Programozási alapismeretek 11. előadás

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Programozási alapismeretek 11. előadás"

Átírás

1 Programozási alapismeretek 11. előadás

2 Tartalom Rendezési feladat specifikáció Egyszerű cserés rendezés Minimum-kiválasztásos rendezés Buborékos rendezés Javított buborékos rendezés Beillesztéses rendezés Javított beillesztéses rendezés Szétosztó rendezés Számlálva szétosztó rendezés Rendezések hatékonysága idő Horváth-Papné-Szlávi-Zsakó: Programozási alapismeretek 11. 2/30

3 Rendezési feladat Specifikáció: Bemenet: N Egész, X Tömb[1..N:Valami] Kimenet: X Tömb[1..N:Valami] Előfeltétel: N 0 Utófeltétel: RendezettE(X ) és X Permutáció(X) Jelölések: o o o X : az X kimeneti (megálláskori) értéke RendezettE(X): X rendezett-e? X Permutáció(X): X az X elemeinek egy permutációja-e? Horváth-Papné-Szlávi-Zsakó: Programozási alapismeretek 11. 3/30

4 Rendezések (fontos új fogalmak, jelölések) Aposztróf a specifikációban: Ha egy adat előfordul a bemeneten és kimeneten is, akkor az UF-ben együtt kell előfordulnia az adat bemenetkori és kimenetkori értéke. Megkülönböztetésül a kimeneti értéket megaposztrofáljuk. Pl.: Z :=a Z kimeneti (megálláskori) értéke. Rendezett-e predikátum: RendezettE(Z): i(1 i N 1): Z[i] Z[i+1] Permutációhalmaz: Permutáció(Z):= a Z elemeinek összes permutációját tartalmazó halmaz. Horváth-Papné-Szlávi-Zsakó: Programozási alapismeretek 11. 4/30

5 Egyszerű cserés rendezés A lényeg: Hasonlítsuk az első elemet az összes mögötte levővel, s ha kell, cseréljük meg! Ezután ugyanezt csináljuk a második elemre! Végül az utolsó két elemre! A minimum az alsó végére kerül. A pirossal jelöltek már a helyükön vannak Horváth-Papné-Szlávi-Zsakó: Programozási alapismeretek 11. 5/30

6 Egyszerű cserés rendezés Elem-csere Algoritmus: i=1..n 1 j=i+1..n X[i]>X[j] S:=X[i] X[i]:=X[j] X[j]:=S I Hasonlítások száma: N 1= Mozgatások száma: 0 3 N N N 1 2 N 1 2 Horváth-Papné-Szlávi-Zsakó: Programozási alapismeretek 11. 6/30 N Változó i,j:egész S:Valami

7 Minimum-kiválasztásos rendezés A lényeg: Vegyük az első elem és a mögöttiek minimumát, s cseréljük meg az elsővel (ha kell)! Ezután ugyanezt csináljuk a második elemre! Végül az utolsó két elemre! A minimum az alsó végére kerül. A pirossal jelöltek már a helyükön vannak Horváth-Papné-Szlávi-Zsakó: Programozási alapismeretek 11. 7/30

8 Minimum-kiválasztásos rendezés Minimumkiválasztás az i.-től Elem-csere Algoritmus: i=1..n 1 MinI:=i j=i+1..n X[MinI]>X[j] I MinI:=j S:=X[i] X[i]:=X[MinI] X[MinI]:=S Hasonlítások száma: N 1= Mozgatások száma: 3 (N 1) N N Változó MinI, i,j:egész S:Valami N 1 2 Horváth-Papné-Szlávi-Zsakó: Programozási alapismeretek 11. 8/30

9 Buborékos rendezés A lényeg: Hasonlítsunk minden elemet a mögötte levővel, s ha kell, cseréljük meg! Ezután ugyanezt csináljuk az utolsó elem nélkül! Végül az első két elemre! A maximum a felső végére kerül. A többiek is tartanak a helyük felé. A pirossal jelöltek már a helyükön vannak Horváth-Papné-Szlávi-Zsakó: Programozási alapismeretek 11. 9/30

10 Buborékos rendezés Elem-csere Algoritmus: i=n..2, -1-esével j=1..i 1 X[j]>X[j+1] S:=X[j] X[j]:=X[j+1] X[j+1]:=S I Hasonlítások száma: N 1= N N 1 Mozgatások száma: 0 3 N 2 N Változó i,j:egész S:Valami N 1 2 Horváth-Papné-Szlávi-Zsakó: Programozási alapismeretek /30

11 Javított buborékos Megfigyelések: rendezés Ha a belső ciklusban egyáltalán nincs csere, akkor be lehetne fejezni a rendezést. Ha a belső ciklusban a K. helyen van az utolsó csere, akkor a K+1. helytől már biztosan jó elemek vannak, a külső ciklusváltozóval többet is léphetünk. Horváth-Papné-Szlávi-Zsakó: Programozási alapismeretek /30

12 Az utolsó cserehely feljegyzése Javított buborékos Átírás amíg -os ciklussá Algoritmus: rendezés i:=n i 2 cs:=0 j=1..i 1 X[j]>X[j+1] I S:=X[j] X[j]:=X[j+1] X[j+1]:=S cs:=j i:=cs N Változó cs, i,j:egés S:Valam Horváth-Papné-Szlávi-Zsakó: Programozási alapismeretek /30

13 Beillesztéses rendezés A lényeg: Egy elem rendezett. A másodikat vagy mögé, vagy elé tesszük, így már ketten is rendezettek. Az i-ediket a kezdő, i 1 rendezettben addig hozzuk előre cserékkel, amíg a helyére nem kerül; így már i darab rendezett lesz. Az utolsóval ugyanígy! Horváth-Papné-Szlávi-Zsakó: Programozási alapismeretek /30

