Kép mátrix. Feladat: Pap Gáborné-Zsakó László: Algoritmizálás, adatmodellezés 2/35

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Kép mátrix. Feladat: Pap Gáborné-Zsakó László: Algoritmizálás, adatmodellezés 2/35"

Átírás

1 Grafika I.

2 Kép mátrix Feladat: Egy N*M-es raszterképet nagyítsunk a két-szeresére pontsokszorozással: minden régi pont helyébe 2*2 azonos színű pontot rajzolunk a nagyított képen. Pap Gáborné-Zsakó László: Algoritmizálás, adatmodellezés 2/35

3 Kép mátrix Problémák/válaszok: Hogyan ábrázoljunk egy képet? A kép rendezett pontokból áll, azaz biztosan valamilyen sorozatként adható meg. Nehézkes lenne azonban a pontokra egy sorszámozást adni. Könnyebb azt megmondani, hogy egy kép-pont a kép hányadik sorában, illetve oszlopá-ban található, azaz mátrixban tároljuk! Mi van a mátrixban? Fekete-fehér kép esetén fényerősség, színes képnél RGB kód. Pap Gáborné-Zsakó László: Algoritmizálás, adatmodellezés 3/35

4 Kép mátrix Specifikáció: Bemenet: N,M:Egész A:Tömb[1..N,1..M:Egész] Kimenet: B:Tömb[1..2*N,1..2*M:Egész] Előfeltétel: N,M 0 Utófeltétel: i (1 i N): j (1 j M): B [2*i,2*j]=A[i,j] és B[2*i 1,2*j]=A[i,j] és B[2*i,2*j 1]=A[i,j] és B[2*i 1,2*j 1]=A[i,j] Pap Gáborné-Zsakó László: Algoritmizálás, adatmodellezés 4/35

5 Kép kétszeresre nagyítása Nagyítás pontsokszorozással: Nagyítás: Ciklus I=1-től N-ig Ciklus J=1-től M-ig B(2*I-1,2*J-1):=A(I,J) B(2*I,2*J-1):=A(I,J) B(2*I-1,2*J):=A(I,J) B(2*I,2*J):=A(I,J) Ciklus vége Ciklus vége Eljárás vége. Raszteres képek transzformálása Pap Gáborné-Zsakó László: Algoritmizálás, adatmodellezés 5

6 Kép kétszeresre nagyítása Raszteres képek transzformálása Nagyítás pontátlagolással: Nagyítás: Ciklus I=1-től N-1-ig Ciklus J=1-től M-1-ig B(2*I-1,2*J-1):=A(I,J) B(2*I,2*J-1):=(A(I,J)+A(I+1,J))/2 B(2*I-1,2*J):=(A(I,J)+A(I,J+1))/2 B(2*I,2*J):=(A(I,J)+A(I+1,J+1))/2 Ciklus vége Ciklus vége Eljárás vége. Színes pontok átlaga? Pap Gáborné-Zsakó László: Algoritmizálás, adatmodellezés 6

7 Kép kétszeresre nagyítása: Raszteres képek transzformálása Pontsokszorozással: Pontátlagolással: Pap Gáborné-Zsakó László: Algoritmizálás, adatmodellezés 7

8 Raszteres képek transzformálása Feladat: Egy N*M-es raszterképet kicsinyítsünk a felére (N/2*M/2 méretűre): a kicsinyített kép minden pontja az eredeti kép 2*2 pontjából számítódjon: pontelhagyással; átlagolással! Pap Gáborné-Zsakó László: Algoritmizálás, adatmodellezés 8

9 Raszteres képek transzformálása Specifikáció: Bemenet: N,M:Egész A:Tömb[1..N,1..M:Egész] Kimenet: B:Tömb[1..N/2,1..M/2:Egész] Előfeltétel: N,M 0 Utófeltétel: i (1 i N/2): j (1 j M/2): B[i,j]=A[2*i-1,2*j-1] vagy B[i,j]=(A[2*i,2*j]+A[2*i 1,2*j]+ A[2*i,2*j 1]+A[2*i 1,2*j 1])/4 Pap Gáborné-Zsakó László: Algoritmizálás, adatmodellezés 9

10 Kép felére kicsinyítése Raszteres képek transzformálása Kicsinyítés pontelhagyással: Kicsinyítés: Ciklus I=1-től N/2-ig Ciklus J=1-től M/2-ig B(I,J):=A(2*I-1,2*J-1) Ciklus vége Ciklus vége Eljárás vége. Pap Gáborné-Zsakó László: Algoritmizálás, adatmodellezés 10

11 Raszteres képek transzformálása Kép felére kicsinyítése, pontelhagyással: Eredeti Kicsinyített Pap Gáborné-Zsakó László: Algoritmizálás, adatmodellezés 11

12 Kép felére kicsinyítése Raszteres képek transzformálása Kicsinyítés pontátlagolással: Kicsinyítés: Ciklus I=1-től N/2-ig Ciklus J=1-től M/2-ig B(I,J):=(A(2*I-1,2*J-1)+ A(2*I-1,2*J)+ A(2*I,2*J-1)+ A(2*I,2*J))/4 Ciklus vége Ciklus vége Eljárás vége. Színes pontok átlaga? Pap Gáborné-Zsakó László: Algoritmizálás, adatmodellezés 12

13 Kép felére kicsinyítése Raszteres képek transzformálása Pontátlagolással kicsinyített kép újra nagyítva: Pap Gáborné-Zsakó László: Algoritmizálás, adatmodellezés 13

14 Lineáris szűrés Raszteres képek transzformálása Sok képen véletlen zajok jelennek meg, amelyek a kép minőségét határozottan rontják, azaz minden egyes valódi értéket megváltoztathatott egy véletlen érték. A szűrés feladata ezen véletlen hatások minél jobb hatásfokú megszüntetése. Ennek legegyszerűbb változatában minden egyes képpont értékét helyettesítjük önmaga és közvetlen 8 szomszédja átlagával: B 1 i 1 i, j A k, l 9 k i 1 l j 1 j 1 Pap Gáborné-Zsakó László: Algoritmizálás, adatmodellezés 14

15 Raszteres képek transzformálása Lineáris szűrés Pap Gáborné-Zsakó László: Algoritmizálás, adatmodellezés 15

16 Rank szűrés Raszteres képek transzformálása Ennél a módszernél átlagszámítás helyett a szomszédos pontokkal más műveletet végzünk. Első lépésként vegyük a környező pontok fényesség értékét és rendezzük nagyság szerint sorba! Válasszuk ki a nagyság szerint K-adik elemet, s ezzel helyettesítsük az eredeti pontot! Ha K=1, akkor éppen a legsötétebb pontot választjuk, ha K=N, akkor pedig a legfényesebbet. Pap Gáborné-Zsakó László: Algoritmizálás, adatmodellezés 16

