Válogatott fejezetek a közlekedésgazdaságtanból
|
|
- Dóra Orbán
- 6 évvel ezelőtt
- Látták:
Átírás
1 Válogatott fejezetek a közlekedésgazdaságtanból Személyközlekedés gazdasági jellemzői2 Választási modellek Levelező tagozat 2017 ősz Készítette: Prileszky István Forrás: A Self Instructing Course in Mode Choice Modeling: Multinomial and Nested Logit Models Prepared For U.S. Department of Transportation Federal Transit Administration By Frank S. oppelman and Chandra Bhat with technical support from Vaneet Sethi, Sriram Subramanian, Vincent Bernardin and Jian Zhang January 31, 2006 Modified June
2 Fogalmak Választási modellek célja: annak megjósolása, hogy egyén vagy csoport a lehetőségek halmazából melyik egy vagy több lehetőséget választ. (Discrete choice models) További cél annak vizsgálata, hogyan befolyásolják a döntést az alternatívák 1 és a döntést hozó különböző jellemzői, értékelik a döntéshozók vagy egyes csoportjaik az alternatívák különböző jellemzőit/tulajdonságait. Csoport viselkedésre két megközelítés: közvetlenül modellezni a csoport viselkedését (aggregate approach) A csoport döntése egyedi döntésekből alakul ki, ennek megfelelően azt kell modellezni, hogyan tükrözik az egyedi döntések a döntést hozó), és az alternatívák jellemzőit. (disaggregate approach). Az egyedi döntéseket ebben az esetben aggregálni kell. A diszaggregált megközelítés az elterjedt 1: alternatíva eredetileg olyan helyzet, amelyben két lehetőség között lehet választani. A mai szóhasználatban általános értelemben választható lehetőséget jelent.
3 Döntési folyamat és elemei Döntési folyamat: a szóba jöhető alternatívák számbavétele - az egyes alternatívák értékelése valamilyen döntési szabály alapján az egyik kiválasztása 4 elem: a döntést hozó, az alternatívák, az alternatívák jellemzői, döntési szabály Döntéshozó: egyes emberek másképpen értékelik az alternatívák jellemzőit, ebben szerepet játszanak pl.: jövedelem, lakóhely, életkor, foglalkozás stb. A modellezésnél ezt figyelembe kell venni.
4 Az alternatívák Rendelkezésre álló (létező) alternatívák (available choice set) Elérhető alternatívák (feasible choice set), adott személy számára reális lehetőség Figyelembe vett alternatívák (consideration choice set), egyes alternatívákat nem ismernek, vagy eleve elutasítanak
5 Az alternatívák jellemzői (attribútumok) A jellemzőknek vonatkozhatnak minden alternatívára, vagy csak azok egy részére Közlekedési módtól függ, pl. zsúfoltság, járatsűrűség nem létezik az egyéni közl.-ben Idő, kényelem,megbízhatóság, ár stb. Döntő szerepe van az időnek. Pl. Teljes utazási idő Járműben töltött idő Járművön kívüli idő Az utazás költsége Átszállások száma (tömegközlekedésben) Gyaloglási távolság Időbeni érkezés megbízhatósága
6 A döntési szabály Racionális döntést feltételezünk Racionális, ha konzisztens és tranzitív Konzisztens. Ugyanolyan helyzetben ugyanaz a döntés születik Tranzitív: ha A alternatívát választják B-vel szemben, és B-t C-vel szemben, akkor A-t kell választani C-vel szemben is Vannak esetek, amikor az emberi döntés nem racionális
7 Haszon maximalizálás A haszon maximalizálás elve két tételen nyugszik Az alternatívák jellemzői kifejezhetők azok hasznosságát tükröző skaláris mennyiségekkel A döntéshozó képes optimalizálni az alternatívák különböző jellegű tulajdonságai között, pl. képes összevetni az egyes alternatívák utazási idő és utazási költség adatait, és ezek alapján kiválasztani a számára nagyobb hasznosságot jelentő alternatívát (trade-off)
8 Determinisztikus és valószínűségi modellek Determinisztikus: azt feltételezi, hogy a döntéshozó az alternatívákat rangsorolja a hasznosság szerint, és biztos, hogy mindig a legnagyobb hasznosságút választja (A,B,C,D,E,F döntéshozók) A választást csak az alternatívák hasznosságának sorrendje befolyásolja, a hasznosságban meglévő különbségek mértéke nem játszik szerepet.
