Vonatok pályán elfoglalt helyzetének sorozatos meghatározása műholdas helyzetazonosító rendszerrel

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Vonatok pályán elfoglalt helyzetének sorozatos meghatározása műholdas helyzetazonosító rendszerrel"

Átírás

1 Budapesti Műszaki és Gazdaságtudományi Egyetem, Építőmérnöki Kar évi Tudományos Diákköri Konferencia Vonatok pályán elfoglalt helyzetének sorozatos meghatározása műholdas helyzetazonosító rendszerrel Szerző: Konzulensek: Ferencz Viktória: építőmérnök hallgató Dr Zobory István, egyetemi tanár, BME Vasúti Járművek Tanszék Dr Takács Bence, egyetemi adjunktus, BME Általános és Felsőgeodézia Tanszék Tartalom: A dolgozat egy olyan programrendszert mutat be, amely a vasúti személyszállításban széleskörben alkalmazott ütemes menetrendet, korszerű járműüzemeltetési elveket és járműparkot feltételezve képes biztosítani az ágazat fenntartható fejlődését. Célja egy olyan részprogram fejlesztése MATLAB alatt, amely folyamatosan képes koordinátákat biztosítani a vasúti üzemeltetés optimalizálására szolgáló szimulációs főprogram számára. A koordináták mérése tesztüzemmódban működő navigációs GPS vevő alkalmazásával valósult meg, a részprogram egyszerűen meghívható alkalmazásként került kifejlesztésre. Az eszközök közötti kommunikációs kapcsolatot az NMEA adatok jelentik, amelyek közül a fontosabb mondatok jelentésének ismertetése megtalálható a dolgozatban. Az alprogram azaz a koordináta transzformáció teszteléséhez magyarországi, ismert EOV és WGS-84 koordinátájú GPS pontok kerültek felhasználásra. A távlati cél az, hogy a főprogram és a részprogram online működése valósuljon meg a jelenleg kifejlesztett félonline megoldással szemben. Viktória Ferencz: Developing MATLAB program for determining of location of railcars using GPS receiver Abstract: The goal of the study was to develop a program under MATLAB for handle online process of receiving GPS coordinates. In practice this program will a part of a simulation program whom aim is to optimalize operation of railcars. The additional program is easy to call from an another program because it separates 3 functions. Actually this is not ready, because there is an intermediate step in the communication process. The base of the interface are the different NMEA sentenses have sent by GPS receiver to MATLAB via COM1 port. Input data of program are WGS-84 geographical ellipsoidal coordinates and output are EOV coordinates and altitude. I used 7 transformation parameters to realize the conformity transformation between WGS-84 and IUGG-67 systems. Cite as: Viktoria Ferencz: Developing MATLAB program for determining of location of railcars using GPS receiver. WWW Proceedings of the Scientific Student Conference, Budapest University of Technology and Economics, Faculty of Civil Engineering, (in Hungarian), otka0.vit.bme.hu/tdk/2006 Budapest, december 12.

2 2

3 Tartalomjegyzék 1 Bevezetés A vasúti pálya-jármű rendszer Közlekedéskinematika [4] Közlekedéskinetika [5] Vasúti jármű szabálytalan mozgásai [5] Problémaelemzés a műholdas adatok szerepe Az elővárosi közlekedés jővője [3] Az ütemes menetrend A GPS adatok szerepe NMEA interface-formátum [8] Programillesztések feltételei és megvalósítása Az alprogram megvalósítása MATLAB interface kezelés A fél-onlie rendszer megvalósítása A szükséges adatok kiemelése a szöveges állományból A checksum karakter ellenőrzése A transzformációs számítások végrehajtása [2] Az alprogram önálló működése A programok együttműködése A vonatok folyamatos helymeghatározása, mint lehetséges építőmérnöki alkalmazás Következtetések és kitekintés Irodalomjegyzék

4 4

5 1 Bevezetés A dolgozat célja egy olyan program létrehozása MATLAB alatt, amely folyamatosan biztosítani képes egy mozgó vonat X,Y,Z koordinátáit GPS vevő segítségével. A feladat tulajdonképpen nem új, hiszen az EU országaiban és Magyarországon is a GPS felhasználása a közlekedés területén meglehetősen változatos. A BME Közlekedésmérnöki Karának Vasúti Járművek Tanszékével együttműködve azonban a feladat más megvilágítást kap, mivel a GPS koordinátákat egy már meglévő, a vasúti járművek üzemeltetésének optimalizálását célzó program igényli. A célalkalmazás egy online rendszert jelent, amelyet folyamatosan fejlesztenek. Jelen dolgozat ebből egy részprobléma bemutatására és megoldására tett javaslatot, illetve néhány kezdeti eredményt tartalmaz. A tanulmány 2. fejezetében bemutatásra kerülnek a vasúti pálya-jármű rendszer alapismeretei, a vasúti pályán közlekedő jármű szabályos és szabálytalan mozgásai. A 3. fejezet az elővárosi közlekedés fejlesztési koncepcióit mutatja be Budapest környékére vonatkozóan. Szót ejt még az ütemes menetrend fontosságáról és a korszerű motorkocsik előnyeiről a hagyományos vontató mozdonyokkal szemben. Szintén ebben a fejezetben található az, hogy tulajdonképpen miért elkerülhetetlen a GPS használata és az általa biztosított pontos pozíció meghatározása a bemutatott alkalmazásban. A 4. fejezet mutatja be részletesen a szabványos NMEA formátumú üzeneteket, amelyek ismerete elengedhetetlen a feladat megoldásához. Az általam létrehozott program működését részletesen az 5. fejezet tárgyalja, amely a megvalósítás szinte minden lépését bemutatja az interface -től kezdve a vetületi átszámításokig. Ugyancsak ebben a részben található ennek a kódnak, mint önállóan is működő egységnek a szemléltetése, valamint a főprogrammal való együttműködésének megvalósítása. A probléma elemezhető tisztán építőmérnöki szemmel is, ennek lehetőségét taglalja a 6. fejezet. Az alkalmazás jövőjéről és a fejlesztési lehetőségekről ad kitekintést az utolsó, a 7. fejezet. 5

6 2 A vasúti pálya-jármű rendszer Elméleti síkon a kötött pályás vasúti közlekedés tárgyalásakor nem elég csak a pályageometriát figyelembe venni a jármű helyzetének meghatározásához, hanem tekintettel kell lenni a rajta közlekedő járműre is. A vasúti jármű mozgása ugyanis nem feltétlenül követi egzakt módon a pályageometriát; a járműnek szabályos ill. számos szabálytalan mozgásösszetevője van a pályán való közlekedés során. Ha a jármű szabálytalan mozgásösszetevőitől eltekintünk is, a pálya-jármű kölcsönhatásaként létrejövő dinamikai hatásokat mindenképpen figyelembe kell venni. 2.1 Közlekedéskinematika [4] A közlekedéskinematika a jármű vasúti pályán való főmozgásával (haladó mozgás) és annak a pályageometriára gyakorolt hatásával foglalkozik. A vasúti pályát a valóságnak megfelelően térgörbeként értelmezi, a mozgást pedig, mint időben lefolyó jelenséget vizsgálja. A vasúti pályán haladó pont (pontrendszer-merev test) mozgása akkor egyértelmű, ha minden egyes időpillanatban ismerjük minden egyes pont térbeli helyzetét (vagyis a kinematikai mozgástörvényt). A pályán mozgó pont helyzetét az r = r(t) helyvektorral jellemezzük. Az idő skalár változó, amelynek minden egyes értékéhez egy vektor rendelhető (skalár-vektor függvény). A pálya-mint térgöbe- vektoregyenlete tehát r = x ( t) i + y( t) j + z( t) k alakban írható fel, ahol i,j,k vektorok tengelyirányú egységvektorok. 1.ábra Térbeli pont helyzetét megadó skalár-vektor függvény szemléltetése 6

7 A térgörbén mozgó ponttal együtt folyamatosan változik a kísérő triéder vektorok helyzete is. Az érintő vektort és a pillanatnyi sebességvektort a helyvektor idő szerinti első derivált vektora adja meg. A főnormális vektor a helyvektor idő szerinti második deriváltjaként adódik, a simulósíkban fekszik. Abszolút értéke a pálya görbületét határozza meg. 2 dr ds 2 = g = A binormális egységvektor az érintő irányú és a főnormális egységvektorok vektoriális szorzataként áll elő: b = t n 1 ρ A vasúti pályán bekövetkező mozgás jellemzésére a mozgásjellemzőket használják, amit a - sebesség (v) - gyorsulás (a) - és a harmadrendű (h) vektor ismerete jelent 1. A sebességvektor a helyvektor idő szerinti első deriváltja, amely érintő irányú és nagysága a mozgás sebességével egyező, tulajdonképpen a helyváltoztatás jellemzője. A gyorsulásvektor a sebességvektor idő szerinti első, a helyvektor idő szerinti második derivált vektoraként adható meg, a sebességváltozás jellemzője. A harmadrendű jellemző a gyorsulás változásáról ad képet, a helyvektor idő szerinti harmadik derivált vektora. 2.2 Közlekedéskinetika [5] A közlekedéskinetika elsőrendű feladata a pályán haladó vasúti jármű mozgásállapotának meghatározása a fellépő erők hatására. Ezek az erők lehetnek aktív erők, amelyek a mozgást előidézik (pl. vonóerő), illetve lehetnek passzívak, amelyek alatt a mozgást akadályozó erőket értjük (ellenállások). A vasúti ellenállások csoportosítása a következőképpen történhet: 1. Menetellenállás - gördülési ellenállás - csapsúrlódási ellenállás - sínütközési ellenállás - levegőellenállás 1 Létezik egy negyedrendű un. m vektor is, amely a h vektor időszerinti első deriváltja, de ettől egyelőre eltekintünk. 7

