Ökonometria. Logisztikus regresszió. Ferenci Tamás 1 Nyolcadik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Ökonometria. Logisztikus regresszió. Ferenci Tamás 1 Nyolcadik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék"

Átírás

1 Ferenci Tamás 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Nyolcadik fejezet

2 Tartalom V. esettanulmány 1 V. esettanulmány Csődelőrejelzés 2 Általános gondolatok 3 becslése és jellemzése

3 Tartalom V. esettanulmány Csődelőrejelzés 1 V. esettanulmány Csődelőrejelzés 2 Általános gondolatok 3 becslése és jellemzése

4 Tartalom V. esettanulmány Csődelőrejelzés 1 V. esettanulmány Csődelőrejelzés 2 Általános gondolatok 3 becslése és jellemzése

5 Csődmodellezési adatbázis Csődelőrejelzés Mérlegadataikkal adott cégek alkotják a mintánkat feladat megmondani, hogy melyik fog valamilyen vizsgált időhorizonton belül csődbe menni

6 Csődelőrejelzés Csődmodellezési adatbázis Mérlegadataikkal adott cégek alkotják a mintánkat feladat megmondani, hogy melyik fog valamilyen vizsgált időhorizonton belül csődbe menni A demonstráció kedvéért egyszerűsítünk: a mérlegadat csak két (fiktív) változót jelent: nyereség és adósság

7 Csődelőrejelzés Csődmodellezési adatbázis Mérlegadataikkal adott cégek alkotják a mintánkat feladat megmondani, hogy melyik fog valamilyen vizsgált időhorizonton belül csődbe menni A demonstráció kedvéért egyszerűsítünk: a mérlegadat csak két (fiktív) változót jelent: nyereség és adósság Mindkettő kis egész szám, jelzi a megfelelő (nyilván fiktív) jellemzőt

8 Csődelőrejelzés Csődmodellezési adatbázis Mérlegadataikkal adott cégek alkotják a mintánkat feladat megmondani, hogy melyik fog valamilyen vizsgált időhorizonton belül csődbe menni A demonstráció kedvéért egyszerűsítünk: a mérlegadat csak két (fiktív) változót jelent: nyereség és adósság Mindkettő kis egész szám, jelzi a megfelelő (nyilván fiktív) jellemzőt Eredményváltozó: csődbe ment-e a cég ténylegesen (ugye a mintában lévő megfigyelési egységekre ismerjük az eredményváltozó tényleges értékét ez itt múltbeli)

9 Csődelőrejelzés Csődmodellezési adatbázis Mérlegadataikkal adott cégek alkotják a mintánkat feladat megmondani, hogy melyik fog valamilyen vizsgált időhorizonton belül csődbe menni A demonstráció kedvéért egyszerűsítünk: a mérlegadat csak két (fiktív) változót jelent: nyereség és adósság Mindkettő kis egész szám, jelzi a megfelelő (nyilván fiktív) jellemzőt Eredményváltozó: csődbe ment-e a cég ténylegesen (ugye a mintában lévő megfigyelési egységekre ismerjük az eredményváltozó tényleges értékét ez itt múltbeli) Súlyozott adatbázis, n = 50 összesen

10 Csődelőrejelzés Csődmodellezési adatbázis Mérlegadataikkal adott cégek alkotják a mintánkat feladat megmondani, hogy melyik fog valamilyen vizsgált időhorizonton belül csődbe menni A demonstráció kedvéért egyszerűsítünk: a mérlegadat csak két (fiktív) változót jelent: nyereség és adósság Mindkettő kis egész szám, jelzi a megfelelő (nyilván fiktív) jellemzőt Eredményváltozó: csődbe ment-e a cég ténylegesen (ugye a mintában lévő megfigyelési egységekre ismerjük az eredményváltozó tényleges értékét ez itt múltbeli) Súlyozott adatbázis, n = 50 összesen (A gyakorlaton valós mérlegadatokkal fogunk dolgozni, ez most szemléltető)

11 Az adatbázis madártávlatból Csődelőrejelzés

12 Tartalom V. esettanulmány Általános gondolatok Az osztályozási feladat 1 V. esettanulmány Csődelőrejelzés 2 Általános gondolatok 3 becslése és jellemzése

13 Tartalom V. esettanulmány Általános gondolatok Az osztályozási feladat 1 V. esettanulmány Csődelőrejelzés 2 Általános gondolatok 3 becslése és jellemzése

14 Általános gondolatok Az osztályozási feladat Kvalitatív változó eredményváltozó pozíciójában Itt a feladat tehát egy csődbe megy-e vagy sem jellegű változó modellezése

15 Általános gondolatok Az osztályozási feladat Kvalitatív változó eredményváltozó pozíciójában Itt a feladat tehát egy csődbe megy-e vagy sem jellegű változó modellezése Ez bináris változó mint az eddig tárgyalt dummy változók, csak ezúttal eredményváltozóként

16 Általános gondolatok Az osztályozási feladat Kvalitatív változó eredményváltozó pozíciójában Itt a feladat tehát egy csődbe megy-e vagy sem jellegű változó modellezése Ez bináris változó mint az eddig tárgyalt dummy változók, csak ezúttal eredményváltozóként Jelent ez módosulást? (Hiszen például magyarázó változóként mindegy volt, hogy egy változó bináris, az OLS-t nem zavarta, hogy történetesen csak 0 és 1 értékeket vesz csak fel)

17 Általános gondolatok Az osztályozási feladat Kvalitatív változó eredményváltozó pozíciójában Itt a feladat tehát egy csődbe megy-e vagy sem jellegű változó modellezése Ez bináris változó mint az eddig tárgyalt dummy változók, csak ezúttal eredményváltozóként Jelent ez módosulást? (Hiszen például magyarázó változóként mindegy volt, hogy egy változó bináris, az OLS-t nem zavarta, hogy történetesen csak 0 és 1 értékeket vesz csak fel) Most drasztikusan más a helyzet: Y nem modellezhető OLS-sel

18 OLS és a bináris eredményváltozó Általános gondolatok Az osztályozási feladat Matematikai részletekbe nem megyünk bele

19 Általános gondolatok Az osztályozási feladat OLS és a bináris eredményváltozó Matematikai részletekbe nem megyünk bele Intuitíve: gondoljatok arra, hogy az OLS elvileg bármilyen értéket becsülhet és között egy ilyen hogyan lenne értelmezhető egy csődbe megy-e vagy sem kérdés válaszaként?!

20 Általános gondolatok Az osztályozási feladat OLS és a bináris eredményváltozó Matematikai részletekbe nem megyünk bele Intuitíve: gondoljatok arra, hogy az OLS elvileg bármilyen értéket becsülhet és között egy ilyen hogyan lenne értelmezhető egy csődbe megy-e vagy sem kérdés válaszaként?! De: mégis lineáris struktúrában fogjuk megoldani a problémát... csak trükkösebben alkalmazzuk: bináris Y helyett egy transzformált változóra

21 A mostani feladat általánosabban Általános gondolatok Az osztályozási feladat Tegyük fel, hogy elkészült a bináris Y -ra adott modellünk, és azt előrejelzésre használjuk

22 Általános gondolatok Az osztályozási feladat A mostani feladat általánosabban Tegyük fel, hogy elkészült a bináris Y -ra adott modellünk, és azt előrejelzésre használjuk Vegyük észre, hogy az Y szerinti érték egyfajta csoporttagságot jelent: becsődölő, működő

23 Általános gondolatok Az osztályozási feladat A mostani feladat általánosabban Tegyük fel, hogy elkészült a bináris Y -ra adott modellünk, és azt előrejelzésre használjuk Vegyük észre, hogy az Y szerinti érték egyfajta csoporttagságot jelent: becsődölő, működő Az előrejelzés ebben a kontextusban lényegében besorolás egy csoportba!

24 Általános gondolatok Az osztályozási feladat A mostani feladat általánosabban Tegyük fel, hogy elkészült a bináris Y -ra adott modellünk, és azt előrejelzésre használjuk Vegyük észre, hogy az Y szerinti érték egyfajta csoporttagságot jelent: becsődölő, működő Az előrejelzés ebben a kontextusban lényegében besorolás egy csoportba! Tehát mégegyszer: a megfigyelési egység két csoport valamelyikébe tartozik, mi a csoporttagságával összefüggő adatok alapján tippeljük meg a csoporttagságot

25 Általános gondolatok Az osztályozási feladat A mostani feladat általánosabban Tegyük fel, hogy elkészült a bináris Y -ra adott modellünk, és azt előrejelzésre használjuk Vegyük észre, hogy az Y szerinti érték egyfajta csoporttagságot jelent: becsődölő, működő Az előrejelzés ebben a kontextusban lényegében besorolás egy csoportba! Tehát mégegyszer: a megfigyelési egység két csoport valamelyikébe tartozik, mi a csoporttagságával összefüggő adatok alapján tippeljük meg a csoporttagságot Ezt a feladatot általában osztályozásnak (klasszifikáció) nevezik

26 Az osztályozási feladat Általános gondolatok Az osztályozási feladat A klasszifikáció hatalmas gyakorlati jelentőségű feladat: melyik cég megy csődbe (a mérlegadatai alapján), melyik beteg fog meghalni (a laboreredmények alapján), melyik család vállal 2-nél több gyereket (demográfiai adatok alapján), kit vesznek fel adott munkahelyre (egyéni jellemzők alapján) stb. stb.