9 Közlekedési mód Példa Utazási idő Költség (T) óra (C) Ft Személygépkocsi 0,5 800 Személygépkocsi többen 0, (car pooling) Busz 1,0 300 U(T,C,Y) = -T 0,1C/Y Y = havi jövedelem (ezer Ft) Az attribútum kifejezését rétegenként külön hasznossági függvény alkalmazásával is meg lehet oldani pl. U(T,C,120) = -T a 1 C U(T,C,300) = -T a 2 C
10 Determinisztikus választási modellek Hasznosság maximalizálása utility maximization Nagyságrend nem számít, csak a sorrend Közlekedési mód Y = Y = Személygépkocsi -1,17-0,77 Személygépkocsi többen -1,08-0,88 (car pooling) Busz -1,05-1,13 H szg = -0,5 0,1x800/120 = -1,17 Az alacsonyabb jövedelmű car pooling-ot, a magasabb jövedelmű személygépkocsit választ
11 Az együtthatók nem fejezik ki a preferenciák erősségét, csak a sorrendjüket Számos hasznossági függvényt lehet felállítani, amelyek mind alkalmasak a preferenciák sorrendjének a megállapítására
12 A busz utazási ideje 0,75 órára csökken Közlekedési mód Y = Y = Személygépkocsi -1,17-0,77 Személygépkocsi többen (car pooling) -1,08-0,80 Busz -0,88-0,88 Az alacsonyabb jövedelmű buszt választ, a magasabb jövedelmű marad a személygépkocsinál
13 Az aggregált választás becslése Az attribútum változó szerint csoportokat képezünk C szgk car- pool busz 120-1,17-1,08-0,88 busz 150-1,03-1,02-1,10 car-pool 180-0,94-0,97-1,08 szgk 210-0,88-0,94-1,07 szgk 240-0,83-0,92-1,06 szgk 270-0,80-0,90-1,06 szgk 300-0,77-0,88-0,80 szgk
14 1000 fő jövedelem szerinti megoszlása jövedelem % fő választás busz car-pool szgk szgk szgk szgk szgk Busz: 100 car-pool 150 szgk 750 Megjegyzés: a hasznosságok átlagos értékével számolva hamis eredmény adódna
15 A determinisztikus megközelítés három fő hibalehetősége A döntéshozó nem rendelkezik tökéletes információkkal az alternatívákról. A modell felállításakor nem rendelkezünk teljes információval az alternatívákról, nem teljes körűek a figyelembe vett attribútumok, illetve nem értjük jól a döntéshozó döntési mechanizmusát. Nem ismerjük eléggé a döntéshozó attribútumait Ha ezekkel a bizonytalanságokkal is számolni akarunk, akkor valószínűségi modellt kell használni
16 Valószínűségi modellek Az alternatívák hasznosságának a különbségétől függ a választás Az eredmény az egyes alternatívák választásának a valószínűsége A bizonytalanság abból ered, hogy az egyes alternatíváknak különböző hasznosságot tulajdonít a döntéshozó és a modellalkotó Ezt a különbséget úgy fejezzük ki, hogy az alternatívák hasznosságát két részre osztjuk, az egyik rész az, ami megfigyelhető, ezt determinisztikus résznek hívják, a másik rész az a különbség, ami a megfigyelt és a döntéshozó által valóságban érzékelt hasznosság között van, ennek nagysága, ismeretlen, ez a véletlen (random) rész.
17 A hasznosság determinisztikus része Az alternatívákra jellemző és a döntéshozó karakterére jellemző változókat tartalmaz Három részre osztható Az alternatívákat jellemző változók A döntéshozó karakterét jellemző változók Az alternatívák és a döntéshozó karaktere közötti kölcsönhatást kifejező változók (pl. utazási költség kevésbé fontos magas jövedelműeknél, ezt kifejezheti a utazási ktsg/jövedelem változó. Az ilyen típusú változót ki is lehet hagyni a modellből, ekkor az utazók karakterek szerinti csoportjaira (pl. alacsony jövedelem-magas jövedelem) külön-külön kell hasznossági függvényt felállítani.
18 Hasznossági függvény példa V(X i ) = az i alternatíva hasznossága X i1 = az i alternatíva k-adik jellemzőjének (attribútumának) értéke γ 1, γ 2, γ 3 = együtthatók TT DA = teljes utazási idő autóval egyedül TC DA = teljes utazási költség autóval egyedül TT SR = teljes utazási idő car sharing TC SR = teljes utazási költség car sharing TT TR = teljes utazási idő tömegközlekedés TC TR = teljes utazási költség tömegközlekedés FREQ TR =járatszám/óra a tömegközlekedésben
19 azonos minden alternatívánál. Különbséget is tehetünk a modell átalakításával. Pl. Az utazási idő tömegközlekedésen megterhelőbb, mint az autózásnál
20 Nem magyarázható preferenciák BIAS Egyes alternatívákhoz kapcsolódó preferencia/diszpreferencia nem magyarázható sem az alternatívák, sem a döntéshozók attribútumaival Kibővítjük a hasznossági függvényt egy új taggal (bias) = az i alternatíva többlet hasznossága = 1 az i alternatíva esetében, a többi alternatívánál 0
21 A döntéshozó karakterét kifejező változók Gyakran használt változók Income of the traveler s household, Sex of traveler, Age of traveler, Number of automobiles in traveler s ousehold, Number of workers in the traveler s household Number of adults in the traveler s household. = a bias tényező az adott alternatívára vonatkozóan = az utazó háztartásának jövedelme = autók száma az utazó háztartásában = az alternatívákhoz tartozó paraméter a jövedelemre és az autók számára vonatkozóan
22 Az alternatívák és a döntéshozó karaktere közötti kölcsönhatást kifejező változók Pl. Nők érzékenyebbek az utazási idő mértékére Az utazási idő (TT i ) az utazási költség (TC i ) a két hasznosságot tükröző változó. Gamma1 ( )vonatkozik mindenkire, gamma2 ( ) csak nőkre. A Fem dummy változó, férfiak esetében 0, nőknél 1.