8 2. Járulékos ellenállások - ívellenállás - emelkedési ellenállás - kitérő ellenállás - belső ellenállás - gépészeti ellenállás - gyorsítási ellenállás A gördülési ellenállás figyelembe veszi, hogy a kerekek és a sín érintkezésénél rugalmas alakváltozások jönnek létre, ami a jármű mozgását tekintve akadályozó tényezőként jelentkezik. Nagysága egyenesen arányos a jármű súlyával, és a sebesség függvényében állandónak tekinthető. A csapágysúrlódási ellenállás nagymértékben függ a csapágy fajtájától, így mivel napjainkban gördülő csapágyakat alkalmaznak ennek a kezdeti kiugróan nagy hatásától eltekintenek. A sebességgel való kapcsolata közel lineárisnak tekinthető. A sínütközési ellenállás a hevederes sínillesztéseknél lép fel, a hézagnélküli pályáknál ez a hatás nem érvényesül. Értéke tapasztalati képletből meghatározható. A légellenállás fontos passzív hatás, amely több részből tevődik össze: - mozgó jármű homlokfelületére ható levegő nyomása - tető- és oldalfelületekre ható levegősúrlódás - járművek alatt és között keletkező örvénylő mozgás - utolsó jármű után keletkező légritkulás. Nagysága független a jármű súlyától, egyenesen arányos a redukált homlokfelülettel és négyzetesen arányos a jármű sebességével. A menetellenállást az összetevők szuperpozíciója adja, értéke járműtípusonként különböző. A gyakorlatban alkalmazott képleteket tapasztalati úton határozták meg - vontató járművek (mozdonyok, motorkocsik) - vontatott járművek (vasúti kocsik) - és a teljes szerelvény esetére. A járulékos ellenállások közül az ívellenálás a pályageometria kialakítása miatt viszonylag gyakori egy-egy pályaszakaszon. Ez a hatás tartalmazza a kerék nem tiszta gördülése miatt fellépő csúszásokat és súrlódásokat. Meglehetősen összetett, értékét sok tényező befolyásolja. Nagyságának meghatározásához tapasztalati képleteket használnak. Az emelkedési ellenállás akkor lép fel, amikor a jármű emelkedő pályán halad. Ha a vasúti járműre ható súlyerőt lejtőirányú és lejtőre merőleges összetevőkre bontjuk, akkor a lejtővel párhuzamos komponens ellenállásként jelentkezik. Ha a lejtőszög megfelelően kicsi, akkor a tgα sinα közelítés érvényesnek tekinthető. 8

9 A kitérőellenállás kizárólag a kitérők hosszán lép fel, ami tulajdonképpen a vasúti jármű által megtett út egy töredékét jelenti. A belső ellenállások a vonaton belül keletkező lengések, ütközések és súrlódások eredménye. Nagysága a tapasztalatok szerint egyenesen arányos a jármű sebességével. A gyorsítási ellenállás nem kifejezetten tartozik az ellenállások közé, mégis fontos szerepe lehet. A vasúti szerelvény induláskor ugyanis bár a kifejtett vonóerő a jármű mozgási energiáját növeli az ellenállásokon felül még a gyorsításhoz is vonóerőt fejt ki. A vonóerő a kerekek és a sín érintkezési helyén ébred, a vontató járművet meghajtó erőgép forgatónyomatékának hatására. Nagysága nem haladhatja meg az adhéziós vonóerő értékét. 2.3 Vasúti jármű szabálytalan mozgásai [5] A vasúti járműkerék és a sínprofil geometriai kialakítása miatt a vasúti jármű a vágánytengellyel párhuzamos haladó mozgáson kívül szabálytalan mozgásokat is végez. A kígyózó mozgás a pálya síkjára merőleges tengelykörüli mozgást jelent, aminek oka a kúpos futófelületű kerékpár valamint a kerekek és sínek között meglévő méretkülönbség (oldalirányú játék). A támolygó mozgás a pályatengellyel párhuzamos tengely körüli mozgás, amelyet a két sínszál közötti magasságkülönbség és a kétoldali hordrugók eltérő mozgása okoz. A bólintó mozgás a vágány tengelyére merőleges, vízszintes tengely körüli mozgás, amelyet a sínillesztéseknél kialakuló magassági lépcső idéz elő. Ez a típusú szabálytalan mozgás a hézagnélküli vágányok esetében csaknem kiküszöbölhető. Azonban ezeknél a pályáknál a kígyózó mozgás erőteljesebben jelentkezik, amit nyomszűkítés alkalmazásával küszöbölnek ki. Az alkalmazott járműmodellek a dinamikából jól ismert rezgés-egyenletek alapján írhatók fel attól függően, hogy a rendszert csillapítottnak/csillapítatlannak tekintjük-e, illetve a gerjesztés hatásait és jellegét milyen módon vesszük figyelembe. A többszabadságfokú (gerjesztett, csillapítatlan) rezgő rendszer mátrix differenciálegyenlete az alábbi alakban írható fel [7]:.. M x( t) + K x( t) = q( t), ahol M tömegmátrix K merevségi mátrix x(t) tömegpontok elmozdulásai q(t) tömegpontokra ható gerjesztő erők vektora. 9

10 Ha az ismertetett rendszerben csillapítás van, akkor a mátrix egyenlet kiegészül egy olyan taggal, amely a D csillapítási mátrixot tartalmazza az alábbiak szerint [1]:... M x( t) + D x( t) + K x( t) = q( t) A vasúti szerelvényre általában az utóbbi egyenlet (mozgásegyenlet)-rendszer érvényes azzal a kiegészítéssel, hogy - a haladó mozgásra vonatkozóan n számú tömegközéppontra írandó fel - a csillapítások a sebességgel arányosak - alkalmazni kell továbbá az elfordulásra vonatkozó egyenleteket m számú forgástengelyre felírva [1]. Kijelenthető tehát, hogy a jármű mozgása két összetevőből áll: egy elsődleges haladó mozgásból, és a szabálytalan mozgásokból (1. táblázat). Tengely Transzlációs lengés Szöglengés X rángatás támolygás Y szitálás bólintás Z rázás kígyózás 1. táblázat A vasúti jármű szabálytalan mozgásai [1] 10

11 3 Problémaelemzés a műholdas adatok szerepe A GPS mérési technika és ennek fejlődése alkalmazások széles spektrumát tárta fel nemcsak a szakemberek, hanem bármely halandó ember számára, aki GPS vevővel rendelkezik. Azonban kijelenthető, hogy általában a GPS nem önálló alkalmazás, hanem egy komplexen kialakított szolgáltatás részeként jelenik meg a gyakorlatban. Ismert tény, hogy ezt a technikát előszeretettel alkalmazzák az interdiszciplináris tudományok szakemberei, azonban egy-egy feladat megoldása, a GPS adatok felhasználása igen jelentős erőforrást igényel mindegyik fél részéről. A működőképes komplex alkalmazás előfeltétele az, hogy a különböző tudományokban jártas szakemberek tudásuk egy részét - amely a feladat megoldásához szükséges - adják át egymásnak és működjenek együtt a cél érdekében. 3.1 Az elővárosi közlekedés jővője [3] Az EU közlekedéspolitikájában a vasúti közlekedés fejlesztése prioritást élvez mivel a ez jelenti az eszközt a közlekedési módok közötti egyensúly kialakításához és fenntartásához. A közúti közlekedés szűk keresztmetszetei miatt a forgalom növekedésével egyenes arányban nő az eljutási idő a kiinduló és a célállomás között, amely az emberi munka kiesése, a közlekedési pálya túlzott igénybevétele valamint az időtényező végett jelentős gazdasági károkat okozhat. A Budapesten lévő 3 jelentős 2 fejpályaudvart tekintve a Keleti pályaudvar bonyolítja le a fogalom csaknem 40%-át, valamint itt koncentrálódik a nemzetközi és belföldi IC forgalom is. A tömegközlekedés és a vasúti közlekedés közötti kapcsolatot fejleszteni szükséges, hogy az utazóközönség a lehető legegyszerűbb módon és legrövidebb úton tudjon átszállni egyik közlekedési eszközről a másikra. A magyarországi fejpályaudvarok az 1930-as évektől kezdve kapacitásproblémával küzdenek. A Keleti pályaudvar fejlesztési tervei jelentős többletterhelést rónak a pályaudvar fogalmára, mert - a Budapest-Józsefváros személyszállító szerelvényeinek Keleti pályaudvarra történő átterelését jelentik - további viszonylatok IC vonatainak áthelyezését tervezik a Keleti pályaudvarra - a Keleti pályaudvarnak részt kell vennie a budapesti elővárosi forgalom kialakításában és korszerűsítésében, ami jelentős többletvonat-mennyiséggel jár - a Keleti pályaudvar a repülőtéri gyorsvasút fejállomása lesz - a Rákosi üzemi pályaudvar kiszolgálásának biztosítását meg kell valósítani. 2 A 4. fejpályaudvar a Józsefvárosi pályaudvar, de ennek mind kapacitása, mind kapcsolata a tömegközlekedési eszközökkel nem megfelelő. Tervek szerint a személyforgalmi szerepet a Keletipályaudvar veszi át. 11

