Válogatott fejezetek a közlekedésgazdaságtanból
|
|
- Róbert Gulyás
- 8 évvel ezelőtt
- Látták:
Átírás
1 Válogatott fejezetek a közlekedésgazdaságtanból 2. Választási modellek Levelező tagozat 2015 ősz Készítette: Prileszky István
2 Fogalmak Választási modellek célja: annak megjósolása, hogy egyén vagy csoport a lehetőségek halmazából melyik egy vagy több lehetőséget választ. (Discrete choice models) További cél annak vizsgálata, hogyan befolyásolják a döntést az alternatívák 1 és a döntést hozó különböző jellemzői, értékelik a döntéshozók vagy egyes csoportjaik az alternatívák különböző jellemzőit/tulajdonságait. Csoport viselkedésre két megközelítés: közvetlenül modellezni a csoport viselkedését (aggregate approach) A csoport döntése egyedi döntésekből alakul ki, ennek megfelelően azt kell modellezni, hogyan tükrözik az egyedi döntések a döntést hozó), és az alternatívák jellemzőit. (disaggregate approach). Az egyedi döntéseket ebben az esetben aggregálni kell. 1: alternatíva eredetileg olyan helyzet, amelyben két lehetőség között lehet választani. A mai szóhasználatban általános értelemben választható lehetőséget jelent.
3 Döntési folyamat és elemei Döntési folyamat: a szóba jöhető alternatívák számbavétele - az egyes alternatívák értékelése valamilyen döntési szabály alapján az egyik kiválasztása 4 elem: a döntést hozó, az alternatívák, az alternatívák jellemzői, döntési szabály Döntéshozó: egyes emberek másképpen értékelik az alternatívák jellemzőit, ebben szerepet játszanak pl.: jövedelem, lakóhely, életkor, foglalkozás stb. A modellezésnél ezt figyelembe kell venni.
4 Az alternatívák Rendelkezésre álló (létező) alternatívák (available choice set) Elérhető alternatívák (feasible choice set), adott személy számára reális lehetőség Figyelembe vett alternatívák (consideration choice set), egyes alternatívákat nem ismernek, vagy eleve elutasítanak
5 Az alternatívák jellemzői (attribútumok) A jellemzőknek vonatkozhatnak minden alternatívára, vagy csak azok egy részére Közlekedési módtól függ, pl. zsúfoltság, járatsűrűség nem létezik az egyéni közl.-ben Idő, kényelem,megbízhatóság, ár stb. Döntő szerepe van az időnek. Pl. teljes utazási idő, járműben töltött idő, járművön kívül töltött idő, utazási költség, átszállások száma, gyaloglási távolság érkezési idő megbsága.
6 A döntési szabály Racionális döntést feltételezünk Racionális, ha konzisztens és tranzitív Konzisztens. Ugyanolyan helyzetben ugyanaz a döntés születik Tranzitív: ha A alternatívát választják B-vel szemben, és B-t C-vel szemben, akkor A-t kell választani C-vel szemben is Vannak esetek, amikor az emberi döntés nem racionális
7 Haszon maximalizálás A haszon maximalizálás elve két tételen nyugszik Az alternatívák jellemzői kifejezhetők azok hasznosságát tükröző skaláris mennyiségekkel A döntéshozó képes optimalizálni az alternatívák különböző jellegű tulajdonságai között, pl. képes összevetni az egyes alternatívák utazási idő és utazási költség adatait, és ezek alapján kiválasztani a számára nagyobb hasznosságot jelentő alternatívát (trade-off)
8 Közlekedési mód Példa Utazási idő Költség (T) óra (C) Ft Személygépkocsi 0,5 800 Személygépkocsi többen 0, (car pooling) Busz 1,0 300 U(T,C,Y) = -T 0,05C/Y Y = havi jövedelem (ezer Ft) Az attribútum kifejezését rétegenként külön hasznossági függvény alkalmazásával is meg lehet oldani pl. U(T,C,120) = -T a 1 C U(T,C,300) = -T a 2 C
9 Determinisztikus választási modellek Hasznosság maximalizálása utility maximization Nagyságrend nem számít, csak a sorrend Közlekedési mód Y = Y = Személygépkocsi -1,17-0,77 Személygépkocsi többen -1,08-0,88 (car pooling) Busz -1,05-1,13 Az alacsonyabb jövedelmű car pooling-ot, a magasabb jövedelmű személygépkocsit választ
