Több diszkrét kimenet multinomiális és feltételes logit modellek

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Több diszkrét kimenet multinomiális és feltételes logit modellek"

Átírás

1 Több diszkrét kimenet multinomiális és feltételes logit modellek Mikroökonometria, 9. hét Bíró Anikó A tananyag a Gazdasági Versenyhivatal Versenykultúra Központa és a Tudás-Ökonómia Alapítvány támogatásával készült az ELTE TáTK Közgazdaságtudományi Tanszékének közreműködésével

2 Több diszkrét kimenet 2 kimenet: lineáris valószínűségi, probit és logit modellek Több kimeneti lehetőség: Nincs természetes sorbarendezés Pl. terméktípusok közül választás Leggyakoribb modell: multinomiális logit (és feltételes logit) modell

3 Diszkrét választás modelle i egyén, terméktípus p ár, w termékellemzők max v ( p, w = 0,1,..., J Normalizálás : v 0: referencia kategória Feltételes logit modell feltevése: ε i független, első típusú extrém érték eloszlású: f εj 0 = 0 ( ε ) = exp exp ) + ε i ( ( ε ) ε )

4 Feltételes logit modell Aggregált keresletfüggvény (bizonyítás nélkül): D S: potenciális vásárlók tömege Egyéni kereslet: terméktípus választásának valószínűsége: Összegük = 1 ( p, w) exp = S K k = 0 exp K k = 0 ( v ( p, w )) exp ( v ( p, w )) exp ( v ( p, w )) k k k ( v ( p, w )) k k k

5 Multinomiális logit és feltételes logit modell Két modellváltozat (elnevezések gyakran keverednek): 1. Magyarázó változók alternatívától függnek feltételes (conditional) logit modell Pl. terméktípusok közti választás, magyarázó változók: termékek ellemzői 2. Magyarázó változók azonosak az alternatívák között MNL modell Pl. munkaerőpiaci státuszok közti választás, magyarázó változók: egyéni ellemzők

6 Multinomiális logit és feltételes logit modell, folyt. 1. Feltételes logit modell: p i = m e l= 1 X e i ' β X il ' β 2. Multinomiális logit modell: p i = m e l= 1 X i e ' β X i ' β l

7 Együtthatók értelmezése Becslés: maximum likelihood Együtthatók önmagukban nem értelmezhetők Parciális hatás: pi = x Relatív valószínűség: k p p i i1 p i ( β ) k βi, βi = pil l ' X i β = e, ha β1 l = 0 β

8 Irreleváns alternatíváktól való függetlenség (IIA) Két termék közötti választás független az elérhető többi alternatívától Ú termék bevezetése, amely tökéletes helyettesítőe egy meglévő terméknek Ezt váruk: helyettesítési hatás érvényesül, eltérő termékekre nincs hatás MNL és CL modell: Ú termék részesedése megegyezik tökéletes helyettesítő részesedésével Többi termék részesedése csökken

9 Példák Közlekedési mód megválasztása: Autóval vagy vonattal? Ha buszvonal bevezetésre kerül: IIA feltevés alapán nem befolyásola autó vonat választást Reális feltevés? Politikai választás: 2 elölt közötti választás Ha van 3. elölt is van: nem befolyásola első 2 elölt relatív szavazatarányát Kávé vagy Coca-cola vagy narancslé: IIA megfelelő lehet Narancslé vagy Coca-cola vagy Pepsi: IIA problémás

10 MNL példa Halászat módának megválasztása, magyarázó változó: övedelem Forrás: Cameron Trivedi: Microeconometrics Using Stata (2009)

11 Alternatíva specifikus változók: ár és minőség feltételes logit modell MNL példa, folyt.

12 Beágyazott logit modell (NL) Rugalmasabb modell, mint CL Alapfeltevés: lépcsőzetes döntés 1. lépés: termékkategória választása 2. lépés: termék kiválasztása a kategórián belül IIA feltétel: csak egy adott termékkategórián belül kell telesülnie, kategóriák között nem További alternatív modellek pl.: multinomiális probit, véletlen együtthatóú logit (mixed logit)

13 Beágyazott logit példa Utazási módok közti választás: Utazás Légi Földi Repülő Vonat Autó Busz

14 Multinomiális logit modell becslése EViews programmal Multinomiális és feltételes logit modellek becslése EViews programmal nehézkes: logl obektum használata szükséges Program fálok: EViews help fálban és mintaprogramok között elérhetők Stata program alkalmasabb MNL és feltételes logit modellek becslésére Gretl szoftver is hasonlóan nehézkes, mint EViews

15 Példa MNL MNL modell, halászat móda: 3 alternatíva: part, móló, magánhaó Referencia kategória: haó Magyarázó változók: övedelem (havi, ezer $), parti és haós halászat ára (parti ár = mólón ár) Ezek az árak nem függnek a választott alternatívától! Értelmezés: marginális hatások valószínűségekre Forrás: Cameron Trivedi: Microeconometrics Using Stata (2009)

16 Becsült együtthatók. mlogit mode income pbeach pprivate Iteration 0: log likelihood = Iteration 1: log likelihood = Iteration 2: log likelihood = Iteration 3: log likelihood = Iteration 4: log likelihood = Iteration 5: log likelihood = Iteration 6: log likelihood = Multinomial logistic regression Number of obs = 730 LR chi2(6) = Prob > chi2 = Log likelihood = Pseudo R2 = mode Coef. Std. Err. z P> z [95% Conf. Interval] beach income pbeach pprivate _cons pier income pbeach pprivate _cons (mode==private is the base outcome)