12 Tanulmányok szerint ha a Bp.-Keleti pályaudvar peronvágányainak 33%-os bővítése megvalósul, akkor lehetőség nyílik kétszerannyi vonatot indítani és fogadni. Ennek azonban feltételei vannak: - megbízható infrastruktúra - ütemes menetrendek - javuló menetrendszerűség - irányváltó szerelvények alkalmazása - zárt szerelvények közlekedtetése a nemzetközi forgalomban. A MÁV által a közelmúltban kiírt közbeszerzési pályázat a Budapest-környéki elővárosi vonalak fejlesztését szolgálja, amely konkrétan a - Budapest-Déli pályaudvar- Székesfehérvár - Budapest-Déli pályaudvar - Pusztaszabolcs és a - Budapest- Déli pályaudvar -Tatabánya vonalak kiszolgálásának korszerű megoldására vonatkozott [6]. Mindezek mellett természetesen nemcsak a Keleti és Déli pályaudvar bonyolít le elővárosi forgalmat, hanem a Nyugati pályaudvar is. A növekvő utasforgalom miatt ezek a vasútvonalak is fejlesztésre szorulnak. 2.ábra Elővárosi vasútvonalak Budapest környékén [11] 12

13 Az elővárosi vasútvonalak esetében szükségessé válnak olyan fejlesztések, amelyek mind az utazóközönség kényelmét, mind pedig a rendszer fejlesztési szempontjait kielégítik [11]: - interoperábilitás 3 biztosítása - intermodális csomópontok 4 biztosítása a közlekedő utasok számára - kiszámítható (ütemes) menetrend - megfelelő csatlakozások és átszállási lehetőségek biztosítása - korszerű járművek, amelyekkel komfortos utazás érhető el - korszerű utastájékoztatási rendszer - optimális vágánykihasználás, járműigény és vonali kihasználás. A felsorolt kritériumok teljesülése esetén a közúti szűk keresztmetszetek forgalma csökkenthető, hiszen a vasúti közlekedéssel hasonlóan komfortos utazásélmény érhető el, mint személygépkocsival. 3.2 Az ütemes menetrend A főprogram célja tulajdonképpen olyan ütemes menetrend biztosítása az elővárosi vasúti közlekedés számára, amely megvalósulásban nagymértékben hasonlít a jelenleg Budapest környékén üzemeltetett helyi érdekű vasút (HÉV) menetidő-beosztásához. A közelmúltban lezajlott, MÁV által kiírt közbeszerzési pályázat kiindulási alapot biztosít az ütemes menetrend megvalósításához. A szállításra kerülő motorvonatok korszerű fékrendszerrel és berendezésekkel rendelkező járművek, amelyek első felújítási illetve karbantartási idejét a lehető leghosszabb időre szükséges ütemezni. A motorvonatok alkalmazása a hagyományos mozdonyos vontatással szemben számos előnnyel rendelkezik [9]: - fajlagosan (1 férőhelyre vetítve) kisebb tömeg miatt kedvező energiafelhasználás és pályaterhelés - a pályaterhelés tovább csökkenthető, ha több hajtott kerékpárt használnak a szükséges indító-vonóerő biztosításához - az állomási és megállóhelyi peronvágányok hossza csökken - a zárt motorvonati egység üzemi megbízhatósága kedvezőbb, mint a jelenlegi személyszállítási szerelvényeké (alkalomszerűen összeállított) - alkalmazásuk illeszkedik a korszerű elővárosi menetrend 5 megvalósításához 3 Interoperábilitás: átjárhatóságot jelent pl. a különböző közlekedési rendszerek között 4 Intermodalitás: egy közös cél érdekében együttműködő különböző rendszerek által alkotott szállítási lánc 13

14 - a korszerű motorvonatok felépítése modul jellegű, így tetszés szerinti befogadóképességgel gyárthatók - a járművek egyterű kialakítása előnyös a biztonság és az energiafelhasználás szempontjából - az irányváltó szerelvények költség- és vágánytakarékosak. A korszerű járművek kihasználása céljából célszerűnek látszik tehát az ütemes menetrend mellett a jármű energetikailag optimális üzemeltetése is. 3.ábra Korszerű Stadler FLIRT motorvonat [6] A Nyugat-Európában már évtizedek óta bevált ütemes vasúti közlekedési rendszer lényege, hogy a vonatok napközben azonos időközönként, az óra ugyanazon percében indulnak az állomásokról. A menetrend így átláthatóvá és kiszámíthatóvá válik, a járatok, illetve az utasok rendelkezésére álló ülőhelyek száma nő, a csatlakozások javításával az átszálló utasok eljutási ideje csökken. Az ütemes menetrend bevezetésével hatékonyabban működő, az utasok számára vonzó, a társadalom egésze számára a fenntartható mobilitást biztosító személyszállítási szolgáltatás alakulhat ki. [11] Az ütemes menetrend megvalósítása tulajdonképpen annyit jelent, hogy a járművek a kiinduló állomásról bizonyos előre meghatározott időközönként (tervezetten percenként, illetve óránként) indulnak el, és egy olyan menetrendet kénytelenek betartani, ahol a késés/sietés nem preferált. Ez érthető is, hiszen az elővárosi vasútvonalakon a járművek egy forduló után ismét útnak indulnak (ingavonatok), és mindemellett tekintettel kell 5 A korszerű elővárosi menetrend a kisebb egységek gyakori indítását jelenti, amely gazdaságos üzemeltetést eredményez. 14

15 lenniük a vasúti teherszállító szerelvényekre is. Tehát a menetrend be nem tartása adott esetben beláthatatlan következményekkel járhat. Ennek hosszú távon történő fenntartásához az szükséges, hogy a kialakított üzemeltető rendszer biztosítsa a járművek energetikai szempontból való optimális kihasználását. A korszerű járművek számára-tekintettel a motorvonatok teljesítményére-alapvetően nem jelent problémát az, hogy egy adott pontban regisztrált 5-10 perces késés mellett tartani tudják az előírt menetrendet. Azt azonban, hogy milyen módon valósul meg a menetrend betartása, több, a jármű számára kedvezőtlen tényező is befolyásolhatja. Ha nem az optimalizálást célzó rendszerfigyelés valósul meg, akkor az hátrányos tulajdonságokat hoz előtérbe, miszerint: - a fékrendszer túlzott igénybevétele (kopása) - a sebességkorlátozások figyelmen kívül hagyása - túl nagy sebesség esetén káros rezgések és dinamikai hatások a teljes szerelvényre vonatkozóan - a káros dinamikai hatások érvényesülése a pálya-jármű kapcsolatban (sínkopás,a járműkerék-karima profiljának kopása) - a pályatengellyel párhuzamos és erre merőleges irányú elmozdulások kialakulása (pályadeteriorizáció) figyelhető meg a pálya-jármű rendszerben. 3.3 A GPS adatok szerepe Jelen alkalmazás esetében nem beszélhetünk hagyományos folyamatról, hiszen egy már kialakított főprogramhoz kell illeszteni egy alprogramot. A hagyományos folyamat kezdő fázisán (specifikáció) és megvalósításának egy részén már túl van az alkalmazás. Egy meglévő rendszerhez illeszteni egy részegységet pedig mindíg nehezebb feladat, mintha a kezdetektől együtt fejlődtek volna. A főalkalmazás a vasúti járművek például a beszerzésre kerülő motorvonatok - üzemeltetésének optimalizálását célozza meg. Ez annyit jelent, hogy a menetrendhez, mint kerületi feltételhez igazodva végzi el a program a jármű (mozdony vagy motorkocsi) esetében a vonóerő szabályozását úgy, hogy a jármű minimális energiafelhasználással a menetidőt betartva érkezzen meg a célállomásra. Mivel a vonóerő szabályozásakor figyelembe kell venni az aktív és passzív erőket, elengedhetetlen feltétel a térbeli pályageometria ismerete. A főprogram a geometriát ismerve adott időközönként képes előre számítani azt, hogy egy bizonyos optimalizálás mellett tartható-e a menetrend. Tegyük fel, hogy a vasúti szerelvény A pontból indul és B pontba érkezik, amihez egy bizonyos T idő áll rendelkezésére. Miután a jármű elhagyta az állomást egy adott t idő múlva 15

16 a pálya egy P(X P, Y P, Z P ) pontjában tartózkodik. A program a pályageometria alapján képes kiszámítani - megtett úthossz hátralevő úthossz értékeket - hátralévő időt egy bizonyos sebesség mellett - megállapítja a menetrendhez képesti késést/sietést és ez alapján korrigálja a vonóerőt. A vonóerő felhasználásának optimalizálására több lehetőség létezik: 1. lejtmenetben csak a gravitációs erő hat 2. fékezés nélküli lassulás sebesség-kifuttatás. A főalkalmazás figyelembe veszi az ellenállások értékeit, és a késés/sietés mértékének megfelelően választja ki az optimalizálás egyszerű, vagy kombinált módját. Amikor a szerelvény (pontosabban a mozdony/motorkocsi súlypontja) a P pontban van, triviálisan már megtett egy s úthosszt a pályán. Bármennyire is pontosak a számítások, a pálya és a jármű kölcsönhatása révén számos sztochasztikus hatás terheli ezeket. Mindemellett ha belegondolunk, hogy a számítás alapját egy elméleti pályageometria jelenti, akkor kijelenthetjük, hogy a pályadeteriorizációt a főprogram számítása nem tudja figyelembe venni. Tény tehát, hogy a program által a P koordinátái alapján számolt hátralévő út és idő nem egzaktul pontos. Ez nem csak annyit jelent, hogy ez a pontatlanság egy adott pontban érvényesül, hanem azt jelenti, hogy a teljes számítási folyamatot hibák terhelik. A magyarázat erre az, hogy a program az optimalizálási feladatot t időközönként hajtja végre, minden egyes alkalommal számítva a megtett út-eltelt idő-sebesség értékeket. A számítás tehát tulajdonképpen pályaszakaszonként történik úgy, hogy az egymásra épülő számítások bemeneti paramétere az előző helyzeti számítás eredményének tekinthető koordináta. Ez annyit jelent hogy az úthosszt nem a teljes szakaszra, hanem a pálya következő rész-intervallumára számítja. A hibaterjedés hatása pedig triviálisan csak az első számításkor nem érvényesül. Az ütemes menetrend és a jármű energetikailag optimalizált üzemeltetésének összehangolásához elengedhetetlen a szerelvény (vonat) pontos koordinátájának ismerete a pályaszakaszokon. A GPS egy olyan megoldási lehetőséget kínál, amely több szempontból is előnyös: - a GPS pontos helymeghatározást biztosít a térbeli vonalvezetésű vasúti pályán - a számítási folyamatot csak az észlelési pontokra (t időintervallumok kezdő és végpontjai) vonatkozó GPS-észlelési hiba terheli - lehetőség van a DOP értékek alapján elfogadni/elutasítani a GPS koordinátákat, ha az nem teljesíti adott pillanatban a pontossági követelményeket 16