27 Általános gondolatok Az osztályozási feladat Az osztályozási feladat A klasszifikáció hatalmas gyakorlati jelentőségű feladat: melyik cég megy csődbe (a mérlegadatai alapján), melyik beteg fog meghalni (a laboreredmények alapján), melyik család vállal 2-nél több gyereket (demográfiai adatok alapján), kit vesznek fel adott munkahelyre (egyéni jellemzők alapján) stb. stb. Ennek legelemibb eszközét fogjuk most tárgyalni

28 Általános gondolatok Az osztályozási feladat Az osztályozási feladat A klasszifikáció hatalmas gyakorlati jelentőségű feladat: melyik cég megy csődbe (a mérlegadatai alapján), melyik beteg fog meghalni (a laboreredmények alapján), melyik család vállal 2-nél több gyereket (demográfiai adatok alapján), kit vesznek fel adott munkahelyre (egyéni jellemzők alapján) stb. stb. Ennek legelemibb eszközét fogjuk most tárgyalni Ezen kívül könyvtárnyi további módszer van, melyek a gépi tanulás, még általánosabban a mesterséges intelligencia területéhez tartoznak (az adatbányászat is gyakran vizsgál ilyen problémákat)

29 Tartalom V. esettanulmány becslése és jellemzése 1 V. esettanulmány Csődelőrejelzés 2 Általános gondolatok 3 becslése és jellemzése

30 Tartalom V. esettanulmány becslése és jellemzése 1 V. esettanulmány Csődelőrejelzés 2 Általános gondolatok 3 becslése és jellemzése

31 A feladat átalakítása becslése és jellemzése Hogy a kérdést a magyarázó változók lineáris kombinációjával tudjuk kezelni, áttérünk más változóra

32 A feladat átalakítása becslése és jellemzése Hogy a kérdést a magyarázó változók lineáris kombinációjával tudjuk kezelni, áttérünk más változóra Az egységes terminológia kedvéért az Y = 1 kimenetetet siker -nek, az Y = 0-t kudarc -nak nevezzük

33 A feladat átalakítása becslése és jellemzése Hogy a kérdést a magyarázó változók lineáris kombinációjával tudjuk kezelni, áttérünk más változóra Az egységes terminológia kedvéért az Y = 1 kimenetetet siker -nek, az Y = 0-t kudarc -nak nevezzük Először is: nem a siker Y tényét, hanem annak P X feltételes valószínűségét fogjuk modellezni

34 A feladat átalakítása becslése és jellemzése Hogy a kérdést a magyarázó változók lineáris kombinációjával tudjuk kezelni, áttérünk más változóra Az egységes terminológia kedvéért az Y = 1 kimenetetet siker -nek, az Y = 0-t kudarc -nak nevezzük Először is: nem a siker Y tényét, hanem annak P X feltételes valószínűségét fogjuk modellezni

35 A feladat átalakítása becslése és jellemzése Hogy a kérdést a magyarázó változók lineáris kombinációjával tudjuk kezelni, áttérünk más változóra Az egységes terminológia kedvéért az Y = 1 kimenetetet siker -nek, az Y = 0-t kudarc -nak nevezzük Először is: nem a siker Y tényét, hanem annak P X feltételes valószínűségét fogjuk modellezni Az alsó index értelme: a siker valószínűsége, feltéve, hogy a magyarázó változók X értékűek

36 A feladat átalakítása becslése és jellemzése Hogy a kérdést a magyarázó változók lineáris kombinációjával tudjuk kezelni, áttérünk más változóra Az egységes terminológia kedvéért az Y = 1 kimenetetet siker -nek, az Y = 0-t kudarc -nak nevezzük Először is: nem a siker Y tényét, hanem annak P X feltételes valószínűségét fogjuk modellezni Az alsó index értelme: a siker valószínűsége, feltéve, hogy a magyarázó változók X értékűek (Most inkább csak jelölési egyszerűsítésként egy magyarázó változót feltételezünk, többre teljesen hasonlóan minta X vektor lenne)

37 A feladat átalakítása becslése és jellemzése Hogy a kérdést a magyarázó változók lineáris kombinációjával tudjuk kezelni, áttérünk más változóra Az egységes terminológia kedvéért az Y = 1 kimenetetet siker -nek, az Y = 0-t kudarc -nak nevezzük Először is: nem a siker Y tényét, hanem annak P X feltételes valószínűségét fogjuk modellezni Az alsó index értelme: a siker valószínűsége, feltéve, hogy a magyarázó változók X értékűek (Most inkább csak jelölési egyszerűsítésként egy magyarázó változót feltételezünk, többre teljesen hasonlóan minta X vektor lenne) Azaz precízen: P X = P ( Y = 1 X )

38 A feladat átalakítása becslése és jellemzése Hogy a kérdést a magyarázó változók lineáris kombinációjával tudjuk kezelni, áttérünk más változóra Az egységes terminológia kedvéért az Y = 1 kimenetetet siker -nek, az Y = 0-t kudarc -nak nevezzük Először is: nem a siker Y tényét, hanem annak P X feltételes valószínűségét fogjuk modellezni Az alsó index értelme: a siker valószínűsége, feltéve, hogy a magyarázó változók X értékűek (Most inkább csak jelölési egyszerűsítésként egy magyarázó változót feltételezünk, többre teljesen hasonlóan minta X vektor lenne) Azaz precízen: P X = P ( Y = 1 X ) Ezzel a {0, 1} változó helyett egy [0, 1]-on lévőt kell modellezni

39 A feladat további átalakítása becslése és jellemzése Ez persze még mindig kevés, ezért újabb transzformációt alkalmazunk

40 A feladat további átalakítása becslése és jellemzése Ez persze még mindig kevés, ezért újabb transzformációt alkalmazunk Odds (esélyhányados): a siker valószínűsége a kudarc valószínűségéhez viszonyítva

41 A feladat további átalakítása becslése és jellemzése Ez persze még mindig kevés, ezért újabb transzformációt alkalmazunk Odds (esélyhányados): a siker valószínűsége a kudarc valószínűségéhez viszonyítva A kudarc feltételes valószínűségét jelöljük Q X = 1 P X -szel

42 A feladat további átalakítása becslése és jellemzése Ez persze még mindig kevés, ezért újabb transzformációt alkalmazunk Odds (esélyhányados): a siker valószínűsége a kudarc valószínűségéhez viszonyítva A kudarc feltételes valószínűségét jelöljük Q X = 1 P X -szel Ekkor odds X = P X Q X = P X 1 P X

43 A feladat további átalakítása becslése és jellemzése Ez persze még mindig kevés, ezért újabb transzformációt alkalmazunk Odds (esélyhányados): a siker valószínűsége a kudarc valószínűségéhez viszonyítva A kudarc feltételes valószínűségét jelöljük Q X = 1 P X -szel Ekkor odds X = P X Q X = És fordítva (megoldva ezt P X -re): P X 1 P X P X = odds X 1 + odds X

44 És még egy átalakítás becslése és jellemzése Az odds már a [0, ) intervallumon van

45 És még egy átalakítás becslése és jellemzése Az odds már a [0, ) intervallumon van Majdnem jó, egy utolsó trükk: bevezetjük a logit fogalmát, mint log-odds: logit X = ln odds X

46 És még egy átalakítás becslése és jellemzése Az odds már a [0, ) intervallumon van Majdnem jó, egy utolsó trükk: bevezetjük a logit fogalmát, mint log-odds: logit X = ln odds X És ez már a (, )-n van (és szimmetrikusabbá is tettük a siker és kudarc eloszlását rajta)!