17 Rank szűrés Raszteres képek transzformálása Speciális rank szűrő, a medián szűrő, amikor K=N/2, azaz éppen a nagyság szerint középső értéket választjuk. Ez a módszer a kiugró zajcsúcsokat tökéletesen eltünteti. Példa A Rák-köd képére alkalmazzunk Rank-szűrőt! Pap Gáborné-Zsakó László: Algoritmizálás, adatmodellezés 17

18 Raszteres képek transzformálása Eredeti K=1 szűrő K=5 szűrő K=8 szűrő Pap Gáborné-Zsakó László: Algoritmizálás, adatmodellezés 18

19 Grafikai alapok A képernyőn a normál koordináta-rendszer: Origó a bal-felső sarokban. A pixel az egység. Csak egész koordinátájú pontokkal jellemzett görbékkel, ívekkel foglalkozunk. Pap Gáborné-Zsakó László: Algoritmizálás, adatmodellezés 19

20 Grafikai alapok PontRajzol(x,y): s:=kerekít(ks-y); o:=kerekít(ko+x) Ha s [0,MaxY] és o [0,MaxX] akkor Pont(o,s) Eljárás vége. Pap Gáborné-Zsakó László: Algoritmizálás, adatmodellezés 20

21 Szakasz rajzolás A feladat: szakaszt rajzolni (x 1,y 1 ) és (x 2,y 2 ) között. A naiv megoldás: A két ponton húzható egyenes egyenlete: y=(y 2 -y 1 )/(x 2 -x 1 )*(x-x 1 )+y 1. Feltehető, hogy x 1 x 2. A megoldás lényege: vegyük sorra x lehetséges (egész) értékeit [x 1,x 2 ] között, és rajzoljuk ki az (x,y(x)) pontot! Pap Gáborné-Zsakó László: Algoritmizálás, adatmodellezés 21

22 Szakasz rajzolás SzakaszRajzolás(x 1,y 1,x 2,y 2 ): it:=(y 2 -y 1 )/(x 2 -x 1 ) Ciklus x=x 1 -től x 2 -ig y:=(x-x 1 )*it+y 1 ; PontRajz(x,y) Ciklus vége Eljárás vége. Problémák: x 1 =x 2 eset 0-val osztás külön vizsgálandó; x 1 >x 2 eset üres ciklus a ciklus-változónak visszafelé kellene haladni; Pap Gáborné-Zsakó László: Algoritmizálás, adatmodellezés 22

23 Szakasz rajzolás Problémák: it 1 (legfeljebb 45 lejtésszög) esetén folytonos pixelek sorozata a szakasz, it>1 (több, mint 45 lejtésszög) esetén szakadozott pixelek sorozata. it 1 it>1 Pap Gáborné-Zsakó László: Algoritmizálás, adatmodellezés 23

24 Szakasz rajzolás A feladat: szakaszt rajzolni (x 1,y 1 ) és (x 2,y 2 ) között. Egy helyes megoldás: Válasszuk meg úgy az x-irányú lépésközt, hogy az megfelelő legyen minden esetben. A megoldás lényege: Az x-irányú eltérés (hx) és az y-irányú eltérés (hy) maximumával normáljuk a lépésközöket! Pap Gáborné-Zsakó László: Algoritmizálás, adatmodellezés 24

25 Szakasz rajzolás SzakaszRajzolás(x 1,y 1,x 2,y 2 ): hx:=x 2 -x 1 ; hy:=y 2 -y 1 Ha hx > hy akkor h:= hx különben h:= hy Ha h=0 akkor PontRajz(x 1,y 1 ) különben lx:=hx/h; ly:=hy/h x:=x 1 ; y:=y 1 ; PontRajz(x 1,y 1 ) Ciklus k=1-től h-ig x:=x+lx; y:=y+ly; PontRajz(x,y) Ciklus vége Elágazás vége Eljárás vége. Pap Gáborné-Zsakó László: Algoritmizálás, adatmodellezés 25

26 Kör rajzolás A feladat: (x 0,y 0 ) középpontú, r sugarú kör rajzolása. A kör szimmetriája miatt, ha az (x,y) pont rajta van az íven, akkor a (-x,y), (x,-y), (-x,-y) pontok is rajta lesznek. További szimmetria-tengelyei is vannak, amelyek kihasználhatók! Az (x 0,y 0 ) középpontú kör a (0,0) középpontú eltolásával egyszerűen megkapható, amelyet ismét rábízhatunk a PontRajzol eljárásra. Pap Gáborné-Zsakó László: Algoritmizálás, adatmodellezés 26

27 A kör egyenlete: A körív pontjai: Kör rajzolás x 2 y 2 2 ( x, x 2 r ) Mivel a körív pontjai kielégítik az y 2 =r 2 -x 2 egyenletet, kapjuk a kézenfekvő megoldást: KörRajzolás(r): Ciklus x=0-tól r-ig y:=egész(négyzetgyök(r*r-x*x)) PontRajz(x,y); PontRajz(-x,y) PontRajz(x,-y); PontRajz(-x,-y) Ciklus vége Eljárás vége. r 2 Pap Gáborné-Zsakó László: Algoritmizálás, adatmodellezés 27

28 Kör rajzolás Pap Gáborné-Zsakó László: Algoritmizálás, adatmodellezés 28

29 Kör rajzolás A körív pontjai: (r*cos( ), r*sin( )) KörRajzolás(r): Ciklus alfa=0-tól 6.28-ig L-esével x:=egész(r*cos(alfa)) y:=egész(r*sin(alfa))) PontRajz(x,y); PontRajz(-x,y) PontRajz(x,-y); PontRajz(-x,-y) Ciklus vége Eljárás vége. Pap Gáborné-Zsakó László: Algoritmizálás, adatmodellezés 29

30 Kör rajzolás A körív pontjai: (r*cos( ), r*sin( )) L=0.3 L=0.2 L=0.01 Kérdés: mekkora legyen az L? Legyen L-nyi fordulat az r-sugarú íven kb. 1 pixelnyi! L / (2* ) = 1 / (2*r* ) L = 1 / r Pap Gáborné-Zsakó László: Algoritmizálás, adatmodellezés 30

