=20) Normal Q Q Standardized residuals Theoretical Quantiles lm(pupamass ~ FOOD * TEMPR + STARTMASS)

55 A variancia állandóságának ellenőrzése >plot(mod4.lm,3,pch=20) Fitted values Standardized residuals lm(pupamass ~ FOOD * TEMPR + STARTMASS) Scale Location

56 Torzító pontok keresése >plot(mod4.lm,5,pch=20) Residuals vs Leverage 33 Standardized residuals Cook's distance Leverage lm(pupamass ~ FOOD * TEMPR + STARTMASS)

57 Hogy detektáljuk a problémákat? Illeszkedés ellenőrzése: A reziduumokban nem lehet trend (y = 0). Ha van, meg kell változtatni a modellt (transzformáció, nemlineáris modell etc). Reziduumok normalitása: QQ-ábra. A reziduumokat az "ideális" normális eloszlású megfigyelésekhez hasonlítjuk. Normális eloszlás esetén a pontok lineáris trendet követnek (y = x). Egyébként ferdeséget jeleznek. Scale-location ábra: a variancia homogenitását lehet vele ellenőrizni.

58 Hogy detektáljuk a problémákat? Residuals vs. Leverage ábra: Torzító pontok keresése. A pontoknak az adott Cook távolság (Cook s distance) szinteken belül kell lennie. A számozott pontok lehetnek gyanúsak. Cook-féle távolság: az illeszkedés megváltozásának standardizált mértéke, ha az adott megfigyelést kivesszük az adatok közül.

59 Cook s distance plot >plot(mod4.lm,4,pch=20) Cook's distance Cook's distance Obs. number lm(pupamass ~ FOOD * TEMPR + STARTMASS)

60 Lineáris modell - korlátok Nagyon sok kapcsolatot nem írható le egyszerű lineáris modellel, mivel a függő változó lehet nem folytonos (és nem normális) eloszlású (pl. gyakoriságok, bináris adatok); a magyarázó változók hatása a függő változóra lehet, hogy nem lineáris; a megfigyelési egységek lehet, hogy nem függetlenek; a variancia lehet, hogy nem konstans.

61 Általánosított lineáris modellek (Generalized Linear Models) Az általános lineáris modell általánosítása: Megengedi, hogy az eloszlás nem normális legyen (pl. Poisson, binomiális ill., multinomiális (exponenciális eloszláscsalád)). A variancia állandóságának feltétele sem olyan szigorú, mint a hagyományos lineáris modelleknél.

62 Hogy általánosít ez a módszer? A függő változót most is a magyarázó változók lineáris kombinációjából becsüljük. A függő és magyarázó változók egy ún. link függvénnyel vannak összekapcsolva: η = β 0 + β 1 X 1 + β 2 X β k X k, lineáris egyenlet, ahol η lineáris prediktor, X magyarázó változók, β együtthatók. Maximum likelihood (ML) módszerrel illesztünk. g(y ) = η link függvény. glm(formula, family = gaussian,...) Súgó a függvény családról:?family

63 Gyakorisági adatok regressziója (count regression) A függő változó gyakorisági adat (pozitív egész). Ha az összes lehetőség egy adott korlátos szám, akkor binomiális modellt használunk. Van-nincs (0-1) adatok esetén a binomiális modell használatos (logisztikus regresszió). Ha a gyakoriságok elegendően nagyok, akkor az általános lineáris modell is jó lehet. Egyéb esetekben a Poisson és - kevésbé gyakran - a negatív binomiális modell használható.

64 Poisson regresszió Ha Y Poisson eloszlású µ > 0 várható értékkel, akkor: P (Y = y) = eµ µ y, y = 0, 1, 2,... y! E(Y ) = var(y ) = µ.

65 Honnan származhatnak Poisson-eloszlású adatok? Ha a gyakoriságok egy előre rögzített számú megfigyelésből származnak, akkor a függő változót binomiálisként modellezhetjük. Kis siker valószínűségek, és nagyszámú összes lehetőség esetén alkalmazhatjuk a Poisson közelítést. (Pl. ritka incidenciája egy adott fajnak egy földrajzi területen.) Ha gyakoriságokat számolunk egy adott időintervallumban, területen, térrészben, anyagmennyiségben, és a siker valószínűsége arányos az intervallum hosszával, térrész térfogatával stb., és független más eseményektől. (Pl. bejövő telefonhívások, földrengések száma stb.) Fontos: Poisson-eloszlású véletlen változók összege is Poisson. (Hasznos, ha csak aggregált adataink vannak.)

66 Földhasználati példa 36 mintavételi terület esetén vannak adataink a következőkről: Weedcover Az adott transzekt teljes gyomborítottsága százalékosan. Totspeciesnb A gyomnövény fajok száma. N input Éves nitrogén bevitel. Transectpos A transzekt elhelyezkedése a földterületen. 0 - a transzekt közvetlenül a terület szélén helyezkedik el, 1 - belül van. Transect pair Ugyanahhoz a földhöz tartozó transzekt párok azonosítója.

67 Földhasználati példa Noncrop area A tanulmányozott transzekt körül húzott 500 m sugarú körbe eső nem művelt terület százalékos aránya (főleg füves terület, de lehet erdős, beépített, mocsaras vagy nyílt vizes terület). Modellezni szeretnénk a gyomnövény fajok számát és a gyomborítottságot a nitrogén bevitel, a nem művelt terület aránya és a transzekt pozíció függvényében.