17 Marginális hatás. mfx, predict(pr outcome(1)) Marginal effects after mlogit y = Pr(mode==1) (predict, pr outcome(1)) = variable dy/dx Std. Err. z P> z [ 95% C.I. ] X income pbeach pprivate mfx, predict(pr outcome(2)) Marginal effects after mlogit y = Pr(mode==2) (predict, pr outcome(2)) = variable dy/dx Std. Err. z P> z [ 95% C.I. ] X income pbeach pprivate

18 Példa feltételes logit Feltételes modell, halászat móda: 3 alternatíva: part, móló, magánhaó Referencia kategória: haó Magyarázó változók: övedelem (havi, ezer $), választott alternatíva ára Értelmezés: marginális hatások valószínűségekre Forrás: Cameron Trivedi: Microeconometrics Using Stata (2009)

19 Becsült együtthatók. asclogit d p, case(id) alternatives(fishmode) casevars(income) basealternative(private) nolog note: variable p has 106 cases that are not alternative-specific: there is no within-case variability Alternative-specific conditional logit Number of obs = 2190 Case variable: id Number of cases = 730 Alternative variable: fishmode Alts per case: min = 3 avg = 3.0 max = 3 Wald chi2(3) = Log likelihood = Prob > chi2 = d Coef. Std. Err. z P> z [95% Conf. Interval] fishmode p beach pier income _cons income _cons private (base alternative)

20 Marginális hatás. estat mfx, varlist(p) Pr(choice = beach 1 selected) = variable dp/dx Std. Err. z P> z [ 95% C.I. ] X p beach pier private Pr(choice = pier 1 selected) = variable dp/dx Std. Err. z P> z [ 95% C.I. ] X p beach pier private Pr(choice = private 1 selected) = variable dp/dx Std. Err. z P> z [ 95% C.I. ] X p beach pier private

21 4. házi feladat Stratton, O Toole, Wetzel: A multinomial logit model of college stopout and dropout behavior (Economics of Education Review 27 (2008) ): Az alkalmazott becslési módszer és becslési eredmények kritikai összefoglalása Vagy: EViews vagy Gretl program segítségével multinomiális logit becslése az előadásban szereplő halászati modellre (program és becslési eredmény bemutatása)

Multinomiális és feltételes logit modellek alkalmazásai

Multinomiális és feltételes logit modellek alkalmazásai Multinomiális és feltételes logit modellek alkalmazásai Mikroökonometria, 10. hét Bíró Anikó A tananyag a Gazdasági Versenyhivatal Versenykultúra Központja és a Tudás-Ökonómia Alapítvány támogatásával

Részletesebben

Heckman modell. Szelekciós modellek alkalmazásai.

Heckman modell. Szelekciós modellek alkalmazásai. Heckman modell. Szelekciós modellek alkalmazásai. Mikroökonometria, 12. hét Bíró Anikó A tananyag a Gazdasági Versenyhivatal Versenykultúra Központja és a Tudás-Ökonómia Alapítvány támogatásával készült

Részletesebben

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó. 2010. június

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó. 2010. június GAZDASÁGSTATISZTIKA GAZDASÁGSTATISZTIKA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi

Részletesebben

Kétértékű függő változók: alkalmazások Mikroökonometria, 8. hét Bíró Anikó Probit, logit modellek együtthatók értelmezése

Kétértékű függő változók: alkalmazások Mikroökonometria, 8. hét Bíró Anikó Probit, logit modellek együtthatók értelmezése Kétértékű függő változók: alkalmazások Mikroökonometria, 8. hét Bíró Anikó Probit, logit modellek együtthatók értelmezése Pˆr( y = 1 x) ( g( ˆ β + x ˆ β ) ˆ 0 β j ) x j Marginális hatás egy megválasztott

Részletesebben

Matematikai statisztika c. tárgy oktatásának célja és tematikája

Matematikai statisztika c. tárgy oktatásának célja és tematikája Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:

Részletesebben

ELTE TáTK Közgazdaságtudományi Tanszék ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter. 2010. június

ELTE TáTK Közgazdaságtudományi Tanszék ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter. 2010. június ÖKONOMETRIA ÖKONOMETRIA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék, az MTA

Részletesebben

Témakörök. Elmélet. Elmélet. Elmélet. Elmélet. Elméleti megközelítések Gyakorlati példák. Mit mérnénk? Miért szeretnénk mérni?

Témakörök. Elmélet. Elmélet. Elmélet. Elmélet. Elméleti megközelítések Gyakorlati példák. Mit mérnénk? Miért szeretnénk mérni? Témakörök Gazdasági szabályozás. hét A szabályozás hatékonysága ELTE TáTK Közgazdaságtudományi Tanszék i megközelítések Gyakorlati példák Kutatási eredmények Készítette: Valentiny Pál A tananyag a Gazdasági

Részletesebben

Ökonometria. Dummy változók használata. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Hetedik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék

Ökonometria. Dummy változók használata. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Hetedik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék Dummy változók használata Ferenci Tamás 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Hetedik fejezet Tartalom IV. esettanulmány 1 IV. esettanulmány Uniós országok munkanélkülisége

Részletesebben

Bevezetés az ökonometriába

Bevezetés az ökonometriába Bevezetés az ökonometriába Többváltozós regresszió: nemlineáris modellek Ferenci Tamás MSc 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Hetedik előadás, 2010. november 10.