23 Multinomiális logit modell A hasznosságot leíró függvények nem pontosan határozzák meg az alternatívák hasznosságát a döntéshozók szempontjából, az eltérések számos, egymástól független okra vezethetők vissza. A hibák eloszlása a centrális határeloszlási tétel értelmében normális eloszlásúnak feltételezhető. Normális eloszlásból kiindulva a multinomiális probit modellhez (MPM) jutunk, de ennek használata nehézkes. A normális eloszlás helyett Gumbel eloszlást használva alkották meg a multinomiális logit modellt (MLM). A modell azon a feltételezésen alapszik, hogy a hibák egyenlően és egymástól függetlenül oszlanak meg az alternatívák valamint a döntéshozók között. Ennek a modellnek a segítségével az egyes alternatívák választásának valószínűsége a hasznossági függvény determinisztikus része alapján számítható. Joseph Bergson 1944 alkotta meg a logit kifejezést McFadden, Daniel. "The mathematical theory of demand models." Behavioral Travel Demand Models (1976)
24 A normális és a Gumbel eloszlás
25 Képlet
26 Képlet tagok feltüntetésével
27 A logit modell tulajdonságai 1. Egy alternatíva választási valószínűsége az adott alternatíva hasznosságának függvényében S alakot mutat. A hasznosság változása a legnagyobb hatást a akkor gyakorol, amikor a választás valószínűsége 50% körüli, vagyis egyenlő az összes többi alternatíva együttes választási valószínűségével.
28 2. A választási valószínűségek az alternatívák hasznosságának különbségeitől függnek, és nem azok értékeinek nagyságrendjétől. Ha valamely értékkel megnöveljük minden alternatíva hasznosságát, a választás valószínűségei nem változnak.
29 Minden alternatíva hasznosságához hozzáadunk 1-et, a valószínűségek nem változnak.
30 A modell másik formája
31 Az irreleváns alternatíváktól való függetlenség (Independence of Irrelevant Alternatives IIA) Két alternatíva választási valószínűsége közötti arány független attól, hogy van-e más alternatíva, és azoknak menyi a hasznossága.
32 Ez a tulajdonság vitatható eredményekhez is vezethet. Kék busz-piros busz paradoxon Két alternatíva van: autó, kék busz. Az autó választási valószínűsége 0,7, a buszé 0,3. Egy új busz szolgáltató (piros busz) lép a piacra, amely pontosan ugyanazt a szolgáltatást nyújtja, mint a kék busz. Ugyanazok az indulási-érkezési időpontok ugyanaz a menetrend, ugyanolyan jármű, csak a külső színezés különbözik. Logikus feltételezés szerint a busz utasok megoszlanak egyenlő arányban a két buszos alternatíva között, azaz az új helyzetben a választási valószínűségek a következők lesznek: autó=0,7, kék busz=0,15, piros busz=0,15. Logit modell szerint nem ez adódik.
33 személygk kék busz személygk kék busz piros busz V -1,17-1,88-1,17-1,88-1,88 e V 0, , , , , P i 0, , , , , Nem a 32,8%-os busz arány feleződött, hanem a busz részesedése megnőtt 46,6%-ra. A logit modell használatánál figyelembe kell venni ezt a tulajdonságát. A piros busz ebben az esetben nem jelent valódi alternatívát, hiszen a tulajdonságai azonosak a kék buszéval.
34 Példa1 1. Csak konstans az alternatívák minden tulajdonságát egy konstans fejezi ki, amely minden döntéshozó számára egyformán kifejezi az alternatívák értékét
35 2. Az alternatívák jellemzése 2 változóval, utazási idő és költség parameter for time (in minutes) equal to and for cost (in cents) equal to Change in the alternative specific constants, to for shared ride and for transit, as the effect of excluding these time and cost variables is removed from the constants.
36 3. Az utazási idő felbontása járműben töltött és járműven kívüli időre, alkalmazott paraméter: and ,
37 4. A döntéshozó attribútum bevezetése, jövedelem Jövedelem 50 e, csak a transitot érinti, kifejezve, hogy nagyobb jövedelemnél kevésbé használnak tömegközlekedést, azaz annak a hasznossága csökken. A másik két alternatíva hasznosságát ez nem érint.