10 Az együtthatók nem fejezik ki a preferenciák erősségét, csak a sorrendjüket Számos hasznossági függvényt lehet felállítani, amelyek mind alkalmasak a preferenciák sorrendjének a megállapítására A hasznossági függvényeket két területen alkalmazzák: választási modellekben (utazói magatartás, travel behavior ), és az értékelésben Választási modellek: determinisztikus vagy sztochasztikus
11 A busz utazási ideje 0,75 órára csökken Közlekedési mód Y = Y = Személygépkocsi -1,17-0,77 Személygépkocsi többen (car pooling) -1,08-0,80 Busz -0,88-0,88 Az alacsonyabb jövedelmű buszt választ, a magasabb jövedelmű marad a személygépkocsinál
12 Az aggregált választás becslése Az attribútum változó szerint csoportokat képezünk C szgk car- pool busz 120-1,17-1,08-0,88 busz 150-1,03-1,02-1,10 car-pool 180-0,94-0,97-1,08 szgk 210-0,88-0,94-1,07 szgk 240-0,83-0,92-1,06 szgk 270-0,80-0,90-1,06 szgk 300-0,77-0,88-0,80 szgk
13 1000 fő jövedelem szerinti megoszlása jövedelem % fő választás busz car-pool szgk szgk szgk szgk szgk Busz: 100 car-pool 150 szgk 750 Megjegyzés: a hasznosságok átlagos értékével számolva hamis eredmény adódna
14 A determinisztikus megközelítés három fő hibalehetősége A döntéshozó nem rendelkezik tökéletes információkkal az alternatívákról. A modell felállításakor nem rendelkezünk teljes információval az alternatívákról, nem teljes körűek a figyelembe vett attribútumok, illetve nem értjük jól a döntéshozó döntési mechanizmusát. Nem ismerjük eléggé a döntéshozó attribútumait Ha ezekkel a bizonytalanságokkal is számolni akarunk, akkor valószínűségi modellt kell használni
15 Valószínűségi választási modellek A determinisztikus modell fogyatékossága Ha tökéletes lenne, azonos esetben minden hasonló egyénnek ugyanúgy kellene választania ilyen pontosságú modellt nem lehet felállítani, mindig maradnak figyelembe nem vett tényezők, azaz hiányosak az információink Hiányos információk mellett valószínűségi modelleket lehet alkalmazni, amelyek azt határozzák meg, hogy adott választás milyen valószínűséggel következik be ("random utility models" vagy "probabilistic choice models )
16 A hasznossági függvény változói ugyanazok, mint a determinisztikus esetben A hasznossági függvények értékei is fontosak ebben az esetben, mivel a lehetséges választások hasznosságainak számszerű értékeitől (ezek különbségeitől) függ a választás valószínűsége Ha egy választási lehetőség hasznossága nő, nő annak valószínűsége is, hogy azt választják.
17 Binomiális logit model P 1 = exp(v 1 )/exp(v 1 )+ exp(v 2 ) P 2 = exp(v 2 )/exp(v 1 )+ exp(v 2 )
18 Z EXP(Z)
19 Multinomial logit model P 1 = exp(v 1 )/exp(v 1 )+ exp(v 2 )+.+exp(v n )
20 Példa Hasznossági függvény értékek Jövedelem szgk car- pool busz 120-1,17-1,08-0, ,03-1,02-1, ,94-0,97-1, ,88-0,94-1, ,83-0,92-1, ,80-0,90-1, ,77-1,08-0,88
21 Választási e V valószínűség Carpool Busz Szgk pool Busz Össz. Car- Szgk 0,31 0,34 0,42 0,29 0,32 0,39 1,00 0,36 0,36 0,33 0,34 0,34 0,32 1,00 0,39 0,38 0,34 0,35 0,34 0,31 1,00 0,42 0,39 0,34 0,36 0,34 0,30 1,00 0,44 0,40 0,35 0,37 0,34 0,29 1,00 0,45 0,41 0,35 0,37 0,34 0,29 1,00 0,46 0,34 0,42 0,38 0,28 0,34 1,00
22 Választás eredményei Carpool Busz Szgk Össz
Válogatott fejezetek a közlekedésgazdaságtanból
Válogatott fejezetek a közlekedésgazdaságtanból Személyközlekedés gazdasági jellemzői2 Választási modellek Levelező tagozat 2017 ősz Készítette: Prileszky István http://www.sze.hu/~prile Forrás: A Self
Városi közforgalmú közlekedés/2 Választási modellek
Városi közforgalmú közlekedés/2 Választási modellek Doktori Iskola 2015 http://www.sze.hu/~prile Forrás: A Self Instructing Course in Mode Choice Modeling: Multinomial and Nested Logit Models Prepared