47 És még egy átalakítás becslése és jellemzése Az odds már a [0, ) intervallumon van Majdnem jó, egy utolsó trükk: bevezetjük a logit fogalmát, mint log-odds: logit X = ln odds X És ez már a (, )-n van (és szimmetrikusabbá is tettük a siker és kudarc eloszlását rajta)! Na, ezt fogjuk lineáris struktúrával modellezni! logit X = α + βx

48 És még egy átalakítás becslése és jellemzése Az odds már a [0, ) intervallumon van Majdnem jó, egy utolsó trükk: bevezetjük a logit fogalmát, mint log-odds: logit X = ln odds X És ez már a (, )-n van (és szimmetrikusabbá is tettük a siker és kudarc eloszlását rajta)! Na, ezt fogjuk lineáris struktúrával modellezni! logit X = α + βx A módszer neve: logit regresszió, vagy logisztikus regresszió

49 A logisztikus regresszió visszafejtése becslése és jellemzése Játszuk el mindezt visszafelé, feltéve, hogy α és β már ismert: logit X = α + βx odds X = e α+βx P X = eα+βx 1 + e α+βx

50 A logisztikus regresszió visszafejtése becslése és jellemzése Játszuk el mindezt visszafelé, feltéve, hogy α és β már ismert: logit X = α + βx odds X = e α+βx P X = eα+βx 1 + e α+βx... tehát α és β ismeretében egyszerű algebrai műveletekkel kapjuk a siker valószínűségeit

51 A logisztikus regresszió visszafejtése becslése és jellemzése Játszuk el mindezt visszafelé, feltéve, hogy α és β már ismert: logit X = α + βx odds X = e α+βx P X = eα+βx 1 + e α+βx... tehát α és β ismeretében egyszerű algebrai műveletekkel kapjuk a siker valószínűségeit És az utolsó lépés: hogy becsüljük α-t és β-t (ill. általában β-kat)?

52 A logisztikus regresszió visszafejtése becslése és jellemzése Játszuk el mindezt visszafelé, feltéve, hogy α és β már ismert: logit X = α + βx odds X = e α+βx P X = eα+βx 1 + e α+βx... tehát α és β ismeretében egyszerű algebrai műveletekkel kapjuk a siker valószínűségeit És az utolsó lépés: hogy becsüljük α-t és β-t (ill. általában β-kat)? Sajnos az OLS ahogy már mondtuk nem jó, új módszer kell: maximum likelihood (ML) becslés

53 Tartalom V. esettanulmány becslése és jellemzése 1 V. esettanulmány Csődelőrejelzés 2 Általános gondolatok 3 becslése és jellemzése

54 Pár szó általában az ről becslése és jellemzése Legegyszerűbb eset: egyetlen sokasági paraméter becslése mintából (pl. sokasági várhatóérték)

55 Pár szó általában az ről becslése és jellemzése Legegyszerűbb eset: egyetlen sokasági paraméter becslése mintából (pl. sokasági várhatóérték) Alapötlet: ha tudnánk, hogy mennyi a sokasági paraméter értéke, meg tudnánk mondani minden egyes mintára, hogy mekkora valószínűséggel kapjuk épp azt a mintát véletlen mintavétel eredményeképp

56 Pár szó általában az ről becslése és jellemzése Legegyszerűbb eset: egyetlen sokasági paraméter becslése mintából (pl. sokasági várhatóérték) Alapötlet: ha tudnánk, hogy mennyi a sokasági paraméter értéke, meg tudnánk mondani minden egyes mintára, hogy mekkora valószínűséggel kapjuk épp azt a mintát véletlen mintavétel eredményeképp Mit jelent az, hogy mekkora valószínűséggel kapjuk a mintát? legegyszerűbb függetlenség feltételezésével: ekkor a konkrét (kezünkben lévő) minta megkapásának valószínűsége az egyes mintaelemek megkapásának valószínűségeinek szorzata

57 Pár szó általában az ről becslése és jellemzése Legegyszerűbb eset: egyetlen sokasági paraméter becslése mintából (pl. sokasági várhatóérték) Alapötlet: ha tudnánk, hogy mennyi a sokasági paraméter értéke, meg tudnánk mondani minden egyes mintára, hogy mekkora valószínűséggel kapjuk épp azt a mintát véletlen mintavétel eredményeképp Mit jelent az, hogy mekkora valószínűséggel kapjuk a mintát? legegyszerűbb függetlenség feltételezésével: ekkor a konkrét (kezünkben lévő) minta megkapásának valószínűsége az egyes mintaelemek megkapásának valószínűségeinek szorzata Például, ha 3 elemű x mintát veszünk, melyek elemei 0,5, 2, 0,2, akkor P (X = x) = P (X 1 = 0,5) P (X 2 = 2) P (X 3 = 0,2)

58 Pár szó általában az ről becslése és jellemzése Ennyi pontosítás után rendben vagyunk, gondolhatnánk, hiszen ha ismernénk a sokasági paraméter értékét (az egyetlen dolgot, ami ismeretlen volt!), akkor azt valóban meg tudnánk mondani, hogy mekkora valószínűséggel kapunk egy adott elemet

59 Pár szó általában az ről becslése és jellemzése Ennyi pontosítás után rendben vagyunk, gondolhatnánk, hiszen ha ismernénk a sokasági paraméter értékét (az egyetlen dolgot, ami ismeretlen volt!), akkor azt valóban meg tudnánk mondani, hogy mekkora valószínűséggel kapunk egy adott elemet De valójában a kérdés így pontatlan: folytonos sokaság esetén minden mintaelem valószínűsége nulla (P (X = x) = 0, pl. P (X 1 = 0,5) = 0 a pdf folytonossági pontjában!)

60 Pár szó általában az ről becslése és jellemzése Ennyi pontosítás után rendben vagyunk, gondolhatnánk, hiszen ha ismernénk a sokasági paraméter értékét (az egyetlen dolgot, ami ismeretlen volt!), akkor azt valóban meg tudnánk mondani, hogy mekkora valószínűséggel kapunk egy adott elemet De valójában a kérdés így pontatlan: folytonos sokaság esetén minden mintaelem valószínűsége nulla (P (X = x) = 0, pl. P (X 1 = 0,5) = 0 a pdf folytonossági pontjában!) Ötlet: ne is törődjünk ezzel az apró bökkenővel, használjuk akkor is a sűrűségfüggvény helyettesítési értékét a valószínűség gyanánt (intuitív indoklás: a pont, pl. itt a 0,5 kis környezetébe esés valószínűsége arányos ezzel az értékkel)

61 Pár szó általában az ről becslése és jellemzése Ennyi pontosítás után rendben vagyunk, gondolhatnánk, hiszen ha ismernénk a sokasági paraméter értékét (az egyetlen dolgot, ami ismeretlen volt!), akkor azt valóban meg tudnánk mondani, hogy mekkora valószínűséggel kapunk egy adott elemet De valójában a kérdés így pontatlan: folytonos sokaság esetén minden mintaelem valószínűsége nulla (P (X = x) = 0, pl. P (X 1 = 0,5) = 0 a pdf folytonossági pontjában!) Ötlet: ne is törődjünk ezzel az apró bökkenővel, használjuk akkor is a sűrűségfüggvény helyettesítési értékét a valószínűség gyanánt (intuitív indoklás: a pont, pl. itt a 0,5 kis környezetébe esés valószínűsége arányos ezzel az értékkel) Itt már a valószínűséget idézőjelbe kellett tennünk (a pdf helyettesítési értéke nem valószínűség, pl. simán lehet 1-nél nagyobb is!), ezért inkább új szót használunk rá: likelihood

62 A likelihoodról V. esettanulmány becslése és jellemzése Nézzünk erre egy példát: 3 elemű minta standard normális eloszlásból; mekkora a valószínűsége, hogy a 3 elem 0,5, 2, 0,2?