31 Kör rajzolás A körív követése (görbék rajzolására általánosan alkalmazható ötlet): kiindulás a görbe egy alkalmas kezdő-pontjából, válasszunk valamilyen elképzelhető haladási (rajzolási) irányt (balra/jobbra, fel/le), az irányba eső szomszédos pontokat vizsgáljuk meg: melyik tér el legkevésbé a görbétől, majd arra lépjünk tovább! Pap Gáborné-Zsakó László: Algoritmizálás, adatmodellezés 31

32 Kör rajzolás A körív követése : KörRajzolás(r): x:=0; y:=r Ciklus amíg y 0 PontRajz(x,y); PontRajz(-x,y) PontRajz(-x,y); PontRajz(-x,-y) Következő(x,y) Ciklus vége Eljárás vége. Pap Gáborné-Zsakó László: Algoritmizálás, adatmodellezés 32

33 Kör rajzolás A körív követése (belülről): Következő(x,y): Ha (x+1) 2 +y 2 r 2 akkor x:=x+1 különben ha (x+1) 2 +(y-1) 2 r 2 akkor y:=y-1; x:=x+1 különben y:=y-1 Eljárás vége. A fekete pontból indulva kék-zöld-piros vizsgálati sorrenddel. Választhatnánk közülük a körvonalhoz legközelebbit is. Pap Gáborné-Zsakó László: Algoritmizálás, adatmodellezés 33

34 Kör rajzolás Ugyanezt az elvet körív helyett tetszőleges görbére is alkalmazhatjuk: Pillangó-görbe: y 6 =x 2 -x 6 Pap Gáborné-Zsakó László: Algoritmizálás, adatmodellezés 34

35 Vége Zsakó Zsakó László: László: Programozási Szövegfeldolgozás alapismeretek I. M 35

Algoritmizálás és adatmodellezés tanítása 2. előadás

Algoritmizálás és adatmodellezés tanítása 2. előadás Algoritmizálás és adatmodellezés tanítása 2. előadás Tartalom Összegzés vektorra, mátrixra Megszámolás vektorra, mátrixra Maximum-kiválasztás vektorra, mátrixra Eldöntés vektorra, mátrixra Kiválasztás

Részletesebben

Algoritmizálás és adatmodellezés tanítása 3. előadás

Algoritmizálás és adatmodellezés tanítása 3. előadás Algoritmizálás és adatmodellezés tanítása 3. előadás Szövegfájl Fájl típus A szövegfájl karakterek sorozata: input fájl Műveletei: nyit, zár, olvas, vége? output fájl Műveletei: nyit, zár, ír Pap Gáborné,

Részletesebben

Programozási alapismeretek (M1,M2)

Programozási alapismeretek (M1,M2) 1. feladat: Koordináta rendszer kirajzolása 1db TImage, 1db TGroupBox TImage: Name: ImageRajz Align: alclient TGroupBox: Name: GroupBoxManip Caption: - Align: albottom var ks, ko: integer; procedure Inicializal;

Részletesebben

Algoritmizálás és adatmodellezés 2. előadás

Algoritmizálás és adatmodellezés 2. előadás Algoritmizálás és adatmodellezés 2 előadás Összetett típusok 1 Rekord 2 Halmaz (+multialmaz, intervallumalmaz) 3 Tömb (vektor, mátrix) 4 Szekvenciális fájl (input, output) Pap Gáborné, Zsakó László: Algoritmizálás,

Részletesebben

Algoritmizálás, adatmodellezés 1. előadás

Algoritmizálás, adatmodellezés 1. előadás Algoritmizálás, adatmodellezés 1. előadás Algoritmus-leíró eszközök Folyamatábra Irányított gráf, amely csomópontokból és őket összekötő élekből áll, egyetlen induló és befejező éle van, az induló élből

Részletesebben

Algoritmizálás, adatmodellezés tanítása 1. előadás

Algoritmizálás, adatmodellezés tanítása 1. előadás Algoritmizálás, adatmodellezés tanítása 1. előadás Specifikáció A specifikáció elemei bemenet mit ismerünk? kimenet mire vagyunk kíváncsiak? előfeltétel mit tudunk az ismertekről? utófeltétel mi az összefüggés

Részletesebben

Algoritmizálás, adatmodellezés tanítása 6. előadás

Algoritmizálás, adatmodellezés tanítása 6. előadás Algoritmizálás, adatmodellezés tanítása 6. előadás Tesztelési módszerek statikus tesztelés kódellenőrzés szintaktikus ellenőrzés szemantikus ellenőrzés dinamikus tesztelés fekete doboz módszerek fehér

Részletesebben

Függvényábrázolás III.

Függvényábrázolás III. Függvényábrázolás III. Oldalnézeti ábrázolások 1. Árnyékolt téglalapos ábrázolás 2. Y szerinti függvénymetszetek, tömör testként 3. X és Y szerinti függvénymetszetek, tömör testként 4. X és Y szerinti

Részletesebben

Algoritmizálás, adatmodellezés tanítása 1. előadás

Algoritmizálás, adatmodellezés tanítása 1. előadás Algoritmizálás, adatmodellezés 1. előadás Az algoritmus fogalma végrehajtható (van hozzá végre-hajtó) lépésenként hajtható végre a lépések maguk is algoritmusok pontosan definiált, adott végre-hajtási

Részletesebben

Bánsághi Anna 2014 Bánsághi Anna 1 of 68

Bánsághi Anna 2014 Bánsághi Anna 1 of 68 IMPERATÍV PROGRAMOZÁS Bánsághi Anna anna.bansaghi@mamikon.net 3. ELŐADÁS - PROGRAMOZÁSI TÉTELEK 2014 Bánsághi Anna 1 of 68 TEMATIKA I. ALAPFOGALMAK, TUDOMÁNYTÖRTÉNET II. IMPERATÍV PROGRAMOZÁS Imperatív

Részletesebben

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 13.

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 13. Algoritmuselmélet NP-teljes problémák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 13. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet

Részletesebben

Algoritmusok raszteres grafikához

Algoritmusok raszteres grafikához Algoritmusok raszteres grafikához Egyenes rajzolása Kör rajzolása Ellipszis rajzolása Algoritmusok raszteres grafikához Feladat: Grafikai primitíveket (pl. vonalat, síkidomot) ábrázolni kép-mátrixszal,

Részletesebben

Algoritmizálás, adatmodellezés tanítása 8. előadás

Algoritmizálás, adatmodellezés tanítása 8. előadás Algoritmizálás, adatmodellezés tanítása 8. előadás Elágazás és korlátozás A backtrack alkalmas-e optimális megoldás keresésére? Van költség, és a legkisebb költségű megoldást szeretnénk előállítani. Van

Részletesebben

Bevezetés az informatikába

Bevezetés az informatikába Bevezetés az informatikába 6. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.