17 - a pályageometriai adatokból számított koordináta összevethető a GPS koordinátákkal, ami bizonyos szabálytalan/szabályos hatásokra enged következtetni a differencia függvényében 6 - a programban már meglévő pálya hossz-szelvények EOV-be transzformálása után egységesen és valós időben kezelhetők a folyamatok. 6 Ilyen hatás lehet az elméleti pályageometria módosulása, amely süllyedések, oldalirányú elmozdulások formájában jelentkezik a gyakorlatban. 17

18 4 NMEA interface-formátum [8] A feladat megoldásához ismerni kell a GPS által küldött szabványos NMEA formátumú üzenetek jelentését és felépítését. Ennek alapján lehetséges ugyanis a szükséges adatok beolvasása és kiválasztása a további számítás céljából. Az NMEA egy mozaikszó, amely a National Marine Electronics Association nevéhez fűződik. Ez a szervezet fejlesztette ugyanis azt az interface 7 -t, amely segítségével a használt eszközök egymással, illetve különböző számítógépekkel egységes formátumú üzenetek alapján képesek kommunikálni. A GPS vevők esetében beállítható paraméterként szerepel, hogy az eszköz az észlelések eredményeit milyen formátumban továbbítsa a számítógép, vagy bármely más adó-vevő készülék felé. Az NMEA formátumban továbbított üzenetek teljes egészében tartalmazzák az észlelési adatokat (PVT position, velocity, time). Az NMEA üzenetek alapja az, hogy a vevő olyan mondatokban kommunikál, amelyek teljesen sajátságosak és függetlenek egymástól. A mondatok egy része szabványos formátum, minden egyes vevő által ismert, lehetőség van azonban egyedi konfigurációval rendelkező üzenetek definiálására is. Minden mondat elején szerepel 2 karakter, amely az üzenetet továbbító berendezés jellemzője, ez a GPS vevők esetén a GP karakter-kombináció. Az egyedileg meghatározott sorok az eszköz gyártójára vonatkozó információt tartalmaznak, ezek első karaktere P és a következő 3 karakter utal az eszközt gyártó cégre (pl. PMGN Magellan). Minden egyes mondat kezdő karaktere a $ és utolsó karaktere az un. CR/LF (Carriage Return/ Line Feed), és a sorok maximális hossza nem haladhatja meg a 80 karaktert a befejező karakter (line terminator) nélkül. Az egy sorban levő különböző üzenetek elválasztására a, karakter szolgál. Minden mondat végét egy un. checksum karakter zárja le, amelyet a fogadó egység nem feltétlenül vizsgál, viszont megléte fontos információ az adatok jóságára vonatkozóan. Az NMEA üzenetek minden serial port esetében az RS232 protokollt használva elérhetőek bármely számítógép számára. Az adattovábbítás sebessége általában 4800 b/s (bit per second rate), de egyes vevők esetében beállítható a 9600 b/s érték is. Az alapérték azt jelenti, hogy a vevő 480 karaktert képes elküldeni egy másodperc alatt, ami tulajdonképpen 6 mondatnak felel meg. A mondatokat felépítő adatok 8 Bitesek, egyezés (parity) nem értelmezett és egyetlen un. StopBit karakter található bennük. Az NMEA mondatok felépítése szabványos, minden egyes mondat egy sort jelent és egyedi azonosítóval rendelkezik. A küldött üzenetek függenek a vevő gyártójától, azonban ezek a szabványos üzenetek kiegészítéseként jelentkeznek az egyes típusoknál. 7 Interface: illesztőprogram két alkalmazás között 18

19 Az egyik legfontosabb üzenet a GGA karakterhármast tartalmazó mondat, amely tartalmazza a 3D helymeghatározó adatokat és a pontosságra vonatkozó információt. Egy ilyen mondat a következőképpen értelmezhető: $GPGGA,123519, ,N, ,E,1,08,0.9,545.4,M,46.9,M,,*47 GGA GPS észlelési adatok észlelési időpont (12:35:19 UTC) ,N földrajzi szélesség ( ', É) ,E földrajzi hosszúság ( ', K) 1 Észlelés típusa (jóság): 0 = érvénytelen 1 = GPS észlelés (SPS) 2 = DGPS észlelés 3 = PPS észlelés 4 = RTK észlelés 5 = Float (lebegő) RTK 6 = értékelt (számítás nélkül) 7 = manuális bevitel 8 = szimuláció 08 műholdak száma 0.9 HDOP 545.4,M tengerszint feletti magasság [m] 46.9,M geoid-ellipszoid (WGS-84) távolság (üres karakter) az utolsó DGPS frissítés óta eltelt idő [s] (üres karakter) DGPS állomás ID (azonosító) *47 checksum adat (minden esetben * az első karakter) Szintén szabványos üzenetnek számít a GSA karakterhármast tartalmazó mondat, amely a GPS koordinátákra vonatkozó DOP értékeket valamint az aktív műholdakat írja le. $GPGSA,A,3,04,05,,09,12,,,24,,,,,2.5,1.3,2.1*39 GSA műhold-státusz A Automatikus 2D vagy 3D észlelés (M = manuális) 3 3D észlelés lehetséges értékek: 1 = nincs észlelés 2 = 2D észlelés 3 = 3D észlelés 04,05... az észlelésben részt vevő műholdak PRN adatai 2.5 PDOP 1.3 HDOP 2.1 VDOP *39 checksum Azok a mondatok, amelyekben a GSV karakterek szerepelnek, mutatják az észlelési ablakban lévő aktív műholdakat és az ezekre vonatkozó almanach adatokat. 19

20 $GPGSV,2,1,08,01,40,083,46,02,17,308,41,12,07,344,39,14,22,228,45*75 GSV észlelési ablak műholdjai 2 a teljes adathalmazt tartalmazó mondatok száma 1 mondat sorszáma 08 észlelési ablakban lévő műholdak darabszáma 01 műhold PRN száma 40 magassági szög [ ] 083 Azimut [ ] 46 SNR *75 checksum A fenti mondatban található SNR érték (Signal of Noise Ratio) jósága egyenesen arányos a számértékkel, mivel ez a jelerősséget jelenti. Szabványos értéke a [0;99] intervallumban mozog. Az NMEA formátumban az RMC egyedi azonosítóval rendelkező mondatok írják le a GPS PVT adatokat. $GPRMC,123519,A, ,N, ,E,022.4,084.4,230394,003.1,W*6A RMC Javasolt minimális mondat C észlelés ideje (12:35:19 UTC) A Státusz (A=aktív vagy V=érvénytelen) ,N földrajzi szélesség ( ', É) ,E földrajzi hosszúság ( ', K) Sebesség (tengeri mérföld) Irányszög [ ] (True) Dátum ,W mágneses tér változása *6A checksum A GLL kódot tartalmazó mondat a szélességi és hosszúsági adatokra vonatkozó értékeket adja meg. $GPGLL, ,N, ,W,225444,A,*31 GLL geográfiai helyzet, földrajzi szélesség és hosszúság ,N földrajzi szélesség ( , É) ,W földrajzi hosszúság ( , NY) észlelés ideje (22:54:44 UTC) A adatok státusza (aktív vagy érvénytelen) *31 checksum Az értelmezett üzeneteken kívül még számos más, egy adott alkalmazás szempontjából fontos NMEA mondat létezik, azonban elegendőnek ítéltem meg a feladat megoldásához a fentiek ismertetését. 20

Vonatok pályán elfoglalt helyzetének sorozatos meghatározása műholdas helyzetazonosító rendszerrel

Vonatok pályán elfoglalt helyzetének sorozatos meghatározása műholdas helyzetazonosító rendszerrel Budapesti Műszaki és Gazdaságtudományi Egyetem Építőmérnöki Kar Vonatok pályán elfoglalt helyzetének sorozatos meghatározása műholdas helyzetazonosító rendszerrel Készítette: Ferencz Viktória, levelező

Részletesebben

Kinematika szeptember Vonatkoztatási rendszerek, koordinátarendszerek

Kinematika szeptember Vonatkoztatási rendszerek, koordinátarendszerek Kinematika 2014. szeptember 28. 1. Vonatkoztatási rendszerek, koordinátarendszerek 1.1. Vonatkoztatási rendszerek A test mozgásának leírása kezdetén ki kell választani azt a viszonyítási rendszert, amelyből

Részletesebben

Mit nevezünk nehézségi erőnek?