63 A likelihoodról V. esettanulmány becslése és jellemzése Nézzünk erre egy példát: 3 elemű minta standard normális eloszlásból; mekkora a valószínűsége, hogy a 3 elem 0,5, 2, 0,2? Nulla! (Ugyebár... )

64 A likelihoodról V. esettanulmány becslése és jellemzése Nézzünk erre egy példát: 3 elemű minta standard normális eloszlásból; mekkora a valószínűsége, hogy a 3 elem 0,5, 2, 0,2? Nulla! (Ugyebár... ) És a likelihoodja? L (x) = f X (0,5) f X (2) f X ( 0,2), ahol X N (0, 1) és ezért f X (x) = φ 0,1 (x), ahol φ a normális eloszlás pdf-e

65 A likelihoodról V. esettanulmány becslése és jellemzése Nézzünk erre egy példát: 3 elemű minta standard normális eloszlásból; mekkora a valószínűsége, hogy a 3 elem 0,5, 2, 0,2? Nulla! (Ugyebár... ) És a likelihoodja? L (x) = f X (0,5) f X (2) f X ( 0,2), ahol X N (0, 1) és ezért f X (x) = φ 0,1 (x), ahol φ a normális eloszlás pdf-e Figyelem, ez a szorzat felírás (általában: L (x) = n i=1 f X (x i )) csak fae esetre működik, nyilván

66 A likelihoodról V. esettanulmány becslése és jellemzése Nézzünk erre egy példát: 3 elemű minta standard normális eloszlásból; mekkora a valószínűsége, hogy a 3 elem 0,5, 2, 0,2? Nulla! (Ugyebár... ) És a likelihoodja? L (x) = f X (0,5) f X (2) f X ( 0,2), ahol X N (0, 1) és ezért f X (x) = φ 0,1 (x), ahol φ a normális eloszlás pdf-e Figyelem, ez a szorzat felírás (általában: L (x) = n i=1 f X (x i )) csak fae esetre működik, nyilván Világos, hogy a 3, 2,8, 3,5 mintának sokkal kisebb a likelihood-ja

67 A likelihoodról V. esettanulmány becslése és jellemzése Nézzünk erre egy példát: 3 elemű minta standard normális eloszlásból; mekkora a valószínűsége, hogy a 3 elem 0,5, 2, 0,2? Nulla! (Ugyebár... ) És a likelihoodja? L (x) = f X (0,5) f X (2) f X ( 0,2), ahol X N (0, 1) és ezért f X (x) = φ 0,1 (x), ahol φ a normális eloszlás pdf-e Figyelem, ez a szorzat felírás (általában: L (x) = n i=1 f X (x i )) csak fae esetre működik, nyilván Világos, hogy a 3, 2,8, 3,5 mintának sokkal kisebb a likelihood-ja N (3, 1) sokasági eloszlást feltételezve (tehát ha f X (x) = φ 3,1 (x)) akkor persze épp fordítva

68 Az V. esettanulmány becslése és jellemzése És most fordítsuk meg a logikát: csak a mintát ismerjük, de a sokasági paramétert nem

69 Az V. esettanulmány becslése és jellemzése És most fordítsuk meg a logikát: csak a mintát ismerjük, de a sokasági paramétert nem Minden sokasági paraméterhez meg tudjuk mondani, hogy fennállása esetén mekkora likelihood-ú, hogy épp azt az adott mintát kapjuk

70 Az V. esettanulmány becslése és jellemzése És most fordítsuk meg a logikát: csak a mintát ismerjük, de a sokasági paramétert nem Minden sokasági paraméterhez meg tudjuk mondani, hogy fennállása esetén mekkora likelihood-ú, hogy épp azt az adott mintát kapjuk Ha tippelnünk kellene, akkor tippeljük azt, hogy az a sokasági paraméter áll fenn, ami mellett ez a likelihood a maximális! (Totálisan egybevág a józan paraszti ésszel.)

71 Az V. esettanulmány becslése és jellemzése És most fordítsuk meg a logikát: csak a mintát ismerjük, de a sokasági paramétert nem Minden sokasági paraméterhez meg tudjuk mondani, hogy fennállása esetén mekkora likelihood-ú, hogy épp azt az adott mintát kapjuk Ha tippelnünk kellene, akkor tippeljük azt, hogy az a sokasági paraméter áll fenn, ami mellett ez a likelihood a maximális! (Totálisan egybevág a józan paraszti ésszel.) Ennyi, ez a maximum likelihood (ML) becslés!

72 Tartalom V. esettanulmány becslése és jellemzése 1 V. esettanulmány Csődelőrejelzés 2 Általános gondolatok 3 becslése és jellemzése

73 LR modell becslése V. esettanulmány becslése és jellemzése Minden α, β-hoz meghatározható a minta (itt: adatbázisunk) likelihood-ja (precízen: adott α, β mellett mekkora likelihood-dal jött volna ki a mintánk)

74 LR modell becslése V. esettanulmány becslése és jellemzése Minden α, β-hoz meghatározható a minta (itt: adatbázisunk) likelihood-ja (precízen: adott α, β mellett mekkora likelihood-dal jött volna ki a mintánk) Ezt fogjuk α, β-ban maximalizálni

75 LR modell becslése V. esettanulmány becslése és jellemzése Minden α, β-hoz meghatározható a minta (itt: adatbázisunk) likelihood-ja (precízen: adott α, β mellett mekkora likelihood-dal jött volna ki a mintánk) Ezt fogjuk α, β-ban maximalizálni Kérdés: hogyan kapjuk a minta likelihood-ját?

76 LR modell becslése V. esettanulmány becslése és jellemzése Minden α, β-hoz meghatározható a minta (itt: adatbázisunk) likelihood-ja (precízen: adott α, β mellett mekkora likelihood-dal jött volna ki a mintánk) Ezt fogjuk α, β-ban maximalizálni Kérdés: hogyan kapjuk a minta likelihood-ját? Annyira nem nehéz, hiszen egy mintaelemre a kijövetelének valószínűsége P X (ha az eredményváltozója 1), Q X (ha eredményváltozója 0), mely P X és Q X értékek kiszámíthatóak α, β-hoz (már láttuk)

77 LR modell becslése V. esettanulmány becslése és jellemzése Minden α, β-hoz meghatározható a minta (itt: adatbázisunk) likelihood-ja (precízen: adott α, β mellett mekkora likelihood-dal jött volna ki a mintánk) Ezt fogjuk α, β-ban maximalizálni Kérdés: hogyan kapjuk a minta likelihood-ját? Annyira nem nehéz, hiszen egy mintaelemre a kijövetelének valószínűsége P X (ha az eredményváltozója 1), Q X (ha eredményváltozója 0), mely P X és Q X értékek kiszámíthatóak α, β-hoz (már láttuk) Már csak az egész mintára (nem egyes mintaelemekre) kell kiszámítani, itt függetlenség feltételezésével élünk

78 Az egész minta likelihoodja becslése és jellemzése

79 A becslési feladat V. esettanulmány becslése és jellemzése Az egész minta likelihood-ja tehát: L (α, β) = P X,i Q X,i Y i =1 Y i =0

80 A becslési feladat V. esettanulmány becslése és jellemzése Az egész minta likelihood-ja tehát: L (α, β) = Ezzel a megoldandó feladat: P X,i Q X,i Y i =1 Y i =0 max L (α, β) α,β

81 A becslési feladat V. esettanulmány becslése és jellemzése Az egész minta likelihood-ja tehát: L (α, β) = Ezzel a megoldandó feladat: P X,i Q X,i Y i =1 Y i =0 max L (α, β) α,β E helyett a gyakorlatban inkább a vele ekvivalens min 2 ln L (α, β) α,β feladatot oldjuk meg (nem csak numerikus okokból)

82 A becslési feladat V. esettanulmány becslése és jellemzése Az egész minta likelihood-ja tehát: L (α, β) = Ezzel a megoldandó feladat: P X,i Q X,i Y i =1 Y i =0 max L (α, β) α,β E helyett a gyakorlatban inkább a vele ekvivalens min 2 ln L (α, β) α,β feladatot oldjuk meg (nem csak numerikus okokból) Ennek megoldása szolgáltatja a LR modell paramétereinek becslését

83 Elemzés V. esettanulmány becslése és jellemzése Értelmezzük az együtthatókat: odds X+1 odds X = eα+β(x+1) e α+βx = eα+βx+β e α+βx = eα+βx e β e α+βx = eβ

84 Elemzés V. esettanulmány becslése és jellemzése Értelmezzük az együtthatókat: odds X+1 odds X = eα+β(x+1) e α+βx = eα+βx+β e α+βx = eα+βx e β e α+βx = eβ Ezért az e β -kat is meg szokták adni a programok ( exp. coeff )

85 Elemzés V. esettanulmány becslése és jellemzése Értelmezzük az együtthatókat: odds X+1 odds X = eα+β(x+1) e α+βx = eα+βx+β e α+βx = eα+βx e β e α+βx = eβ Ezért az e β -kat is meg szokták adni a programok ( exp. coeff ) Marginális hatás: dp X dx j = βp X Q X

86 Előrejelzés V. esettanulmány becslése és jellemzése Még egy megfontolást kell tenni: csak csődvalószínűséget kaptunk... de az előrejelzésben konkrét kimenet kell! Mikor soroljuk becsődölőbe? Ha ez a valószínűség 0,5-nél nagyobb? 0,1-nél? 0,99-nél...?