Választási modellek 1
Választási modellek 1 Prileszky István Doktori Iskola 2018 http://www.sze.hu/~prile Forrás: A Self Instructing Course in Mode Choice Modeling: Multinomial and Nested Logit Models Prepared For U.S. Department
Válogatott fejezetek a közlekedésgazdaságtanból
Válogatott fejezetek a közlekedésgazdaságtanból 1. Fogyasztói haszon és használói költség a személyközlekedésben Levelező tagozat 2015 ősz Készítette: Prileszky István http://www.sze.hu/~prile Az utazás
Válogatott fejezetek a közlekedésgazdaságtanból
Válogatott fejezetek a közlekedésgazdaságtanból 1. Fogyasztói haszon és használói költség a személyközlekedésben Nappali tagozat 2016 ősz Készítette: Prileszky István http://www.sze.hu/~prile A fogyasztói
A multikritériumos elemzés célja, alkalmazási területe, adat-transzformációs eljárások, az osztályozási eljárások lényege
A multkrtérumos elemzés célja, alkalmazás területe, adat-transzformácós eljárások, az osztályozás eljárások lényege Cél: tervváltozatok, objektumok értékelése (helyzetértékelés), döntéshozatal segítése
Válogatott fejezetek a közlekedésgazdaságtanból
Válogatott fejezetek a közlekedésgazdaságtanból Személyközlekedés gazdasági jellemzői4 Externáliák Levelező tagozat 2017 ősz Készítette: Prileszky István http://www.sze.hu/~prile Externáliák Externáliának
Válogatott fejezetek a közlekedésgazdaságtanból
Válogatott fejezetek a közlekedésgazdaságtanból 1. A személyszállítás közgazdasági jellemzői és gazdasági szabályozása Levelező tagozat 2016 ősz Készítette: Prileszky István http://www.sze.hu/~prile A
Választási modellek 3
Választási modellek 3 Prileszky István Doktori Iskola 2018 http://www.sze.hu/~prile Forrás: A Self Instructing Course in Mode Choice Modeling: Multinomial and Nested Logit Models Prepared For U.S. Department
Mikroökonómia elıadás
Mikroökonómia - 12. elıadás JÓLÉT ÉS TÁRSADALMI PREFERENCIÁK Bacsi, 12. ea. 1 Fogyasztói preferenciák A fogyasztó saját jószágkosarainak összehasonlítása pl: 1 narancs + 3 kg hús + 2 pár cipı kevésbé értékes,
Válogatott fejezetek a közlekedésgazdaságtanból
Válogatott fejezetek a közlekedésgazdaságtanból Személyközlekedés gazdasági jellemzői6 Árképzés Levelező tagozat 2017 ősz Készítette: Prileszky István http://www.sze.hu/~prile Utazás költségei és hasznai
Multinomiális és feltételes logit modellek alkalmazásai
Multinomiális és feltételes logit modellek alkalmazásai Mikroökonometria, 10. hét Bíró Anikó A tananyag a Gazdasági Versenyhivatal Versenykultúra Központja és a Tudás-Ökonómia Alapítvány támogatásával
Fogalmak Navigare necesse est
Döntéselmélet Fogalmak Navigare necesse est - dönteni mindenkinek kell A döntés nem vezetői privilégium: de! vezetői kompetencia, a vezetői döntések hatása Fogalmak II. A döntés célirányos választás adott
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Racionalitás: a hasznosság és a döntés Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade
Közgazdasági elméletek. Dr. Karajz Sándor Gazdaságelméleti Intézet
Közgazdasági elméletek Dr. Karajz Sándor Gazdaságelméleti 3. Előadás A karakterisztikai elmélet Bizonytalan körülmények közötti választás A karakterisztikai elmélet Hagyományos modell a fogyasztó különböző
VÁLLALATGAZDASÁGTAN II. Döntési Alapfogalmak
Vállalkozási VÁLLALATGAZDASÁGTAN II. Tantárgyfelelős: Prof. Dr. Illés B. Csaba Előadó: Dr. Gyenge Balázs Az ökonómiai döntés fogalma Vállalat Környezet Döntések sorozata Jövő jövőre vonatkozik törekszik
Válogatott fejezetek a közlekedésgazdaságtanból Személyközlekedés gazdasági jellemzői7