68 Az adatok struktúrája > str(land) data.frame : 42 obs. of 10 variables: $ SampleArea : Factor w/ 42 levels "AG30E ","AG30I ",..: $ Weedcover : int $ Totspeciesnb : int $ Intensity : int $ N_input : int $ Herbicide_use: int $ Transectpos : Factor w/ 2 levels "0","1": $ Transect_pair: int $ Noncrop_area : int $ Farmer : Factor w/ 5 levels "AG","ET","NL",..:

69 Density plot >plot(density(totspeciesnb)) density.default(x = Totspeciesnb) Density N = 42 Bandwidth = 4.453

70 Boxplot >plot(totspeciesnb Transectpos) Totspeciesnb Transectpos

71 Hegedűábra >vioplot(totspeciesnb[transectpos==0],totspeciesnb[transectpos== col="white")

72 Szórásdiagram >plot(totspeciesnb Noncrop area) Noncrop_area Totspeciesnb

73 Feltételes szórásdiagram >coplot(totspeciesnb Noncrop areatransectpos,pch=20) Noncrop_area Totspeciesnb 0 1 Given : Transectpos

74 Interakciós ábra >interaction.plot(as.factor(n-input),transectpos,totspeciesnb) mean of Totspeciesnb Transectpos as.factor(n_input)

75 Lineáris modell > mod1.lm <- lm(totspeciesnb ~ N_input * Transectpos + + Noncrop_area) > summary(mod1.lm) Call: lm(formula = Totspeciesnb ~ N_input * Transectpos + Noncrop_area) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(>t) (Intercept) e-09 N_input Transectpos Noncrop_area N_input:Transectpos Residual standard error: on 37 degrees of freedom Multiple R-Squared: , Adjusted R-squared: F-statistic: on 4 and 37 DF, p-value: 1.172e-06

76 Reziduum vs. becsült érték ábra >plot(mod1.lm,1,pch=20) Fitted values Residuals lm(totspeciesnb ~ N_input * Transectpos + Noncrop_area) Residuals vs Fitted

77 Normalitás vizsgálat (Normal QQ-plot) >plot(mod1.lm,2) Theoretical Quantiles Standardized residuals lm(totspeciesnb ~ N_input * Transectpos + Noncrop_area) Normal Q Q

78 Szórás-becsült érték ábra (Scale-location plot) >plot(mod1.lm,3,pch=20) Fitted values Standardized residuals lm(totspeciesnb ~ N_input * Transectpos + Noncrop_area) Scale Location

79 Problémák Enyhén nemlineáris trend. Nem konstans variancis. Enyhén nem normális eloszlású hibatag. Próbáljuk meg transzformálni az adatokat, pl. logaritmus transzformáció!

80 Lineáris modell log transzformált függő változóval > mod2.lm <- lm(log(totspeciesnb + 1) ~ N_input * Transectpos + + Noncrop_area) > summary(mod2.lm) Call: lm(formula = log(totspeciesnb + 1) ~ N_input * Transectpos + Noncrop_area) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(>t) (Intercept) 3.406e e < 2e-16 N_input e e Transectpos e e Noncrop_area 4.777e e N_input:Transectpos e e Residual standard error: on 37 degrees of freedom Multiple R-Squared: , Adjusted R-squared: F-statistic: on 4 and 37 DF, p-value: 2.685e-07

81 Reziduum vs. becsült érték ábra >plot(mod2.lm,1,pch=20) Fitted values Residuals lm(log(totspeciesnb + 1) ~ N_input * Transectpos + Noncrop_area) Residuals vs Fitted

82 Normal QQ-plot >plot(mod2.lm,2,pch=20) Theoretical Quantiles Standardized residuals lm(log(totspeciesnb + 1) ~ N_input * Transectpos + Noncrop_area) Normal Q Q

83 Scale-location plot >plot(mod2.lm,3,pch=20) Fitted values Standardized residuals lm(log(totspeciesnb + 1) ~ N_input * Transectpos + Noncrop_area) Scale Location

84 A két modell összehasonlítása > summary(mod1.lm)$adj.r.squared [1] > summary(mod2.lm)$adj.r.squared [1] Nem nagy javulás. Jobb illeszkedés. Nehézkes interpretáció.

85 Poisson modell > mod1.pois <- glm(totspeciesnb ~ N_input * Transectpos + + Noncrop_area, family = poisson) > mod1.pois Call: glm(formula = Totspeciesnb ~ N_input * Transectpos + Noncrop_area Coefficients: (Intercept) N_input Transectpos Noncrop_area N_input:Transectpos Degrees of Freedom: 41 Total (i.e. Null); Null Deviance: Residual Deviance: AIC: Residual

86 summary(mod1.pois) Call: glm(formula = Totspeciesnb ~ N_input * Transectpos + Noncrop_area, family = poisson) Deviance Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error z value Pr(>z) (Intercept) < 2e-16 N_input Transectpos e-08 Noncrop_area N_input:Transectpos (Dispersion parameter for poisson family taken to be 1) Null deviance: on 41 degrees of freedom Residual deviance: on 37 degrees of freedom AIC: Number of Fisher Scoring iterations: 4

87 Hatások tesztelése A summary(model) közelítő Wald teszteket csinál. Az SE-k lehet, hogy túlbecsültek, és így elvesztünk szignifikáns eredményeket. A deviancia alapú tesztek jobbak. A deviancia azt méri, hogy a modell mennyire van közel a tökéleteshez. (A lineáris modell esetén: deviancia = RSS.) Chi 2 eloszlású. A determinációs együttható (R-négyzet a lineáris modelleknél): > 1-77/198 [1]

88 Anova a Poisson modellre > anova(mod1.pois, test = "Chi") Analysis of Deviance Table Model: poisson, link: log Response: Totspeciesnb Terms added sequentially (first to last) Df Deviance Resid. Df Resid. Dev P(>Chi) NULL N_input e-05 Transectpos e-22 Noncrop_area N_input:Transectpos