Részletesebben

Cohen-Sutherland vágóalgoritmus

Cohen-Sutherland vágóalgoritmus Vágási algoritmusok Alapprobléma Van egy alakzatunk (szakaszokból felépítve) és van egy "ablakunk" (lehet a monitor, vagy egy téglalap alakú tartomány, vagy ennél szabálytalanabb poligon által határolt

Részletesebben

Algoritmizálás, adatmodellezés tanítása 2. előadás

Algoritmizálás, adatmodellezés tanítása 2. előadás Algoritmizálás, adatmodellezés tanítása 2. előadás Programozási tételek Mi az, hogy programozási tétel? Típusfeladat általános megoldása. Sorozat érték Sorozat sorozat Sorozat sorozatok Sorozatok sorozat

Részletesebben

Algoritmizálás, adatmodellezés 1. előadás

Algoritmizálás, adatmodellezés 1. előadás Algoritmizálás, adatmodellezés 1. előadás Algoritmus-leíró eszközök Folyamatábra Irányított gráf, amely csomópontokból és őket összekötő élekből áll, egyetlen induló és befejező éle van, az induló élből

Részletesebben

Algoritmizálás és adatmodellezés tanítása 6. előadás

Algoritmizálás és adatmodellezés tanítása 6. előadás Algoritmizálás és adatmodellezés tanítása 6. előadás Összetett típusok 1. Rekord 2. Halmaz (+multihalmaz, intervallumhalmaz) 3. Tömb (vektor, mátrix) 4. Szekvenciális file (input, output) Pap Gáborné,

Részletesebben

Algoritmizálás, adatmodellezés tanítása 2. előadás

Algoritmizálás, adatmodellezés tanítása 2. előadás Algoritmizálás, adatmodellezés tanítása 2. előadás Másolás függvényszámítás Bemenet: N N, X H N, g:h G, F: G N G, f: G * xg G Kimenet: Y G N Előfeltétel: Utófeltétel: i(1 i N) Y=F(g(X 1 ),, g(x N )) f

Részletesebben

Szélsőérték-számítás

Szélsőérték-számítás Szélsőérték-számítás Jelölések A következő jelölések mind az f függvény x szerinti parciális deriváltját jelentik: Ugyanígy az f függvény y szerinti parciális deriváltja: f x = xf = f x f y = yf = f y

Részletesebben

Bevezetés a programozásba. 5. Előadás: Tömbök

Bevezetés a programozásba. 5. Előadás: Tömbök Bevezetés a programozásba 5. Előadás: Tömbök ISMÉTLÉS Specifikáció Előfeltétel: milyen körülmények között követelünk helyes működést Utófeltétel: mit várunk a kimenettől, mi az összefüggés a kimenet és

Részletesebben

Matematika I. NÉV:... FELADATOK: 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon.

Matematika I. NÉV:... FELADATOK: 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon. 215.12.8. Matematika I. NÉV:... 1. Lineáris transzformációk segítségével ábrázoljuk az f(x) = ln(2 3x) függvényt. 7pt 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon.

Részletesebben

BME MOGI Gépészeti informatika 15.

BME MOGI Gépészeti informatika 15. BME MOGI Gépészeti informatika 15. 1. feladat Készítsen alkalmazást a y=2*sin(3*x-π/4)-1 függvény ábrázolására a [-2π; 2π] intervallumban 0,1-es lépésközzel! Ezen az intervallumon a függvény értékkészlete

Részletesebben

Algoritmizálás, adatmodellezés tanítása 11. előadás. (Horváth Gyula előadása alapján)

Algoritmizálás, adatmodellezés tanítása 11. előadás. (Horváth Gyula előadása alapján) Algoritmizálás, adatmodellezés tanítása 11. előadás (Horváth Gyula előadása alapján) Rekurzió Klasszikus példák Faktoriális n! Fibonacci-számok Fib n A rekurzió lényege: önhivatkozás n * n 1! ha n 0 1

Részletesebben

Matematika III előadás

Matematika III előadás Matematika III. - 2. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 23 paramétervonalak,

Részletesebben

5. fejezet. Differenciálegyenletek

5. fejezet. Differenciálegyenletek 5. fejezet Differenciálegyenletek 5.. Differenciálegyenletek 5... Szeparábilis differenciálegyenletek 5.. Oldjuk meg az alábbi differenciálegyenleteket, és ábrázoljunk néhány megoldást. a) y = x. b) y

Részletesebben

Hatékonyság 1. előadás

Hatékonyság 1. előadás Hatékonyság 1. előadás Mi a hatékonyság Bevezetés A hatékonyság helye a programkészítés folyamatában: csak HELYES programra Erőforrásigény: a felhasználó és a fejlesztő szempontjából A hatékonyság mérése

Részletesebben

Közismereti informatika I. 4. előadás

Közismereti informatika I. 4. előadás Közismereti informatika I. 4. előadás Rendezések Bemenet: N: Egész, X: Tömb(1..N: Egész) Kimenet: X: Tömb(1..N: Egész) Előfeltétel: Utófeltétel: Rendezett(X) és X=permutáció(X ) Az eredmény a bemenet egy

Részletesebben

Utolsó módosítás: Feladat egy kétváltozós valós függvény kirajzolása különféle megjelenítési módszerekkel.

Utolsó módosítás: Feladat egy kétváltozós valós függvény kirajzolása különféle megjelenítési módszerekkel. Utolsó módosítás: 2008.09.04. Kétváltozós függvények ábrázolása 1 Bevezetés Feladat egy kétváltozós valós függvény kirajzolása különféle megjelenítési módszerekkel. Például: szintvonalakkal, pontfelhővel,

Részletesebben

3. Szűrés képtérben. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)

3. Szűrés képtérben. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 3. Szűrés képtérben Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE http://www.inf.u-szeged.hu/~kato/teaching/ 2 Kép transzformációk típusai Kép értékkészletének radiometriai információ

Részletesebben

sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan!

sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan! Matematika előadás elméleti kérdéseinél kérdezhető képletek Analízis II Határozatlan integrálszámítás g) t = tg x 2 helyettesítés esetén mivel egyenlő sin x = cos x =? g) t = tg x 2 helyettesítés esetén

Részletesebben

Algoritmusok és adatszerkezetek I. 4. előadás

Algoritmusok és adatszerkezetek I. 4. előadás Algoritmusok és adatszerkezetek I. 4. előadás A lista olyan sorozat, amelyben műveleteket egy kiválasztott, az ún. aktuális elemmel lehet végezni. A lista rendelkezik az alábbi műveletekkel: Üres: Lista

Részletesebben

Koordináta geometria III.