14 Beillesztéses rendezés Elem-csere Algoritmus: i=2..n j:=i 1 j>0 és X[j]>X[j+1] S:=X[j] X[j]:=X[j+1] X[j+1]:=S j:=j 1 N 1 Hasonlítások száma: N 1 N 2 N 1 Mozgatások száma: 0 3 N 2 Változó i,j:egész S:Valami Horváth-Papné-Szlávi-Zsakó: Programozási alapismeretek /30

15 Javított beillesztéses rendezés A lényeg: Egy elem rendezett. A másodikat vagy mögé, vagy elé tesszük, így már ketten is rendezettek. Az i-ediknél a nála kisebbeket tologassuk hátra, majd illesszük be eléjük az i-ediket; így már i darab rendezett lesz. Az utolsóval ugyanígy! Horváth-Papné-Szlávi-Zsakó: Programozási alapismeretek /30

16 Elem-mozgatás, nem csere! Javított beillesztéses Algoritmus: rendezés i=2..n S:=X[i] j:=i 1 j>0 és X[j]>s X[j+1]:=X[j] j:=j 1 X[j+1]:=S N 1 Hasonlítások száma: N 1 N 2 Mozgatások száma: 2 (N 1) (N 4) Változó i,j:egész S:Valami N 1 2 Horváth-Papné-Szlávi-Zsakó: Programozási alapismeretek /30

17 Szétosztó rendezés A lényeg: Ha a rendezendő sorozatról speciális tudásunk van, akkor megpróbálkozhatunk más módszerekkel is. Specifikáció rendezés N lépésben: Bemenet: N Egész, X Tömb[1..N:Egész] Kimenet: Y Tömb[1..N:Egész] Előfeltétel: N 0 és X Permutáció(1,,N) Utófeltétel: RendezettE(Y) és Y Permutáció(X) Horváth-Papné-Szlávi-Zsakó: Programozási alapismeretek /30

18 Szétosztó rendezés Algoritmus: i=1..n Y[X[i]]:=X[i] Persze ehelyett írhattuk volna: Y[i]:=i! Azaz a feladat akkor érdekes, ha pl. X[i] egy rekord, aminek az egyik mezője az 1 és N közötti egész szám: X,Y Tömb[1..N:Rekord(kulcs:1..N, )] Algoritmus: i=1..n Y[X[i].kulcs]:=X[i] Változó i:egész Változó i:egész Horváth-Papné-Szlávi-Zsakó: Programozási alapismeretek /30

19 Számlálva szétosztó rendezés Előfeltétel: a rendezendő értékek 1 és M közötti egész számok, ismétlődhetnek. Specifikáció: Bemenet: N,M Egész, X Tömb[1..N:Egész] Kimenet: Y Tömb[1..N:Egész] Előfeltétel: N 0 és M 1 és i(1 i N): 1 X[i] M Utófeltétel: RendezettE(Y) és Y Permutáció(X) Horváth-Papné-Szlávi-Zsakó: Programozási alapismeretek /30

20 Számlálva szétosztó rendezés A lényeg: Első lépésben számláljuk meg, hogy melyik értékből hány van a rendezendő sorozatban! Ezután adjuk meg, hogy az első i értéket hova kell tenni: ez pontosan az i-nél kisebb számok száma a sorozatban +1! Végül nézzük végig újra a sorozatot, s az i értékű elemet tegyük a helyére, majd módosítsunk: az első i értékű elemet ettől kezdve eggyel nagyobb helyre kell tenni. Horváth-Papné-Szlávi-Zsakó: Programozási alapismeretek /30

21 Számlálva szétosztó Algoritmus: rendezés Db[1..M]:=0 [Db[i]: hány darab van i-ből?] i=1..n Db[X[i]]:=Db[X[i]]+1 Első[1]:=1 i=2..m Első[i]:=Első[i 1]+Db[i 1] [Első[i]: hol az i. elsője?] i=1..n Y[Első[X[i]]]:=X[i] Első[X[i]]:=Első[X[i]]+1 Mozgatások száma: N Additív műveletek száma: 3 M 3+2 N Változó i:egés Db, Első:T Horváth-Papné-Szlávi-Zsakó: Programozási alapismeretek /30

22 Számláló rendezés A lényeg: Ha nem megy a szétosztó rendezés (ismeretlen az M), akkor segítsünk magunkon, először számláljunk ( sorrendet ), azután osszunk szét! Ehhez használhatjuk a legegyszerűbb, cserés rendezés elvét. Jelentse Db[i] az i. elemnél kisebb, vagy az i.- kel egyenlő, de tőle balra levő elemek számát! A Db[i]+1 használható az i. elemnek a rendezett sorozatbeli indexeként. Horváth-Papné-Szlávi-Zsakó: Programozási alapismeretek /30

23 Számláló rendezés Algoritmus: Db[1..N]:=0 i=1..n 1 j=i+1..n I X[i]>X[j] Db[i]:=Db[i]+1 Db[j]:=Db[j]+1 Y[Db[i]+1]:=X[i] i=1..n N Hasonlítások száma: N 1= 2 Mozgatások száma: N Additív műveletek száma: hasonlítások száma Horváth-Papné-Szlávi-Zsakó: Programozási alapismeretek /30 N Válto i,j:e Db: N 1

24 Rendezések hatékonysága N 2 idejű rendezések: Egyszerű cserés rendezés Minimum-kiválasztásos rendezés Buborékos rendezés Javított buborékos rendezés Beillesztéses rendezés Javított beillesztéses rendezés Számláló rendezés Horváth-Papné-Szlávi-Zsakó: Programozási alapismeretek /30

25 Rendezések hatékonysága N (N+M) idejű rendezések: (de speciális feltétellel) Szétosztó rendezés Számlálva szétosztó rendezés Kitekintés: (Algoritmusok tantárgy) Lesznek N log(n) idejű rendezések. Nem lehet N log(n)-nél jobb általános rendezés! oursefile.php?id=5451 Horváth-Papné-Szlávi-Zsakó: Programozási alapismeretek /30