Válogatott fejezetek a közlekedésgazdaságtanból Személyközlekedés gazdasági jellemzői7 A személyszállítási piac szabályozása Levelező tagozat 2017 ősz Készítette: Prileszky István http://www.sze.hu/~prile
Coming soon. Pénzkereslet
Coming soon Akkor és most Makroökonómia 11. hét 40 pontos vizsga Május 23. hétfő, 10 óra Május 27. péntek, 14 óra Június 2. csütörtök, 12 óra Csak egyszer lehet megírni! Minimumkövetelmény: 40% (16 pont)
Több diszkrét kimenet multinomiális és feltételes logit modellek
Több diszkrét kimenet multinomiális és feltételes logit modellek Mikroökonometria, 9. hét Bíró Anikó A tananyag a Gazdasági Versenyhivatal Versenykultúra Központa és a Tudás-Ökonómia Alapítvány támogatásával
Döntéselméleti modellek
Döntéselméleti modellek gyakorlat Berta Árpád Követelmények A félév során 40 pont szerezhető 0-19 pont : elégtelen (1) 20-24 pont : elégséges (2) 25-29 pont : közepes (3) 30-34 pont : jó (4) 35-40 pont
Validálás és bizonytalanságok a modellekben
Validálás és bizonytalanságok a modellekben Hálózattervezési Dr. Berki Zsolt Tel.: 06-20-3516879, E-mail: berki@fomterv.hu Miért modellezünk? Mert előírás Nem! "It is impossible to predict the future but
Az utazási idő modellezése térinformatikai módszerek felhasználásával
Az utazási idő modellezése térinformatikai módszerek felhasználásával Pálóczi Gábor doktorjelölt Debreceni Egyetem Corvinus GIS MeetUp 2016. Október 21. Budapesti Corvinus Egyetem A közlekedés elemzésének
A maximum likelihood becslésről
A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának
Közgazdaságtan 1. ELTE TáTK Közgazdaságtudományi Tanszék. 3. hét A KERESLETELMÉLET ALAPJAI. HASZNOSSÁG, PREFERENCIÁK
KÖZGAZDASÁGTAN I. ELTE TáTK Közgazdaságtudományi Tanszék Közgazdaságtan 1. A KERESLETELMÉLET ALAPJAI. HASZNOSSÁG, PREFERENCIÁK Bíró Anikó, K hegyi Gergely, Major Klára Szakmai felel s: K hegyi Gergely
Dr. Esztergár-Kiss Domokos BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR
Dr. Esztergár-Kiss Domokos 2018.10.18. Mobilitási szolgáltatások Mobility as a service (MaaS) Közlekedési szolgáltatók MaaS szolgáltató Felhasználók Multimodális utazástervezés Valós idejű információ Helyfoglalás
Szavazási protokollok - közös preferencia kialakítása
Szavazási protokollok - közös preferencia kialakítása Szavazás: Társadalmi választás SCF social choice/ wellfare function: Minden ágensnek van saját preferencia listája Agi, ennek alapján el kell jutni
Makroökonómia. 11. hét
Makroökonómia 11. hét Coming soon 40 pontos vizsga Május 23. hétfő, 10 óra Május 27. péntek, 14 óra Június 2. csütörtök, 12 óra Csak egyszer lehet megírni! Minimumkövetelmény: 40% (16 pont) Akkor és most
Különböző kiépítésű körforgalmak vizsgálata és. csomóponti irányítással VISSIM szimulátorban. összehasonlító analízise jelzőlámpás
Különböző kiépítésű körforgalmak vizsgálata és összehasonlító analízise jelzőlámpás csomóponti irányítással VISSIM szimulátorban Készítette: Sukupčák Marián Konzulens: Dr. Tettamanti Tamás 216. Mindenek
11. Infláció, munkanélküliség és a Phillipsgörbe
11. Infláció, munkanélküliség és a Phillipsgörbe Infláció, munkanélküliség és a Phillips-görbe A gazdaságpolitikusok célja az alacsony infláció és alacsony munkanélküliség. Az alábbiakban a munkanélküliség
Biológiai rendszerek modellellenőrzése bayesi megközelítésben
Biológiai rendszerek modellellenőrzése bayesi megközelítésben Gál Tamás Zoltán Szoftver verifikáció és validáció kiselőadás, 2013. ősz Forrás: Sumit K. Jha et al.: A Bayesian Approach to Model Checking
ARCHIMEDES MATEMATIKA VERSENY
Koszinusztétel Tétel: Bármely háromszögben az egyik oldal négyzetét megkapjuk, ha a másik két oldal négyzetének összegéből kivonjuk e két oldal és az általuk közbezárt szög koszinuszának kétszeres szorzatát.