89 Poisson modell interakciókkal > mod2.pois <- glm(totspeciesnb ~ (N_input + Noncrop_area + + Transectpos)^2, family = poisson) > anova(mod2.pois, test = "Chi") Analysis of Deviance Table Model: poisson, link: log Response: Totspeciesnb Terms added sequentially (first to last) Df Deviance Resid. Df Resid. Dev P(>Chi) NULL N_input e-05 Noncrop_area Transectpos e-22 N_input:Noncrop_area N_input:Transectpos Noncrop_area:Transectpos

90 A két modell összehasonlítása > anova(mod1.pois, mod2.pois, test = "Chi") Analysis of Deviance Table Model 1: Totspeciesnb ~ N_input * Transectpos + Noncrop_area Model 2: Totspeciesnb ~ (N_input + Noncrop_area + Transectpos)^2 Resid. Df Resid. Dev Df Deviance P(>Chi)

91 Modell szelekció > drop1(mod2.pois, test = "Chi") Single term deletions Model: Totspeciesnb ~ (N_input + Noncrop_area + Transectpos)^2 Df Deviance AIC LRT Pr(Chi) <none> N_input:Noncrop_area N_input:Transectpos Noncrop_area:Transectpos

92 Diagnosztikus ábrák Predicted values Residuals Residuals vs Fitted Theoretical Quantiles Std. deviance resid. Normal Q Q Predicted values Std. deviance resid. Scale Location Leverage Std. deviance resid. Cook's distance Residuals vs Leverage

93 Illeszkedés ellenőrzése >plot(mod1.pois,1,pch=20) Predicted values Residuals glm(totspeciesnb ~ N_input * Transectpos + Noncrop_area) Residuals vs Fitted

94 Parciális reziduális ábrák >library(gam) > par(mfrow=c(1,3),pty="s") >plot.gam(mod1.pois,resid=t,pch=20) >par(mfrow=c(1,1)) N_input partial for N_input partial for Transectpos Transectpos Noncrop_area partial for Noncrop_area

95 Illeszkedés ellenőrzése Az ábrák majdnem ugyanúgy használhatók, mint a lineáris modell esetén. A normalitás általában nem teljesül tökéletesen. A parciális reziduálisok ellenőrzésére a plot.gam használható a gam csomagból.

96 Túlszóródás Poisson változó esetén az átlag és a variancia megegyezik. A variancia függvényt az átlag teljesen meghatározza, nem szabad paraméter. Az ún. diszperziós paraméter 1. Gyakran túlságosan szigorú ez a feltétel. Gyakran túlszóródás (overdispersion) van. A túlszóródást a reziduális deviancia és a hozzá tartozó szabadsági fokból határozható meg. Többé-kevésbé egynelőnek kell lenniük. Ha nagyon különbözőek, akkor az ún. quasilikelihood módszert használhatjuk, amellyel a modellparaméterek a hiba eloszlás teljes ismerete nélkül határozhatók meg.

97 A diszperziós paraméter ellenőrzése > deviance(mod1.pois)/df.residual(mod1.pois) [1]

98 Null deviance: on 41 degrees of freedom Residual deviance: on 37 degrees of freedom Poisson modell túlszóródással > mod1.qpois <- glm(totspeciesnb ~ N_input * Transectpos + + Noncrop_area, family = quasipoisson) > summary(mod1.qpois) Call: glm(formula = Totspeciesnb ~ N_input * Transectpos + Noncrop_area, family = quasipoisson) Deviance Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(>t) (Intercept) < 2e-16 N_input Transectpos Noncrop_area N_input:Transectpos (Dispersion parameter for quasipoisson family taken to be )

Logisztikus regresszió október 27.

Logisztikus regresszió október 27. Logisztikus regresszió 2017. október 27. Néhány példa Mi a valószínűsége egy adott betegségnek a páciens bizonyos megfigyelt jellemzői (pl. nem, életkor, laboreredmények, BMI stb.) alapján? Mely genetikai

Részletesebben

Segítség az outputok értelmezéséhez

Segítség az outputok értelmezéséhez Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró

Részletesebben

1., Egy területen véletlenszerűen kihelyezet kvadrátokban megszámlálták az Eringium maritimum (tengerparti ördögszekér) egyedeit.

1., Egy területen véletlenszerűen kihelyezet kvadrátokban megszámlálták az Eringium maritimum (tengerparti ördögszekér) egyedeit. 1., Egy területen véletlenszerűen kihelyezet kvadrátokban megszámlálták az Eringium maritimum (tengerparti ördögszekér) egyedeit. 1., Határozza meg az átlagos egyedszámot és a szórást. Egyedszám (x i )

Részletesebben

STATISZTIKA. Fogalom. A standard lineáris regressziós modell mátrixalgebrai jelölése. A standard lineáris modell. Eredménytáblázat

STATISZTIKA. Fogalom. A standard lineáris regressziós modell mátrixalgebrai jelölése. A standard lineáris modell. Eredménytáblázat Fogalom STATISZTIKA 8 Előadás Többszörös lineáris regresszió Egy jelenség vizsgálata során általában az adott jelenséget több tényező befolyásolja, vagyis többnyire nem elegendő a kétváltozós modell elemzése

Részletesebben

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision

Részletesebben

Logisztikus regresszió

Logisztikus regresszió Logisztikus regresszió Bekövetkezés esélye Valószínűség (P): 0 és 1 közötti valós szám, az esemény bekövetkezésének esélyét fejezi ki. Fej dobásának esélye: 1:2 = 1 2 = 0,5. Odds/esélyérték (O): a tét

Részletesebben

π = P(y bekövetkezik)

π = P(y bekövetkezik) Biomatematika (SZIE ÁOTK, 2011. tavasz) 1 A logit modell (=logisztikus regresszió) Ha a függő változó (y ) dichotom (=két lehetséges értéke van, pl. túlélés-halál, siker-kudarc stb.), akkor általában azt