Részletesebben

MUNKAGAZDASÁGTAN. Készítette: Köllő János. Szakmai felelős: Köllő János. 2011. január

MUNKAGAZDASÁGTAN. Készítette: Köllő János. Szakmai felelős: Köllő János. 2011. január MUNKAGAZDASÁGTAN Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék, az MTA Közgazdaságtudományi

Részletesebben

VÁLLALATGAZDASÁGTAN II. Döntési Alapfogalmak

VÁLLALATGAZDASÁGTAN II. Döntési Alapfogalmak Vállalkozási VÁLLALATGAZDASÁGTAN II. Tantárgyfelelős: Prof. Dr. Illés B. Csaba Előadó: Dr. Gyenge Balázs Az ökonómiai döntés fogalma Vállalat Környezet Döntések sorozata Jövő jövőre vonatkozik törekszik

Részletesebben

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó. 2010. június

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó. 2010. június GAZDASÁGSTATISZTIKA GAZDASÁGSTATISZTIKA Készül a TÁMOP-4..2-08/2/A/KMR-2009-004pályázai projek kereében Taralomfejleszés az ELTE TáK Közgazdaságudományi Tanszékén az ELTE Közgazdaságudományi Tanszék, az

Részletesebben

Közgazdaságtan 1. ELTE TáTK Közgazdaságtudományi Tanszék. 3. hét A KERESLETELMÉLET ALAPJAI. HASZNOSSÁG, PREFERENCIÁK

Közgazdaságtan 1. ELTE TáTK Közgazdaságtudományi Tanszék. 3. hét A KERESLETELMÉLET ALAPJAI. HASZNOSSÁG, PREFERENCIÁK KÖZGAZDASÁGTAN I. ELTE TáTK Közgazdaságtudományi Tanszék Közgazdaságtan 1. A KERESLETELMÉLET ALAPJAI. HASZNOSSÁG, PREFERENCIÁK Bíró Anikó, K hegyi Gergely, Major Klára Szakmai felel s: K hegyi Gergely

Részletesebben

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás Matematikai alapok és valószínőségszámítás Valószínőségi eloszlások Binomiális eloszlás Bevezetés A tudományos életben megfigyeléseket teszünk, kísérleteket végzünk. Ezek többféle különbözı eredményre

Részletesebben

MIKROÖKONÓMIA I. Készítette: Kőhegyi Gergely, Horn Dániel. Szakmai felelős: Kőhegyi Gergely. 2010. június

MIKROÖKONÓMIA I. Készítette: Kőhegyi Gergely, Horn Dániel. Szakmai felelős: Kőhegyi Gergely. 2010. június MIKROÖKONÓMIA I. B Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

A kvantum-kommunikáció leírása sűrűségmátrix segítségével

A kvantum-kommunikáció leírása sűrűségmátrix segítségével LOGO A kvantum-kommunikáció leírása sűrűségmátrix segítségével Gyöngyösi László BME Villamosmérnöki és Informatikai Kar Hogyan tekinthetünk a sűrűségmátrixokra? Zaos kvantumrendszerek kvantumállapotra

Részletesebben

KÖZGAZDASÁGTAN I. Készítette: Bíró Anikó, K hegyi Gergely, Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június

KÖZGAZDASÁGTAN I. Készítette: Bíró Anikó, K hegyi Gergely, Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június KÖZGAZDASÁGTAN I. Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben

Gazdasági szabályozás 13. hét A szabályozás hatékonysága

Gazdasági szabályozás 13. hét A szabályozás hatékonysága Gazdasági szabályozás 13. hét A szabályozás hatékonysága ELTE TáTK Közgazdaságtudományi Tanszék Készítette: Valentiny Pál A tananyag a Gazdasági Versenyhivatal Versenykultúra Központja és a Tudás-Ökonómia

Részletesebben

GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó. 2010. június

GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó. 2010. június GAZDASÁGSTATISZTIKA Készül a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázai projek kereében Taralomfejleszés az ELTE TáTK Közgazdaságudományi Tanszékén, az ELTE Közgazdaságudományi Tanszék, az MTA Közgazdaságudományi

Részletesebben

Mikroökonómia 2009 őszi félév

Mikroökonómia 2009 őszi félév Mikroökonómia 2009 őszi félév Budapesti Corvinus Egyetem, Közgazdaságtudományi Kar. 3. előadás Fogyasztás és kereslet Előadó: Berde Éva A jelen előadás fóliáiban többször felhasználtam a Hirshleifer Glazer

Részletesebben

VÁROS- ÉS INGATLANGAZDASÁGTAN

VÁROS- ÉS INGATLANGAZDASÁGTAN VÁROS- ÉS INGATLANGAZDASÁGTAN Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az

Részletesebben

Ökonometria. Logisztikus regresszió. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Nyolcadik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék

Ökonometria. Logisztikus regresszió. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Nyolcadik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék Ferenci Tamás 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Nyolcadik fejezet Tartalom V. esettanulmány 1 V. esettanulmány Csődelőrejelzés 2 Általános gondolatok 3 becslése

Részletesebben

1. ábra: A felsőoktatásban tanulók, illetve felsőfokú oklevelet szerzők számának változása, 1990 2009. Forrás: KSH 1990 2009.

1. ábra: A felsőoktatásban tanulók, illetve felsőfokú oklevelet szerzők számának változása, 1990 2009. Forrás: KSH 1990 2009. Diplomás pályakezdők a versenyszektorban A Gazdaság és Vállalkozáskutató Intézet 2005-ben kezdte el a Diplomás pályakezdők a versenyszektorban elnevezésű kutatási programot, amelynek keretében évente felmérést

Részletesebben

A PÁLYAKEZDŐ DIPLOMÁSOK KERESETE, MUNKAERŐ-PIACI SIKERESSÉGE A 2000-ES ÉVEK ELEJÉN

A PÁLYAKEZDŐ DIPLOMÁSOK KERESETE, MUNKAERŐ-PIACI SIKERESSÉGE A 2000-ES ÉVEK ELEJÉN VARGA JÚLIA A PÁLYAKEZDŐ DIPLOMÁSOK KERESETE, MUNKAERŐ-PIACI SIKERESSÉGE A 2000-ES ÉVEK ELEJÉN Bevezetés Mennyire sikeresek a pályakezdő diplomások a munkaerő-piacon a 2000-es évek elején? Hogyan változott