PIACI SZERKEZETEK BMEGT30A hét, 1. óra: Differenciált termékes Bertrand-oligopólium
PIACI SZERKEZETEK BMEGT30A104 8. hét, 1. óra: Differenciált termékes Bertrand-oligopólium PRN: 10. fejezet 2019.04.01. 10:15 QAF14 Kupcsik Réka (kupcsikr@kgt.bme.hu) Emlékeztető Bertrand-modell: árverseny
KÖZGAZDASÁGTAN I. Készítette: Bíró Anikó, K hegyi Gergely, Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június
KÖZGAZDASÁGTAN I. Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi
Útkeresési eljárás a városi közforgalmú közlekedés szimulációjához
a városi közforgalmú közlekedés szimulációjához Prileszky István prile@sze.hu Pusztai Pál pusztai@sze.hu Bemenő és eredmény adatok Hálózat és menetrend Utazási igények Útkeresési paraméterek Útkeresés
Autonóm - és hagyományos közúti járművek alkotta közlekedési rendszerek összehasonlító elemzése
Budapesti Műszaki és Gazdaságtudományi Egyetem Közlekedésmérnöki és Járműmérnöki Kar Közlekedés- és Járműirányítási Tanszék Záróvizsga 2017.06.20. Autonóm - és hagyományos közúti járművek alkotta közlekedési
Tanulás Boltzmann gépekkel. Reiz Andrea
Tanulás Boltzmann gépekkel Reiz Andrea Tanulás Boltzmann gépekkel Boltzmann gép Boltzmann gép felépítése Boltzmann gép energiája Energia minimalizálás Szimulált kifűtés Tanulás Boltzmann gép Tanulóalgoritmus
Többtényezős döntési problémák
KIPA módszer: Lépései:. értékelési tényezők páros elrendezése, 2. páros összehasonlítás elvégzése, 3. egyéni preferencia táblázatok felvétele, konzisztencia mutatók meghatározása, 4. aggregált preferencia
Statisztikai következtetések Nemlineáris regresszió Feladatok Vége
[GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell
Beruházási és finanszírozási döntések
Beruházási és finanszírozási döntések Dr. Farkas Szilveszter PhD, egyetemi docens BGF, PSZK, Pénzügy Intézeti Tanszék farkas.szilveszter@pszfb.bgf.hu, http://dr.farkasszilveszter.hu Tematika és tananyag
Piaci szerkezet és erõ
. Elõadás Piaci szerkezet és erõ Kovács Norbert SZE KGYK, GT A vállalati árbevétel megoszlása Gazdasági költség + gazdasági profit Számviteli költségek + számviteli profit Explicit költségek + elszámolható
Definíció n egymástól megkülönböztethető elem egy sorrendjét az n elem egy (ismétlés nélküli) permutációjának nevezzük.
9. Kombinatorika 9.1. Permutációk n egymástól megkülönböztethető elem egy sorrendjét az n elem egy (ismétlés nélküli) permutációjának nevezzük. n elem ismétlés nélküli permutációinak száma: P n = =1 2
Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén
Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén Dombi József Szegedi Tudományegyetem Bevezetés - ID3 (Iterative Dichotomiser 3) Az ID algoritmusok egy elemhalmaz felhasználásával
Objektumorientált paradigma és a programfejlesztés
Objektumorientált paradigma és a programfejlesztés Vámossy Zoltán vamossy.zoltan@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Ficsor Lajos (Miskolci Egyetem) prezentációja alapján Objektumorientált
Döntéselmélet KOCKÁZAT ÉS BIZONYTALANSÁG
Döntéselmélet KOCKÁZAT ÉS BIZONYTALANSÁG Bizonytalanság A bizonytalanság egy olyan állapot, amely a döntéshozó és annak környezete között alakul ki és nem szüntethető meg, csupán csökkenthető különböző
Összehasonlítások hibái
Összehasonlítások hibái Kiegészítő anyag BME Filozófia és Tudománytörténet Tanszék http://www.filozofia.bme.hu/ Összehasonlítások Az összehasonlítás alapkérdése: a lehetőségek közül melyik a legjobb egy
Választási modellek 2
Választási modellek 2 Prileszky István Doktori Iskola 2018 http://www.sze.hu/~prile Forrás: A Self Instructing Course in Mode Choice Modeling: Multinomial and Nested Logit Models Prepared For U.S. Department
Opkut deníciók és tételek
Opkut deníciók és tételek Készítette: Bán József Deníciók 1. Deníció (Lineáris programozási feladat). Keressük meg adott lineáris, R n értelmezési tartományú függvény, az ún. célfüggvény széls értékét
Nagyságrendek. Kiegészítő anyag az Algoritmuselmélet tárgyhoz. Friedl Katalin BME SZIT február 1.
Nagyságrendek Kiegészítő anyag az Algoritmuselmélet tárgyhoz (a Rónyai Ivanyos Szabó: Algoritmusok könyv mellé) Friedl Katalin BME SZIT friedl@cs.bme.hu 018. február 1. Az O, Ω, Θ jelölések Az algoritmusok
Számítógépes döntéstámogatás. Döntések fuzzy környezetben Közelítő következtetések
BLSZM-09 p. 1/17 Számítógépes döntéstámogatás Döntések fuzzy környezetben Közelítő következtetések Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,
Mobilitás-utazási módok
Mobilitás-utazási módok Utazási igények oka. Területi munkamegosztás Fajlagos utazási igény Utazásra fordított idő-megtett távolság Mobilitás alakulása Utazási módok Egyéni közlekedés Időpont és útvonal
Regressziós vizsgálatok
Regressziós vizsgálatok Regresszió (regression) Általános jelentése: visszaesés, hanyatlás, visszafelé mozgás, visszavezetés. Orvosi területen: visszafejlődés, involúció. A betegség tünetei, vagy maga
A klasszikus közgazdaságtanon innen és túl, avagy az érem másik oldala
Mikroökon konómia A klasszikus közgazdaságtanon innen és túl, avagy az érem másik oldala 2011.09.12. - A gazdasági gi szereplőkkel, egyéni döntéshozókkal foglalkozik - Általánosítható viselkedési si jellemzőit
Válogatott fejezetek a közlekedésgazdaságtanból
Válogatott fejezetek a közlekedésgazdaságtanból Személyközlekedés gazdasági jellemzői1 Kereslet-használói költség Levelező tagozat 2017 ősz Készítette: Prileszky István http://www.sze.hu/~prile Gazdasági
A SIKER KOVÁCSA, VAGY A KUDARC KÓDJA?