26 Az évfolyamzh Tudnivalók: a main.cpp fájlt egy web-es felületen kell beküldeni (akár többször is!) és ott lehet megnézni a kapott értékelést; ide a zh-t író az EHA-kódjával (pontosabban a laborokban érvényes kódjával) léphet majd be a saját jelszavával; a program standard inputról olvas, standard outputra ír, a tesztelést be- és kimenet átirányítással oldjuk meg; a bemenet biztosan helyes, ellenőrizni nem kell; a kimenetre csak az eredményeket szabad kiírni, semmi egyebet nem; a bemenet és a kimenet szintaxisa és sorrendje is rögzített, attól eltérni nem szabad. Horváth-Papné-Szlávi-Zsakó: Programozási alapismeretek /30

27 Edzeni való: Az évfolyamzh A zh-ra technikailag fel lehet készülni az alábbi linken keresztül: Horváth-Papné-Szlávi-Zsakó: Programozási alapismeretek /30

28 Az évfolyamzh Edzeni való: Néhány, jellegzetes lépés: Horváth-Papné-Szlávi-Zsakó: Programozási alapismeretek /30

29 Programozási alapismeretek 11. előadás vége

Tartalom. Programozási alapismeretek. 11. előadás

Tartalom. Programozási alapismeretek. 11. előadás Tartalom Programozási alapismeretek 11. előadás Rendezési feladat specifikáció Egyszerű cserés Minimum-kiválasztásos Buborékos Javított buborékos Beillesztéses Javított beillesztéses Szétosztó Számlálva

Részletesebben

Közismereti informatika I. 4. előadás

Közismereti informatika I. 4. előadás Közismereti informatika I. 4. előadás Rendezések Bemenet: N: Egész, X: Tömb(1..N: Egész) Kimenet: X: Tömb(1..N: Egész) Előfeltétel: Utófeltétel: Rendezett(X) és X=permutáció(X ) Az eredmény a bemenet egy

Részletesebben

Rendezések. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar október 24.

Rendezések. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar október 24. Rendezések 8. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. október 24. Sergyán (OE NIK) AAO 08 2011. október 24. 1 / 1 Felhasznált irodalom

Részletesebben

Informatikai tehetséggondozás:

Informatikai tehetséggondozás: Ég és Föld vonzásában a természet titkai Informatikai tehetséggondozás: Rendezések TÁMOP-4.2.3.-12/1/KONV-2012-0018 Az alapfeladat egy N elemű sorozat nagyság szerinti sorba rendezése. A sorozat elemei

Részletesebben

Bánsághi Anna 2014 Bánsághi Anna 1 of 68

Bánsághi Anna 2014 Bánsághi Anna 1 of 68 IMPERATÍV PROGRAMOZÁS Bánsághi Anna anna.bansaghi@mamikon.net 3. ELŐADÁS - PROGRAMOZÁSI TÉTELEK 2014 Bánsághi Anna 1 of 68 TEMATIKA I. ALAPFOGALMAK, TUDOMÁNYTÖRTÉNET II. IMPERATÍV PROGRAMOZÁS Imperatív

Részletesebben

Egyszerű programozási tételek

Egyszerű programozási tételek Egyszerű programozási tételek Sorozatszámítás tétele Például az X tömbben kövek súlyát tároljuk. Ha ki kellene számolni az összsúlyt, akkor az S = f(s, X(i)) helyére S = S + X(i) kell írni. Az f0 tartalmazza

Részletesebben

Haladó rendezések. PPT 2007/2008 tavasz.

Haladó rendezések. PPT 2007/2008 tavasz. Haladó rendezések szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Témakörök Alapvető összehasonlító rendezések Shell rendezés Kupacrendezés Leszámláló rendezés Radix rendezés Edényrendezés

Részletesebben

PROGRAMOZÁSI NYELVEK (GYAKORLAT)

PROGRAMOZÁSI NYELVEK (GYAKORLAT) PROGRAMOZÁSI NYELVEK (GYAKORLAT) A következő részben olyan szabványos algoritmusokkal fogunk foglalkozni, amelyek segítségével a későbbiekben sok hétköznapi problémát meg tudunk majd oldani. MUNKAHELYZET-

Részletesebben

Gyakorló feladatok ZH-ra

Gyakorló feladatok ZH-ra Algoritmuselmélet Schlotter Ildi 2011. április 6. ildi@cs.bme.hu Gyakorló feladatok ZH-ra Nagyságrendek 1. Egy algoritmusról tudjuk, hogy a lépésszáma O(n 2 ). Lehetséges-e, hogy (a) minden páros n-re

Részletesebben

Rendezések. A rendezési probléma: Bemenet: Kimenet: n számot tartalmazó (a 1,a 2,,a n ) sorozat

Rendezések. A rendezési probléma: Bemenet: Kimenet: n számot tartalmazó (a 1,a 2,,a n ) sorozat 9. Előadás Rendezések A rendezési probléma: Bemenet: n számot tartalmazó (a 1,a 2,,a n ) sorozat Kimenet: a bemenő sorozat olyan (a 1, a 2,,a n ) permutációja, hogy a 1 a 2 a n 2 Rendezések Általánosabban:

Részletesebben

Programozási tételek. Dr. Iványi Péter

Programozási tételek. Dr. Iványi Péter Programozási tételek Dr. Iványi Péter 1 Programozási tételek A programozási tételek olyan általános algoritmusok, melyekkel programozás során gyakran találkozunk. Az algoritmusok általában számsorozatokkal,

Részletesebben

Adatszerkezetek. Nevezetes algoritmusok (Keresések, rendezések)

Adatszerkezetek. Nevezetes algoritmusok (Keresések, rendezések) Adatszerkezetek Nevezetes algoritmusok (Keresések, rendezések) Keresések A probléma általános megfogalmazása: Adott egy N elemű sorozat, keressük meg azt az elemet (határozzuk meg a helyét a sorozatban),

Részletesebben

Programozás alapjai 9. előadás. Wagner György Általános Informatikai Tanszék

Programozás alapjai 9. előadás. Wagner György Általános Informatikai Tanszék 9. előadás Wagner György Általános Informatikai Tanszék Leszámoló rendezés Elve: a rendezett listában a j-ik kulcs pontosan j-1 kulcsnál lesz nagyobb. (Ezért ha egy kulcsról tudjuk, hogy 27 másiknál nagyobb,