Mit nevezünk nehézségi erőnek? Mit nevezünk nehézségi erőnek? Azt az erőt, amelynek hatására a szabadon eső testek g (gravitációs) gyorsulással esnek a vonzó test centruma felé, nevezzük nehézségi erőnek. F neh = m g Mi a súly? Azt

Részletesebben

GPS mérési jegyz könyv

GPS mérési jegyz könyv GPS mérési jegyz könyv Mérést végezte: Csutak Balázs, Laczkó Hunor Mérés helye: ITK 320. terem és az egyetem környéke Mérés ideje: 2016.03.16 A mérés célja: Ismerkedés a globális helymeghatározó rendszerrel,

Részletesebben

A Föld alakja TRANSZFORMÁCIÓ. Magyarországon még használatban lévő vetületi rendszerek. Miért kell transzformálni? Főbb transzformációs lehetőségek

A Föld alakja TRANSZFORMÁCIÓ. Magyarországon még használatban lévő vetületi rendszerek. Miért kell transzformálni? Főbb transzformációs lehetőségek TRANSZFORMÁCIÓ A Föld alakja -A föld alakja: geoid (az a felület, amelyen a nehézségi gyorsulás értéke állandó) szabálytalan alak, kezelése nehéz -A geoidot ellipszoiddal közelítjük -A földfelszíni pontokat

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA MATEmATIkA II 6 VI TÉRGÖRbÉk 1 Alapvető ÖSSZEFÜGGÉSEk A térgörbe (1) alakú egyenletével írható le Ez a vektoregyenlet egyenértékű az (2) skaláris egyenletrendszerrel A térgörbe három nevezetes

Részletesebben

Tömegpontok mozgása egyenes mentén, hajítások

Tömegpontok mozgása egyenes mentén, hajítások 2. gyakorlat 1. Feladatok a kinematika tárgyköréből Tömegpontok mozgása egyenes mentén, hajítások 1.1. Feladat: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel

Részletesebben

Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk

Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember

Részletesebben

Mechanika. Kinematika

Mechanika. Kinematika Mechanika Kinematika Alapfogalmak Anyagi pont Vonatkoztatási és koordináta rendszer Pálya, út, elmozdulás, Vektormennyiségek: elmozdulásvektor Helyvektor fogalma Sebesség Mozgások csoportosítása A mozgásokat

Részletesebben

Pálya : Az a vonal, amelyen a mozgó tárgy, test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz.

Pálya : Az a vonal, amelyen a mozgó tárgy, test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz. Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember

Részletesebben

Átszámítások különböző alapfelületek koordinátái között

Átszámítások különböző alapfelületek koordinátái között Átszámítások különböző alapfelületek koordinátái között A különböző időpontokban, különböző körülmények között rögzített pontok földi koordinátái különböző alapfelületekre (ellipszoidokra geodéziai dátumokra)

Részletesebben

Pálya : Az a vonal, amelyen a mozgó test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz.

Pálya : Az a vonal, amelyen a mozgó test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz. Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember

Részletesebben

Pálya : Az a vonal, amelyen a mozgó test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz.

Pálya : Az a vonal, amelyen a mozgó test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz. Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember

Részletesebben

Keresztmetszet másodrendű nyomatékainak meghatározása

Keresztmetszet másodrendű nyomatékainak meghatározása BUDAPEST MŰSZAK ÉS GAZDASÁGTUDOMÁNY EGYETEM Keresztmetszet másodrendű nyomatékainak meghatározása Segédlet a Szilárdságtan c tárgy házi feladatához Készítette: Lehotzky Dávid Budapest, 205 február 28 ábra

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Az R 3 tér geometriája Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok Vektor: irányított szakasz Jel.: a, a, a, AB, Jellemzői: irány, hosszúság, (abszolút érték) jel.: a Speciális

Részletesebben

2014/2015. tavaszi félév

2014/2015. tavaszi félév Hajder L. és Valasek G. hajder.levente@sztaki.mta.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2014/2015. tavaszi félév Tartalom Geometria modellezés 1 Geometria modellezés 2 Geometria modellezés

Részletesebben

Matematikai geodéziai számítások 5.

Matematikai geodéziai számítások 5. Matematikai geodéziai számítások 5 Hibaterjedési feladatok Dr Bácsatyai László Matematikai geodéziai számítások 5: Hibaterjedési feladatok Dr Bácsatyai László Lektor: Dr Benedek Judit Ez a modul a TÁMOP

Részletesebben

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program Regresszió számítás GeoEasy V2.05+ Geodéziai Kommunikációs Program DigiKom Kft. 2006-2010 Tartalomjegyzék: Egyenes x változik Egyenes y változik Egyenes y és x változik Kör Sík z változik Sík y, x és z

Részletesebben

rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika

rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika Fizika mérnm rnök k informatikusoknak 1. FBNxE-1 Mechanika. előadás Dr. Geretovszky Zsolt 1. szeptember 15. Klasszikus mechanika A fizika azon ága, melynek feladata az anyagi testek mozgására vonatkozó

Részletesebben

(Forrás:

(Forrás: Döntő 2017. február 18. Feladat: Okos autó Ma már sok autóba helyezhető olyan speciális eszköz létezik, amely "a gépjármű szabványos diagnosztikai portjára csatlakozik, majd egy felhő alapú informatikai

Részletesebben

Andó Mátyás Felületi érdesség matyi.misi.eu. Felületi érdesség. 1. ábra. Felületi érdességi jelek

Andó Mátyás Felületi érdesség matyi.misi.eu. Felületi érdesség. 1. ábra. Felületi érdességi jelek 1. Felületi érdesség használata Felületi érdesség A műszaki rajzokon a geometria méretek tűrése mellett a felületeket is jellemzik. A felületek jellemzésére leginkább a felületi érdességet használják.

Részletesebben

Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó

Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó Mechanika Kinematika A mechanika a fizika része mely a testek mozgásával és egyensúlyával foglalkozik. A klasszikus mechanika, mely a fénysebességnél sokkal kisebb sebességű testekre vonatkozik, feloszlik:

Részletesebben

Matematikai geodéziai számítások 4.

Matematikai geodéziai számítások 4. Matematikai geodéziai számítások 4. Vetületi átszámítások Dr. Bácsatyai, László Matematikai geodéziai számítások 4.: Vetületi átszámítások Dr. Bácsatyai, László Lektor: Dr. Benedek, Judit Ez a modul a

Részletesebben

Vágánykapcsolások. Szabványos vágánykapcsolások

Vágánykapcsolások. Szabványos vágánykapcsolások Gyakorlati segédlet 003 3. óra (v1.) 10/1 Vágánykacsolások A vágányok kitérőkkel, illetve átszelésekkel történő összekacsolását nevezzük vágánykacsolásnak vagy vágánykacsolatnak. A vágánykacsolatok éítőelemei

Részletesebben

A személyközlekedés minősítési rendszere

A személyközlekedés minősítési rendszere A személyközlekedés minősítési rendszere személyközlekedés tervezése és működtetése során alapvető jelentőségűek a i jellemzők bonus-malus rendszer működtetésére a megrendelési szerződések szerint Minőség:

Részletesebben

Számítási feladatok a Számítógépi geometria órához

Számítási feladatok a Számítógépi geometria órához Számítási feladatok a Számítógépi geometria órához Kovács Zoltán Copyright c 2012 Last Revision Date: 2012. október 15. kovacsz@nyf.hu Technikai útmutató a jegyzet használatához A jegyzet képernyőbarát

Részletesebben

A GNSS infrastruktúrára támaszkodó műholdas helymeghatározás. Borza Tibor (FÖMI KGO) Busics György (NyME GEO)

A GNSS infrastruktúrára támaszkodó műholdas helymeghatározás. Borza Tibor (FÖMI KGO) Busics György (NyME GEO) A GNSS infrastruktúrára támaszkodó műholdas helymeghatározás Borza Tibor (FÖMI KGO) Busics György (NyME GEO) Tartalom Mi a GNSS, a GNSS infrastruktúra? Melyek az infrastruktúra szintjei? Mi a hazai helyzet?

Részletesebben

MÁGNESVASÚT MÜNCHENBEN

MÁGNESVASÚT MÜNCHENBEN MÁGNESVASÚT MÜNCHENBEN Dr. Kazinczy László PhD. Egyetemi docens, BME Út és Vasútépítési Tanszék KÖZLEKEDÉSTUDOMÁNYI EGYESÜLET XI. NEMZETKÖZI ÉPÍTÉSTUDOMÁNYI KONFERENCIA Csíksomlyó, 2007. május 31-június

Részletesebben

Aktív GNSS hálózat fejlesztése

Aktív GNSS hálózat fejlesztése Aktív GNSS hálózat fejlesztése a penci KGO-ban Horváth Tamás Rédey István Szeminárium, BME, 2004. november 17. Tartalom Háttér Abszolút GNSS helymeghatározás Standalone DGNSS és RTK referencia állomások

Részletesebben

Példa: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével

Példa: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével Példa: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével Készítette: Dr. Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 213. október 8. Javítva: 213.1.13. Határozzuk

Részletesebben

Robotika. Kinematika. Magyar Attila

Robotika. Kinematika. Magyar Attila Robotika Kinematika Magyar Attila amagyar@almos.vein.hu Miről lesz szó? Bevezetés Merev test pozíciója és orientációja Rotáció Euler szögek Homogén transzformációk Direkt kinematika Nyílt kinematikai lánc

Részletesebben

Robotok inverz geometriája

Robotok inverz geometriája Robotok inverz geometriája. A gyakorlat célja Inverz geometriai feladatot megvalósító függvények implementálása. A megvalósított függvénycsomag tesztelése egy kétszabadságfokú kar előírt végberendezés

Részletesebben

TOL A MEGYEI SZILÁRD LEÓ FIZIKAVERSE Y Szekszárd, március óra 11. osztály

TOL A MEGYEI SZILÁRD LEÓ FIZIKAVERSE Y Szekszárd, március óra 11. osztály TOL A MEGYEI SZILÁRD LEÓ FIZIKAVERSE Y Szekszárd, 2002 március 13 9-12 óra 11 osztály 1 Egyatomos ideális gáz az ábrán látható folyamatot végzi A folyamat elsõ szakasza izobár folyamat, a második szakasz