A SIKER KOVÁCSA, VAGY A KUDARC KÓDJA? A döntéshozatali tudatosság hiányosságai és lehetőségei a projekt menedzsmentben Török L. Gábor PhD Sikeres és sikertelen projektek arányai PMI nemzetközi felmérés
Kereskedési rendszerek kétoldalú szerződésekkel
Kereskedési rendszerek kétoldalú szerződésekkel Fleiner Tamás, Jankó Zsuzsanna, Akihisa Tamura, Alexander Teytelboym 2017. június 16. MOK Fleiner Tamás, Jankó Zsuzsanna, Akihisa Tamura, Kereskedési Alexander
Mikroökonómia II. B. ELTE TáTK Közgazdaságtudományi Tanszék. 8. hét AZ INFORMÁCIÓ ÉS KOCKÁZAT KÖZGAZDASÁGTANA, 1. rész
MIKROÖKONÓMIA II. B ELTE TáTK Közgazdaságtudományi Tanszék Mikroökonómia II. B AZ INFORMÁCIÓ ÉS KOCKÁZAT KÖZGAZDASÁGTANA, 1. rész Készítette: Szakmai felel s: 2011. február A tananyagot készítette: Jack
POLITIKAI GAZDASÁGTAN
POLITIKAI GAZDASÁGTAN Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi
Gépi tanulás a Rapidminer programmal. Stubendek Attila
Gépi tanulás a Rapidminer programmal Stubendek Attila Rapidminer letöltése Google: download rapidminer Rendszer kiválasztása (iskolai gépeken Other Systems java) Kicsomagolás lib/rapidminer.jar elindítása
Autóbuszos szolgáltatások szervezése Helsinkiben A közlekedési hatóság szerepe
Autóbuszos szolgáltatások szervezése Helsinkiben A közlekedési hatóság szerepe Kimmo Sinisalo Helsinki Region Transport Helsingin seudun liikenne -kuntayhtymä A Helsinki régió buszközlekedésének szervezése
Kockázatos pénzügyi eszközök
Kockázatos pénzügyi eszközök Tulassay Zsolt zsolt.tulassay@uni-corvinus.hu Tőkepiaci és vállalati pénzügyek 2006. tavasz Budapesti Corvinus Egyetem 2006. március 1. Motiváció Mi a fő különbség (pénzügyi
Közgazdaságtan I. avagy: mikroökonómia. Dr. Nagy Benedek
Közgazdaságtan I. avagy: mikroökonómia r. Nagy Benedek Email: Nagy.Benedek@eco.u-szeged.hu, Tel: (62) 544-676, fogadó óra: Hétfő 14-15:30, KO 311 (szorgalmi időszakban) zemélyes találkozás 4 alkalommal:
A dokumentum egy feladatgyűjtemény első fejezetének előzetes változata.