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus

Részletesebben

LOGIT-REGRESSZIÓ a függő változó: névleges vagy sorrendi skála

LOGIT-REGRESSZIÓ a függő változó: névleges vagy sorrendi skála LOGIT-REGRESSZIÓ a függő változó: névleges vagy sorrendi skála a független változó: névleges vagy sorrendi vagy folytonos skála BIOMETRIA2_NEMPARAMÉTERES_5 1 Y: visszafizeti-e a hitelt x: fizetés (életkor)

Részletesebben

ISMÉTELT MÉRÉSES MODELLEK R-KÖRNYEZETBEN

ISMÉTELT MÉRÉSES MODELLEK R-KÖRNYEZETBEN ISMÉTELT MÉRÉSES MODELLEK R-KÖRNYEZETBEN Virág Katalin Szegedi Tudományegyetem Általános Orvostudományi Kar, Orvosi Fizikai és Orvosi Informatikai Intézet A kutatás a TÁMOP 4.2.4.A/2-11-1-2012-0001 azonosító

Részletesebben

Korreláció és lineáris regresszió

Korreláció és lineáris regresszió Korreláció és lineáris regresszió Két folytonos változó közötti összefüggés vizsgálata Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi Fizika és Statisztika I. előadás 2016.11.02.

Részletesebben

Varianciaanalízis 4/24/12

Varianciaanalízis 4/24/12 1. Feladat Egy póker kártya keverő gép a kártyákat random módon választja ki. A vizsgálatban 1600 választott kártya színei az alábbi gyakorisággal fordultak elő. Vizsgáljuk meg, hogy a kártyák kiválasztása

Részletesebben

Likelihood, deviancia, Akaike-féle információs kritérium

Likelihood, deviancia, Akaike-féle információs kritérium Többváltozós statisztika (SZIE ÁOTK, 2011. ősz) 1 Likelihood, deviancia, Akaike-féle információs kritérium Likelihood függvény Az adatokhoz paraméteres modellt illesztünk. A likelihood függvény a megfigyelt

Részletesebben

Többváltozós lineáris regressziós modell feltételeinek

Többváltozós lineáris regressziós modell feltételeinek Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p

Részletesebben

Többváltozós lineáris regressziós modell feltételeinek tesztelése I.

Többváltozós lineáris regressziós modell feltételeinek tesztelése I. Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Kvantitatív statisztikai módszerek Petrovics Petra Többváltozós lineáris regressziós

Részletesebben

Több laboratórium összehasonlítása, körmérés

Több laboratórium összehasonlítása, körmérés Több oratórium összehasonlítása, körmérés colorative test, round robin a rendszeres hibák ellenőrzése, számszerűsítése Statistical Manual of AOAC, W. J. Youden: Statistical Techniques for Colorative Tests,

Részletesebben

Fogalom STATISZTIKA. Alkalmazhatósági feltételek. A standard lineáris modell. Projekciós mátrix, P

Fogalom STATISZTIKA. Alkalmazhatósági feltételek. A standard lineáris modell. Projekciós mátrix, P Fogalom STATISZTIKA 8 Előadás Többszörös lineáris regresszió Egy jelenség vizsgálata során általában az adott jelenséget több tényező befolyásolja, vagyis többnyire nem elegendő a kétváltozós modell elemzése

Részletesebben

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás

Részletesebben

Az R statisztikai programozási környezet: az adatgyűjtéstől a feldolgozáson és vizualizáción át a dinamikus jelentéskészítésig

Az R statisztikai programozási környezet: az adatgyűjtéstől a feldolgozáson és vizualizáción át a dinamikus jelentéskészítésig : az adatgyűjtéstől a feldolgozáson és vizualizáción át a dinamikus jelentéskészítésig Ferenci Tamás ferenci.tamas@nik.uni-obuda.hu 2017. február 23. Tartalom Az R mint programozási nyelv A könyvtárakról

Részletesebben

KISTERV2_ANOVA_

KISTERV2_ANOVA_ Két faktor szerinti ANOVA Az A faktor minden szintjét kombináljuk a B faktor minden szintjével, minden cellában azonos számú ismétlés (kiegyensúlyozott terv). A terv szerkezete miatt a faktorok hatását

Részletesebben

Több valószínűségi változó együttes eloszlása, korreláció

Több valószínűségi változó együttes eloszlása, korreláció Tartalomjegzék Előszó... 6 I. Valószínűségelméleti és matematikai statisztikai alapok... 8 1. A szükséges valószínűségelméleti és matematikai statisztikai alapismeretek összefoglalása... 8 1.1. Alapfogalmak...

Részletesebben

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése 4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól

Részletesebben

BIOMETRIA_ANOVA_2 1 1

BIOMETRIA_ANOVA_2 1 1 Két faktor szerinti ANOVA Az A faktor minden szintjét kombináljuk a B faktor minden szintjével, minden cellában azonos számú ismétlés (kiegyensúlyozott terv). A terv szerkezete miatt a faktorok hatását

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

Idősoros elemzés. Ferenci Tamás, ft604@hszk.bme.hu 2009. január 7.