Részletesebben

Programozási alapismeretek 3. előadás

Programozási alapismeretek 3. előadás Programozási alapismeretek 3. előadás Tartalom Ciklusok specifikáció+ algoritmika +kódolás Egy bevezető példa a tömbhöz A tömb Elágazás helyett tömb Konstans tömbök 2/42 Ciklusok Feladat: Határozzuk meg

Részletesebben

Programozási segédlet

Programozási segédlet Programozási segédlet Programozási tételek Az alábbiakban leírtam néhány alap algoritmust, amit ismernie kell annak, aki programozásra adja a fejét. A lista korántsem teljes, ám ennyi elég kell legyen

Részletesebben

Algoritmizálás, adatmodellezés tanítása 2. előadás

Algoritmizálás, adatmodellezés tanítása 2. előadás Algoritmizálás, adatmodellezés tanítása 2. előadás Programozási tételek Mi az, hogy programozási tétel? Típusfeladat általános megoldása. Sorozat érték Sorozat sorozat Sorozat sorozatok Sorozatok sorozat

Részletesebben

Algoritmizálás, adatmodellezés tanítása 1. előadás

Algoritmizálás, adatmodellezés tanítása 1. előadás Algoritmizálás, adatmodellezés 1. előadás Az algoritmus fogalma végrehajtható (van hozzá végre-hajtó) lépésenként hajtható végre a lépések maguk is algoritmusok pontosan definiált, adott végre-hajtási

Részletesebben

Dokumentáció az 1. feladatsorhoz (egyszerű, rövidített kivitelben)

Dokumentáció az 1. feladatsorhoz (egyszerű, rövidített kivitelben) Dokumentáció az 1. feladatsorhoz (egyszerű, rövidített kivitelben) Felhasználói dokumentáció Feladat: Adjuk meg két N elemű vektor skalárszorzatát! Skalárszorzat : X, Y : N i 1 x i * y i Környezet: IBM

Részletesebben

RENDEZÉSEK, TOVÁBBI PROGRAMOZÁSI TÉTELEK

RENDEZÉSEK, TOVÁBBI PROGRAMOZÁSI TÉTELEK RENDEZÉSEK, TOVÁBBI PROGRAMOZÁSI TÉTELEK 1. EGY SOROZATHOZ EGY SOROZATOT RENDELŐ TÉTELEK 1.1 Rendezések 1.1.1 Kitűzés Adott egy sorozat, és a sorozat elemein értelmezett egy < reláció. Rendezzük a sorozat

Részletesebben

Informatikai tehetséggondozás:

Informatikai tehetséggondozás: Ég és Föld vonzásában a természet titkai Informatikai tehetséggondozás: Multihalmaz típus TÁMOP-4.2.3.-12/1/KONV Értékhalmaz: az alaphalmaz (amely az Elemtípus és egy darabszám által van meghatározva)

Részletesebben

PROGRAMOZÁS tantárgy. Gregorics Tibor egyetemi docens ELTE Informatikai Kar

PROGRAMOZÁS tantárgy. Gregorics Tibor egyetemi docens ELTE Informatikai Kar PROGRAMOZÁS tantárgy Gregorics Tibor egyetemi docens ELTE Informatikai Kar Követelmények A,C,E szakirány B szakirány Előfeltétel Prog. alapismeret Prog. alapismeret Diszkrét matematika I. Óraszám 2 ea

Részletesebben

Programozási alapismeretek beadandó feladat: ProgAlap beadandó feladatok téma 99. feladat 1

Programozási alapismeretek beadandó feladat: ProgAlap beadandó feladatok téma 99. feladat 1 Programozási alapismeretek beadandó feladat: ProgAlap beadandó feladatok téma 99. feladat 1 Készítette: Gipsz Jakab Neptun-azonosító: A1B2C3 E-mail: gipszjakab@vilaghalo.hu Kurzuskód: IP-08PAED Gyakorlatvezető

Részletesebben

15. tétel. Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 30.

15. tétel. Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 30. 15. tétel Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 30. Edényrendezés Tegyük fel, hogy tudjuk, hogy a bemenő elemek (A[1..n] elemei) egy m elemű U halmazból kerülnek ki, pl. " A[i]-re

Részletesebben

Programozási alapismeretek 1. előadás

Programozási alapismeretek 1. előadás Programozási alapismeretek 1. előadás Tartalom A problémamegoldás lépései programkészítés folyamata A specifikáció Az algoritmus Algoritmikus nyelvek struktogram A kódolás a fejlesztői környezet 2/33 A

Részletesebben

Algoritmuselmélet 2. előadás

Algoritmuselmélet 2. előadás Algoritmuselmélet 2. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Február 12. ALGORITMUSELMÉLET 2. ELŐADÁS 1 Buborék-rendezés

Részletesebben

Felvételi tematika INFORMATIKA

Felvételi tematika INFORMATIKA Felvételi tematika INFORMATIKA 2016 FEJEZETEK 1. Természetes számok feldolgozása számjegyenként. 2. Számsorozatok feldolgozása elemenként. Egydimenziós tömbök. 3. Mátrixok feldolgozása elemenként/soronként/oszloponként.

Részletesebben

8. Mohó algoritmusok. 8.1. Egy esemény-kiválasztási probléma. Az esemény-kiválasztási probléma optimális részproblémák szerkezete

8. Mohó algoritmusok. 8.1. Egy esemény-kiválasztási probléma. Az esemény-kiválasztási probléma optimális részproblémák szerkezete 8. Mohó algoritmusok Optimalizálási probléma megoldására szolgáló algoritmus gyakran olyan lépések sorozatából áll, ahol minden lépésben adott halmazból választhatunk. Sok optimalizálási probléma esetén

Részletesebben

Gyakorlatok. P (n) = P (n 1) + 2P (n 2) + P (n 3) ha n 4, (utolsó lépésként l, hl, u, hu-t léphetünk).