Részletesebben

Programozás II gyakorlat. 4. Öröklődés

Programozás II gyakorlat. 4. Öröklődés Programozás II gyakorlat 4. Öröklődés Feladat Egy játékfejlesztő cég olyan programot fejleszt, amely nyilvántartja az alkalmazottai adatait. Tároljuk minden személy: Nevét (legfeljebb 50 karakter) Születési

Részletesebben

Túlélés analízis. Probléma:

Túlélés analízis. Probléma: 1 Probléma: Túlélés analízis - Túlélési idő vizsgálata speciális vizsgálati módszereket igényel (pl. két csoport között az idők átlagait nem lehet direkt módon összehasonlítani) - A túlélési idő nem normális

Részletesebben

KÖZGAZDASÁGTAN I. Készítette: Bíró Anikó, K hegyi Gergely, Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június

KÖZGAZDASÁGTAN I. Készítette: Bíró Anikó, K hegyi Gergely, Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június KÖZGAZDASÁGTAN I. Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben

Közgazdaságtan 1. ELTE TáTK Közgazdaságtudományi Tanszék. 2. hét KERESLET, KÍNÁLAT, EGYENSÚLY

Közgazdaságtan 1. ELTE TáTK Közgazdaságtudományi Tanszék. 2. hét KERESLET, KÍNÁLAT, EGYENSÚLY KÖZGAZDASÁGTAN I. ELTE TáTK Közgazdaságtudományi Tanszék Közgazdaságtan 1. KERESLET, KÍNÁLAT, EGYENSÚLY Bíró Anikó, K hegyi Gergely, Major Klára Szakmai felel s: K hegyi Gergely 2010. június Vázlat 1

Részletesebben

VÁROS- ÉS INGATLANGAZDASÁGTAN

VÁROS- ÉS INGATLANGAZDASÁGTAN VÁROS- ÉS INGATLANGAZDASÁGTAN VÁROS- ÉS INGATLANGAZDASÁGTAN Készült a TÁMOP-4..-08//A/KMR-009-004pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi

Részletesebben

Döntési fák. (Klasszifikációs és regressziós fák: (Classification And Regression Trees: CART ))

Döntési fák. (Klasszifikációs és regressziós fák: (Classification And Regression Trees: CART )) Döntési fák (Klasszifikációs és regressziós fák: (Classification And Regression Trees: CART )) Rekurzív osztályozó módszer, Klasszifikációs és regressziós fák folytonos, kategóriás, illetve túlélés adatok

Részletesebben

Kutatásmódszertan és prezentációkészítés

Kutatásmódszertan és prezentációkészítés Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I

Részletesebben

REGIONÁLIS GAZDASÁGTAN

REGIONÁLIS GAZDASÁGTAN REGIONÁLIS GAZDASÁGTAN ELTE TáTK Közgazdaságtudományi Tanszék Regionális gazdaságtan VON THÜNEN-MODELLEK Készítette: Békés Gábor és Rózsás Sarolta Szakmai felel s: Békés Gábor 2011. július Vázlat 1 Mai

Részletesebben

VÁROS- ÉS INGATLANGAZDASÁGTAN

VÁROS- ÉS INGATLANGAZDASÁGTAN VÁROS- ÉS INGATLANGAZDASÁGTAN Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az

Részletesebben

Khi-négyzet eloszlás. Statisztika II., 3. alkalom

Khi-négyzet eloszlás. Statisztika II., 3. alkalom Khi-négyzet eloszlás Statisztika II., 3. alkalom A khi négyzet eloszlást (Pearson) leggyakrabban kategorikus adatok elemzésére használjuk. N darab standard normális eloszlású változó négyzetes összegeként

Részletesebben

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika Bevezetés 1. előadás, 2015. február 11. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Heti 2 óra előadás + 2 óra

Részletesebben

A képzési terület és a felsőoktatási intézmény hatása a fiatal diplomások munkaerő-piaci sikerességére a 2000-es évek végén

A képzési terület és a felsőoktatási intézmény hatása a fiatal diplomások munkaerő-piaci sikerességére a 2000-es évek végén A képzési terület és a felsőoktatási intézmény hatása a fiatal diplomások munkaerő-piaci sikerességére a 2000-es évek végén Varga Júlia Összefoglaló A tanulmány a Diplomás pályakövetés országos kutatás

Részletesebben

Magyarország növekedési kilátásai A magyarországi vállalatok lehetőségei és problémái MTA KRTK KTI workshop

Magyarország növekedési kilátásai A magyarországi vállalatok lehetőségei és problémái MTA KRTK KTI workshop Magyarország növekedési kilátásai A magyarországi vállalatok lehetőségei és problémái MTA KRTK KTI workshop Prof. Dr. Szerb László egyetemi tanár Pécsi Tudományegyetem Közgazdaságtudományi Kar Helyzetkép

Részletesebben

VÁROS- ÉS INGATLANGAZDASÁGTAN

VÁROS- ÉS INGATLANGAZDASÁGTAN VÁROS- ÉS INGATLANGAZDASÁGTAN Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az

Részletesebben

POLITIKAI GAZDASÁGTAN

POLITIKAI GAZDASÁGTAN POLITIKAI GAZDASÁGTAN Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben

REGIONÁLIS GAZDASÁGTAN B

REGIONÁLIS GAZDASÁGTAN B REGIONÁLIS GAZDASÁGTAN B ELTE TáTK Közgazdaságtudományi Tanszék Regionális gazdaságtan B AGGLOMERÁCIÓ ÉS TERMELÉKENYSÉG Készítette: Békés Gábor és Rózsás Sarolta Szakmai felel s: Békés Gábor 2011. július

Részletesebben

MAKROÖKONÓMIA. Készítette: Horváth Áron, Pete Péter. Szakmai felelős: Pete Péter. 2011. február

MAKROÖKONÓMIA. Készítette: Horváth Áron, Pete Péter. Szakmai felelős: Pete Péter. 2011. február MAKROÖKONÓMIA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben

Mesterséges Intelligencia I.