Idősoros elemzés. Ferenci Tamás, ft604@hszk.bme.hu 2009. január 7. Idősoros elemzés Ferenci Tamás, ft604@hszk.bme.hu 2009. január 7. A felhasznált adatbázisról Elemzésemhez a tanszéki honlapon rendelkezésre bocsátott TimeSeries.xls idősoros adatgyűjtemény egyik idősorát,

Részletesebben

Bevezetés a Korreláció &

Bevezetés a Korreláció & Bevezetés a Korreláció & Regressziószámításba Petrovics Petra Doktorandusz Statisztikai kapcsolatok Asszociáció 2 minőségi/területi ismérv között Vegyes kapcsolat minőségi/területi és egy mennyiségi ismérv

Részletesebben

Idősoros elemzés minta

Idősoros elemzés minta Idősoros elemzés minta Ferenci Tamás, tamas.ferenci@medstat.hu A felhasznált adatbázisról Elemzésemhez a francia frank árfolyamának 1986.01.03. és 1993.12.31. közötti értékeit használtam fel, mely idősorban

Részletesebben

Biometria az orvosi gyakorlatban. Regresszió Túlélésanalízis

Biometria az orvosi gyakorlatban. Regresszió Túlélésanalízis SZDT-09 p. 1/36 Biometria az orvosi gyakorlatban Regresszió Túlélésanalízis Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Logisztikus regresszió

Részletesebben

STATISZTIKA PRÓBAZH 2005

STATISZTIKA PRÓBAZH 2005 STATISZTIKA PRÓBAZH 2005 1. FELADATSOR: számítógépes feladatok (még bővülni fog számítógép nélkül megoldandó feladatokkal is) Használjuk a Dislexia Excel fájlt (internet: http:// starts.ac.uk)! 1.) Hasonlítsuk

Részletesebben

Normális eloszlás tesztje

Normális eloszlás tesztje Valószínűség, pontbecslés, konfidenciaintervallum Normális eloszlás tesztje Kolmogorov-Szmirnov vagy Wilk-Shapiro próba. R-funkció: shapiro.test(vektor) balra ferde eloszlás jobbra ferde eloszlás balra

Részletesebben

[Biomatematika 2] Orvosi biometria. Visegrády Balázs

[Biomatematika 2] Orvosi biometria. Visegrády Balázs [Biomatematika 2] Orvosi biometria Visegrády Balázs 2016. 03. 27. Probléma: Klinikai vizsgálatban három különböző antiaritmiás gyógyszert (ß-blokkoló) alkalmaznak, hogy kipróbálják hatásukat a szívműködés

Részletesebben

Matematikai statisztika c. tárgy oktatásának célja és tematikája

Matematikai statisztika c. tárgy oktatásának célja és tematikája Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:

Részletesebben

Hipotézis vizsgálatok

Hipotézis vizsgálatok Hipotézis vizsgálatok Hipotézisvizsgálat Hipotézis: az alapsokaság paramétereire vagy az alapsokaság eloszlására vonatkozó feltevés. Hipotézis ellenőrzés: az a statisztikai módszer, amelynek segítségével

Részletesebben

: az i -ik esélyhányados, i = 2, 3,..I

: az i -ik esélyhányados, i = 2, 3,..I Kabos: Adatelemzés Ordinális logisztikus regresszió-1 Többtényezős regresszió (az adatelemzésben): Y közelítése b 1 X 1 + b 2 X 2 +... + b J X J alakban, y n = b 1 x n,1 + b 2 x n,2 +... + b J x n,j +

Részletesebben

2012. április 18. Varianciaanaĺızis

2012. április 18. Varianciaanaĺızis 2012. április 18. Varianciaanaĺızis Varianciaanaĺızis (analysis of variance, ANOVA) Ismételt méréses ANOVA Kérdések: (1) van-e különbség a csoportok között (t-próba általánosítása), (2) van-e hatása a

Részletesebben

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége [GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell

Részletesebben

Regresszió számítás az SPSSben

Regresszió számítás az SPSSben Regresszió számítás az SPSSben Kvantitatív statisztikai módszerek Petrovics Petra Lineáris regressziós modell X és Y közötti kapcsolatot ábrázoló egyenes. Az Y függ: x 1, x 2,, x p p db magyarázó változótól

Részletesebben

AZ ÁLTALÁNOSÍTOTT LINEÁRIS MODELL ÉS BIZTOSÍTÁSI ALKALMAZÁSAI

AZ ÁLTALÁNOSÍTOTT LINEÁRIS MODELL ÉS BIZTOSÍTÁSI ALKALMAZÁSAI MÓDSZERTANI TANULMÁNYOK AZ ÁLTALÁNOSÍTOTT LINEÁRIS MODELL ÉS BIZTOSÍTÁSI ALKALMAZÁSAI A biztosítási károk alakulásának modellezésére jól alkalmazható az általánosított lineáris modell, amely alkalmas arra,

Részletesebben

Regressziós vizsgálatok

Regressziós vizsgálatok Regressziós vizsgálatok Regresszió (regression) Általános jelentése: visszaesés, hanyatlás, visszafelé mozgás, visszavezetés. Orvosi területen: visszafejlődés, involúció. A betegség tünetei, vagy maga

Részletesebben

Heckman modell. Szelekciós modellek alkalmazásai.

Heckman modell. Szelekciós modellek alkalmazásai. Heckman modell. Szelekciós modellek alkalmazásai. Mikroökonometria, 12. hét Bíró Anikó A tananyag a Gazdasági Versenyhivatal Versenykultúra Központja és a Tudás-Ökonómia Alapítvány támogatásával készült

Részletesebben

Döntési fák. (Klasszifikációs és regressziós fák: (Classification And Regression Trees: CART ))

Döntési fák. (Klasszifikációs és regressziós fák: (Classification And Regression Trees: CART )) Döntési fák (Klasszifikációs és regressziós fák: (Classification And Regression Trees: CART )) Rekurzív osztályozó módszer, Klasszifikációs és regressziós fák folytonos, kategóriás, illetve túlélés adatok

Részletesebben

Biostatisztika Összefoglalás

Biostatisztika Összefoglalás Biostatisztika Összefoglalás A biostatisztika vizsga A biostatisztika vizsga az Orvosi fizika és statisztika I. fizika vizsgájával egy napon történik. A vizsga keretében 30 perc alatt 0 kérdésre kell válaszolni

Részletesebben

Diszkriminancia-analízis

Diszkriminancia-analízis Diszkriminancia-analízis az SPSS-ben Petrovics Petra Doktorandusz Diszkriminancia-analízis folyamata Feladat Megnyitás: Employee_data.sav Milyen tényezőktől függ a dolgozók beosztása? Nem metrikus Független

Részletesebben

Bevezetés az ökonometriába

Bevezetés az ökonometriába Bevezetés az ökonometriába Többváltozós lineáris regresszió: modellszelekció Ferenci Tamás MSc 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Negyedik előadás, 2010. október

Részletesebben

Egymintás próbák. Alapkérdés: populáció <paramétere/tulajdonsága> megegyezik-e egy referencia paraméter értékkel/tulajdonsággal?