Részletesebben

Nyári menetrendi módosítások

Nyári menetrendi módosítások Nyári menetrendi módosítások Változások Budapest elővárosában 80 sz. Budapest Miskolc vasútvonal Kínálatbővítésként az 5108-as gyorsvonat megáll Pécel, Isaszeg és Tura állomásokon. Ezáltal az esti órákban

Részletesebben

PÉLDÁK ERŐTÖRVÉNYEKRE

PÉLDÁK ERŐTÖRVÉNYEKRE PÉLÁ ERŐTÖRVÉNYERE Szabad erők: erőtörvénnyel megadhatók, általában nem függenek a test mozgásállapotától (sebességtől, gyorsulástól) Példák: nehézségi erő, súrlódási erők, rugalmas erők, felhajtóerők,

Részletesebben

Integrált Ütemes Menetrend. A jövő vasútja most

Integrált Ütemes Menetrend. A jövő vasútja most Integrált Ütemes Menetrend A jövő vasútja most Integrált Ütemes Menetrend A jó befektetés 7%-3%-2% utasszám-növekedést feltételezve (1.-2.-3. év): 3 év alatt megtérülő beruházás; nemzetgazdaságossági eredményt

Részletesebben

SZÁMÍTÁSI FELADATOK I.

SZÁMÍTÁSI FELADATOK I. SZÁMÍTÁSI FELADATOK I. A feladatokat figyelmesen olvassa el! A válaszokat a feladatban előírt módon adja meg! A számítást igénylő feladatoknál minden esetben először írja fel a megfelelő összefüggést (képletet),

Részletesebben

Három dimenziós barlangtérkép elkészítésének matematikai problémái

Három dimenziós barlangtérkép elkészítésének matematikai problémái Szegedi Tudományegyetem Természettudományi és Informatikai Kar Bolyai Intézet Geometria Tanszék Három dimenziós barlangtérkép elkészítésének matematikai problémái Szakdolgozat Írta: Pásztor Péter Matematika

Részletesebben

EGY ABLAK - GEOMETRIAI PROBLÉMA

EGY ABLAK - GEOMETRIAI PROBLÉMA EGY ABLAK - GEOMETRIAI PROBLÉMA Írta: Hajdu Endre A számítógépemhez tartozó két hangfal egy-egy négyzet keresztmetszetű hasáb hely - szűke miatt az ablakpárkányon van elhelyezve (. ábra).. ábra Hogy az

Részletesebben

A TRAM-TRAIN HELYE ÉS SZEREPE A VASÚTI KÖZLEKEDÉSBEN

A TRAM-TRAIN HELYE ÉS SZEREPE A VASÚTI KÖZLEKEDÉSBEN A TRAM-TRAIN HELYE ÉS SZEREPE A VASÚTI KÖZLEKEDÉSBEN 1. BEVEZETÉS A vasúti ágazatok műszaki jellemzőinek ismerete és tudatos alkalmazása a tervezésben alapvető szakmai követelmény! Klasszikus vasutak hegyvidéki

Részletesebben

Gépészeti rendszertechnika (NGB_KV002_1)

Gépészeti rendszertechnika (NGB_KV002_1) Gépészeti rendszertechnika (NGB_KV002_1) 2. Óra Kőrös Péter Közúti és Vasúti Járművek Tanszék Tanszéki mérnök (IS201 vagy a tanszéken) E-mail: korosp@ga.sze.hu Web: http://www.sze.hu/~korosp http://www.sze.hu/~korosp/gepeszeti_rendszertechnika/

Részletesebben

A végeselem módszer alapjai. 2. Alapvető elemtípusok

A végeselem módszer alapjai. 2. Alapvető elemtípusok A végeselem módszer alapjai Előadás jegyzet Dr. Goda Tibor 2. Alapvető elemtípusok - A 3D-s szerkezeteket vagy szerkezeti elemeket gyakran egyszerűsített formában modellezzük rúd, gerenda, 2D-s elemek,

Részletesebben

KÖZLEKEDÉSI ALAPISMERETEK (KÖZLEKEDÉS - ÜZEMVITEL, KÖZLEKEDÉS-TECHNIKA) KÖZLEKEDÉSI ALAPISMERETEK ÉRETTSÉGI VIZSGA I. RÉSZLETES KÖVETELMÉNYEK

KÖZLEKEDÉSI ALAPISMERETEK (KÖZLEKEDÉS - ÜZEMVITEL, KÖZLEKEDÉS-TECHNIKA) KÖZLEKEDÉSI ALAPISMERETEK ÉRETTSÉGI VIZSGA I. RÉSZLETES KÖVETELMÉNYEK KÖZLEKEDÉSI ALAPISMERETEK (KÖZLEKEDÉS - ÜZEMVITEL, KÖZLEKEDÉS-TECHNIKA) 1.1 Közlekedési alapfogalmak 1.2 Közúti közlekedés technikai elemei KÖZLEKEDÉSI ALAPISMERETEK ÉRETTSÉGI VIZSGA I. RÉSZLETES KÖVETELMÉNYEK

Részletesebben

Mérések állítható hajlásszögű lejtőn

Mérések állítható hajlásszögű lejtőn A mérés célkitűzései: A lejtőn lévő testek egyensúlyának vizsgálata, erők komponensekre bontása. Eszközszükséglet: állítható hajlásszögű lejtő különböző fahasábok kiskocsi erőmérő 20 g-os súlyok 1. ábra

Részletesebben

Matematikai geodéziai számítások 9.

Matematikai geodéziai számítások 9. Matematikai geodéziai számítások 9 Szabad álláspont kiegyenlítése Dr Bácsatyai, László Created by XMLmind XSL-FO Converter Matematikai geodéziai számítások 9: Szabad álláspont kiegyenlítése Dr Bácsatyai,

Részletesebben

A térképen ábrázolt vonal: - sík felület egyenese? - sík felület görbéje? - görbült felület egyenese ( geodetikus )? - görbült felület görbéje?

A térképen ábrázolt vonal: - sík felület egyenese? - sík felület görbéje? - görbült felület egyenese ( geodetikus )? - görbült felület görbéje? Előzetes megjegyzés: 1. Az időt nyugodtan mérhetjük méterben. ct [s ] = t [m ] A film kétórás volt. = A film 2.16 milliárd kilométernyi ideig tartott. 2. A tömeget is nyugodtan mérhetjük méterben! GM [kg]

Részletesebben

A térképen ábrázolt vonal: - sík felület egyenese? - sík felület görbéje? - görbült felület egyenese ( geodetikus )? - görbült felület görbéje?

A térképen ábrázolt vonal: - sík felület egyenese? - sík felület görbéje? - görbült felület egyenese ( geodetikus )? - görbült felület görbéje? Előzetes megjegyzés: 1. Az időt nyugodtan mérhetjük méterben. ct [s ] = t [m ] A film kétórás volt. = A film 2.16 milliárd kilométernyi ideig tartott. 2. A tömeget is nyugodtan mérhetjük méterben! GM [kg]

Részletesebben

A vasúti pálya felújítása, karbantartása a forgalmi szakszolgálat szemszögéből

A vasúti pálya felújítása, karbantartása a forgalmi szakszolgálat szemszögéből Üzemeltetési vezérigazgató-helyettesi szervezet Forgalmi főosztály Kiss Gábor főosztályvezető 2017. Szeptember 20. A vasúti pálya felújítása, karbantartása a forgalmi szakszolgálat szemszögéből 1 1. Menetrendszerűség

Részletesebben

TestLine - nummulites_gnss Minta feladatsor

TestLine - nummulites_gnss Minta feladatsor 1.* Egy műholdas helymeghatározás lehet egyszerre abszolút és kinematikus. 2.* műholdak pillanatnyi helyzetéből és a megmért távolságokból számítható a vevő pozíciója. 3.* 0:55 Nehéz kinai BEIDOU, az amerikai

Részletesebben

Infobionika ROBOTIKA. X. Előadás. Robot manipulátorok II. Direkt és inverz kinematika. Készült a HEFOP P /1.0 projekt keretében

Infobionika ROBOTIKA. X. Előadás. Robot manipulátorok II. Direkt és inverz kinematika. Készült a HEFOP P /1.0 projekt keretében Infobionika ROBOTIKA X. Előadás Robot manipulátorok II. Direkt és inverz kinematika Készült a HEFOP-3.3.1-P.-2004-06-0018/1.0 projekt keretében Tartalom Direkt kinematikai probléma Denavit-Hartenberg konvenció

Részletesebben

Elővárosi vasúti szolgáltatásfejlesztés sikere. Pákozdy Réka, MÁV-START Zrt., Személyszállítási szolgáltatásértékesítési vezető

Elővárosi vasúti szolgáltatásfejlesztés sikere. Pákozdy Réka, MÁV-START Zrt., Személyszállítási szolgáltatásértékesítési vezető Elővárosi vasúti szolgáltatásfejlesztés sikere Pákozdy Réka, MÁV-START Zrt., Személyszállítási szolgáltatásértékesítési vezető Az idén 10 éves MÁV-START Zrt. számokban Több, mint 7200 km-es hálózaton szolgáltatunk

Részletesebben

Felvételi, 2018 szeptember - Alapképzés, fizika vizsga -

Felvételi, 2018 szeptember - Alapképzés, fizika vizsga - Sapientia Erdélyi Magyar Tudományegyetem Marosvásárhelyi Kar Felvételi, 2018 szeptember - Alapképzés, fizika vizsga - Minden tétel kötelező Hivatalból 10 pont jár Munkaidő 3 óra I Az alábbi kérdésekre