Mesterséges Intelligencia I. Mesterséges Intelligencia I. 10. elıadás (2008. november 10.) Készítette: Romhányi Anita (ROANAAT.SZE) - 1 - Statisztikai tanulás (Megfigyelések alapján történı bizonytalan következetésnek tekintjük a

Részletesebben

A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA

A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE

Részletesebben

A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA

A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék

Részletesebben

Heckman modell. Szelekciós modellek alkalmazásai. Mikroökonometria, 12. hét Bíró Anikó Emlékeztető

Heckman modell. Szelekciós modellek alkalmazásai. Mikroökonometria, 12. hét Bíró Anikó Emlékeztető Heckman modell. Szelekciós modellek alkalmazásai. Mikroökonometria, 12. hét Bíró Anikó Emlékeztető Tobit modell sarokmegoldás Cenzorált modell maximált értékek Csonkolt modell x értékei nem megfigyeltek

Részletesebben

Elliptikus eloszlások, kopuláik. 7. előadás, 2015. március 25. Elliptikusság tesztelése. Arkhimédeszi kopulák

Elliptikus eloszlások, kopuláik. 7. előadás, 2015. március 25. Elliptikusság tesztelése. Arkhimédeszi kopulák Elliptiks eloszlások, kopláik 7. előadás, 215. márcis 25. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettdományi Kar Eötös Loránd Tdományegyetem Áringadozások előadás Sűrűségfüggényük

Részletesebben

A MIDAS_HU eredményeinek elemzése, továbbfejlesztési javaslatok HORVÁTH GYULA 2015. MÁJUS 28.

A MIDAS_HU eredményeinek elemzése, továbbfejlesztési javaslatok HORVÁTH GYULA 2015. MÁJUS 28. A MIDAS_HU eredményeinek elemzése, továbbfejlesztési javaslatok HORVÁTH GYULA 2015. MÁJUS 28. 1 A projekt céljai Az Unió ajánlatkérése és az ONYF pályázata a következő célokat tűzte ki: Preparation of

Részletesebben

KÖZGAZDASÁGTAN I. Készítette: Bíró Anikó, K hegyi Gergely, Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június

KÖZGAZDASÁGTAN I. Készítette: Bíró Anikó, K hegyi Gergely, Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június KÖZGAZDASÁGTAN I. Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben

Bevezetés az ökonometriába

Bevezetés az ökonometriába Bevezetés az ökonometriába Többváltozós lineáris regresszió: modellszelekció Ferenci Tamás MSc 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Negyedik előadás, 2010. október

Részletesebben

AZ ÁTMENET GAZDASÁGTANA POLITIKAI GAZDASÁGTANI PILLANATKÉPEK MAGYARORSZÁGON

AZ ÁTMENET GAZDASÁGTANA POLITIKAI GAZDASÁGTANI PILLANATKÉPEK MAGYARORSZÁGON AZ ÁTMENET GAZDASÁGTANA POLITIKAI GAZDASÁGTANI PILLANATKÉPEK MAGYARORSZÁGON Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén

Részletesebben

S atisztika 2. előadás

S atisztika 2. előadás Statisztika 2. előadás 4. lépés Terepmunka vagy adatgyűjtés Kutatási módszerek osztályozása Kutatási módszer Feltáró kutatás Következtető kutatás Leíró kutatás Ok-okozati kutatás Keresztmetszeti kutatás

Részletesebben

KIEMELT PROJEKTEK MEGVALÓSÍTHATÓSÁGI TANULMÁNYAINAK TARTALMI KÖVETELMÉNYEI JAVASLAT

KIEMELT PROJEKTEK MEGVALÓSÍTHATÓSÁGI TANULMÁNYAINAK TARTALMI KÖVETELMÉNYEI JAVASLAT KIEMELT PROJEKTEK MEGVALÓSÍTHATÓSÁGI TANULMÁNYAINAK TARTALMI KÖVETELMÉNYEI JAVASLAT Készítette a Terra Studio Kft. a Nemzeti Fejlesztési Ügynökség megbízásából a Kiemelt Programok és Projektek Főosztályának

Részletesebben

Idősoros elemzés. Ferenci Tamás, ft604@hszk.bme.hu 2009. január 7.

Idősoros elemzés. Ferenci Tamás, ft604@hszk.bme.hu 2009. január 7. Idősoros elemzés Ferenci Tamás, ft604@hszk.bme.hu 2009. január 7. A felhasznált adatbázisról Elemzésemhez a tanszéki honlapon rendelkezésre bocsátott TimeSeries.xls idősoros adatgyűjtemény egyik idősorát,

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

A multikritériumos elemzés célja, alkalmazási területe, adat-transzformációs eljárások, az osztályozási eljárások lényege

A multikritériumos elemzés célja, alkalmazási területe, adat-transzformációs eljárások, az osztályozási eljárások lényege A multkrtérumos elemzés célja, alkalmazás területe, adat-transzformácós eljárások, az osztályozás eljárások lényege Cél: tervváltozatok, objektumok értékelése (helyzetértékelés), döntéshozatal segítése

Részletesebben

Idősoros elemzés minta

Idősoros elemzés minta Idősoros elemzés minta Ferenci Tamás, tamas.ferenci@medstat.hu A felhasznált adatbázisról Elemzésemhez a francia frank árfolyamának 1986.01.03. és 1993.12.31. közötti értékeit használtam fel, mely idősorban

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Gyártórendszerek modellezése: MILP modell PNS feladatokhoz

Gyártórendszerek modellezése: MILP modell PNS feladatokhoz Gyártórendszerek modellezése MILP modell PNS feladatokhoz 1 Pannon Egyetem M szaki Informatikai Kar Számítástudomány Alkalmazása Tanszék Utolsó frissítés: 2008. november 16. 1 hegyhati@dcs.uni-pannon.hu

Részletesebben

Kibõl lesz ma tanár?