Gyakorlatok. P (n) = P (n 1) + 2P (n 2) + P (n 3) ha n 4, (utolsó lépésként l, hl, u, hu-t léphetünk). Gyakorlatok Din 1 Jelölje P (n) azt a számot, ahányféleképpen mehetünk le egy n lépcsőfokból álló lépcsőn a következő mozgáselemek egy sorozatával (zárójelben, hogy mennyit mozgunk az adott elemmel): lépés

Részletesebben

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása 1 Információk 2 A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin Elérhetőség mesko.katalin@tfk.kefo.hu Fogadóóra: szerda 9:50-10:35 Számonkérés időpontok Április 25. 9 00 Május 17. 9 00 Június

Részletesebben

Bevezetés a programozásba I 4. gyakorlat. PLanG: Szekvenciális fájlkezelés. Szekvenciális fájlkezelés Fájlok használata

Bevezetés a programozásba I 4. gyakorlat. PLanG: Szekvenciális fájlkezelés. Szekvenciális fájlkezelés Fájlok használata Pázmány Péter Katolikus Egyetem Információs Technológiai Kar Bevezetés a programozásba I 4. gyakorlat PLanG: 2011.10.04. Giachetta Roberto groberto@inf.elte.hu http://people.inf.elte.hu/groberto Fájlok

Részletesebben

Algoritmusok helyességének bizonyítása. A Floyd-módszer

Algoritmusok helyességének bizonyítása. A Floyd-módszer Algoritmusok helyességének bizonyítása A Floyd-módszer Algoritmusok végrehajtása Egy A algoritmus esetében a változókat három változótípusról beszélhetünk, melyeket az X, Y és Z vektorokba csoportosítjuk

Részletesebben

Egyszerű programozási tételek

Egyszerű programozási tételek Egyszerű programozási tételek Sorozatszámítás Eljárás Sorozatszámítás(N, X, S) R R 0 Ciklus i 1-től N-ig R R művelet A[i] A : számokat tartalmazó tömb N : A tömb elemszáma R : Művelet eredménye Eldöntés

Részletesebben

Tartalom Keresés és rendezés. Vektoralgoritmusok. 1. fejezet. Keresés adatvektorban. A programozás alapjai I.

Tartalom Keresés és rendezés. Vektoralgoritmusok. 1. fejezet. Keresés adatvektorban. A programozás alapjai I. Keresés Rendezés Feladat Keresés Rendezés Feladat Tartalom Keresés és rendezés A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán

Részletesebben

Keresés és rendezés. A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán

Keresés és rendezés. A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán Keresés Rendezés Feladat Keresés és rendezés A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán 2016. november 7. Farkas B., Fiala

Részletesebben

Szerző. Varga Péter ETR azonosító: VAPQAAI.ELTE Email cím: Név: vp.05@hotmail.com Kurzuskód:

Szerző. Varga Péter ETR azonosító: VAPQAAI.ELTE Email cím: Név: vp.05@hotmail.com Kurzuskód: Szerző Név: Varga Péter ETR azonosító: VAPQAAI.ELTE Email cím: vp.05@hotmail.com Kurzuskód: IP-08PAEG/27 Gyakorlatvezető neve: Kőhegyi János Feladatsorszám: 20 1 Tartalom Szerző... 1 Felhasználói dokumentáció...

Részletesebben

Algoritmizálás és adatmodellezés tanítása beadandó feladat: Algtan1 tanári beadandó /99 1

Algoritmizálás és adatmodellezés tanítása beadandó feladat: Algtan1 tanári beadandó /99 1 Algoritmizálás és adatmodellezés tanítása beadandó feladat: Algtan1 tanári beadandó /99 1 Készítette: Gipsz Jakab Neptun-azonosító: ABC123 E-mail: gipszjakab@seholse.hu Kurzuskód: IT-13AAT1EG Gyakorlatvezető

Részletesebben

A valós számok halmaza

A valós számok halmaza VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben

Részletesebben

ELEMI PROGRAMOZÁSI TÉTELEK

ELEMI PROGRAMOZÁSI TÉTELEK ELEMI PROGRAMOZÁSI TÉTELEK 1. FELADATMEGOLDÁS PROGRAMOZÁSI TÉTELEKKEL 1.1 A programozási tétel fogalma A programozási tételek típusalgoritmusok, amelyek alkalmazásával garantáltan helyes megoldást adhatunk

Részletesebben

Bevezetés a programozásba. 5. Előadás: Tömbök

Bevezetés a programozásba. 5. Előadás: Tömbök Bevezetés a programozásba 5. Előadás: Tömbök ISMÉTLÉS Specifikáció Előfeltétel: milyen körülmények között követelünk helyes működést Utófeltétel: mit várunk a kimenettől, mi az összefüggés a kimenet és

Részletesebben

Összetett programozási tételek

Összetett programozási tételek Összetett programozási tételek 3. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. szeptember 19. Sergyán (OE NIK) AAO 03 2011. szeptember

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen

Részletesebben

1 Rendszer alapok. 1.1 Alapfogalmak

1 Rendszer alapok. 1.1 Alapfogalmak ÉRTÉKTEREMTŐ FOLYAM ATOK MENEDZSMENTJE II. RENDSZEREK ÉS FOLYAMATOK TARTALOMJEGYZÉK 1 Rendszer alapok 1.1 Alapfogalmak 1.2 A rendszerek csoportosítása 1.3 Rendszerek működése 1.4 Rendszerek leírása, modellezése,

Részletesebben

2. Készítsen awk szkriptet, amely kiírja az aktuális könyvtár összes alkönyvtárának nevét, amely februári keltezésű (bármely év).