Részletesebben

Q 1 D Q 2 (D x) 2 (1.1)

Q 1 D Q 2 (D x) 2 (1.1) . Gyakorlat 4B-9 Két pontszerű töltés az x tengelyen a következőképpen helyezkedik el: egy 3 µc töltés az origóban, és egy + µc töltés az x =, 5 m koordinátájú pontban van. Keressük meg azt a helyet, ahol

Részletesebben

Hely, idő, haladó mozgások (sebesség, gyorsulás)

Hely, idő, haladó mozgások (sebesség, gyorsulás) Hely, idő, haladó mozgások (sebesség, gyorsulás) Térben és időben élünk. A tér és idő végtelen, nincs kezdete és vége. Minden tárgy, esemény, vagy jelenség helyét és idejét a térben és időben valamihez

Részletesebben

Matematika III előadás

Matematika III előadás Matematika III. - 2. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 30 Egy

Részletesebben

Egy nyíllövéses feladat

Egy nyíllövéses feladat 1 Egy nyíllövéses feladat Az [ 1 ] munkában találtuk az alábbi feladatot 1. ábra. 1. ábra forrása: [ 1 / 1 ] Igencsak tanulságos, ezért részletesen bemutatjuk a megoldását. A feladat Egy sportíjjal nyilat

Részletesebben

file://c:\coeditor\data\local\course410\tmp.xml

file://c:\coeditor\data\local\course410\tmp.xml 1. oldal, összesen: 7 Tanulási célok: A lecke feldolgozása után Ön képes lesz: saját szavaival meghatározni a grafikus fordatervezés módszerét támogató körülményeket; saját szavaival meghatározni a grafikus

Részletesebben

Matematikai geodéziai számítások 5.

Matematikai geodéziai számítások 5. Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr Bácsatyai László Matematikai geodéziai számítások 5 MGS5 modul Hibaterjedési feladatok SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról

Részletesebben

KÖZLEKEDÉSI ALAPISMERETEK

KÖZLEKEDÉSI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2007. október 24. KÖZLEKEDÉSI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2007. október 24. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS

Részletesebben

Utak és környezetük tervezése

Utak és környezetük tervezése Dr. Fi István Utak és környezetük tervezése 3A előadás: Vonalvezetési elvek Vonalvezetési elvek Vonalvezetés az útvonalat alkotó egyenesek és ívek elrendezése. A vonalvezetés ismérve az ívesség (I) (lásd

Részletesebben

Esri Arcpad 7.0.1. Utó- feldolgozás. Oktatási anyag - utókorrekció

Esri Arcpad 7.0.1. Utó- feldolgozás. Oktatási anyag - utókorrekció Esri Arcpad 7.0.1 & MobileMapper CE Utó- feldolgozás Oktatási anyag - utókorrekció Tartalomjegyzék GPS- MÉRÉSEK UTÓ- FELDOLGOZÁSA... 3 1.1 MŰHOLD ADATOK GYŰJTÉSÉNEK ELINDÍTÁSA, A ESRI ArcPad PROGRAMMAL

Részletesebben

Személyszállítási vasútvállalati igények. a KÖSZ jegyében Ughy Kálmán

Személyszállítási vasútvállalati igények. a KÖSZ jegyében Ughy Kálmán Személyszállítási vasútvállalati igények a KÖSZ jegyében Ughy Kálmán A MÁV-START Vasúti Személyszállító Zrt. számokban Több, mint 7200 km-es hálózaton szolgáltatunk Több, mint 1300 állomás és megállóhely

Részletesebben

MIKOVINY SÁMUEL TÉRINFORMATIKAI EMLÉKVERSENY

MIKOVINY SÁMUEL TÉRINFORMATIKAI EMLÉKVERSENY FVM VIDÉKFEJLESZTÉSI, KÉPZÉSI ÉS SZAKTANÁCSADÁSI INTÉZET NYUGAT MAGYARORSZÁGI EGYETEM GEOINFORMATIKAI KAR MIKOVINY SÁMUEL TÉRINFORMATIKAI EMLÉKVERSENY 2008/2009. TANÉV Az I. FORDULÓ FELADATAI NÉV:... Tudnivalók

Részletesebben

Matematikai geodéziai számítások 9.

Matematikai geodéziai számítások 9. Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr Bácsatyai László Matematikai geodéziai számítások 9 MGS9 modul Szabad álláspont kiegyenlítése SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői

Részletesebben

Mozgatható térlefedő szerkezetek

Mozgatható térlefedő szerkezetek Mozgatható térlefedő szerkezetek TDK Konferencia 2010 Szilárdságtani és tartószerkezeti szekció Tartalomjegyzék 1 Absztrakt 2 Bevezetés 3 Az alakzat mozgásának görbületre gyakorolt hatása 4 Teljes összenyomódás

Részletesebben

Közlekedési áramlatok MSc. Csomóponti-, útvonali eljutási lehetőségek minősítése

Közlekedési áramlatok MSc. Csomóponti-, útvonali eljutási lehetőségek minősítése Közlekedési áramlatok MSc Csomóponti-, útvonali eljutási lehetőségek minősítése minősítése jogszabályi esetben Az alárendelt áramlatból egy meghatározott forgalmi művelet csak akkor végezhető el, ha a

Részletesebben

A brachistochron probléma megoldása

A brachistochron probléma megoldása A brachistochron probléma megoldása Adott a függőleges síkban két nem egy függőleges egyenesen fekvő P 0 és P 1 pont, amelyek közül a P 1 fekszik alacsonyabban. Azt a kérdést fogjuk vizsgálni. hogy van-e

Részletesebben

A loxodrómáról. Előző írásunkban melynek címe: A Gudermann - függvényről szó esett a Mercator - vetületről,illetve az ezen alapuló térképről 1. ábra.

A loxodrómáról. Előző írásunkban melynek címe: A Gudermann - függvényről szó esett a Mercator - vetületről,illetve az ezen alapuló térképről 1. ábra. 1 A loxodrómáról Előző írásunkban melynek címe: A Gudermann - függvényről szó esett a Mercator - vetületről,illetve az ezen alapuló térképről 1. ábra. 1. ábra forrása: [ 1 ] Ezen a térképen a szélességi

Részletesebben

Példa: Tartó lehajlásfüggvényének meghatározása a Rayleigh Ritz-féle módszer segítségével

Példa: Tartó lehajlásfüggvényének meghatározása a Rayleigh Ritz-féle módszer segítségével Példa: Tartó lehajlásfüggvényének meghatározása a Rayleigh Ritz-féle módszer segítségével Készítette: Dr. Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 2013. szeptember 23. Javítva: 2013.10.09.

Részletesebben

Amit a Ferihegyi gyorsvasútról tudni érdemes. XVII. Városi közlekedés aktuális kérdései Budapest, szeptember 8.

Amit a Ferihegyi gyorsvasútról tudni érdemes. XVII. Városi közlekedés aktuális kérdései Budapest, szeptember 8. Amit a Ferihegyi gyorsvasútról tudni érdemes XVII. Városi közlekedés aktuális kérdései Budapest, 2017. szeptember 8. Vasúti ingajárat (FEREX) 9 km új vonal, 1 új mh., 4 motorvonat (többlet) Menetidő (Reptér->Belváros):

Részletesebben

Az elliptikus hengerre írt csavarvonalról

Az elliptikus hengerre írt csavarvonalról 1 Az elliptikus hengerre írt csavarvonalról Erről viszonylag ritkán olvashatunk, ezért most erről lesz szó. Az [ 1 ] munkában találtuk az alábbi részt 1. ábra. 1. ábra Itt a ( c ) feladat és annak megoldása

Részletesebben

Hossz-szelvény tervezés

Hossz-szelvény tervezés Hossz-szelvény tervezés Hossz-szelvény terepvonala Keresztszelvények terepvonala Magassági vonalvezetés tervezése Keresztszelvények megtekintése Földtömegeloszlás Vonalvezetés ellenőrzése 1 Hossz-szelvény

Részletesebben

A magától becsukódó ajtó működéséről

A magától becsukódó ajtó működéséről 1 A magától becsukódó ajtó működéséről Az [ 1 ] műben találtunk egy érdekes feladatot, amit most mi is feldolgozunk. Az 1. ábrán látható az eredeti feladat másolata. A feladat kitűzése 1. ábra forrása:

Részletesebben

Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS!

Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS! Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS! 1. példa Vasúti kocsinak a 6. ábrán látható ütközőjébe épített tekercsrugóban 44,5 kn előfeszítő erő ébred. A rugó állandója 0,18

Részletesebben

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1 Méréstechnika Rezgésmérés Készítette: Ángyán Béla Iszak Gábor Seidl Áron Veszprém 2014 [Ide írhatja a szöveget] oldal 1 A rezgésekkel kapcsolatos alapfogalmak A rezgés a Magyar Értelmező Szótár megfogalmazása

Részletesebben

Kutatási beszámoló. 2015. február. Tangens delta mérésére alkalmas mérési összeállítás elkészítése

Kutatási beszámoló. 2015. február. Tangens delta mérésére alkalmas mérési összeállítás elkészítése Kutatási beszámoló 2015. február Gyüre Balázs BME Fizika tanszék Dr. Simon Ferenc csoportja Tangens delta mérésére alkalmas mérési összeállítás elkészítése A TKI-Ferrit Fejlsztő és Gyártó Kft.-nek munkája

Részletesebben

VILLAMOS VASÚTI PÁLYÁK. Juhász Zsoltné tervező FŐMTERV ZRT. 2011. április 20. MISKOLC

VILLAMOS VASÚTI PÁLYÁK. Juhász Zsoltné tervező FŐMTERV ZRT. 2011. április 20. MISKOLC VILLAMOS VASÚTI PÁLYÁK TERVEZÉSÉNEK TAPASZTALATAI Juhász Zsoltné tervező FŐMTERV ZRT. 2011. április 20. MISKOLC TÁRSASÁGUNK A FŐMTERV ZRT. Az ország egyik legnagyobb infrastruktúra tervezője 60 éve aktív

Részletesebben

17. előadás: Vektorok a térben

17. előadás: Vektorok a térben 17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett

Részletesebben

Vasúti személyszállítás aktuális trendjei a V4 országokban. Csépke András, MÁV-START vezérigazgató

Vasúti személyszállítás aktuális trendjei a V4 országokban. Csépke András, MÁV-START vezérigazgató Vasúti személyszállítás aktuális trendjei a V4 országokban Csépke András, MÁV-START vezérigazgató Szolgáltatásfejlesztési stratégia korszerű, megbízható, gyors Korszerű gördülőállomány Igény vezérelt menetrend

Részletesebben

Szakmai nap 2013. február r 7. Zrt. Magyar Államvasutak. Szolgáltat. stabilitása sa. a pálya-jármű kölcsönhatás kérdéskörének tükrében

Szakmai nap 2013. február r 7. Zrt. Magyar Államvasutak. Szolgáltat. stabilitása sa. a pálya-jármű kölcsönhatás kérdéskörének tükrében 213. február r 7. Magyar Államvasutak Zrt. Vasúti MérnM Vasúti jármj rművek keresztfutás-stabilit stabilitása sa a pályap lya-jármű kölcsönhatás kérdéskörének tükrt krében Kemény Dániel D György fejlesztőmérn

Részletesebben

1 2. Az anyagi pont kinematikája

1 2. Az anyagi pont kinematikája 1. Az anyagi pont kinematikája 1. Ha egy P anyagi pont egyenes vonalú mozgását az x = 1t +t) egyenlet írja le x a megtett út hossza m-ben), határozzuk meg a pont sebességét és gyorsulását az indulás utáni

Részletesebben

1. ábra. 24B-19 feladat

1. ábra. 24B-19 feladat . gyakorlat.. Feladat: (HN 4B-9) A +Q töltés egy hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld.. ábra.). Számítsuk ki az E elektromos térerősséget a vonal. ábra. 4B-9 feladat irányában lévő,

Részletesebben

Jegyzet A vasútmodellezés és a nagyvasút szakkifejezéseinek megismeréséhez és megértéséhez. 2. rész.

Jegyzet A vasútmodellezés és a nagyvasút szakkifejezéseinek megismeréséhez és megértéséhez. 2. rész. 1 Jegyzet A vasútmodellezés és a nagyvasút szakkifejezéseinek megismeréséhez és megértéséhez. 2. rész. Milyen vasutak vannak? Miért, többfajta van? Igen. A mintául szolgáló nagyvasutak nagyon sokfélék

Részletesebben

FUTÁR projekt A forgalomirányítási és utastájékoztatási rendszer fejlesztése

FUTÁR projekt A forgalomirányítási és utastájékoztatási rendszer fejlesztése FUTÁR projekt A forgalomirányítási és utastájékoztatási rendszer fejlesztése 2012. szeptember 18. Berger András projektvezető Budapesti Közlekedési Központ FUTÁR projekt célok és eszközök Célok A közösségi

Részletesebben

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS 1 EGYENLETES KÖRMOZGÁS Pálya kör Út ív Definíció: Test körpályán azonos irányban haladva azonos időközönként egyenlő íveket tesz meg. Periodikus mozgás 2 PERIODICITÁS

Részletesebben

Foglalkozási napló. Vasútforgalmi szolgálattevő

Foglalkozási napló. Vasútforgalmi szolgálattevő Foglalkozási ló a 20 /20. tanévre Vasútforgalmi szolgálattevő (OKJ száma: 54 41 05) szakma gyakorlati oktatásához 13. évfolyam A ló vezetéséért felelős: A ló megnyitásának dátuma: A ló lezárásának dátuma:

Részletesebben

Nehézségi gyorsulás mérése megfordítható ingával

Nehézségi gyorsulás mérése megfordítható ingával Nehézségi gyorsulás mérése megfordítható ingával (Mérési jegyzőkönyv) Hagymási Imre 2007. április 21. (hétfő délelőtti csoport) 1. A mérés elmélete A nehézségi gyorsulás mérésének egy klasszikus módja

Részletesebben

BT-R820 Használati utasítás BT-R820 Wireless GPS Egység Használati utasítás Dátum: Szeptember, 2006 Verzió: 1.1

BT-R820 Használati utasítás BT-R820 Wireless GPS Egység Használati utasítás Dátum: Szeptember, 2006 Verzió: 1.1 BT-R820 Wireless GPS Egység Használati utasítás Dátum: Szeptember, 2006 Verzió: 1.1 1. oldal TARTALOMJEGYZÉK 0. Gyors telepítés...3 1. Bevezetés...4 1.1 Áttekintés...4 1.2 Fő jellemzők...4 1.3 Alkalmazási

Részletesebben

A Hamilton-Jacobi-egyenlet

A Hamilton-Jacobi-egyenlet A Hamilton-Jacobi-egyenlet Ha sikerül olyan kanonikus transzformációt találnunk, amely a Hamilton-függvényt zérusra transzformálja akkor valamennyi új koordináta és impulzus állandó lesz: H 0 Q k = H P

Részletesebben

Piri Dávid. Mérőállomás célkövető üzemmódjának pontossági vizsgálata

Piri Dávid. Mérőállomás célkövető üzemmódjának pontossági vizsgálata Piri Dávid Mérőállomás célkövető üzemmódjának pontossági vizsgálata Feladat ismertetése Mozgásvizsgálat robot mérőállomásokkal Automatikus irányzás Célkövetés Pozíció folyamatos rögzítése Célkövető üzemmód

Részletesebben

Matematikai geodéziai számítások 6.

Matematikai geodéziai számítások 6. Matematikai geodéziai számítások 6. Lineáris regresszió számítás elektronikus távmérőkre Dr. Bácsatyai, László Matematikai geodéziai számítások 6.: Lineáris regresszió számítás elektronikus távmérőkre

Részletesebben

GPS nyomvonalkövető megvalósítása DSP-n

GPS nyomvonalkövető megvalósítása DSP-n GPS nyomvonalkövető megvalósítása DSP-n Készítették: Végh Tamás (KYCG35) Bencze Balázs (WAPUNG) Konzulensek: Molnár Károly Bogár István Nyomvonalkövetés felhasználási lehetőségei Mezőgazdasági alkalmazás

Részletesebben

Körforgalmak élettartama a tervezés és kivitelezés függvényében

Körforgalmak élettartama a tervezés és kivitelezés függvényében 41. Útügyi Napok Balatonfüred 2016. szeptember 21-22. Körforgalmak élettartama a tervezés és kivitelezés függvényében Bencze Zsolt Tudományos munkatárs A körforgalom elmélete 1. A főirány sebességcsökkentése

Részletesebben

Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont)

Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont) 1. 2. 3. Mondat E1 E2 Gépészmérnöki alapszak, Mérnöki fizika ZH, 2017. október 10.. CHFMAX NÉV: Neptun kód: Aláírás: g=10 m/s 2 Előadó: Márkus / Varga Feladatok (maximum 3x6 pont=18 pont) 1) Az l hosszúságú

Részletesebben

MÁV Zrt. INFRASTRUKTÚRA FEJLESZTÉSEI. Pál László általános vezérigazgatóhelyettes

MÁV Zrt. INFRASTRUKTÚRA FEJLESZTÉSEI. Pál László általános vezérigazgatóhelyettes MÁV Zrt. INFRASTRUKTÚRA FEJLESZTÉSEI Pál László általános vezérigazgatóhelyettes 1 Vasúti folyosók 2 Korridorok jelentősége 3 TERVEZETT 2014 2020. közötti üzemeltetői prioritások Kiinduló állapot 2014-ben

Részletesebben

Autóbusz előnyben részesítésének lehetőségei

Autóbusz előnyben részesítésének lehetőségei Autóbusz előnyben részesítésének lehetőségei 1 Pécsett Pásztor Petronella Konzulensek: Dr. Bede Zsuzsanna, Dr. Tettamanti Tamás Külső konzulens: Kiss Géza 2 Bevezetés Pécs: utazások ~40%-a tömegközlekedéssel

Részletesebben

A forgalomsűrűség és a követési távolság kapcsolata

A forgalomsűrűség és a követési távolság kapcsolata 1 A forgalomsűrűség és a követési távolság kapcsolata 6 Az áramlatsűrűség (forgalomsűrűség) a követési távolsággal ad egyértelmű összefüggést: a sűrűség reciprok értéke a(z) (átlagos) követési távolság.

Részletesebben

A MÁV-START utasbarát szolgáltatásfejlesztései. Kazai Katalin, MÁV-START értékesítési igazgató

A MÁV-START utasbarát szolgáltatásfejlesztései. Kazai Katalin, MÁV-START értékesítési igazgató A MÁV-START utasbarát szolgáltatásfejlesztései Kazai Katalin, MÁV-START értékesítési igazgató A MÁV-START Vasúti Személyszállító Zrt. számokban Több, mint 7200 km-es hálózaton szolgáltatunk Több, mint

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra . Gyakorlat 4B-9 A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld. 4-6 ábra.). Számítsuk ki az E elektromos térerősséget a vonal irányában lévő, annak.. ábra. 4-6 ábra végpontjától

Részletesebben