87 Előrejelzés V. esettanulmány becslése és jellemzése Még egy megfontolást kell tenni: csak csődvalószínűséget kaptunk... de az előrejelzésben konkrét kimenet kell! Mikor soroljuk becsődölőbe? Ha ez a valószínűség 0,5-nél nagyobb? 0,1-nél? 0,99-nél...? Jelölje ezt a határt C (cut-off point, cut value): Ŷ = 1 : P X > C

88 Előrejelzés V. esettanulmány becslése és jellemzése Még egy megfontolást kell tenni: csak csődvalószínűséget kaptunk... de az előrejelzésben konkrét kimenet kell! Mikor soroljuk becsődölőbe? Ha ez a valószínűség 0,5-nél nagyobb? 0,1-nél? 0,99-nél...? Jelölje ezt a határt C (cut-off point, cut value): Ŷ = 1 : P X > C Ekkor különböző C-khez különböző konkrét klasszifikációk

89 C hatása a klasszifikációra becslése és jellemzése

90 A klasszifikáció jóságának mérése becslése és jellemzése Legalapvetőbb eszköz a klasszifikációs mátrix: Pred Y 1 0 Obs. Y

91 A klasszifikáció jóságának mérése becslése és jellemzése Legalapvetőbb eszköz a klasszifikációs mátrix: Pred Y 1 0 Obs. Y Főátlóban a helyes osztályozások, ezek aránya a helyes osztályozási ráta (itt = 0,88)

92 A klasszifikáció jóságának mérése becslése és jellemzése Legalapvetőbb eszköz a klasszifikációs mátrix: Pred Y 1 0 Obs. Y Főátlóban a helyes osztályozások, ezek aránya a helyes osztályozási ráta (itt = 0,88) Mellékátlóban: első- és másodfajú hibák (specificitás, szenzitivitás)

93 A klasszifikáció jóságának mérése becslése és jellemzése Legalapvetőbb eszköz a klasszifikációs mátrix: Pred Y 1 0 Obs. Y Főátlóban a helyes osztályozások, ezek aránya a helyes osztályozási ráta (itt = 0,88) Mellékátlóban: első- és másodfajú hibák (specificitás, szenzitivitás) Gondoljuk végig, hogyan változik ezek aránya C növelésére, ill. csökkentésére

94 becslése és jellemzése C megválasztása a klasszifikációs mátrix alapján Ha tudjuk, hogy az egyes hibák milyen költséget jelentenek, akkor analitikusan választhatunk optimális C-t

95 becslése és jellemzése C megválasztása a klasszifikációs mátrix alapján Ha tudjuk, hogy az egyes hibák milyen költséget jelentenek, akkor analitikusan választhatunk optimális C-t Veszteség-mátrix: ,2-0,2

96 becslése és jellemzése C megválasztása a klasszifikációs mátrix alapján Ha tudjuk, hogy az egyes hibák milyen költséget jelentenek, akkor analitikusan választhatunk optimális C-t Veszteség-mátrix: ,2-0,2 Ezzel az előző klasszifikációs mátrix költsége: , ( 0,2) = 5,6

97 becslése és jellemzése C megválasztása a klasszifikációs mátrix alapján Ha tudjuk, hogy az egyes hibák milyen költséget jelentenek, akkor analitikusan választhatunk optimális C-t Veszteség-mátrix: ,2-0,2 Ezzel az előző klasszifikációs mátrix költsége: , ( 0,2) = 5,6 Azt a C-t választjuk, aminél ez minimális!

98 becslése és jellemzése C megválasztása a klasszifikációs mátrix alapján Ha tudjuk, hogy az egyes hibák milyen költséget jelentenek, akkor analitikusan választhatunk optimális C-t Veszteség-mátrix: ,2-0,2 Ezzel az előző klasszifikációs mátrix költsége: , ( 0,2) = 5,6 Azt a C-t választjuk, aminél ez minimális! (Ez nem becslési feladat)

99 Tartalom V. esettanulmány becslése és jellemzése 1 V. esettanulmány Csődelőrejelzés 2 Általános gondolatok 3 becslése és jellemzése

100 Modelljellemzés pszeudo-r 2 mutatóval becslése és jellemzése Az OLS-nél látott R 2 -hez hasonló elvű ( hol járunk az úton? ) mutató szeretnénk LR-re is

101 Modelljellemzés pszeudo-r 2 mutatóval becslése és jellemzése Az OLS-nél látott R 2 -hez hasonló elvű ( hol járunk az úton? ) mutató szeretnénk LR-re is Az ESS helyett itt a 2 ln L jellemzi a modellt

102 Modelljellemzés pszeudo-r 2 mutatóval becslése és jellemzése Az OLS-nél látott R 2 -hez hasonló elvű ( hol járunk az úton? ) mutató szeretnénk LR-re is Az ESS helyett itt a 2 ln L jellemzi a modellt Mi a tökéletes modell? P X = 1 ha Y = 1 és Q X = 1 ha Y = 0 mennyi ennek a likelihoodja?

103 Modelljellemzés pszeudo-r 2 mutatóval becslése és jellemzése Az OLS-nél látott R 2 -hez hasonló elvű ( hol járunk az úton? ) mutató szeretnénk LR-re is Az ESS helyett itt a 2 ln L jellemzi a modellt Mi a tökéletes modell? P X = 1 ha Y = 1 és Q X = 1 ha Y = 0 mennyi ennek a likelihoodja? Épp 1, 2 ln L = 0

104 Modelljellemzés pszeudo-r 2 mutatóval becslése és jellemzése Az OLS-nél látott R 2 -hez hasonló elvű ( hol járunk az úton? ) mutató szeretnénk LR-re is Az ESS helyett itt a 2 ln L jellemzi a modellt Mi a tökéletes modell? P X = 1 ha Y = 1 és Q X = 1 ha Y = 0 mennyi ennek a likelihoodja? Épp 1, 2 ln L = 0 Az üres semmilyen magyarázó változót nem tartalmazó modell 2 ln L-je analitikusan meghatározható (analóg a helyzet az OLS-sel)

105 Modelljellemzés pszeudo-r 2 mutatóval becslése és jellemzése Az OLS-nél látott R 2 -hez hasonló elvű ( hol járunk az úton? ) mutató szeretnénk LR-re is Az ESS helyett itt a 2 ln L jellemzi a modellt Mi a tökéletes modell? P X = 1 ha Y = 1 és Q X = 1 ha Y = 0 mennyi ennek a likelihoodja? Épp 1, 2 ln L = 0 Az üres semmilyen magyarázó változót nem tartalmazó modell 2 ln L-je analitikusan meghatározható (analóg a helyzet az OLS-sel) Az alapján a McFadden-féle pszeudo-r 2 : R 2 = ( 2 ln L null) ( 2 ln L targy ) 2 ln L null

106 Modellszelekció V. esettanulmány becslése és jellemzése Nested modellszelekció, H 0 : β q+1 = β q+2 =... = β q+m = 0

107 Modellszelekció V. esettanulmány becslése és jellemzése Nested modellszelekció, H 0 : β q+1 = β q+2 =... = β q+m = 0 Ha nagy mintánk van, akkor rendkívül kényelmesen vizsgálható egy új próbakészítési elvvel, az ún. likelihood-hányados (LR) elven konstruált teszttel: ( 2 ln L ) H0 ( 2 ln L ) H1 χ 2 m

108 Modellszelekció V. esettanulmány becslése és jellemzése Nested modellszelekció, H 0 : β q+1 = β q+2 =... = β q+m = 0 Ha nagy mintánk van, akkor rendkívül kényelmesen vizsgálható egy új próbakészítési elvvel, az ún. likelihood-hányados (LR) elven konstruált teszttel: ( 2 ln L ) H0 ( 2 ln L ) H1 χ 2 m Üres modelltől való szignifikáns különbözés tesztelése: függetlenségvizsgálat (szeretjük a H 1 -et)

109 Modellszelekció V. esettanulmány becslése és jellemzése Nested modellszelekció, H 0 : β q+1 = β q+2 =... = β q+m = 0 Ha nagy mintánk van, akkor rendkívül kényelmesen vizsgálható egy új próbakészítési elvvel, az ún. likelihood-hányados (LR) elven konstruált teszttel: ( 2 ln L ) H0 ( 2 ln L ) H1 χ 2 m Üres modelltől való szignifikáns különbözés tesztelése: függetlenségvizsgálat (szeretjük a H 1 -et) Szaturált modelltől van szignifikáns különbözés tesztelése: illeszkedésvizsgálat (szeretjük a H 0 -t)

Ökonometria. Logisztikus regresszió. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Nyolcadik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék

Ökonometria. Logisztikus regresszió. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Nyolcadik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék Ferenci Tamás 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Nyolcadik fejezet Tartalom V. esettanulmány 1 V. esettanulmány Csődelőrejelzés 2 Általános gondolatok 3 becslése

Részletesebben

A többváltozós lineáris regresszió III. Főkomponens-analízis

A többváltozós lineáris regresszió III. Főkomponens-analízis A többváltozós lineáris regresszió III. 6-7. előadás Nominális változók a lineáris modellben 2017. október 10-17. 6-7. előadás A többváltozós lineáris regresszió III., Alapok Többváltozós lineáris regresszió

Részletesebben

6. előadás - Regressziószámítás II.