38 5. Bővítés az alternatívák és a döntéshozó karaktere közötti kölcsönhatást kifejező változóval. Költséget osztjuk a jövedelemmel
39 Példa2 Hasznossági függvény értékek Jövedelem szgk car- pool busz 120-1,17-1,08-0, ,03-1,02-1, ,94-0,97-1, ,88-0,94-1, ,83-0,92-1, ,80-0,90-1, ,77-1,08-0,88
40 Választási e V valószínűség Carpool Busz Szgk pool Busz Össz. Car- Szgk 0,31 0,34 0,42 0,29 0,32 0,39 1,00 0,36 0,36 0,33 0,34 0,34 0,32 1,00 0,39 0,38 0,34 0,35 0,34 0,31 1,00 0,42 0,39 0,34 0,36 0,34 0,30 1,00 0,44 0,40 0,35 0,37 0,34 0,29 1,00 0,45 0,41 0,35 0,37 0,34 0,29 1,00 0,46 0,34 0,42 0,38 0,28 0,34 1,00 e -1,17 = 0,31 e -1,03 = 0,34 e -0,94 = 0,42 0,31/0,31+0,34+0,42)=0,29
41 Választás eredményei Carpool Busz Szgk Össz
Városi közforgalmú közlekedés/2 Választási modellek
Városi közforgalmú közlekedés/2 Választási modellek Doktori Iskola 2015 http://www.sze.hu/~prile Forrás: A Self Instructing Course in Mode Choice Modeling: Multinomial and Nested Logit Models Prepared
Válogatott fejezetek a közlekedésgazdaságtanból
Válogatott fejezetek a közlekedésgazdaságtanból 2. Választási modellek Levelező tagozat 2015 ősz Készítette: Prileszky István http://www.sze.hu/~prile Fogalmak Választási modellek célja: annak megjósolása,
Választási modellek 1
Választási modellek 1 Prileszky István Doktori Iskola 2018 http://www.sze.hu/~prile Forrás: A Self Instructing Course in Mode Choice Modeling: Multinomial and Nested Logit Models Prepared For U.S. Department
Választási modellek 3
Választási modellek 3 Prileszky István Doktori Iskola 2018 http://www.sze.hu/~prile Forrás: A Self Instructing Course in Mode Choice Modeling: Multinomial and Nested Logit Models Prepared For U.S. Department
Választási modellek 2
Választási modellek 2 Prileszky István Doktori Iskola 2018 http://www.sze.hu/~prile Forrás: A Self Instructing Course in Mode Choice Modeling: Multinomial and Nested Logit Models Prepared For U.S. Department
Válogatott fejezetek a közlekedésgazdaságtanból
Válogatott fejezetek a közlekedésgazdaságtanból 1. Fogyasztói haszon és használói költség a személyközlekedésben Levelező tagozat 2015 ősz Készítette: Prileszky István http://www.sze.hu/~prile Az utazás
Válogatott fejezetek a közlekedésgazdaságtanból
Válogatott fejezetek a közlekedésgazdaságtanból 1. Fogyasztói haszon és használói költség a személyközlekedésben Nappali tagozat 2016 ősz Készítette: Prileszky István http://www.sze.hu/~prile A fogyasztói
A maximum likelihood becslésről
A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának
Több diszkrét kimenet multinomiális és feltételes logit modellek
Több diszkrét kimenet multinomiális és feltételes logit modellek Mikroökonometria, 9. hét Bíró Anikó A tananyag a Gazdasági Versenyhivatal Versenykultúra Központa és a Tudás-Ökonómia Alapítvány támogatásával
A személyközlekedési módok csoportosítása, jellemzői, helyváltoztatási láncok képzése
A személyközlekedési módok csoportosítása, jellemzői, helyváltoztatási láncok képzése Individual MODALITY OF VEHICLE USE Collective VEHICLE PROPRIETOR Private Person Service Company (public or private)
Válogatott fejezetek a közlekedésgazdaságtanból
Válogatott fejezetek a közlekedésgazdaságtanból Személyközlekedés gazdasági jellemzői4 Externáliák Levelező tagozat 2017 ősz Készítette: Prileszky István http://www.sze.hu/~prile Externáliák Externáliának
Válogatott fejezetek a közlekedésgazdaságtanból
Válogatott fejezetek a közlekedésgazdaságtanból Személyközlekedés gazdasági jellemzői6 Árképzés Levelező tagozat 2017 ősz Készítette: Prileszky István http://www.sze.hu/~prile Utazás költségei és hasznai
A multikritériumos elemzés célja, alkalmazási területe, adat-transzformációs eljárások, az osztályozási eljárások lényege
A multkrtérumos elemzés célja, alkalmazás területe, adat-transzformácós eljárások, az osztályozás eljárások lényege Cél: tervváltozatok, objektumok értékelése (helyzetértékelés), döntéshozatal segítése
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,
A személyközlekedési módok csoportosítása, jellemzői, helyváltoztatási láncok képzése
Service Company (public or private) VEHICLE PROPRIETOR Private Person A személyközlekedési módok csoportosítása, jellemzői, helyváltoztatási láncok képzése Individual MODALITY OF VEHICLE USE Collective
Multinomiális és feltételes logit modellek alkalmazásai
Multinomiális és feltételes logit modellek alkalmazásai Mikroökonometria, 10. hét Bíró Anikó A tananyag a Gazdasági Versenyhivatal Versenykultúra Központja és a Tudás-Ökonómia Alapítvány támogatásával
Matematikai geodéziai számítások 6.