A dokumentum egy feladatgyűjtemény első fejezetének előzetes változata. Amennyiben a következő oldalakon bármilyen hibát talál, legyen az szakmai probléma, vagy helyesírási hiba, esetleg ötlete, vagy javaslata
c adatpontok és az ismeretlen pont közötti kovariancia vektora
1. MELLÉKLET: Alkalmazott jelölések A mintaterület kiterjedése, területe c adatpontok és az ismeretlen pont közötti kovariancia vektora C(0) reziduális komponens varianciája C R (h) C R Cov{} d( u, X )
Regionális gazdaságtan. Tárgyfelelős: Dr. Káposzta József Előadó: Némediné Dr. Kollár Kitti
Regionális gazdaságtan Tárgyfelelős: Dr. Káposzta József kaposzta.jozsef@gtk.szie.hu Előadó: Némediné Dr. Kollár Kitti kollar.kitti@gtk.szie.hu A regionális gazdaságtan tárgya a gazdaság általános törvényszerűség
Döntéselmélet II. ELŐADÁS DÖNTÉSI FOLYAMAT
Döntéselmélet II. ELŐADÁS DÖNTÉSI FOLYAMAT döntés döntéselőkészítés D ö n t é s i f o l y a m a t döntés és megvalósítás döntéselőkészítés Döntési folyamat A probléma felismerése, azonosítása, megfogalmazása
Helyváltoztatási, utazási szokások alakulása
KÖZLEKEDÉSFEJLESZTÉS MAGYARORSZÁGON Jubileumi 20. konferencia Siófok (Balatonföldvár helyett) 2018. május 15-17. Helyváltoztatási, utazási szokások alakulása Albert Gábor központvezető Szokás: A gyakorlat
1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)
1. tétel 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója cm. Mekkora a háromszög átfogója? (4 pont). Adott az ábrán két vektor. Rajzolja meg a b, a b és az a b vektorokat! (6 pont)
Makroökonómia. 4. szeminárium
Makroökonómia 4. szeminárium 2016. 03. 03. 1 Emlékeztető Jövő héten dolgozat 12 pontért! definíció, Igaz-Hamis, kiegészítős feladat számítás 2. házi feladat 2 pontért Gyakorlásnak is jó Hasonló feladatok
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,
Többszempontú döntési módszerek
XI. előadás Többszempontú döntési módszerek Mindennapi tapasztalat: döntési helyzetbe kerülve több változat (alternatíva) között kell (lehet) választani, az alternatívákat kölönféle szempontok szerint
A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA
A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE
Least Squares becslés
Least Squares becslés A négyzetes hibafüggvény: i d i ( ) φx i A négyzetes hibafüggvény mellett a minimumot biztosító megoldás W=( d LS becslés A gradiens számítása és nullává tétele eredményeképp A megoldás
Diszkrét matematika I.
Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 3. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Relációk Diszkrét matematika I. középszint 2014.
OOP. Alapelvek Elek Tibor
OOP Alapelvek Elek Tibor OOP szemlélet Az OOP szemlélete szerint: a valóságot objektumok halmazaként tekintjük. Ezen objektumok egymással kapcsolatban vannak és együttműködnek. Program készítés: Absztrakciós
Földi radaradattal támogatott csapadékmező-rekonstrukció és vízgazdálkodási alkalmazásai
Földi radaradattal támogatott csapadékmező-rekonstrukció és vízgazdálkodási alkalmazásai SZABÓ János Adolf (1) Kravinszkaja Gabriella (2) Lucza Zoltán (3) (1) HYDROInform, Hidroinformatikai Kutató, Rendszerfejlesztő,
Adatbázisok elmélete 4. előadás
Adatbázisok elmélete 4. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu http://www.cs.bme.hu/ kiskat 2005 ADATBÁZISOK ELMÉLETE
4. hét Fogyasztói preferenciák, (hasznosság) A PIACI KERESLET - ÉS AMI MÖGÖTTE VAN. Varian: fejezet
1 /7 4. hét Fogasztói preferenciák, hasznosság Varian: 3. 4. fejezet PII KERESLET - ÉS MI MÖGÖTTE VN Kereslet törvéne: növekvı árak keresett menniség csökken (és megfordítva) Miért csökken a keresett menniség,
biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás
Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani
2. modul MŰVELETEK RACIONÁLIS SZÁMOK KÖRÉBEN
Matematika A 9. szakiskolai évfolyam 2. modul MŰVELETEK RACIONÁLIS SZÁMOK KÖRÉBEN MATEMATIKA A 9. szakiskolai évfolyam 2. modul: MŰVELETEK RACIONÁLIS SZÁMOK KÖRÉBEN Tanári útmutató 2 A modul célja Időkeret
Mikroökonómia 2009 őszi félév
Mikroökonómia 2009 őszi félév Budapesti Corvinus Egyetem, Közgazdaságtudományi Kar. 3. előadás Fogyasztás és kereslet Előadó: Berde Éva A jelen előadás fóliáiban többször felhasználtam a Hirshleifer Glazer
Heckman modell. Szelekciós modellek alkalmazásai.
Heckman modell. Szelekciós modellek alkalmazásai. Mikroökonometria, 12. hét Bíró Anikó A tananyag a Gazdasági Versenyhivatal Versenykultúra Központja és a Tudás-Ökonómia Alapítvány támogatásával készült
Mikroökonómia előadás. Dr. Kertész Krisztián Fogadóóra: minden szerdán között Helyszín: 311-es szoba
Mikroökonómia előadás Dr. Kertész Krisztián e-mail: k.krisztian@efp.hu Fogadóóra: minden szerdán 10.15 11.45. között Helyszín: 311-es szoba Irodalom Tankönyv: Jack Hirshleifer Amihai Glazer David Hirshleifer:
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Valószínűségi hálók - alapok Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade A szükséges
GYŐR FENNTARTHATÓ KÖZLEKEDÉSE A KÖVETKEZŐ 20 ÉVBEN: ÖTLETEK ÉS REALITÁSOK. Dr. Winkler Ágoston
GYŐR FENNTARTHATÓ KÖZLEKEDÉSE A KÖVETKEZŐ 20 ÉVBEN: ÖTLETEK ÉS REALITÁSOK Dr. Winkler Ágoston Tartalom Hol tart jelenleg Győr közlekedése? Milyen újabb utazási igények várhatók? Milyen elképzelések születtek
A személyközlekedési módok csoportosítása, jellemzői, helyváltoztatási láncok képzése
A személyközlekedési módok csoportosítása, jellemzői, helyváltoztatási láncok képzése Individual MODALITY OF VEHICLE USE Collective VEHICLE PROPRIETOR Private Person Service Company (public or private)
Osztályozóvizsga követelményei
Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 11 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási
2. A példahalmazban n = 3 negatív és p = 3 pozitív példa van, azaz a példahalmazt képviselő döntési fa információtartalma: I = I(1/2, 1/2) = 1 bit.