6. előadás - Regressziószámítás II. 6. előadás - Regressziószámítás II. 2016. október 10. 6. előadás 1 / 30 Specifikációs hibák A magyarázó- és eredményváltozók kiválasztásának alapja: szakirányú elmélet, mögöttes viselkedés ismerete, múltbeli

Részletesebben

Többváltozós lineáris regresszió 3.

Többváltozós lineáris regresszió 3. Többváltozós lineáris regresszió 3. Orlovits Zsanett 2018. október 10. Alapok Kérdés: hogyan szerepeltethetünk egy minőségi (nominális) tulajdonságot (pl. férfi/nő, egészséges/beteg, szezonális hatások,

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

Bevezetés az ökonometriába

Bevezetés az ökonometriába Bevezetés az ökonometriába Többváltozós regresszió: nemlineáris modellek Ferenci Tamás MSc 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Hetedik előadás, 2010. november 10.

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége [GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell

Részletesebben

Logisztikus regresszió

Logisztikus regresszió Logisztikus regresszió Kvantitatív statisztikai módszerek Dr. Szilágyi Roland Függő változó (y) Nem metrikus Metri kus Gazdaságtudományi Kar Független változó (x) Nem metrikus Metrikus Kereszttábla elemzés

Részletesebben

Logisztikus regresszió

Logisztikus regresszió Logisztikus regresszió 9. előadás Kvantitatív statisztikai módszerek Dr. Szilágyi Roland Függő változó (y) Nem metrikus Metri kus Gazdaságtudományi Kar Független változó () Nem metrikus Metrikus Kereszttábla

Részletesebben

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision

Részletesebben

Logisztikus regresszió október 27.

Logisztikus regresszió október 27. Logisztikus regresszió 2017. október 27. Néhány példa Mi a valószínűsége egy adott betegségnek a páciens bizonyos megfigyelt jellemzői (pl. nem, életkor, laboreredmények, BMI stb.) alapján? Mely genetikai

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

LOGIT-REGRESSZIÓ a függő változó: névleges vagy sorrendi skála

LOGIT-REGRESSZIÓ a függő változó: névleges vagy sorrendi skála LOGIT-REGRESSZIÓ a függő változó: névleges vagy sorrendi skála a független változó: névleges vagy sorrendi vagy folytonos skála BIOMETRIA2_NEMPARAMÉTERES_5 1 Y: visszafizeti-e a hitelt x: fizetés (életkor)

Részletesebben

Regressziós vizsgálatok

Regressziós vizsgálatok Regressziós vizsgálatok Regresszió (regression) Általános jelentése: visszaesés, hanyatlás, visszafelé mozgás, visszavezetés. Orvosi területen: visszafejlődés, involúció. A betegség tünetei, vagy maga

Részletesebben

Bevezetés az ökonometriába

Bevezetés az ökonometriába Bevezetés az ökonometriába Többváltozós lineáris regresszió: modellspecifikáció, interakció Ferenci Tamás MSc 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Ötödik előadás,

Részletesebben

A maximum likelihood becslésről

A maximum likelihood becslésről A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának

Részletesebben

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani

Részletesebben

Least Squares becslés

Least Squares becslés Least Squares becslés A négyzetes hibafüggvény: i d i ( ) φx i A négyzetes hibafüggvény mellett a minimumot biztosító megoldás W=( d LS becslés A gradiens számítása és nullává tétele eredményeképp A megoldás

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát

Részletesebben

11. Előadás. 11. előadás Bevezetés a lineáris programozásba

11. Előadás. 11. előadás Bevezetés a lineáris programozásba 11. Előadás Gondolkodnivalók Sajátérték, Kvadratikus alak 1. Gondolkodnivaló Adjuk meg, hogy az alábbi A mátrixnak mely α értékekre lesz sajátértéke a 5. Ezen α-ák esetén határozzuk meg a 5 sajátértékhez

Részletesebben

Lineáris regressziós modellek 1

Lineáris regressziós modellek 1 Lineáris regressziós modellek 1 Ispány Márton és Jeszenszky Péter 2016. szeptember 19. 1 Az ábrák C.M. Bishop: Pattern Recognition and Machine Learning c. könyvéből származnak. Tartalom Bevezető példák

Részletesebben

Adatok statisztikai értékelésének főbb lehetőségei

Adatok statisztikai értékelésének főbb lehetőségei Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció

Részletesebben

Hipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás

Hipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás STATISZTIKA Hipotézis, sejtés 11. Előadás Hipotézisvizsgálatok, nem paraméteres próbák Tudományos hipotézis Nullhipotézis felállítása (H 0 ): Kétmintás hipotézisek Munkahipotézis (H a ) Nullhipotézis (H

Részletesebben

Lineáris regressziószámítás 1. - kétváltozós eset

Lineáris regressziószámítás 1. - kétváltozós eset Lineáris regressziószámítás 1. - kétváltozós eset Orlovits Zsanett 2019. február 6. Adatbázis - részlet eredmény- és magyarázó jellegű változók Cél: egy eredményváltozó alakulásának jellemzése a magyarázó

Részletesebben

Matematikai statisztikai elemzések 6.

Matematikai statisztikai elemzések 6. Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematikai statisztikai elemzések 6. MSTE6 modul Regressziószámítás: kétváltozós lineáris és nemlineáris regresszió, többváltozós

Részletesebben

(Independence, dependence, random variables)

(Independence, dependence, random variables) Két valószínűségi változó együttes vizsgálata Feltételes eloszlások Két diszkrét változó együttes eloszlása a lehetséges értékpárok és a hozzájuk tartozó valószínűségek (táblázat) Példa: Egy urna 3 fehér,

Részletesebben

Heckman modell. Szelekciós modellek alkalmazásai.

Heckman modell. Szelekciós modellek alkalmazásai. Heckman modell. Szelekciós modellek alkalmazásai. Mikroökonometria, 12. hét Bíró Anikó A tananyag a Gazdasági Versenyhivatal Versenykultúra Központja és a Tudás-Ökonómia Alapítvány támogatásával készült

Részletesebben

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet GVMST22GNC Statisztika II. 3. előadás: 8. Hipotézisvizsgálat Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Hipotézisvizsgálat v becslés Becslés Ismeretlen paraméter Közeĺıtő

Részletesebben

Loss Distribution Approach

Loss Distribution Approach Modeling operational risk using the Loss Distribution Approach Tartalom»Szabályozói környezet»modellezési struktúra»eseményszám eloszlás»káreloszlás»aggregált veszteségek»további problémák 2 Szabályozói

Részletesebben

Ökonometria. Dummy változók használata. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Hetedik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék

Ökonometria. Dummy változók használata. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Hetedik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék Dummy változók használata Ferenci Tamás 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Hetedik fejezet Tartalom IV. esettanulmány 1 IV. esettanulmány Uniós országok munkanélkülisége

Részletesebben

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése 4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól

Részletesebben

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás

Részletesebben

Nemlineáris modellek

Nemlineáris modellek Ferenci Tamás tamas.ferenci@medstat.hu 2018. február 7. Tartalom 1 2 3 4 A marginális hatás fogalma Marginális hatás: a magyarázó változó kis növelésének hatására mekkora az eredményváltozó egységnyi magyarázóváltozó-növelésre

Részletesebben

1. Példa. A gamma függvény és a Fubini-tétel.

1. Példa. A gamma függvény és a Fubini-tétel. . Példa. A gamma függvény és a Fubini-tétel.. Az x exp x + t )) függvény az x, t tartományon folytonos, és nem negatív, ezért alkalmazható rá a Fubini-tétel. I x exp x + t )) dxdt + t dt π 4. [ exp x +

Részletesebben

Diagnosztika és előrejelzés

Diagnosztika és előrejelzés 2018. november 28. A diagnosztika feladata A modelldiagnosztika alapfeladatai: A modellillesztés jóságának vizsgálata (idősoros adatok esetén, a regressziónál már tanultuk), a reziduumok fehérzaj voltának

Részletesebben

5. előadás - Regressziószámítás

5. előadás - Regressziószámítás 5. előadás - Regressziószámítás 2016. október 3. 5. előadás 1 / 18 Kétváltozós eset A modell: Y i = α + βx i + u i, i = 1,..., T, ahol X i független u i -től minden i esetén, (u i ) pedig i.i.d. sorozat