Matematikai geodéziai számítások 6. Lineáris regresszió számítás elektronikus távmérőkre Dr. Bácsatyai, László Matematikai geodéziai számítások 6.: Lineáris regresszió számítás elektronikus távmérőkre
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát
Matematikai geodéziai számítások 6.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr. Bácsatyai László Matematikai geodéziai számítások 6. MGS6 modul Lineáris regresszió számítás elektronikus távmérőkre SZÉKESFEHÉRVÁR 2010 Jelen szellemi
Regressziós vizsgálatok
Regressziós vizsgálatok Regresszió (regression) Általános jelentése: visszaesés, hanyatlás, visszafelé mozgás, visszavezetés. Orvosi területen: visszafejlődés, involúció. A betegség tünetei, vagy maga
Heckman modell. Szelekciós modellek alkalmazásai.
Heckman modell. Szelekciós modellek alkalmazásai. Mikroökonometria, 12. hét Bíró Anikó A tananyag a Gazdasági Versenyhivatal Versenykultúra Központja és a Tudás-Ökonómia Alapítvány támogatásával készült
Közgazdasági elméletek. Dr. Karajz Sándor Gazdaságelméleti Intézet
Közgazdasági elméletek Dr. Karajz Sándor Gazdaságelméleti 3. Előadás A karakterisztikai elmélet Bizonytalan körülmények közötti választás A karakterisztikai elmélet Hagyományos modell a fogyasztó különböző
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,
Biostatisztika VIII. Mátyus László. 19 October
Biostatisztika VIII Mátyus László 19 October 2010 1 Ha σ nem ismert A gyakorlatban ritkán ismerjük σ-t. Ha kiszámítjuk s-t a minta alapján, akkor becsülhetjük σ-t. Ez további bizonytalanságot okoz a becslésben.
Statisztika Elıadások letölthetık a címrıl
Statisztika Elıadások letölthetık a http://www.cs.elte.hu/~arato/stat*.pdf címrıl Konfidencia intervallum Def.: 1-α megbízhatóságú konfidencia intervallum: Olyan intervallum, mely legalább 1-α valószínőséggel
Válogatott fejezetek a közlekedésgazdaságtanból
Válogatott fejezetek a közlekedésgazdaságtanból 1. A személyszállítás közgazdasági jellemzői és gazdasági szabályozása Levelező tagozat 2016 ősz Készítette: Prileszky István http://www.sze.hu/~prile A
Szavazási protokollok - közös preferencia kialakítása
Szavazási protokollok - közös preferencia kialakítása Szavazás: Társadalmi választás SCF social choice/ wellfare function: Minden ágensnek van saját preferencia listája Agi, ennek alapján el kell jutni
STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése
4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól
Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes
Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision
Validálás és bizonytalanságok a modellekben
Validálás és bizonytalanságok a modellekben Hálózattervezési Dr. Berki Zsolt Tel.: 06-20-3516879, E-mail: berki@fomterv.hu Miért modellezünk? Mert előírás Nem! "It is impossible to predict the future but
Dr. Esztergár-Kiss Domokos BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR
Dr. Esztergár-Kiss Domokos 2018.10.18. Mobilitási szolgáltatások Mobility as a service (MaaS) Közlekedési szolgáltatók MaaS szolgáltató Felhasználók Multimodális utazástervezés Valós idejű információ Helyfoglalás
Valószínűségszámítás összefoglaló
Statisztikai módszerek BMEGEVGAT Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
Statisztikai következtetések Nemlineáris regresszió Feladatok Vége
[GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell
BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011.
BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. 1 Mérési hibák súlya és szerepe a mérési eredményben A mérési hibák csoportosítása A hiba rendűsége Mérési bizonytalanság Standard és kiterjesztett
Khi-négyzet eloszlás. Statisztika II., 3. alkalom
Khi-négyzet eloszlás Statisztika II., 3. alkalom A khi négyzet eloszlást (Pearson) leggyakrabban kategorikus adatok elemzésére használjuk. N darab standard normális eloszlású változó négyzetes összegeként
A Statisztika alapjai
A Statisztika alapjai BME A3c Magyar Róbert 2016.05.12. Mi az a Statisztika? A statisztika a valóság számszerű információinak megfigyelésére, összegzésére, elemzésére és modellezésére irányuló gyakorlati
A mérési eredmény megadása
A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a véletlenszerű
e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma:
Normális eloszlás ξ valószínűségi változó normális eloszlású. ξ N ( µ, σ 2) Paraméterei: µ: várható érték, σ 2 : szórásnégyzet (µ tetszőleges, σ 2 tetszőleges pozitív valós szám) Normális eloszlás sűrűségfüggvénye:
Osztályozás, regresszió. Nagyméretű adathalmazok kezelése Tatai Márton
Osztályozás, regresszió Nagyméretű adathalmazok kezelése Tatai Márton Osztályozási algoritmusok Osztályozás Diszkrét értékkészletű, ismeretlen attribútumok értékének meghatározása ismert attribútumok értéke
Dr. Kalló Noémi. Termelés- és szolgáltatásmenedzsment. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék. Dr.
Termelés- és szolgáltatásmenedzsment egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Termelés- és szolgáltatásmenedzsment 13. Ismertesse a legfontosabb előrejelzési módszereket és azok gyakorlati
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen
1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása
HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat
Régebbi Matek M1 zh-k. sztochasztikus folyamatokkal kapcsolatos feladatai.