Koordináta geometria III. Koordináta geometria III. TÉTEL: A P (x; y) pont akkor és csak akkor illeszkedik a K (u; v) középpontú r sugarú körre (körvonalra), ha (x u) 2 + (y v) 2 = r 2. Ez az összefüggés a K (u; v) középpontú r

Részletesebben

SZÁMÍTÓGÉPI GRAFIKA VÁGÁS

SZÁMÍTÓGÉPI GRAFIKA VÁGÁS SZÁMÍTÓGÉPI GRAFIKA VÁGÁS FELADAT: Ha az alakzat nagyobb, mint a képtartomány, amelyben megjelenítendő, akkor a kívül eső részeket el kell hagyni, azaz az alakzatról le kell vágni, röviden szólva: az alakzatot

Részletesebben

Függvények ábrázolása

Függvények ábrázolása Függvények ábrázolása Matematikai függvényeket analitikusan nem tudunk a matlabban megadni (tudunk, de ilyet még nem tanulunk). Ahhoz, hogy egy függvényt ábrázoljuk, hasonlóan kell eljárni, mint a házi

Részletesebben

Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR. Polárkoordinátás és paraméteres megadású görbék. oktatási segédanyag

Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR. Polárkoordinátás és paraméteres megadású görbék. oktatási segédanyag Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Polárkoordinátás és paraméteres megadású görbék oktatási segédanyag Összeállította: Lengyelné Dr. Szilágyi Szilvia Miskolc, 01. Köszönetnyilvánítás Az

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások Megoldások 1. Írd fel a K (0; 2) középpontú 7 sugarú kör egyenletét! A keresett kör egyenletét felírhatjuk a képletbe való behelyettesítéssel: x 2 + (y + 2) 2 = 49. 2. Írd fel annak a körnek az egyenletét,

Részletesebben

Számítási feladatok a Számítógépi geometria órához

Számítási feladatok a Számítógépi geometria órához Számítási feladatok a Számítógépi geometria órához Kovács Zoltán Copyright c 2012 Last Revision Date: 2012. október 15. kovacsz@nyf.hu Technikai útmutató a jegyzet használatához A jegyzet képernyőbarát

Részletesebben

Tartalom. Programozási alapismeretek. 11. előadás

Tartalom. Programozási alapismeretek. 11. előadás Tartalom Programozási alapismeretek 11. előadás Rendezési feladat specifikáció Egyszerű cserés Minimum-kiválasztásos Buborékos Javított buborékos Beillesztéses Javított beillesztéses Szétosztó Számlálva

Részletesebben

OPTIKA. Szín. Dr. Seres István

OPTIKA. Szín. Dr. Seres István OPTIKA Szín Dr. Seres István Additív színrendszer Seres István 2 http://fft.szie.hu RGB (vagy 24 Bit Color): Egy képpont a piros, a kék és a zöld 256-256-256 féle árnyalatából áll össze, összesen 16 millió

Részletesebben

Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx =

Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx = Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika II Határozatlan Integrálszámítás d) Adja meg az alábbi alapintegrálokat! x n 1 dx =, sin 2 x dx = d) Adja meg az alábbi alapintegrálokat!

Részletesebben

Láthatósági kérdések

Láthatósági kérdések Láthatósági kérdések Láthatósági algoritmusok Adott térbeli objektum és adott nézőpont esetén el kell döntenünk, hogy mi látható az adott alakzatból a nézőpontból, vagy irányából nézve. Az algoritmusok

Részletesebben

Matematika A2 vizsga mgeoldása június 4.

Matematika A2 vizsga mgeoldása június 4. Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont

Részletesebben

Programozási alapismeretek 11. előadás

Programozási alapismeretek 11. előadás Programozási alapismeretek 11. előadás Tartalom Rendezési feladat specifikáció Egyszerű cserés rendezés Minimum-kiválasztásos rendezés Buborékos rendezés Javított buborékos rendezés Beillesztéses rendezés

Részletesebben

KOORDINÁTA-GEOMETRIA

KOORDINÁTA-GEOMETRIA XIV. Témakör: feladatok 1 Huszk@ Jenő XIV.TÉMAKÖR Téma A pont koordinátageometriája A kör koordinátageometriája KOORDINÁTA-GEOMETRIA A projekt típus ú feladatok tartalmi szintézise A feladat sorszáma Oldal

Részletesebben

Hajder Levente 2017/2018. II. félév

Hajder Levente 2017/2018. II. félév Hajder Levente hajder@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2017/2018. II. félév Tartalom 1 2 3 Geometriai modellezés feladata A világunkat modellezni kell a térben. Valamilyen koordinátarendszer

Részletesebben

10. Koordinátageometria

10. Koordinátageometria I. Nulladik ZH-ban láttuk: 0. Koordinátageometria. Melyek azok a P x; y pontok, amelyek koordinátái kielégítik az Ábrázolja a megoldáshalmazt a koordináta-síkon! x y x 0 egyenlőtlenséget? ELTE 00. szeptember

Részletesebben

Érettségi feladatok: Koordináta-geometria 1/5

Érettségi feladatok: Koordináta-geometria 1/5 Érettségi feladatok: Koordináta-geometria 1/5 2003. Próba/ 13. Adott egy háromszög három csúcspontja a koordinátáival: A( 4; 4), B(4; 4) és C( 4; 8). Számítsa ki a C csúcsból induló súlyvonal és az A csúcsból

Részletesebben

Programozási nyelvek 4. előadás

Programozási nyelvek 4. előadás Programozási nyelvek 4. előadás Fa rajzolása rekurzívan Logo fa variációk A fa egy törzsből áll, amelynek tetején két ág nő ki, s mindkettő tulajdonképpen egy-egy alacsonyabb, rövidebb törzsű fa. Az ábrában

Részletesebben

Függvények Megoldások

Függvények Megoldások Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény

Részletesebben

Előfeltétel: legalább elégséges jegy Diszkrét matematika II. (GEMAK122B) tárgyból

Előfeltétel: legalább elégséges jegy Diszkrét matematika II. (GEMAK122B) tárgyból ÜTEMTERV Programozás-elmélet c. tárgyhoz (GEMAK233B, GEMAK233-B) BSc gazdaságinformatikus, programtervező informatikus alapszakok számára Óraszám: heti 2+0, (aláírás+kollokvium, 3 kredit) 2019/20-es tanév

Részletesebben

A 2013/2014 tanévi Országos Középiskolai Tanulmányi Verseny első forduló javítási-értékelési útmutató. INFORMATIKA II. (programozás) kategória

A 2013/2014 tanévi Országos Középiskolai Tanulmányi Verseny első forduló javítási-értékelési útmutató. INFORMATIKA II. (programozás) kategória Oktatási Hivatal 2013/2014 tanévi Országos Középiskolai Tanulmányi Verseny első forduló javítási-értékelési útmutató INFORMTIK II. (programozás) kategória Kérjük a tisztelt tanár kollégákat, hogy a dolgozatokat

Részletesebben

Matematikai háttér. 3. Fejezet. A matematika hozzászoktatja a szemünket ahhoz, hogy tisztán és világosan lássa az igazságot.