Részletesebben

Gyakorló feladatok a kétváltozós regresszióhoz 2. Nemlineáris regresszió

Gyakorló feladatok a kétváltozós regresszióhoz 2. Nemlineáris regresszió Gyakorló feladatok a kétváltozós regresszióhoz 2. Nemlineáris regresszió 1. A fizetés (Y, órabér dollárban) és iskolázottság (X, elvégzett iskolai év) közti kapcsolatot vizsgáljuk az Y t α + β X 2 t +

Részletesebben

Bevezetés a hipotézisvizsgálatokba

Bevezetés a hipotézisvizsgálatokba Bevezetés a hipotézisvizsgálatokba Nullhipotézis: pl. az átlag egy adott µ becslése : M ( x -µ ) = 0 Alternatív hipotézis: : M ( x -µ ) 0 Szignifikancia: - teljes bizonyosság csak teljes enumerációra -

Részletesebben

Többváltozós lineáris regressziós modell feltételeinek

Többváltozós lineáris regressziós modell feltételeinek Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p

Részletesebben

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( ) Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:

Részletesebben

Dualitás Dualitási tételek Általános LP feladat Komplementáris lazaság 2017/ Szegedi Tudományegyetem Informatikai Intézet

Dualitás Dualitási tételek Általános LP feladat Komplementáris lazaság 2017/ Szegedi Tudományegyetem Informatikai Intézet Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 7. Előadás Árazási interpretáció Tekintsük újra az erőforrás allokációs problémát (vonat

Részletesebben

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból

Részletesebben

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem agy számok törvényei Statisztikai mintavétel Várható érték becslése Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem A mérés mint statisztikai mintavétel A méréssel az eloszlásfüggvénnyel

Részletesebben

Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok

Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok STATISZTIKA 1. Előadás Hipotézisvizsgálatok Tematika 1. Hipotézis vizsgálatok 2. t-próbák 3. Variancia-analízis 4. A variancia-analízis validálása, erőfüggvény 5. Korreláció számítás 6. Kétváltozós lineáris

Részletesebben

egyetemi jegyzet Meskó Balázs

egyetemi jegyzet Meskó Balázs egyetemi jegyzet 2011 Előszó 2. oldal Tartalomjegyzék 1. Bevezetés 4 1.1. A matematikai statisztika céljai.............................. 4 1.2. Alapfogalmak......................................... 4 2.

Részletesebben

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.

Részletesebben

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat

Részletesebben

2013 ŐSZ. 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét!

2013 ŐSZ. 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét! GAZDASÁGSTATISZTIKA KIDOLGOZOTT ELMÉLETI KÉRDÉSEK A 3. ZH-HOZ 2013 ŐSZ Elméleti kérdések összegzése 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét! 2. Mutassa be az

Részletesebben

Mi az adat? Az adat elemi ismeret. Az adatokból információkat

Mi az adat? Az adat elemi ismeret. Az adatokból információkat Mi az adat? Az adat elemi ismeret. Tények, fogalmak olyan megjelenési formája, amely alkalmas emberi eszközökkel történő értelmezésre, feldolgozásra, továbbításra. Az adatokból gondolkodás vagy gépi feldolgozás

Részletesebben

Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat

Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi fizika és statisztika I. előadás 2016.11.09 Orvosi

Részletesebben

Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév

Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév A pirossal írt anyagrészeket nem fogom közvetlenül számon kérni a vizsgán, azok háttérismeretként,

Részletesebben

1. Ismétlés Utóbbi előadások áttekintése IV. esettanulmány Uniós országok munkanélkülisége... 1

1. Ismétlés Utóbbi előadások áttekintése IV. esettanulmány Uniós országok munkanélkülisége... 1 Tartalom Tartalomjegyzék 1. Ismétlés 1 1.1. Utóbbi előadások áttekintése.................................. 1 2. IV. esettanulmány 1 2.1. Uniós országok munkanélkülisége................................

Részletesebben

A Statisztika alapjai

A Statisztika alapjai A Statisztika alapjai BME A3c Magyar Róbert 2016.05.12. Mi az a Statisztika? A statisztika a valóság számszerű információinak megfigyelésére, összegzésére, elemzésére és modellezésére irányuló gyakorlati

Részletesebben

Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető!

Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető! BGF KKK Módszertani Intézeti Tanszéki Osztály Budapest, 2012.. Név:... Neptun kód:... Érdemjegy:..... STATISZTIKA II. VIZSGADOLGOZAT Feladatok 1. 2. 3. 4. 5. 6. Összesen Szerezhető pontszám 21 20 7 22

Részletesebben

Intervallumbecsle s Mintave tel+ Hipote zisvizsga lat Egyminta s pro ba k Ke tminta s pro ba k Egye b vizsga latok O sszef.

Intervallumbecsle s Mintave tel+ Hipote zisvizsga lat Egyminta s pro ba k Ke tminta s pro ba k Egye b vizsga latok O sszef. Intervallumbecsle s Mintave tel+ Hipote zisvizsga lat Egyminta s pro ba k Ke tminta s pro ba k Egye b vizsga latok O sszef. Feladatok Gazdaságstatisztika 7. Statisztikai becslések (folyt.); 8. Hipotézisvizsgálat

Részletesebben

Foglalkoztatási modul

Foglalkoztatási modul Foglalkoztatási modul Tóth Krisztián Országos Nyugdíjbiztosítási Főigazgatóság A mikroszimulációs nyugdíjmodellek felhasználása Workshop ONYF, 2014. május 27. Bevezetés Miért is fontos ez a modul? Mert

Részletesebben

Statisztika I. 12. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 12. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 1. előadás Előadó: Dr. Ertsey Imre Regresszió analízis A korrelációs együttható megmutatja a kapcsolat irányát és szorosságát. A kapcsolat vizsgálata során a gyakorlatban ennél messzebb

Részletesebben

Többváltozós lineáris regressziós modell feltételeinek tesztelése I.

Többváltozós lineáris regressziós modell feltételeinek tesztelése I. Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Kvantitatív statisztikai módszerek Petrovics Petra Többváltozós lineáris regressziós

Részletesebben

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:

Részletesebben

17. előadás: Vektorok a térben

17. előadás: Vektorok a térben 17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett

Részletesebben

Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus

Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár PhD kurzus Mi a statisztika? A sokaság (a sok valami) feletti áttekintés megszerzése, a sokaságról való információszerzés eszköze. Célja: - a sokaságot

Részletesebben

Bevezetés az ökonometriába

Bevezetés az ökonometriába Bevezetés az ökonometriába Többváltozós lineáris regresszió: mintavételi vonatkozások és modelljellemzés Ferenci Tamás MSc 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Harmadik

Részletesebben

Eloszlás-független módszerek (folytatás) 14. elıadás ( lecke) 27. lecke khí-négyzet eloszlású statisztikák esetszámtáblázatok

Eloszlás-független módszerek (folytatás) 14. elıadás ( lecke) 27. lecke khí-négyzet eloszlású statisztikák esetszámtáblázatok Eloszlás-független módszerek (folytatás) 14. elıadás (7-8. lecke) Illeszkedés-vizsgálat 7. lecke khí-négyzet eloszlású statisztikák esetszámtáblázatok elemzésére Illeszkedés-vizsgálat Gyakorisági sorok

Részletesebben

Matematikai geodéziai számítások 6.

Matematikai geodéziai számítások 6. Matematikai geodéziai számítások 6. Lineáris regresszió számítás elektronikus távmérőkre Dr. Bácsatyai, László Matematikai geodéziai számítások 6.: Lineáris regresszió számítás elektronikus távmérőkre

Részletesebben

Statisztika elméleti összefoglaló

Statisztika elméleti összefoglaló 1 Statisztika elméleti összefoglaló Tel.: 0/453-91-78 1. Tartalomjegyzék 1. Tartalomjegyzék.... Becsléselmélet... 3 3. Intervallumbecslések... 5 4. Hipotézisvizsgálat... 8 5. Regresszió-számítás... 11

Részletesebben

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus. Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza

Részletesebben

Matematikai statisztika c. tárgy oktatásának célja és tematikája

Matematikai statisztika c. tárgy oktatásának célja és tematikája Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:

Részletesebben

Matematikai geodéziai számítások 6.

Matematikai geodéziai számítások 6. Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr. Bácsatyai László Matematikai geodéziai számítások 6. MGS6 modul Lineáris regresszió számítás elektronikus távmérőkre SZÉKESFEHÉRVÁR 2010 Jelen szellemi

Részletesebben

A többváltozós lineáris regresszió 1.