Régebbi Matek M1 zh-k Folyamfeladatokkal, többszörös összef ggőséggel, párosításokkal, Nagy szḿok törvényével, Centrális Határeloszlás tétellel, sztochasztikus folyamatokkal kapcsolatos feladatai. Gráfok
Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem
agy számok törvényei Statisztikai mintavétel Várható érték becslése Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem A mérés mint statisztikai mintavétel A méréssel az eloszlásfüggvénnyel
Mikroökonómia elıadás
Mikroökonómia - 12. elıadás JÓLÉT ÉS TÁRSADALMI PREFERENCIÁK Bacsi, 12. ea. 1 Fogyasztói preferenciák A fogyasztó saját jószágkosarainak összehasonlítása pl: 1 narancs + 3 kg hús + 2 pár cipı kevésbé értékes,
1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)
1. tétel 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója cm. Mekkora a háromszög átfogója? (4 pont). Adott az ábrán két vektor. Rajzolja meg a b, a b és az a b vektorokat! (6 pont)
Hipotézisvizsgálat az Excel adatelemző eljárásaival. Dr. Nyéki Lajos 2018
Hipotézisvizsgálat az Excel adatelemző eljárásaival Dr. Nyéki Lajos 2018 Egymintás t-próba Az egymintás T-próba azt vizsgálja, hogy különbözik-e a változó M átlaga egy megadott m konstanstól. Az a feltételezés,
Bizonytalanság. Mesterséges intelligencia április 4.
Bizonytalanság Mesterséges intelligencia 2014. április 4. Bevezetés Eddig: logika, igaz/hamis Ha nem teljes a tudás A világ nem figyelhető meg közvetlenül Részleges tudás nem reprezentálható logikai eszközökkel
Válogatott fejezetek a közlekedésgazdaságtanból Személyközlekedés gazdasági jellemzői7
Válogatott fejezetek a közlekedésgazdaságtanból Személyközlekedés gazdasági jellemzői7 A személyszállítási piac szabályozása Levelező tagozat 2017 ősz Készítette: Prileszky István http://www.sze.hu/~prile
Az utazási idő modellezése térinformatikai módszerek felhasználásával
Az utazási idő modellezése térinformatikai módszerek felhasználásával Pálóczi Gábor doktorjelölt Debreceni Egyetem Corvinus GIS MeetUp 2016. Október 21. Budapesti Corvinus Egyetem A közlekedés elemzésének
(Independence, dependence, random variables)
Két valószínűségi változó együttes vizsgálata Feltételes eloszlások Két diszkrét változó együttes eloszlása a lehetséges értékpárok és a hozzájuk tartozó valószínűségek (táblázat) Példa: Egy urna 3 fehér,
biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás
Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani
Útkeresési eljárás a városi közforgalmú közlekedés szimulációjához
a városi közforgalmú közlekedés szimulációjához Prileszky István prile@sze.hu Pusztai Pál pusztai@sze.hu Bemenő és eredmény adatok Hálózat és menetrend Utazási igények Útkeresési paraméterek Útkeresés
Hipotéziselmélet - paraméteres próbák. eloszlások. Matematikai statisztika Gazdaságinformatikus MSc szeptember 10. 1/58
u- t- Matematikai statisztika Gazdaságinformatikus MSc 2. előadás 2018. szeptember 10. 1/58 u- t- 2/58 eloszlás eloszlás m várható értékkel, σ szórással N(m, σ) Sűrűségfüggvénye: f (x) = 1 e (x m)2 2σ
Kísérlettervezés alapfogalmak
Kísérlettervezés alapfogalmak Rendszermodellezés Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Kísérlettervezés Cél: a modell paraméterezése a valóság alapján
Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév
Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév 1. A várható érték és a szórás transzformációja 1. Ha egy valószínűségi változóhoz hozzáadunk ötöt, mínusz ötöt, egy b konstanst,
Véletlenszám generátorok és tesztelésük. Tossenberger Tamás
Véletlenszám generátorok és tesztelésük Tossenberger Tamás Érdekességek Pénzérme feldobó gép: $0,25-os érme 1/6000 valószínűséggel esik az élére 51% eséllyel érkezik a felfelé mutató oldalára Pörgetésnél
Car-sharing rendszerek üzemeltetési jellemzői
0,75-1 Futásidő [óra/nap] 6-8 Car-sharing rendszerek üzemeltetési jellemzői 1. Bevezetés 2. A car sharing általános jellemzői 3. A telematikai rendszer szerkezete és működése a hozzáférés fontosabb mint