Matematikai háttér. 3. Fejezet. A matematika hozzászoktatja a szemünket ahhoz, hogy tisztán és világosan lássa az igazságot. 3. Fejezet Matematikai háttér A matematika hozzászoktatja a szemünket ahhoz, hogy tisztán és világosan lássa az igazságot René Descartes Számtalan kiváló szakirodalom foglalkozik a különféle differenciálegyenletek

Részletesebben

Algoritmusok raszteres grafikához

Algoritmusok raszteres grafikához Algoritmusok raszteres grafikához Egyenes rajzolása Kör rajzolása Ellipszis rajzolása Algoritmusok raszteres grafikához Feladat: Grafikai primitíveket (pl. vonalat, síkidomot) ábrázolni kép-mátrixszal,

Részletesebben

Algoritmusok raszteres grafikához

Algoritmusok raszteres grafikához Algoritmusok raszteres grafikához Egyenes rajzolása Kör rajzolása Ellipszis rajzolása Algoritmusok raszteres grafikához Feladat: Grafikai primitíveket (pl. vonalat, síkidomot) ábrázolni kép-mátrixszal,

Részletesebben

1. Bevezetés. 2. Felületek megadása térben. A fenti kúp egy z tengellyel rendelkező. ismerhető fel, hogy. 1. definíció. Legyen D R n.

1. Bevezetés. 2. Felületek megadása térben. A fenti kúp egy z tengellyel rendelkező. ismerhető fel, hogy. 1. definíció. Legyen D R n. 1. Többváltozós függvények 1. Bevezetés Ennek a fejezetnek a célja a kétváltozós függvények vizsgálata, ami során a 3-dimenziós felületeket szeretnénénk megérteni. 1. definíció. Legyen D R n. Ekkor az

Részletesebben

Adatbázis rendszerek Gy: Algoritmusok C-ben

Adatbázis rendszerek Gy: Algoritmusok C-ben Adatbázis rendszerek 1. 1. Gy: Algoritmusok C-ben 53/1 B ITv: MAN 2015.09.08 Alapalgoritmusok Összegzés Megszámlálás Kiválasztás Kiválasztásos rendezés Összefésülés Szétválogatás Gyorsrendezés 53/2 Összegzés

Részletesebben

Közgazdaságtan I. Számolási feladat-típusok a számonkérésekre 3. hét. 2018/2019/I. Kupcsik Réka

Közgazdaságtan I. Számolási feladat-típusok a számonkérésekre 3. hét. 2018/2019/I. Kupcsik Réka Közgazdaságtan I. Számolási feladat-típusok a számonkérésekre 3. hét 2018/2019/I. Témakörök I. Költségvetési halmaz II. Közömbösségi görbe III. Optimális fogyasztási döntés I. Költségvetési halmaz Tartalom

Részletesebben

Érettségi feladatok Koordinátageometria_rendszerezve / 5

Érettségi feladatok Koordinátageometria_rendszerezve / 5 Érettségi feladatok Koordinátageometria_rendszerezve 2005-2013 1/ 5 Vektorok 2005. május 28./12. Adottak az a (4; 3) és b ( 2; 1) vektorok. a) Adja meg az a hosszát! b) Számítsa ki az a + b koordinátáit!

Részletesebben

A kör. A kör egyenlete

A kör. A kör egyenlete A kör egyenlete A kör A kör egyenlete 8 a) x + y 6 b) x + y c) 6x + 6y d) x + y 9 8 a) x + y 6 + 9 b) x + y c) x + y a + b 8 a) (x - ) + (y - ) 9, rendezve x + y - 8x - y + b) x + y - 6x - 6y + c) x +

Részletesebben

Matematika I. NÉV:... FELADATOK:

Matematika I. NÉV:... FELADATOK: 24.2.9. Matematika I. NÉV:... FELADATOK:. A tanult módon vizsgáljuk az a = 3, a n = 3a n 2 (n > ) rekurzív sorozatot. pt 2n 2 + e 2. Definíció szerint és formálisan is igazoljuk, hogy lim =. pt n 3 + n

Részletesebben

Időjárási csúcsok. Bemenet. Kimenet. Példa. Korlátok. Nemes Tihamér Nemzetközi Informatikai Tanulmányi Verseny, 2-3. korcsoport

Időjárási csúcsok. Bemenet. Kimenet. Példa. Korlátok. Nemes Tihamér Nemzetközi Informatikai Tanulmányi Verseny, 2-3. korcsoport Időjárási csúcsok Ismerjük N napra a déli hőmérséklet értékét. Lokálisan melegnek nevezünk egy napot (az első és az utolsó kivételével), ha az aznap mért érték nagyobb volt a két szomszédjánál, lokálisan

Részletesebben

Láncolt listák Témakörök. Lista alapfogalmak

Láncolt listák Témakörök. Lista alapfogalmak Láncolt listák szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Lista alapfogalmai Egyirányú egyszerű láncolt lista Egyirányú rendezett láncolt lista Speciális láncolt listák Témakörök

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

Egyszerű programozási tételek

Egyszerű programozási tételek Egyszerű programozási tételek 2. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. szeptember 15. Sergyán (OE NIK) AAO 02 2011. szeptember 15.

Részletesebben

Geometriai valo szí nű se g

Geometriai valo szí nű se g Geometriai valo szí nű se g Szűk elméleti áttekintő Klasszikus valószínűség: Geometriai valószínűség: - 1 dimenzióban: - dimenzióban: - + dimenzióban: jó esetek összes eset jó szakaszok teljes szakasz

Részletesebben

NULLADIK MATEMATIKA ZÁRTHELYI

NULLADIK MATEMATIKA ZÁRTHELYI NULLADIK MATEMATIKA ZÁRTHELYI 08-09-07 Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható! A feladatlap kizárólag kék vagy fekete tollal tölthető ki.

Részletesebben

Egyenletek, egyenlőtlenségek VII.