A többváltozós lineáris regresszió 1. 2018. szeptember 17. Lakásár adatbázis - részlet eredmény- és magyarázó jellegű változók Cél: egy eredményváltozó alakulásának jellemzése a magyarázó változók segítségével Legegyszerűbb eset - kétváltozós

Részletesebben

Több valószínűségi változó együttes eloszlása, korreláció

Több valószínűségi változó együttes eloszlása, korreláció Tartalomjegzék Előszó... 6 I. Valószínűségelméleti és matematikai statisztikai alapok... 8 1. A szükséges valószínűségelméleti és matematikai statisztikai alapismeretek összefoglalása... 8 1.1. Alapfogalmak...

Részletesebben

Irányításelmélet és technika II.

Irányításelmélet és technika II. Irányításelmélet és technika II. Legkisebb négyzetek módszere Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 200 november

Részletesebben

Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg

Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg LMeasurement.tex, March, 00 Mérés Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg a mérendő mennyiségben egy másik, a mérendővel egynemű, önkényesen egységnek választott

Részletesebben

Ökonometriai modellek paraméterei: számítás és értelmezés

Ökonometriai modellek paraméterei: számítás és értelmezés Ökonometriai modellek paraméterei: számítás és értelmezés Írta: Werger Adrienn, Renczes Nóra, Pereszta Júlia, Vörösházi Ágota, Őzse Adrienn Javította és szerkesztette: Ferenci Tamás (tamas.ferenci@medstat.hu)

Részletesebben

Osztályozás, regresszió. Nagyméretű adathalmazok kezelése Tatai Márton

Osztályozás, regresszió. Nagyméretű adathalmazok kezelése Tatai Márton Osztályozás, regresszió Nagyméretű adathalmazok kezelése Tatai Márton Osztályozási algoritmusok Osztályozás Diszkrét értékkészletű, ismeretlen attribútumok értékének meghatározása ismert attribútumok értéke

Részletesebben

6. Előadás. Vereb György, DE OEC BSI, október 12.

6. Előadás. Vereb György, DE OEC BSI, október 12. 6. Előadás Visszatekintés: a normális eloszlás Becslés, mintavételezés Reprezentatív minta A statisztika, mint változó Paraméter és Statisztika Torzítatlan becslés A mintaközép eloszlása - centrális határeloszlás

Részletesebben

y ij = µ + α i + e ij

y ij = µ + α i + e ij Elmélet STATISZTIKA 3. Előadás Variancia-analízis Lineáris modellek A magyarázat a függő változó teljes heterogenitásának két részre bontását jelenti. A teljes heterogenitás egyik része az, amelynek okai

Részletesebben

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes

Részletesebben

Tartalomjegyzék I. RÉSZ: KÍSÉRLETEK MEGTERVEZÉSE

Tartalomjegyzék I. RÉSZ: KÍSÉRLETEK MEGTERVEZÉSE Tartalomjegyzék 5 Tartalomjegyzék Előszó I. RÉSZ: KÍSÉRLETEK MEGTERVEZÉSE 1. fejezet: Kontrollált kísérletek 21 1. A Salk-oltás kipróbálása 21 2. A porta-cava sönt 25 3. Történeti kontrollok 27 4. Összefoglalás

Részletesebben

Hipotéziselmélet - paraméteres próbák. eloszlások. Matematikai statisztika Gazdaságinformatikus MSc szeptember 10. 1/58

Hipotéziselmélet - paraméteres próbák. eloszlások. Matematikai statisztika Gazdaságinformatikus MSc szeptember 10. 1/58 u- t- Matematikai statisztika Gazdaságinformatikus MSc 2. előadás 2018. szeptember 10. 1/58 u- t- 2/58 eloszlás eloszlás m várható értékkel, σ szórással N(m, σ) Sűrűségfüggvénye: f (x) = 1 e (x m)2 2σ

Részletesebben

Biometria az orvosi gyakorlatban. Regresszió Túlélésanalízis

Biometria az orvosi gyakorlatban. Regresszió Túlélésanalízis SZDT-09 p. 1/36 Biometria az orvosi gyakorlatban Regresszió Túlélésanalízis Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Logisztikus regresszió

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria Bódis Emőke 2016. 04. 25. J J 9 Korrelációanalízis Regresszióanalízis: hogyan változik egy vizsgált változó értéke egy másik változó változásának függvényében. Korrelációs

Részletesebben

GVMST22GNC Statisztika II.

GVMST22GNC Statisztika II. GVMST22GNC Statisztika II. 4. előadás: 9. Kétváltozós korreláció- és regressziószámítás Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Korrelációszámítás

Részletesebben

Mesterséges Intelligencia I.

Mesterséges Intelligencia I. Mesterséges Intelligencia I. 10. elıadás (2008. november 10.) Készítette: Romhányi Anita (ROANAAT.SZE) - 1 - Statisztikai tanulás (Megfigyelések alapján történı bizonytalan következetésnek tekintjük a

Részletesebben

Statisztikai módszerek a skálafüggetlen hálózatok

Statisztikai módszerek a skálafüggetlen hálózatok Statisztikai módszerek a skálafüggetlen hálózatok vizsgálatára Gyenge Ádám1 1 Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Számítástudományi és Információelméleti

Részletesebben

Likelihood, deviancia, Akaike-féle információs kritérium

Likelihood, deviancia, Akaike-féle információs kritérium Többváltozós statisztika (SZIE ÁOTK, 2011. ősz) 1 Likelihood, deviancia, Akaike-féle információs kritérium Likelihood függvény Az adatokhoz paraméteres modellt illesztünk. A likelihood függvény a megfigyelt

Részletesebben

I. LABOR -Mesterséges neuron

I. LABOR -Mesterséges neuron I. LABOR -Mesterséges neuron A GYAKORLAT CÉLJA: A mesterséges neuron struktúrájának az ismertetése, neuronhálókkal kapcsolatos elemek, alapfogalmak bemutatása, aktivációs függvénytípusok szemléltetése,

Részletesebben

Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus. KOKI,

Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus. KOKI, Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár PhD kurzus. KOKI, 2015.09.17. Mi a statisztika? A sokaság (a sok valami) feletti áttekintés megszerzése, a sokaságról való információszerzés eszköze.

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

A leíró statisztikák

A leíró statisztikák A leíró statisztikák A leíró statisztikák fogalma, haszna Gyakori igény az, hogy egy adathalmazt elemei egyenkénti felsorolása helyett néhány jellemző tulajdonságának megadásával jellemezzünk. Ezeket az

Részletesebben

3. Fuzzy aritmetika. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI

3. Fuzzy aritmetika. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI 3. Fuzzy aritmetika Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 Intervallum-aritmetika 2 Fuzzy intervallumok és fuzzy számok Fuzzy intervallumok LR fuzzy intervallumok

Részletesebben

Diverzifikáció Markowitz-modell MAD modell CAPM modell 2017/ Szegedi Tudományegyetem Informatikai Intézet

Diverzifikáció Markowitz-modell MAD modell CAPM modell 2017/ Szegedi Tudományegyetem Informatikai Intézet Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 11. Előadás Portfólió probléma Portfólió probléma Portfólió probléma Adott részvények (kötvények,tevékenységek,

Részletesebben

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell Példa STATISZTIKA Egy gazdálkodó k kukorica hibrid termesztése között választhat. Jelöljük a fajtákat A, B, C, D-vel. Döntsük el, hogy a hibridek termesztése esetén azonos terméseredményre számíthatunk-e.

Részletesebben

BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011.

BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. 1 Mérési hibák súlya és szerepe a mérési eredményben A mérési hibák csoportosítása A hiba rendűsége Mérési bizonytalanság Standard és kiterjesztett

Részletesebben

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla Kvadratikus alakok és euklideszi terek (előadásvázlat, 0. október 5.) Maróti Miklós, Kátai-Urbán Kamilla Az előadáshoz ajánlott jegyzet: Szabó László: Bevezetés a lineáris algebrába, Polygon Kiadó, Szeged,

Részletesebben

Ellátási lánc optimalizálás P-gráf módszertan alkalmazásával mennyiségi és min ségi paraméterek gyelembevételével

Ellátási lánc optimalizálás P-gráf módszertan alkalmazásával mennyiségi és min ségi paraméterek gyelembevételével Ellátási lánc optimalizálás P-gráf módszertan alkalmazásával mennyiségi és min ségi paraméterek gyelembevételével Pekárdy Milán, Baumgartner János, Süle Zoltán Pannon Egyetem, Veszprém XXXII. Magyar Operációkutatási

Részletesebben

Segítség az outputok értelmezéséhez

Segítség az outputok értelmezéséhez Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró

Részletesebben