2. Készítsen awk szkriptet, amely kiírja az aktuális könyvtár összes alkönyvtárának nevét, amely februári keltezésű (bármely év). 1. fejezet AWK 1.1. Szűrési feladatok 1. Készítsen awk szkriptet, ami kiírja egy állomány leghosszabb szavát. 2. Készítsen awk szkriptet, amely kiírja az aktuális könyvtár összes alkönyvtárának nevét,

Részletesebben

Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése

Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése Dr. Kallós Gábor 2014 2015 1 Az Ordó jelölés Azt mondjuk, hogy az f(n) függvény eleme az Ordó(g(n)) halmaznak, ha van olyan c konstans (c

Részletesebben

9. előadás. Programozás-elmélet. Programozási tételek Elemi prog. Sorozatszámítás Eldöntés Kiválasztás Lin. keresés Megszámolás Maximum.

9. előadás. Programozás-elmélet. Programozási tételek Elemi prog. Sorozatszámítás Eldöntés Kiválasztás Lin. keresés Megszámolás Maximum. Programozási tételek Programozási feladatok megoldásakor a top-down (strukturált) programtervezés esetén három vezérlési szerkezetet használunk: - szekvencia - elágazás - ciklus Eddig megismertük az alábbi

Részletesebben

1. ábra. Számláló rendezés

1. ábra. Számláló rendezés 1:2 2:3 1:3 1,2,3 1:3 1,3,2 3,1,2 2,1,3 2:3 2,3,1 3,2,1 1. ábra. Alsó korlát rendezési algoritmusokra Minden olyan rendezési algoritmusnak a futását, amely elempárok egymással

Részletesebben

Programozás I. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar szeptember 10.

Programozás I. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar szeptember 10. Programozás I. 1. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2012. szeptember 10. Sergyán (OE NIK) Programozás I. 2012. szeptember 10. 1 /

Részletesebben

A számítástudomány alapjai. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem

A számítástudomány alapjai. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem A számítástudomány alapjai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Bináris keresőfa, kupac Katona Gyula Y. (BME SZIT) A számítástudomány

Részletesebben

Programozási alapismeretek :: beadandó feladat. Felhasználói dokumentáció. Molnár Tamás MOTIABT.ELTE motiabt@inf.elte.

Programozási alapismeretek :: beadandó feladat. Felhasználói dokumentáció. Molnár Tamás MOTIABT.ELTE motiabt@inf.elte. Programozási alapismeretek :: beadandó feladat Készítő adatai Név: Molnár Tamás EHA: MOTIABT.ELTE E-mail cím: motiabt@inf.elte.hu Gyakorlatvezető: Horváth László Feladat sorszáma: 23. Felhasználói dokumentáció

Részletesebben

Számláló rendezés. Példa

Számláló rendezés. Példa Alsó korlát rendezési algoritmusokra Minden olyan rendezési algoritmusnak a futását, amely elempárok egymással való összehasonlítása alapján működik leírja egy bináris döntési fa. Az algoritmus által a

Részletesebben

Egyszerű programozási tételek

Egyszerű programozási tételek Egyszerű programozási tételek 2. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. szeptember 15. Sergyán (OE NIK) AAO 02 2011. szeptember 15.

Részletesebben

Oktatási Hivatal. A 2014/2015 tanévi Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai. II. (programozás) kategória

Oktatási Hivatal. A 2014/2015 tanévi Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai. II. (programozás) kategória Oktatási Hivatal A 201/2015 tanévi Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai II. (programozás) kategória 1. feladat: Sorminta (3 pont) Fordítsuk meg: a mintából kell kitalálni

Részletesebben

Töltőfunkció Kezelési Utasítás

Töltőfunkció Kezelési Utasítás METRISoft Mérleggyártó KFT PortaWin (PW2) Jármű mérlegelő program 6800 Hódmezővásárhely Jókai u. 30 Telefon: (62) 246-657, Fax: (62) 249-765 e-mail: merleg@metrisoft.hu Web: http://www.metrisoft.hu Módosítva:

Részletesebben

Algoritmusok vektorokkal keresések 1

Algoritmusok vektorokkal keresések 1 Algoritmusok vektorokkal keresések 1 function TELJES_KERES1(A, érték) - - teljes keresés while ciklussal 1. i 1 2. while i méret(a) és A[i] érték do 3. i i + 1 4. end while 5. if i > méret(a) then 6. KIVÉTEL

Részletesebben

Algoritmizálás, adatmodellezés tanítása 6. előadás

Algoritmizálás, adatmodellezés tanítása 6. előadás Algoritmizálás, adatmodellezés tanítása 6. előadás Tesztelési módszerek statikus tesztelés kódellenőrzés szintaktikus ellenőrzés szemantikus ellenőrzés dinamikus tesztelés fekete doboz módszerek fehér

Részletesebben

Programozás I. 1. előadás: Algoritmusok alapjai. Sergyán Szabolcs

Programozás I. 1. előadás: Algoritmusok alapjai. Sergyán Szabolcs Programozás I. 1. előadás: Algoritmusok alapjai Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Alkalmazott Informatikai Intézet 2015. szeptember 7. Sergyán

Részletesebben

Szélsőérték-számítás

Szélsőérték-számítás Szélsőérték-számítás Jelölések A következő jelölések mind az f függvény x szerinti parciális deriváltját jelentik: Ugyanígy az f függvény y szerinti parciális deriváltja: f x = xf = f x f y = yf = f y

Részletesebben

Bevezetés a programozásba I.