Egyenletek, egyenlőtlenségek VII. Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós

Részletesebben

Helyvektorok, műveletek, vektorok a koordináta-rendszerben

Helyvektorok, műveletek, vektorok a koordináta-rendszerben Helyvektorok, műveletek, vektorok a koordináta-rendszerben. Rajzold meg az alábbi helyvektorokat a derékszögű koordináta-rendszerben, majd számítsd ki a hosszúságukat! a) (4 ) b) ( 5 ) c) ( 6 ) d) (4 )

Részletesebben

Rendezések. A rendezési probléma: Bemenet: Kimenet: n számot tartalmazó (a 1,a 2,,a n ) sorozat

Rendezések. A rendezési probléma: Bemenet: Kimenet: n számot tartalmazó (a 1,a 2,,a n ) sorozat 9. Előadás Rendezések A rendezési probléma: Bemenet: n számot tartalmazó (a 1,a 2,,a n ) sorozat Kimenet: a bemenő sorozat olyan (a 1, a 2,,a n ) permutációja, hogy a 1 a 2 a n 2 Rendezések Általánosabban:

Részletesebben

Algoritmizálás és adatmodellezés tanítása 4. előadás

Algoritmizálás és adatmodellezés tanítása 4. előadás Algoritmizálás és adatmodellezés tanítása 4. előadás Típusok osztályozása Összetettség (strukturáltság) szempontjából: skalár (más szóval elemi vagy strukturálatlan) összetett (más szóval strukturált)

Részletesebben

x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs mátrixa 3D-ben?

x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs mátrixa 3D-ben? . Mi az (x, y) koordinátákkal megadott pont elforgatás uténi két koordinátája, ha α szöggel forgatunk az origó körül? x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs

Részletesebben

VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag

VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag 2018/19 1. félév Függvények határértéke 1. Bizonyítsuk be definíció alapján a következőket! (a) lim x 2 3x+1 5x+4 = 1 2 (b) lim x 4 x 16 x 2 4x = 2

Részletesebben

Számítógépes Grafika mintafeladatok

Számítógépes Grafika mintafeladatok Számítógépes Grafika mintafeladatok Feladat: Forgassunk a 3D-s pontokat 45 fokkal a X tengely körül, majd nyújtsuk az eredményt minden koordinátájában kétszeresére az origóhoz képest, utána forgassunk

Részletesebben

Multihalmaz, intervallumhalmaz

Multihalmaz, intervallumhalmaz Multihalmaz, intervallumhalmaz Halmaz féleségek 1. Halmaz Gyümölcsök: {alma,körte,szilva,barack} 2. Multihalmaz Állatok: {(macska,4),(rigó,2),(galamb,3)} 3. Intervallumhalmaz diszjunkt Óráim: {[8-10],[13-14],[16-20)}

Részletesebben

Algoritmizálás és adatmodellezés tanítása 1. előadás

Algoritmizálás és adatmodellezés tanítása 1. előadás Algoritmizálás és adatmodellezés tanítása 1. előadás Algoritmus-leíró eszközök Folyamatábra Irányított gráf, amely csomópontokból és őket összekötő élekből áll, egyetlen induló és befejező éle van, az

Részletesebben

A keresett kör középpontja Ku ( ; v, ) a sugara r = 1. Az adott kör középpontjának koordinátái: K1( 4; 2)

A keresett kör középpontja Ku ( ; v, ) a sugara r = 1. Az adott kör középpontjának koordinátái: K1( 4; 2) 55 A kör 87 8 A keresett kör középpontja Ku ( ; v, ) a sugara r = Az adott kör középpontjának koordinátái: K( ; ) és a sugara r =, az adott pont P(; ) Ekkor KP = és KK = () ( u ) + ( v ) =, () ( u ) +

Részletesebben

Feladatok a MATEMATIKA. standardleírás 2. szintjéhez

Feladatok a MATEMATIKA. standardleírás 2. szintjéhez Feladatok a MATEMATIKA standardleírás 2. szintjéhez A feladat sorszáma: 1. Standardszint: 2. Gondolkodási és megismerési módszerek Halmazok Képes különböző elemek közös tulajdonságainak felismerésére.

Részletesebben

1/ gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI

1/ gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI / Operációkutatás. gyakorlat Lineáris Programozási feladatok megoldása szimplex módszerrel Pécsi Tudományegyetem PTI /. Legyen adott az alábbi LP-feladat: x + 4x + x 9 x + x x + x + x 6 x, x, x x + x +

Részletesebben

EGY ABLAK - GEOMETRIAI PROBLÉMA

EGY ABLAK - GEOMETRIAI PROBLÉMA EGY ABLAK - GEOMETRIAI PROBLÉMA Írta: Hajdu Endre A számítógépemhez tartozó két hangfal egy-egy négyzet keresztmetszetű hasáb hely - szűke miatt az ablakpárkányon van elhelyezve (. ábra).. ábra Hogy az

Részletesebben

Az f ( xy, ) függvény y változó szerinti primitív függvénye G( x, f xydy= Gxy + C. Kétváltozós függvény integrálszámítása. Primitívfüggvény.

Az f ( xy, ) függvény y változó szerinti primitív függvénye G( x, f xydy= Gxy + C. Kétváltozós függvény integrálszámítása. Primitívfüggvény. Tartalomjegyzék Kétváltozós függvény integrálszámítása... Primitívfüggvény... Kettősintegrál... A kettősintegrál téglalap tartományon... A kettősintegrál létezésének szükséges feltétele... 3 Illusztráció...

Részletesebben

a b a b x y a b c d e f PSZT/PSZSZT 1.) Az ábrán e, f egyenesek párhuzamosak. Számítsd ki a hiányzó adatokat!

a b a b x y a b c d e f PSZT/PSZSZT 1.) Az ábrán e, f egyenesek párhuzamosak. Számítsd ki a hiányzó adatokat! 1 PSZT/PSZSZT 1.) Az ábrán e, f egyenesek párhuzamosak. Számítsd ki a hiányzó adatokat! a b a b x y a a b x b y 17 25 13 10 5 7 3 6 7 10 2 4 2 3 9 5 2.) Az ábrán lévő paralelogramma oldalai a) AB=26 cm,

Részletesebben

Szelekció. Döntéshozatal

Szelekció. Döntéshozatal Szelekció Döntéshozatal Elágazásos algoritmus-szerkezet Eddig az ún. szekvenciális (lineáris) algoritmust alkalmaztunk a parancsok egyenként egymás után hajtüdnak végre. Bizonyos esetekben egy adott feltételtől

Részletesebben

Két körhenger általánosabban ( Alkalmazzuk a vektoralgebrát! ) 1. ábra

Két körhenger általánosabban ( Alkalmazzuk a vektoralgebrát! ) 1. ábra Két körhenger általánosabban ( Alkalmazzuk a vektoralgebrát! ) Egy korábbi dolgozatunkban címe: Két egyenes körhenger a merőlegesen metsződő tengelyű körhengerek áthatási feladatával foglalkoztunk. Most

Részletesebben

Speciális szükségletű felhasználók navigációjának vizsgálata különböző multimédiás alkalmazásokban

Speciális szükségletű felhasználók navigációjának vizsgálata különböző multimédiás alkalmazásokban Speciális szükségletű felhasználók navigációjának vizsgálata különböző multimédiás alkalmazásokban MÁTRAI RITA1, KOSZTYÁN ZSOLT TIBOR2, SIKNÉ DR. LÁNYI CECÍLIA3 1,3 Veszprémi Egyetem, Képfeldolgozás és

Részletesebben

Kettős integrál Hármas integrál. Többes integrálok. Sáfár Orsolya május 13.