Egymintás próbák. Alapkérdés: populáció <paramétere/tulajdonsága> megegyezik-e egy referencia paraméter értékkel/tulajdonsággal? Egymintás próbák σ s μ m Alapkérdés: A populáció egy adott megegyezik-e egy referencia paraméter értékkel/tulajdonsággal? egymintás t-próba Wilcoxon-féle előjeles

Részletesebben

A modellben az X és Y változó szerepe nem egyenrangú: Y (x n )

A modellben az X és Y változó szerepe nem egyenrangú: Y (x n ) Kabos: Adatelemzés Regresszió-1 Regresszió (az adatelemzésben): Y (x n ) = l(x n ) + ε n, n = 1, 2,.., N, ahol ε 1,.., ε N független N(0, σ 2 ) eloszlású valószínűségi változók, és σ ismeretlen paraméter,

Részletesebben

Biostatisztika Összefoglalás

Biostatisztika Összefoglalás Biostatisztika Összefoglalás A biostatisztika vizsga A biostatisztika vizsga az Orvosi fizika és statisztika I. fizika vizsgájával egy napon történik. A vizsga keretében 30 perc alatt 0 kérdésre kell válaszolni

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,

Részletesebben

Bevezetés az ökonometriába

Bevezetés az ökonometriába Bevezetés az ökonometriába Többváltozós regresszió: nemlineáris modellek Ferenci Tamás MSc 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Hetedik előadás, 2010. november 10.

Részletesebben

Adatok statisztikai értékelésének főbb lehetőségei

Adatok statisztikai értékelésének főbb lehetőségei Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció

Részletesebben

y ij = µ + α i + e ij

y ij = µ + α i + e ij Elmélet STATISZTIKA 3. Előadás Variancia-analízis Lineáris modellek A magyarázat a függő változó teljes heterogenitásának két részre bontását jelenti. A teljes heterogenitás egyik része az, amelynek okai

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria Bódis Emőke 2016. 04. 25. J J 9 Korrelációanalízis Regresszióanalízis: hogyan változik egy vizsgált változó értéke egy másik változó változásának függvényében. Korrelációs

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát

Részletesebben

Logisztikus regresszió

Logisztikus regresszió Logisztikus regresszió Kvantitatív statisztikai módszerek Dr. Szilágyi Roland Függő változó (y) Nem metrikus Metri kus Gazdaságtudományi Kar Független változó (x) Nem metrikus Metrikus Kereszttábla elemzés

Részletesebben

Logisztikus regresszió

Logisztikus regresszió Logisztikus regresszió 9. előadás Kvantitatív statisztikai módszerek Dr. Szilágyi Roland Függő változó (y) Nem metrikus Metri kus Gazdaságtudományi Kar Független változó () Nem metrikus Metrikus Kereszttábla

Részletesebben

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell Példa STATISZTIKA Egy gazdálkodó k kukorica hibrid termesztése között választhat. Jelöljük a fajtákat A, B, C, D-vel. Döntsük el, hogy a hibridek termesztése esetén azonos terméseredményre számíthatunk-e.

Részletesebben

4/24/12. Regresszióanalízis. Legkisebb négyzetek elve. Regresszióanalízis

4/24/12. Regresszióanalízis. Legkisebb négyzetek elve. Regresszióanalízis 1. feladat Regresszióanalízis. Legkisebb négyzetek elve 2. feladat Az iskola egy évfolyamába tartozó diákok átlagéletkora 15,8 év, standard deviációja 0,6 év. A 625 fős évfolyamból hány diák fiatalabb

Részletesebben

ÚJDONSÁGOK A MINITAB STATISZTIKAI SZOFTVER ÚJ KIADÁSÁNÁL (MINITAB 18)

ÚJDONSÁGOK A MINITAB STATISZTIKAI SZOFTVER ÚJ KIADÁSÁNÁL (MINITAB 18) ÚJDONSÁGOK A MINITAB STATISZTIKAI SZOFTVER ÚJ KIADÁSÁNÁL (MINITAB 18) Előadó: Lakat Károly, L.K. Quality Bt. 2017 szeptember 27 EOQ MNB Szakbizottsági ülés Minitab 18 újdonságai Session ablak megújítása

Részletesebben

Mérési adatok illesztése, korreláció, regresszió

Mérési adatok illesztése, korreláció, regresszió Mérési adatok illesztése, korreláció, regresszió Korreláció, regresszió Két változó mennyiség közötti kapcsolatot vizsgálunk. Kérdés: van-e kapcsolat két, ugyanabban az egyénben, állatban, kísérleti mintában,

Részletesebben

c adatpontok és az ismeretlen pont közötti kovariancia vektora

c adatpontok és az ismeretlen pont közötti kovariancia vektora 1. MELLÉKLET: Alkalmazott jelölések A mintaterület kiterjedése, területe c adatpontok és az ismeretlen pont közötti kovariancia vektora C(0) reziduális komponens varianciája C R (h) C R Cov{} d( u, X )

Részletesebben

Biostatisztika VIII. Mátyus László. 19 October

Biostatisztika VIII. Mátyus László. 19 October Biostatisztika VIII Mátyus László 19 October 2010 1 Ha σ nem ismert A gyakorlatban ritkán ismerjük σ-t. Ha kiszámítjuk s-t a minta alapján, akkor becsülhetjük σ-t. Ez további bizonytalanságot okoz a becslésben.