Példa 1. Döntési fa számítása/1 1. Legyen a felhasználandó példahalmaz: Példa sz. Nagy(x) Fekete(x) Ugat(x) JóKutya(x) X1 Igen Igen Igen Nem X2 Igen Igen Nem Igen X3 Nem Nem Igen Nem X4 Nem Igen Igen Igen
Orvosi szociológia (1. szeminárium) KUTATÁSMÓDSZERTAN
Orvosi szociológia (1. szeminárium) KUTATÁSMÓDSZERTAN (Babbie) 1. Konceptualizáció 2. Operacionalizálás 3. Mérés 4. Adatfeldolgozás 5. Elemzés 6. Felhasználás KUTATÁS LÉPÉSEI 1. Konceptualizáció 2. Operacionalizálás
Bizonytalanságok melletti következtetés
Bizonytalanságok melletti következtetés Mesterséges Intelligencia I. Valószínűségi alapfogalmak (ismétlés) A, B,C események esetén a priori valószínűség: feltételes (a posteiori) valószínűség: Bayes-formula
Közgazdaságtan 1. ELTE TáTK Közgazdaságtudományi Tanszék. 4. hét A KERESLETELMÉLET ALKALMAZÁSAI
KÖZGAZDASÁGTAN I. ELTE TáTK Közgazdaságtudományi Tanszék Közgazdaságtan 1. A KERESLETELMÉLET ALKALMAZÁSAI Bíró Anikó, K hegyi Gergely, Major Klára Szakmai felel s: K hegyi Gergely 2010. június Vázlat
EGYSZERŰ ÉS ABSZOLÚT TÖBBSÉGI SZAVAZÁS
EGYSZERŰ ÉS ABSZOLÚT TÖBBSÉGI SZAVAZÁS A választások és a szavazások többszempontú döntési problémák a szavazók valamilyen módon döntenek a jelöltekről a választási bizottság a szavazás után megállapítja,
Munkába járással kapcsolatos utazási költségtérítés szabályzata
... egyházi gazdálkodó szervezet neve, címe Munkába járással kapcsolatos utazási költségtérítés szabályzata Hatályos:.. Készítette:. gazdasági feladatokkal megbízott Jóváhagyta:..... A törvény által előírtak
Valószínűségszámítás összefoglaló
Statisztikai módszerek BMEGEVGAT Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
Harmadikos vizsga Név: osztály:
. a) b) c) Számítsd ki az alábbi kifejezések pontos értékét! log 6 log log 49 4 7 d) log log 6 log 8 feladat pontszáma: p. Döntsd el az alábbi öt állítás mindegyikéről, hogy igaz vagy hamis! A pontozott
Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t
Ellenőrző kérdések 2. Kis dolgozat kérdései 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t 37. Ha t szintű indexet használunk,
Városi Tömegközlekedés. Tervezési útmutató és feladat
Városi Tömegközlekedés Tervezési útmutató és feladat Tervezési útmutató és feladat (Városi tömegközlekedés) 005. A melléklet egy városi tömegközlekedési rendszer kialakításáról tartalmaz egy kidolgozott
BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011.
BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. 1 Mérési hibák súlya és szerepe a mérési eredményben A mérési hibák csoportosítása A hiba rendűsége Mérési bizonytalanság Standard és kiterjesztett
Bevezetés a programozásba I.
Bevezetés a programozásba I. 8. gyakorlat Fájlkezelés Surányi Márton PPKE-ITK 2010.11.02. Fájlkezelés C++-ban C++-ban van lehet ségünk fájlok kezelésére. Itt már tényleges fájlokkal dolgozunk, nem pedig
Online algoritmusok. Algoritmusok és bonyolultságuk. Horváth Bálint március 30. Horváth Bálint Online algoritmusok március 30.
Online algoritmusok Algoritmusok és bonyolultságuk Horváth Bálint 2018. március 30. Horváth Bálint Online algoritmusok 2018. március 30. 1 / 28 Motiváció Gyakran el fordul, hogy a bemenetet csak részenként