Bevezetés a programozásba I. Elágazás Bevezetés a programozásba I. 2. gyakorlat, tömbök Surányi Márton PPKE-ITK 2010.09.14. Elágazás Elágazás Eddigi programjaink egyszer ek voltak, egy beolvasás (BE: a), esetleg valami m velet (a

Részletesebben

Disztribúciós feladatok. Készítette: Dr. Ábrahám István

Disztribúciós feladatok. Készítette: Dr. Ábrahám István Disztribúciós feladatok Készítette: Dr. Ábrahám István Bevezető Az elosztási, szétosztási feladatok (szállítás, allokáció, stb.) leggazdaságosabb megoldása fontos kérdés. Célunk lehet legkisebb összköltségre

Részletesebben

Oktatási Hivatal. A 2014/2015 tanévi Országos Középiskolai Tanulmányi Verseny döntő fordulójának feladatai. II. (programozás) kategória

Oktatási Hivatal. A 2014/2015 tanévi Országos Középiskolai Tanulmányi Verseny döntő fordulójának feladatai. II. (programozás) kategória Oktatási Hivatal A 2014/2015 tanévi Országos Középiskolai Tanulmányi Verseny döntő fordulójának feladatai II. (programozás) kategória Kedves Versenyző! A megoldások értékelése automatikusan, online módon

Részletesebben

Webprogramozás szakkör

Webprogramozás szakkör Webprogramozás szakkör Előadás 4 (2012.03.26) Bevezető Mi is az a programozási nyelv, mit láttunk eddig (HTML+CSS)? Az eddig tanult két nyelven is mondhatni programoztunk, de ez nem a klasszikus értelemben

Részletesebben

Algoritmusok és adatszerkezetek 2.

Algoritmusok és adatszerkezetek 2. Algoritmusok és adatszerkezetek 2. Fekete István előadása alapján Készítette: Nagy Krisztián 1. előadás V. HASÍTÁSOS TECHNIKÁK ALKALMAZÁSA (hash coding) 19. Rendezés lineáris időben (Edényrendezések (Bucket))

Részletesebben

HORVÁTH ZSÓFIA 1. Beadandó feladat (HOZSAAI.ELTE) ápr 7. 8-as csoport

HORVÁTH ZSÓFIA 1. Beadandó feladat (HOZSAAI.ELTE) ápr 7. 8-as csoport 10-es Keressünk egy egész számokat tartalmazó négyzetes mátrixban olyan oszlopot, ahol a főátló alatti elemek mind nullák! Megolda si terv: Specifika cio : A = (mat: Z n m,ind: N, l: L) Ef =(mat = mat`)

Részletesebben

Elméleti összefoglalók dr. Kovács Péter

Elméleti összefoglalók dr. Kovács Péter Elméleti összefoglalók dr. Kovács Péter 1. Adatállományok létrehozása, kezelése... 2 2. Leíró statisztikai eljárások... 3 3. Várható értékek (átlagok) vizsgálatára irányuló próbák... 5 4. Eloszlások vizsgálata...

Részletesebben

Készítette: Nagy Tibor István Felhasznált irodalom: Kotsis Domokos: OOP diasor Zsakó L., Szlávi P.: Mikrológia 19.

Készítette: Nagy Tibor István Felhasznált irodalom: Kotsis Domokos: OOP diasor Zsakó L., Szlávi P.: Mikrológia 19. Készítette: Nagy Tibor István Felhasznált irodalom: Kotsis Domokos: OOP diasor Zsakó L., Szlávi P.: Mikrológia 19. Programkészítés Megrendelői igények begyűjtése Megoldás megtervezése (algoritmuskészítés)

Részletesebben

Operációs Rendszerek Gyakorlat Triviális segédfeladatok 2009. június 4. 1. PERL Tömbök és hashek Feladat: 2009. május 26-i beugró

Operációs Rendszerek Gyakorlat Triviális segédfeladatok 2009. június 4. 1. PERL Tömbök és hashek Feladat: 2009. május 26-i beugró Operációs Rendszerek Gyakorlat Triviális segédfeladatok 2009. június 4. Összeállította: Méreg Balázs (mbalazs@varfok.vein.hu) Külsı forrás: 2009. május 26-i beugró 1. PERL Tömbök és hashek Feladat: 2009.

Részletesebben

TSZA-04/V. Rendszerismertető: Teljesítmény szabályzó automatika / vill

TSZA-04/V. Rendszerismertető: Teljesítmény szabályzó automatika / vill TSZA-04/V Teljesítmény szabályzó automatika / vill Rendszerismertető: 1. A TSZA-04/V működése...2 2. A TSZA-04/V üzemi paramétereinek jelentése...4 3. A TSZA-04/V programozható paramétereinek jelentése...5

Részletesebben

Programozás alapjai C nyelv 8. gyakorlat. Mutatók és címek (ism.) Indirekció (ism)

Programozás alapjai C nyelv 8. gyakorlat. Mutatók és címek (ism.) Indirekció (ism) Programozás alapjai C nyelv 8. gyakorlat Szeberényi Imre BME IIT Programozás alapjai I. (C nyelv, gyakorlat) BME-IIT Sz.I. 2005.11.07. -1- Mutatók és címek (ism.) Minden változó és függvény

Részletesebben

Mutatók és címek (ism.) Programozás alapjai C nyelv 8. gyakorlat. Indirekció (ism) Néhány dolog érthetőbb (ism.) Változók a memóriában

Mutatók és címek (ism.) Programozás alapjai C nyelv 8. gyakorlat. Indirekció (ism) Néhány dolog érthetőbb (ism.) Változók a memóriában Programozás alapjai C nyelv 8. gyakorlat Szeberényi mre BME T Programozás alapjai. (C nyelv, gyakorlat) BME-T Sz.. 2005.11.07. -1- Mutatók és címek (ism.) Minden változó és függvény

Részletesebben

Programozás alapjai. 5. előadás

Programozás alapjai. 5. előadás 5. előadás Wagner György Általános Informatikai Tanszék Cserélve kiválasztásos rendezés (1) A minimum-maximum keresés elvére épül. Ismétlés: minimum keresés A halmazból egy tetszőleges elemet kinevezünk

Részletesebben

Magasabbfokú egyenletek

Magasabbfokú egyenletek 86 Magasabbfokú egyenletek Magasabbfokú egyenletek 5 90 a) =! ; b) =! ; c) = 5, 9 a) Legyen = y Új egyenletünk: y - 5y+ = 0 Ennek gyökei: y=, y= Tehát egyenletünk gyökei:, =!,, =! b) Új egyenletünk: y

Részletesebben

Programozási alapismeretek. 1. előadás. A problémamegoldás lépései. A programkészítés folyamata. Az algoritmus fogalma. Nyelvi szintek.