Populációbecslések és monitoring
Populációbecslések és monitoring A becslés szerepe az ökológiában és a vadgazdálkodásban. A becslési módszerek csoportosítása. Teljes számlálás. Statisztikai alapfogalmak. Fontos lehet tudnunk, hogy hány
: az i -ik esélyhányados, i = 2, 3,..I
Kabos: Adatelemzés Ordinális logisztikus regresszió-1 Többtényezős regresszió (az adatelemzésben): Y közelítése b 1 X 1 + b 2 X 2 +... + b J X J alakban, y n = b 1 x n,1 + b 2 x n,2 +... + b J x n,j +
Városi útdíjas rendszerek forgalmi hatásai európai nagyvárosokban
Városi útdíjas rendszerek forgalmi hatásai európai nagyvárosokban Előadó: Kelen Csaba Útdíj és törvény konferencia Aranytíz Kultúrház 201 július 6. TARTALOM 2. 4. 5. Városi útdíjas rendszerek Európai városok
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Racionalitás: a hasznosság és a döntés Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade
A kockázat fogalma. A kockázat fogalma. Fejezetek a környezeti kockázatok menedzsmentjéből 2 Bezegh András
Fejezetek a környezeti kockázatok menedzsmentjéből 2 Bezegh András A kockázat fogalma A kockázat (def:) annak kifejezése, hogy valami nem kívánt hatással lesz a valaki/k értékeire, célkitűzésekre. A kockázat
Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1
Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában
PIACI SZERKEZETEK BMEGT30A hét, 1. óra: Differenciált termékes Bertrand-oligopólium
PIACI SZERKEZETEK BMEGT30A104 8. hét, 1. óra: Differenciált termékes Bertrand-oligopólium PRN: 10. fejezet 2019.04.01. 10:15 QAF14 Kupcsik Réka (kupcsikr@kgt.bme.hu) Emlékeztető Bertrand-modell: árverseny
Dr. Tóth János egy. docens
Budapesti Műszaki és Gazdaságtudományi Egyetem Közlekedésmérnöki és Járműmérnöki Kar Közlekedésüzemi és Közlekedésgazdasági Tanszék KÖZLEKEDÉSI IGÉNYEK JELLEMZŐI - A FORGALOM ELŐREBECSLÉSE Dr. Tóth János
Mintavétel fogalmai STATISZTIKA, BIOMETRIA. Mintavételi hiba. Statisztikai adatgyűjtés. Nem véletlenen alapuló kiválasztás
STATISZTIKA, BIOMETRIA. Előadás Mintavétel, mintavételi technikák, adatbázis Mintavétel fogalmai A mintavételt meg kell tervezni A sokaság elemei: X, X X N, lehet véges és végtelen Mintaelemek: x, x x
KUTATÁSMÓDSZERTAN 4. ELŐADÁS. A minta és mintavétel
KUTATÁSMÓDSZERTAN 4. ELŐADÁS A minta és mintavétel 1 1. A MINTA ÉS A POPULÁCIÓ VISZONYA Populáció: tágabb halmaz, alapsokaság a vizsgálandó csoport egésze Minta: részhalmaz, az alapsokaság azon része,
Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 11. előadás Előadó: Dr. Ertsey Imre Összefüggés vizsgálatok A társadalmi gazdasági élet jelenségei kölcsönhatásban állnak, összefüggnek egymással. Statisztika alapvető feladata: - tényszerűségek
Szokol Patricia szeptember 19.
a Haladó módszertani ismeretek című tárgyhoz 2017. szeptember 19. Legyen f : N R R adott függvény, ekkor a x n = f (n, x n 1 ), n = 1, 2,... egyenletet elsőrendű differenciaegyenletnek nevezzük. Ha még
Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok
STATISZTIKA 1. Előadás Hipotézisvizsgálatok Tematika 1. Hipotézis vizsgálatok 2. t-próbák 3. Variancia-analízis 4. A variancia-analízis validálása, erőfüggvény 5. Korreláció számítás 6. Kétváltozós lineáris
3. Lineáris differenciálegyenletek
3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra
Fogalmak Navigare necesse est
Döntéselmélet Fogalmak Navigare necesse est - dönteni mindenkinek kell A döntés nem vezetői privilégium: de! vezetői kompetencia, a vezetői döntések hatása Fogalmak II. A döntés célirányos választás adott
Közgazdaságtan 1. ELTE TáTK Közgazdaságtudományi Tanszék. 3. hét A KERESLETELMÉLET ALAPJAI. HASZNOSSÁG, PREFERENCIÁK
KÖZGAZDASÁGTAN I. ELTE TáTK Közgazdaságtudományi Tanszék Közgazdaságtan 1. A KERESLETELMÉLET ALAPJAI. HASZNOSSÁG, PREFERENCIÁK Bíró Anikó, K hegyi Gergely, Major Klára Szakmai felel s: K hegyi Gergely
egyenlőtlenségnek kell teljesülnie.