Részletesebben

13. Túlélési analízis. SURVIVAL ANALYSIS Nyári Tibor Ph.D., Boda Krisztina Ph.D.

13. Túlélési analízis. SURVIVAL ANALYSIS Nyári Tibor Ph.D., Boda Krisztina Ph.D. 13. Túlélési analízis SURVIVAL ANALYSIS Nyári Tibor Ph.D., Boda Krisztina Ph.D. Túlélési analízis Eredetileg biológiai és orvosi alkalmazásoknál használták Egyéb alkalmazások pl. szociológia, ipar, közgazdaságtan

Részletesebben

Több diszkrét kimenet multinomiális és feltételes logit modellek

Több diszkrét kimenet multinomiális és feltételes logit modellek Több diszkrét kimenet multinomiális és feltételes logit modellek Mikroökonometria, 9. hét Bíró Anikó A tananyag a Gazdasági Versenyhivatal Versenykultúra Központa és a Tudás-Ökonómia Alapítvány támogatásával

Részletesebben

Korreláció, regresszió. Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet

Korreláció, regresszió. Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet Korreláció, regresszió Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet Két folytonos változó közötti kapcsolat Tegyük fel, hogy 6 hallgató a következő válaszokat adta egy felmérés

Részletesebben

Kettőnél több csoport vizsgálata. Makara B. Gábor

Kettőnél több csoport vizsgálata. Makara B. Gábor Kettőnél több csoport vizsgálata Makara B. Gábor Három gyógytápszer elemzéséből az alábbi energia tartalom adatok származtak (kilokalória/adag egységben) Három gyógytápszer elemzésébô A B C 30 5 00 10

Részletesebben

2013 ŐSZ. 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét!

2013 ŐSZ. 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét! GAZDASÁGSTATISZTIKA KIDOLGOZOTT ELMÉLETI KÉRDÉSEK A 3. ZH-HOZ 2013 ŐSZ Elméleti kérdések összegzése 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét! 2. Mutassa be az

Részletesebben

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 7. Előadás Egyenletes eloszlás Binomiális eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell /56 Matematikai statisztika Reprezentatív mintavétel

Részletesebben

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 15. Nemparaméteres próbák Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date: November

Részletesebben

Biomatematika 2 Orvosi biometria

Biomatematika 2 Orvosi biometria Biomatematika 2 Orvosi biometria 2017.02.05. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)

Részletesebben

Tartalomjegyzék I. RÉSZ: KÍSÉRLETEK MEGTERVEZÉSE

Tartalomjegyzék I. RÉSZ: KÍSÉRLETEK MEGTERVEZÉSE Tartalomjegyzék 5 Tartalomjegyzék Előszó I. RÉSZ: KÍSÉRLETEK MEGTERVEZÉSE 1. fejezet: Kontrollált kísérletek 21 1. A Salk-oltás kipróbálása 21 2. A porta-cava sönt 25 3. Történeti kontrollok 27 4. Összefoglalás

Részletesebben

Túlélés elemzés október 27.

Túlélés elemzés október 27. Túlélés elemzés 2017. október 27. Néhány példa Egy adott betegség diagnózisától kezdve mennyi ideje van hátra a páciensnek? Tipikusan mennyi ideig élhet túl? Bizonyos ráktípus esetén mennyi idő telik el

Részletesebben

Esettanulmány. A homoszkedaszticitás megsértésének hatása a regressziós paraméterekre. Tartalomjegyzék. 1. Bevezetés... 2

Esettanulmány. A homoszkedaszticitás megsértésének hatása a regressziós paraméterekre. Tartalomjegyzék. 1. Bevezetés... 2 Esettanulmány A homoszkedaszticitás megsértésének hatása a regressziós paraméterekre Tartalomjegyzék 1. Bevezetés... 2 2. A lineáris modell alkalmazhatóságának feltételei... 2 3. A feltételek teljesülésének

Részletesebben

Gyakorlat: Sztochasztikus idősor-elemzés alapfogalmai II. Egységgyök-folyamatok és tesztek. Dr. Dombi Ákos

Gyakorlat: Sztochasztikus idősor-elemzés alapfogalmai II. Egységgyök-folyamatok és tesztek. Dr. Dombi Ákos Gyakorlat: Sztochasztikus idősor-elemzés alapfogalmai II. Egységgyök-folyamatok és tesztek Dr. Dombi Ákos (dombi@finance.bme.hu) ESETTANULMÁNY 1. Feladat: OTP részvény átlagárfolyamának (Y=AtlAr) stacionaritás

Részletesebben

Lineáris regresszió vizsgálata resampling eljárással

Lineáris regresszió vizsgálata resampling eljárással Lineáris regresszió vizsgálata resampling eljárással Dolgozatomban az European Social Survey (ESS) harmadik hullámának adatait fogom felhasználni, melyben a teljes nemzetközi lekérdezés feldolgozásra került,

Részletesebben

Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg

Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg LMeasurement.tex, March, 00 Mérés Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg a mérendő mennyiségben egy másik, a mérendővel egynemű, önkényesen egységnek választott

Részletesebben

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( ) Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:

Részletesebben

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:

Részletesebben

Esetelemzések az SPSS használatával

Esetelemzések az SPSS használatával Esetelemzések az SPSS használatával 1. Tekintsük az spearman.sav állományt, amely egy harminc tehenet számláló állomány etetés- és fejéskori nyugtalansági sorrendjét tartalmazza. Vizsgáljuk meg, hogy van-e