Kibõl lesz ma tanár? Közgazdasági Szemle, LIV. évf., 2007. július augusztus (609 627. o.) VARGA JÚLIA Kibõl lesz ma tanár? A tanári pálya választásának empirikus elemzése Kibõl lesz ma tanár Magyarországon? Különböznek-e a

Részletesebben

A Modern piacelmélet tárgya. Célkitűzések. Néhány példa a sajtóból. A piacelmélet fontos? Modern piacelmélet

A Modern piacelmélet tárgya. Célkitűzések. Néhány példa a sajtóból. A piacelmélet fontos? Modern piacelmélet Modern iacelmélet Modern iacelmélet Mi is az a iacelmélet? ELTE TáTK Közgazdaságtudományi Tanszék Selei Adrienn ELTE TáTK Közgazdaságtudományi Tanszék Készítette: Hidi János A tananyag a Gazdasági Versenyhivatal

Részletesebben

Kétértékű függő változók: alkalmazások

Kétértékű függő változók: alkalmazások Kétértékű függő változók: alkalmazások Mikroökonometria, 8. hét Bíró Anikó A tananyag a Gazdasági Versenyhivatal Versenykultúra Központja és a Tudás-Ökonómia Alapítvány támogatásával készült az ELTE TáTK

Részletesebben

THE RELATIONSHIP BETWEEN THE STATE OF EDUCATION AND THE LABOUR MARKET IN HUNGARY CSEHNÉ PAPP, IMOLA

THE RELATIONSHIP BETWEEN THE STATE OF EDUCATION AND THE LABOUR MARKET IN HUNGARY CSEHNÉ PAPP, IMOLA THE RELATIONSHIP BETWEEN THE STATE OF EDUCATION AND THE LABOUR MARKET IN HUNGARY CSEHNÉ PAPP, IMOLA Keywords: unemployment, employment policy, education system. The most dramatic socio-economic change

Részletesebben

VESZÉLYES LÉGKÖRI JELENSÉGEK KÜLÖNBÖZŐ METEOROLÓGIAI SKÁLÁKON TASNÁDI PÉTER ÉS FEJŐS ÁDÁM ELTE TTK METEOROLÓGIA TANSZÉK 2013

VESZÉLYES LÉGKÖRI JELENSÉGEK KÜLÖNBÖZŐ METEOROLÓGIAI SKÁLÁKON TASNÁDI PÉTER ÉS FEJŐS ÁDÁM ELTE TTK METEOROLÓGIA TANSZÉK 2013 VESZÉLYES LÉGKÖRI JELENSÉGEK KÜLÖNBÖZŐ METEOROLÓGIAI SKÁLÁKON TASNÁDI PÉTER ÉS FEJŐS ÁDÁM ELTE TTK METEOROLÓGIA TANSZÉK 2013 VÁZLAT Veszélyes és extrém jelenségek A veszélyes definíciója Az extrém és ritka

Részletesebben

REGIONÁLIS GAZDASÁGTAN B

REGIONÁLIS GAZDASÁGTAN B REGIONÁLIS GAZDASÁGTAN B ELTE TáTK Közgazdaságtudományi Tanszék Regionális gazdaságtan B A MONOPOLISZTIKUS VERSENY ÉS A DIXITSTIGLITZ-MODELL Készítette: Békés Gábor és Rózsás Sarolta Szakmai felel s:

Részletesebben

Melléklet 1. A knn-módszerhez használt változólista

Melléklet 1. A knn-módszerhez használt változólista Melléklet 1. A knn-módszerhez használt változólista 1. Régiók (1. Budapest, Pest megye, Dunántúl; 2. Dél-Magyarország; 3. Észak-Magyarország.) 2. Főállású-e az egyéni vállalkozó dummy (1 heti legalább

Részletesebben

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia. 2008. május 6.

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia. 2008. május 6. Modern Fizika Labor Fizika BSc A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia Értékelés: A beadás dátuma: 28. május 13. A mérést végezte: 1/5 A mérés célja A mérés célja az

Részletesebben

Politikai befolyás a közbeszerzési piacon? A piaci részesedések elemzése 2009-2011 - előzetes eredmények

Politikai befolyás a közbeszerzési piacon? A piaci részesedések elemzése 2009-2011 - előzetes eredmények A piaci részesedések elemzése 2009-2011 - előzetes eredmények Public Procurement 4 You 4. riport Budapest, 2013. február Az elemzést a Budapesti Corvinus Egyetem Szociológia és Társadalompolitika Intézet

Részletesebben

Varianciaanalízis 4/24/12

Varianciaanalízis 4/24/12 1. Feladat Egy póker kártya keverő gép a kártyákat random módon választja ki. A vizsgálatban 1600 választott kártya színei az alábbi gyakorisággal fordultak elő. Vizsgáljuk meg, hogy a kártyák kiválasztása