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval
Valószínűségi változók. Várható érték és szórás
Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :
Statisztika I. 12. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 1. előadás Előadó: Dr. Ertsey Imre Regresszió analízis A korrelációs együttható megmutatja a kapcsolat irányát és szorosságát. A kapcsolat vizsgálata során a gyakorlatban ennél messzebb
ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 3. MÉRÉSFELDOLGOZÁS
ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 3. MÉRÉSFELDOLGOZÁS Dr. Soumelidis Alexandros 2018.10.04. BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT TANANYAG Mérés-feldolgozás
VÁLLALATGAZDASÁGTAN II. Döntési Alapfogalmak
Vállalkozási VÁLLALATGAZDASÁGTAN II. Tantárgyfelelős: Prof. Dr. Illés B. Csaba Előadó: Dr. Gyenge Balázs Az ökonómiai döntés fogalma Vállalat Környezet Döntések sorozata Jövő jövőre vonatkozik törekszik
Ütközések vizsgálatához alkalmazható számítási eljárások
Ütközések vizsgálatához alkalmazható számítási eljárások Az eljárások a kiindulási adatoktól és a számítás menetétől függően két csoportba sorolhatók. Az egyik a visszafelé történő számítások csoportja,
Kísérlettervezés alapfogalmak
Kísérlettervezés alapfogalmak Rendszermodellezés Budapest University of Technology and Economics Fault Tolerant Systems Research Group Budapest University of Technology and Economics Department of Measurement
Kriptográfia 0. A biztonság alapja. Számítás-komplexitási kérdések
Kriptográfia 0 Számítás-komplexitási kérdések A biztonság alapja Komplexitás elméleti modellek független, egyenletes eloszlású véletlen változó értéke számítással nem hozható kapcsolatba más információval
Közgazdaságtan alapjai. Dr. Karajz Sándor Gazdaságelméleti Intézet
Közgazdaságtan alapjai Dr. Karajz Sándor Gazdaságelméleti 4. Előadás Az árupiac és az IS görbe IS-LM rendszer A rövidtávú gazdasági ingadozások modellezésére használt legismertebb modell az úgynevezett
Varianciaanalízis 4/24/12
1. Feladat Egy póker kártya keverő gép a kártyákat random módon választja ki. A vizsgálatban 1600 választott kártya színei az alábbi gyakorisággal fordultak elő. Vizsgáljuk meg, hogy a kártyák kiválasztása
10. Exponenciális rendszerek
1 Exponenciális rendszerek 1 Egy boltba exponenciális időközökkel átlagosan percenként érkeznek a vevők két eladó, ndrás és éla, átlagosan 1 illetve 6 vevőt tud óránként kiszolgálni mennyiben egy vevő
4/24/12. Regresszióanalízis. Legkisebb négyzetek elve. Regresszióanalízis
1. feladat Regresszióanalízis. Legkisebb négyzetek elve 2. feladat Az iskola egy évfolyamába tartozó diákok átlagéletkora 15,8 év, standard deviációja 0,6 év. A 625 fős évfolyamból hány diák fiatalabb
Hipotézis vizsgálatok
Hipotézis vizsgálatok Hipotézisvizsgálat Hipotézis: az alapsokaság paramétereire vagy az alapsokaság eloszlására vonatkozó feltevés. Hipotézis ellenőrzés: az a statisztikai módszer, amelynek segítségével
Online algoritmusok. Algoritmusok és bonyolultságuk. Horváth Bálint március 30. Horváth Bálint Online algoritmusok március 30.
Online algoritmusok Algoritmusok és bonyolultságuk Horváth Bálint 2018. március 30. Horváth Bálint Online algoritmusok 2018. március 30. 1 / 28 Motiváció Gyakran el fordul, hogy a bemenetet csak részenként
Az értékelés során következtetést fogalmazhatunk meg a
Az értékelés során következtetést fogalmazhatunk meg a a tanuló teljesítményére, a tanulási folyamatra, a célokra és követelményekre a szülők teljesítményére, a tanulási folyamatra, a célokra és követelményekre
GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet
GVMST22GNC Statisztika II. 3. előadás: 8. Hipotézisvizsgálat Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Hipotézisvizsgálat v becslés Becslés Ismeretlen paraméter Közeĺıtő
Egyszempontos variancia analízis. Statisztika I., 5. alkalom
Statisztika I., 5. alkalom Számos t-próba versus variancia analízis Kreativitás vizsgálata -nık -férfiak ->kétmintás t-próba I. Fajú hiba=α Kreativitás vizsgálata -informatikusok -építészek -színészek
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Abszolútértékes és gyökös kifejezések
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval
Biológiai rendszerek modellellenőrzése bayesi megközelítésben
Biológiai rendszerek modellellenőrzése bayesi megközelítésben Gál Tamás Zoltán Szoftver verifikáció és validáció kiselőadás, 2013. ősz Forrás: Sumit K. Jha et al.: A Bayesian Approach to Model Checking
Populációbecslések és monitoring
Populációbecslések és monitoring A becslés szerepe az ökológiában és a vadgazdálkodásban. A becslési módszerek csoportosítása. Teljes számlálás. Statisztikai alapfogalmak. Fontos lehet tudnunk, hogy hány
REGIONÁLIS GAZDASÁGTAN B
REGIONÁLIS GAZDASÁGTAN B Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA
MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI
MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk
Gyakorlat 8 1xANOVA. Dr. Nyéki Lajos 2016
Gyakorlat 8 1xANOVA Dr. Nyéki Lajos 2016 A probléma leírása Azt vizsgáljuk, hogy milyen hatása van a család jövedelmének a tanulók szövegértés teszten elért tanulmányi eredményeire. A minta 59 iskola adatait
Volatilitási tőkepuffer a szolvencia IIes tőkekövetelmények megsértésének kivédésére
Volatilitási tőkepuffer a szolvencia IIes tőkekövetelmények megsértésének kivédésére Zubor Zoltán MNB - Biztosításfelügyeleti főosztály MAT Tavaszi Szimpózium 2016. május 7. 1 Háttér Bit. 99. : folyamatos