Részletesebben

Correlation & Linear Regression in SPSS

Correlation & Linear Regression in SPSS Petra Petrovics Correlation & Linear Regression in SPSS 4 th seminar Types of dependence association between two nominal data mixed between a nominal and a ratio data correlation among ratio data Correlation

Részletesebben

Statisztika. Politológus képzés. Daróczi Gergely május 4. Politológia Tanszék

Statisztika. Politológus képzés. Daróczi Gergely május 4. Politológia Tanszék Statisztika Politológus képzés Daróczi Gergely Politológia Tanszék 2011. május 4. Outline 1 Korreláció 2 Standardizálás és dekompozíció 3 Grafikonok, ábrák Daróczi Gergely (PPKE BTK) Statisztika 2011-05-04

Részletesebben

Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok

Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok STATISZTIKA 1. Előadás Hipotézisvizsgálatok Tematika 1. Hipotézis vizsgálatok 2. t-próbák 3. Variancia-analízis 4. A variancia-analízis validálása, erőfüggvény 5. Korreláció számítás 6. Kétváltozós lineáris

Részletesebben

Kettőnél több csoport vizsgálata. Makara B. Gábor MTA Kísérleti Orvostudományi Kutatóintézet

Kettőnél több csoport vizsgálata. Makara B. Gábor MTA Kísérleti Orvostudományi Kutatóintézet Kettőnél több csoport vizsgálata Makara B. Gábor MTA Kísérleti Orvostudományi Kutatóintézet Gyógytápszerek (kilokalória/adag) Három gyógytápszer A B C 30 5 00 10 05 08 40 45 03 50 35 190 Kérdések: 1. Van-e

Részletesebben

Többváltozós Regresszió-számítás

Többváltozós Regresszió-számítás Töváltozós Regresszió-számítás 3. előadás Döntéselőkészítés módszertana Dr. Szilágyi Roland Korreláció Célja a kacsolat szorosságának mérése. Regresszió Célja a kacsolatan megfigyelhető törvényszerűség

Részletesebben

Hátrányok: A MANOVA elvégzésének lépései:

Hátrányok: A MANOVA elvégzésének lépései: MANOVA Tulajdonságok: Hasonló az ANOVÁ-hoz Több függő változó A függő változók korreláltak és a lineáris kombinációnak értelme van. Azt teszteli, hogy k populációban a függő változók egy lineáris kombinációjának

Részletesebben

A leíró statisztikák

A leíró statisztikák A leíró statisztikák A leíró statisztikák fogalma, haszna Gyakori igény az, hogy egy adathalmazt elemei egyenkénti felsorolása helyett néhány jellemző tulajdonságának megadásával jellemezzünk. Ezeket az

Részletesebben

Biomatematika 13. Varianciaanaĺızis (ANOVA)

Biomatematika 13. Varianciaanaĺızis (ANOVA) Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 13. Varianciaanaĺızis (ANOVA) Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date:

Részletesebben

Least Squares becslés

Least Squares becslés Least Squares becslés A négyzetes hibafüggvény: i d i ( ) φx i A négyzetes hibafüggvény mellett a minimumot biztosító megoldás W=( d LS becslés A gradiens számítása és nullává tétele eredményeképp A megoldás

Részletesebben

Diverzifikáció Markowitz-modell MAD modell CAPM modell 2017/ Szegedi Tudományegyetem Informatikai Intézet

Diverzifikáció Markowitz-modell MAD modell CAPM modell 2017/ Szegedi Tudományegyetem Informatikai Intézet Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 11. Előadás Portfólió probléma Portfólió probléma Portfólió probléma Adott részvények (kötvények,tevékenységek,

Részletesebben

Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat

Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi fizika és statisztika I. előadás 2016.11.09 Orvosi

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.22. Valószínűségi változó Véletlentől függő számértékeket (értékek sokasága) felvevő változókat valószínűségi változóknak nevezzük(jelölés: ξ, η, x). (pl. x =

Részletesebben

Biomatematika 2 Orvosi biometria

Biomatematika 2 Orvosi biometria Biomatematika 2 Orvosi biometria 2017.02.13. Populáció és minta jellemző adatai Hibaszámítás Valószínűség 1 Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza)

Részletesebben

Regresszió és ANOVA. Freedman: fejezet. Freedman: fejezet. Freedman: fejezet

Regresszió és ANOVA. Freedman: fejezet. Freedman: fejezet. Freedman: fejezet Kabos: Statisztika II. Összefüggésvizsgálat 11.9 Slide 1 Slide 1 Slide 1 Összefüggésvizsgálat 2. Regresszió és ANOVA Összefüggésvizsgálat összehasonlítása 2. Regresszió és ANOVA Összefüggésvizsgálat összehasonlítása

Részletesebben

Hipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás

Hipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás STATISZTIKA Hipotézis, sejtés 11. Előadás Hipotézisvizsgálatok, nem paraméteres próbák Tudományos hipotézis Nullhipotézis felállítása (H 0 ): Kétmintás hipotézisek Munkahipotézis (H a ) Nullhipotézis (H

Részletesebben

Kabos Sándor. Térben autokorrelált adatrendszerek

Kabos Sándor. Térben autokorrelált adatrendszerek Kabos Sándor Térben autokorrelált adatrendszerek elemzése Összefoglalás az előadás példákon szemlélteti a térben autokorrelált adatok blokkosításának és összefüggésvizsgálatának jellemző tulajdonságait.

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.

Részletesebben

Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév

Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév A pirossal írt anyagrészeket nem fogom közvetlenül számon kérni a vizsgán, azok háttérismeretként,

Részletesebben

Statisztika II. feladatok

Statisztika II. feladatok Statisztika II. feladatok 1. Egy női ruhákat és kiegészítőket forgalmazó üzletlánc 118 egységénél felmérést végzett arról, milyen tényezők befolyásolják a havi összbevételüket (EUR). a) Pótolja ki a táblázatok

Részletesebben