Részletesebben

H0 hipotézis: μ1 = μ2 = μ3 = μ (a különböző talpú cipők eladási ára megegyezik)

H0 hipotézis: μ1 = μ2 = μ3 = μ (a különböző talpú cipők eladási ára megegyezik) 5.4: 3 különböző talpat hasonlítunk egymáshoz Varianciaanalízis. hipotézis: μ1 = μ2 = μ3 = μ (a különböző talpú cipők eladási ára megegyezik) hipotézis: Létezik olyan μi, amely nem egyenlő a többivel (Van

Részletesebben

LPT illesztőkártya. Beüzemelési útmutató

LPT illesztőkártya. Beüzemelési útmutató LPT illesztőkártya Beüzemelési útmutató Az LPT illesztőkártya a számítógépen futó mozgásvezérlő program ki- és bemenőjeleit illeszti a CNC gép és a PC nyomtató (LPT) csatlakozója között. Főbb jellemzők:

Részletesebben

és élelmiszer-ipari termékek hozhatók forgalomba, amelyeket a vonatkozó jogszabá-

és élelmiszer-ipari termékek hozhatók forgalomba, amelyeket a vonatkozó jogszabá- 152 - - - - - - Az öko, a bio vagy az organikus kifejezések használata még napjainkban sem egységes, miután azok megjelenési formája a mindennapi szóhasználatban országon- A német, svéd, spanyol és dán

Részletesebben

MIKROÖKONÓMIA I. B. Készítette: K hegyi Gergely, Horn Dániel és Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június

MIKROÖKONÓMIA I. B. Készítette: K hegyi Gergely, Horn Dániel és Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június MIKROÖKONÓMIA I. B Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben

Pacemaker készülékek szoftverének verifikációja. Hesz Gábor

Pacemaker készülékek szoftverének verifikációja. Hesz Gábor Pacemaker készülékek szoftverének verifikációja Hesz Gábor A szív felépítése http://hu.wikipedia.org/w/index.php?title=fájl:diagram_of_the_human_heart_hu.svg http://en.wikipedia.org/wiki/file:conductionsystemoftheheartwithouttheheart.png

Részletesebben

A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA

A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projet eretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszéén az ELTE Közgazdaságtudományi

Részletesebben

2010. évi Közhasznúsági jelentése

2010. évi Közhasznúsági jelentése Tudás-Ökonómia Közgazdasági Képzésért Alapítvány 1025 Budapest, Felsőzöldmáli út 5/B. 2010. évi Közhasznúsági jelentése Budapest, 2011. február 1. Pete Péter A Tudás-Ökonómia Alapítvány Közhasznúsági jelentése

Részletesebben

Sztochasztikus kapcsolatok

Sztochasztikus kapcsolatok Sztochasztikus kapcsolatok Petrovics Petra PhD Hallgató Ismérvek közötti kapcsolat (1) Függvényszerű az egyik ismérv szerinti hovatartozás egyértelműen meghatározza a másik ismérv szerinti hovatartozást.

Részletesebben

A HÉTFA Kutatóintézet és a Compleo közös kiadványa FUTÓ JUDIT EDIT SZOBONYA PÉTER KI SZERETI A KOCKÁZATI TŐKÉT? KIT SZERET A KOCKÁZATI TŐKE?

A HÉTFA Kutatóintézet és a Compleo közös kiadványa FUTÓ JUDIT EDIT SZOBONYA PÉTER KI SZERETI A KOCKÁZATI TŐKÉT? KIT SZERET A KOCKÁZATI TŐKE? FUTÓ JUDIT EDIT SZOBONYA PÉTER KI SZERETI A KOCKÁZATI TŐKÉT? KIT SZERET A KOCKÁZATI TŐKE? HÉTFA Kutatóintézet Bizalom és Vállalkozás Program Szakmai háttér IX. A HÉTFA Kutatóintézet és a Compleo közös

Részletesebben

AZ ÁLTALÁNOSÍTOTT LINEÁRIS MODELL ÉS BIZTOSÍTÁSI ALKALMAZÁSAI

AZ ÁLTALÁNOSÍTOTT LINEÁRIS MODELL ÉS BIZTOSÍTÁSI ALKALMAZÁSAI MÓDSZERTANI TANULMÁNYOK AZ ÁLTALÁNOSÍTOTT LINEÁRIS MODELL ÉS BIZTOSÍTÁSI ALKALMAZÁSAI A biztosítási károk alakulásának modellezésére jól alkalmazható az általánosított lineáris modell, amely alkalmas arra,

Részletesebben

PEST Hallgatói nemzetközi szakmai gyakorlat és mobilitás tapasztalatcseréjének projektje. Összefoglaló

PEST Hallgatói nemzetközi szakmai gyakorlat és mobilitás tapasztalatcseréjének projektje. Összefoglaló PEST Hallgatói nemzetközi szakmai gyakorlat és mobilitás tapasztalatcseréjének projektje Összefoglaló logo of the partner institutin Partnerek Lahti University of Applied Sciences Finnország MAC-Team aisbl

Részletesebben

2. előadás. Gazdasági intézmények funkciói,

2. előadás. Gazdasági intézmények funkciói, 2. előadás Hogyan működik a iac? A iacelemzés alafogalmai. A keresleti, a kínálati oldal és az egyensúly. A mikroökonómiai iacmodell: a Marshallkereszt. A keresleti és kínálati görbék kezelése. Példák

Részletesebben

Vissza a jövőbe TÁMOP-5.6.1.A-11/4-2011-0002

Vissza a jövőbe TÁMOP-5.6.1.A-11/4-2011-0002 Vissza a jövőbe TÁMOP-5.6.1.A-11/4-2011-0002 Speciális integrációs és reintegrációs foglalkozások fogvatartottak, pártfogó felügyelet alatt állók, javítóintézeti neveltek számára 2012. október 24. A program

Részletesebben

Does pension policy make older women work more?