Kettős integrál Hármas integrál. Többes integrálok. Sáfár Orsolya május 13. 2015 május 13. Kétváltozós függvény kettősintegráljának definíciója Legyen f (x, y), R 2 R korlátos függvény egy T korlátos és mérhető területű tartományon. Vegyük a T tartomány egy felosztását T 1, T

Részletesebben

Rajz 01 gyakorló feladat

Rajz 01 gyakorló feladat Rajz 01 gyakorló feladat Alkatrészrajz készítése Feladat: Készítse el az alábbi ábrán látható kézi működtetésű szelepház alkatrészrajzát! A feladat megoldásához szükséges fájlok: Rjz01k.ipt A feladat célja:

Részletesebben

Fényerősség. EV3 programleírás. Használt rövidítések. A program működésének összegzése

Fényerősség. EV3 programleírás. Használt rövidítések. A program működésének összegzése EV3 programleírás A 11- es program egy 60W- os hagyományos izzó fényerősségét méri (más típusú izzókkal is használható) tíz pontnál, 5 cm- es intervallumokra felosztva. Használt rövidítések ol Külső ciklus

Részletesebben

2 (j) f(x) dx = 1 arcsin(3x 2) + C. (d) A x + Bx + C 5x (2x 2 + 7) + Hx + I. 2 2x F x + G. x

2 (j) f(x) dx = 1 arcsin(3x 2) + C. (d) A x + Bx + C 5x (2x 2 + 7) + Hx + I. 2 2x F x + G. x I feladatsor Határozza meg az alábbi függvények határozatlan integrálját: a fx dx = x arctg + C b fx dx = arctgx + C c fx dx = 5/x 4 arctg 5 x + C d fx dx = arctg + C 5/ e fx dx = x + arctg + C f fx dx

Részletesebben

Adatszerkezetek. Nevezetes algoritmusok (Keresések, rendezések)

Adatszerkezetek. Nevezetes algoritmusok (Keresések, rendezések) Adatszerkezetek Nevezetes algoritmusok (Keresések, rendezések) Keresések A probléma általános megfogalmazása: Adott egy N elemű sorozat, keressük meg azt az elemet (határozzuk meg a helyét a sorozatban),

Részletesebben

Rendezések. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar október 24.

Rendezések. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar október 24. Rendezések 8. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. október 24. Sergyán (OE NIK) AAO 08 2011. október 24. 1 / 1 Felhasznált irodalom

Részletesebben

3D koordináta-rendszerek

3D koordináta-rendszerek 3D koordináta-rendszerek z z y x y x y balkezes bal-sodrású x jobbkezes jobb-sodrású z 3D transzformációk - homogén koordináták (x, y, z) megadása homogén koordinátákkal: (x, y, z, 1) (x, y, z, w) = (x,

Részletesebben

OPTIKA. Vékony lencsék képalkotása. Dr. Seres István

OPTIKA. Vékony lencsék képalkotása. Dr. Seres István OPTIKA Vékony lencsék képalkotása Dr. Seres István Vékonylencse fókusztávolsága D 1 f (n 1) 1 R 1 1 R 2 Ha f > 0, gyűjtőlencse R > 0, ha domború felület R < 0, ha homorú felület n a relatív törésmutató

Részletesebben

A Cassini - görbékről

A Cassini - görbékről A Cassini - görbékről Giovanni Domenico Cassini, a 17-18 században élt olasz származású francia csillagász neve egyebek mellett a róla elnevezett görbékről is ismert lehet; ilyeneket mutat az 1 ábra is

Részletesebben

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont) 1. tétel 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója cm. Mekkora a háromszög átfogója? (4 pont). Adott az ábrán két vektor. Rajzolja meg a b, a b és az a b vektorokat! (6 pont)

Részletesebben

Pásztor Attila. Algoritmizálás és programozás tankönyv az emeltszintű érettségihez

Pásztor Attila. Algoritmizálás és programozás tankönyv az emeltszintű érettségihez Pásztor Attila Algoritmizálás és programozás tankönyv az emeltszintű érettségihez 3. ADATTÍPUSOK...26 3.1. AZ ADATOK LEGFONTOSABB JELLEMZŐI:...26 3.2. ELEMI ADATTÍPUSOK...27 3.3. ÖSSZETETT ADATTÍPUSOK...28

Részletesebben

Haladó rendezések. PPT 2007/2008 tavasz.

Haladó rendezések. PPT 2007/2008 tavasz. Haladó rendezések szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Témakörök Alapvető összehasonlító rendezések Shell rendezés Kupacrendezés Leszámláló rendezés Radix rendezés Edényrendezés

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit

First Prev Next Last Go Back Full Screen Close Quit Többváltozós függvények (2) First Prev Next Last Go Back Full Screen Close Quit 1. Egyváltozós függvények esetén a differenciálhatóságból következett a folytonosság. Fontos tudni, hogy abból, hogy egy

Részletesebben

Gépi tanulás a gyakorlatban. Lineáris regresszió

Gépi tanulás a gyakorlatban. Lineáris regresszió Gépi tanulás a gyakorlatban Lineáris regresszió Lineáris Regresszió Legyen adott egy tanuló adatbázis: Rendelkezésünkre áll egy olyan előfeldolgozott adathalmaz, aminek sorai az egyes ingatlanokat írják

Részletesebben

Képrestauráció Képhelyreállítás

Képrestauráció Képhelyreállítás Képrestauráció Képhelyreállítás Képrestauráció - A képrestauráció az a folyamat mellyel a sérült képből eltávolítjuk a degradációt, eredményképpen pedig az eredetihez minél közelebbi képet szeretnénk kapni

Részletesebben