Does pension policy make older women work more? Does pension policy make older women work more? The effect of increasing the retirement age on the labour market position of ageing women in Hungary Cseres-Gergely Zsombor MTA KRTK Közgazdaságtudományi

Részletesebben

Mikroökonómia II. B. ELTE TáTK Közgazdaságtudományi Tanszék. 10. hét AZ INFORMÁCIÓ ÉS KOCKÁZAT KÖZGAZDASÁGTANA, 3. rész

Mikroökonómia II. B. ELTE TáTK Közgazdaságtudományi Tanszék. 10. hét AZ INFORMÁCIÓ ÉS KOCKÁZAT KÖZGAZDASÁGTANA, 3. rész MIKROÖKONÓMIA II. B ELTE TáTK Közgazdaságtudományi Tanszék Mikroökonómia II. B AZ INFORMÁCIÓ ÉS KOCKÁZAT KÖZGAZDASÁGTANA, 3. rész Készítette: Szakmai felel s: 2011. február A tananyagot készítette: Jack

Részletesebben

MIKROÖKONÓMIA I. B. Készítette: K hegyi Gergely, Horn Dániel és Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június

MIKROÖKONÓMIA I. B. Készítette: K hegyi Gergely, Horn Dániel és Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június MIKROÖKONÓMIA I. B Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben

A hitelfelvételi kapacitás. A hitelfelvételi kapacitás néhány meghatározója. Diverzifikáció. Független részprojektek.

A hitelfelvételi kapacitás. A hitelfelvételi kapacitás néhány meghatározója. Diverzifikáció. Független részprojektek. Vállalati pénzügytan 6. A hitelfelvételi kapacitás növelésének eszközei ELTE TáTK Közgazdaságtudományi Tanszék Készítette: Bárczy Péter A tananyag a Gazdasági Versenyhivatal Versenykultúra Központja és

Részletesebben

Értelmi sérült fiatalok felnőtté válása. Ismerkedés a munka világával és a család

Értelmi sérült fiatalok felnőtté válása. Ismerkedés a munka világával és a család Értelmi sérült fiatalok felnőtté válása Ismerkedés a munka világával és a család Bevezetés Esettanulmány Értelmi sérült fiatalok sérülés szerinti alcsoport 16 és 20 éves kor között Bevezetés Intézménytelenítés

Részletesebben

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 8.

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 8. Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 8. előadás Szederkényi Gábor Pázmány Péter Katolikus Egyetem Információs

Részletesebben

MEZŐGAZDASÁGI ÁRAK ÉS PIACOK

MEZŐGAZDASÁGI ÁRAK ÉS PIACOK MEZŐGAZDASÁGI ÁRAK ÉS PIACOK Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az

Részletesebben

III. TANÁROK, DIÁKOK, TÁRSADALMI KÖRNYEZET

III. TANÁROK, DIÁKOK, TÁRSADALMI KÖRNYEZET III. TANÁROK, DIÁKOK, TÁRSADALMI KÖRNYEZET Bevezető A következő két tanulmány ahhoz a kérdéskörhöz kapcsolódik, hogy a magyar általános iskolák milyen eséllyel nyújthatnak minőségi oktatást. A kilencedikes

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

JOG ÉS KÖZGAZDASÁGTAN

JOG ÉS KÖZGAZDASÁGTAN JOG ÉS KÖZGAZDASÁGTAN JOG ÉS KÖZGAZDASÁGTAN Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi

Részletesebben

Termeléstervezés és -irányítás Termelés és kapacitás tervezés Xpress-Mosel FICO Xpress Optimization Suite

Termeléstervezés és -irányítás Termelés és kapacitás tervezés Xpress-Mosel FICO Xpress Optimization Suite Termeléstervezés és -irányítás Termelés és kapacitás tervezés Xpress-Mosel FICO Xpress Optimization Suite Alkalmazásával 214 Monostori László egyetemi tanár Váncza József egyetemi docens 1 Probléma Igények

Részletesebben

Multinomiális és feltételes logit modellek alkalmazásai Mikroökonometria, 10. hét Bíró Anikó Véletlen együtthatójú modell

Multinomiális és feltételes logit modellek alkalmazásai Mikroökonometria, 10. hét Bíró Anikó Véletlen együtthatójú modell Mutnoás és fetétees ogt odeek akaazása Mkroökonoetra,. hét Bíró Ankó Véeten együtthatóú ode Aggregát kereset becsése véeten együtthatóú MNL odee: Berry, Levnsohn, Pakes (BLP, 995 Econoetrca) Lényeg: rugaas

Részletesebben

KÖZGAZDASÁGTAN II. Készítette: Lovics Gábor. Szakmai felelős: Lovics Gábor. 2010. június

KÖZGAZDASÁGTAN II. Készítette: Lovics Gábor. Szakmai felelős: Lovics Gábor. 2010. június KÖZGAZDASÁGTAN II. Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén, az ELTE Közgazdaságtudományi Tanszék, az MTA Közgazdaságtudományi

Részletesebben

ő ü ó ü ü ő ő ó ę ö É Ĺ Ĺ ö ű ő ó ó ő ü ő ő ó ö ó ő ü ö ę đ ü ó ý ť ü ű ő ú ü ý ó ő ó ő ó ó ő ö ö ó ő ü ő ő ę ó ź ú ő ő ó Í ó ó ę ü ü ó ť ő ó ó ü ź ó Ĺ ő ű ú ő ű ó ű ś ű ő ę ó ö ó ú ö ö ő ń ü ý ü ő Í ü

Részletesebben