Programozási alapismeretek. 1. előadás. A problémamegoldás lépései. A programkészítés folyamata. Az algoritmus fogalma. Nyelvi szintek. Tartalom 1. előadás programozás során használt nyelvek A specifikáció Algoritmikus nyelvek A problémamegoldás lépései 3/41 (miből?, mit?) specifikáció (mivel?, hogyan?) adat- + algoritmus-leírás 3. (a

Részletesebben

Algoritmusok. Dr. Iványi Péter

Algoritmusok. Dr. Iványi Péter Algoritmusok Dr. Iványi Péter Egyik legrégebbi algoritmus i.e. IV század, Alexandria, Euklidész két természetes szám legnagyobb közös osztójának meghatározása Tegyük fel, hogy a és b pozitív egész számok

Részletesebben

Pásztor Attila. Algoritmizálás és programozás tankönyv az emeltszintű érettségihez

Pásztor Attila. Algoritmizálás és programozás tankönyv az emeltszintű érettségihez Pásztor Attila Algoritmizálás és programozás tankönyv az emeltszintű érettségihez 8. ELEMI ALGORITMUSOK II...88 8.1. MÁSOLÁS...88 8.2. KIVÁLOGATÁS...89 8.3. SZÉTVÁLOGATÁS...91 8.4. METSZET (KÖZÖS RÉSZ)...93

Részletesebben

Flex tutorial. Dévai Gergely

Flex tutorial. Dévai Gergely Flex tutorial Dévai Gergely A Flex (Fast Lexical Analyser) egy lexikáliselemz -generátor: reguláris kifejezések sorozatából egy C/C++ programot generál, ami szövegfájlokat képes lexikai elemek sorozatára

Részletesebben

Felhasználói kézikönyv

Felhasználói kézikönyv Felhasználói kézikönyv 5800D Digitális szállópor koncentráció mérő TARTALOMJEGYZÉK 1. Bevezetés... 2 2. Biztonsági előírások... 2 3. Műszaki jellemzők... 2 4. A készülék felépítése... 3 5. Működési leírás...

Részletesebben

BIZONYTALAN ADATOK KEZELÉSE: FUZZY SZAKÉRTŐI RENDSZEREK

BIZONYTALAN ADATOK KEZELÉSE: FUZZY SZAKÉRTŐI RENDSZEREK BIZONYTALAN ADATOK KEZELÉSE: FUZZY SZAKÉRTŐI RENDSZEREK Szakértői rendszerek, 14. hét, 2008 Tartalom 1 Bevezető 2 Fuzzy történelem A fuzzy logika kialakulása Alkalmazások Fuzzy logikát követ-e a világ?

Részletesebben

Gyakorló feladatok az 1. nagy zárthelyire

Gyakorló feladatok az 1. nagy zárthelyire Gyakorló feladatok az 1. nagy zárthelyire 2012. október 7. 1. Egyszerű, bevezető feladatok 1. Kérjen be a felhasználótól egy sugarat. Írja ki az adott sugarú kör kerületét illetve területét! (Elegendő

Részletesebben

Programozás I. Egyszerű programozási tételek. Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu

Programozás I. Egyszerű programozási tételek. Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Programozás I. 3. előadás Egyszerű programozási tételek Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Alkalmazott Informatikai Intézet 2015. szeptember

Részletesebben

A 2011/2012 tanévi Országos Középiskolai Tanulmányi Verseny első forduló feladatainak megoldása. INFORMATIKÁBÓL II. (programozás) kategóriában

A 2011/2012 tanévi Országos Középiskolai Tanulmányi Verseny első forduló feladatainak megoldása. INFORMATIKÁBÓL II. (programozás) kategóriában Oktatási Hivatal A 2011/2012 tanévi Országos Középiskolai Tanulmányi Verseny első forduló feladatainak megoldása INFORMATIKÁBÓL II. (programozás) kategóriában Kérjük a tisztelt tanár kollégákat, hogy a

Részletesebben

MŰSZAKI DOKUMENTÁCIÓ. Aleph WebOPAC elérhetővé tétele okostelefonon. Eötvös József Főiskola 6500 Baja, Szegedi út 2.

MŰSZAKI DOKUMENTÁCIÓ. Aleph WebOPAC elérhetővé tétele okostelefonon. Eötvös József Főiskola 6500 Baja, Szegedi út 2. Telefon: Fax: E-mail: (+36-1) 269-1642 (+36-1) 331 8479 info@ex-lh.hu www.ex-lh.hu Eötvös József Főiskola 6500 Baja, Szegedi út 2. MŰSZAKI DOKUMENTÁCIÓ Aleph WebOPAC elérhetővé tétele okostelefonon Pályázati

Részletesebben

file:///d:/okt/ad/jegyzet/ad1/b+fa.html

file:///d:/okt/ad/jegyzet/ad1/b+fa.html 1 / 5 2016. 11. 30. 12:58 B+ fák CSci 340: Database & Web systems Home Syllabus Readings Assignments Tests Links Computer Science Hendrix College Az alábbiakban Dr. Carl Burch B+-trees című Internetes

Részletesebben

Programozás I. Metódusok C#-ban Egyszerű programozási tételek. Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu

Programozás I. Metódusok C#-ban Egyszerű programozási tételek. Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Programozás I. 3. előadás Tömbök a C#-ban Metódusok C#-ban Egyszerű programozási tételek Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Szoftvertechnológia

Részletesebben

BASH SCRIPT SHELL JEGYZETEK

BASH SCRIPT SHELL JEGYZETEK BASH SCRIPT SHELL JEGYZETEK 1 TARTALOM Paraméterek... 4 Változók... 4 Környezeti változók... 4 Szűrők... 4 grep... 4 sed... 5 cut... 5 head, tail... 5 Reguláris kifejezések... 6 *... 6 +... 6?... 6 {m,n}...

Részletesebben

Dr. Schuster György február / 32

Dr. Schuster György február / 32 Algoritmusok és magvalósítások Dr. Schuster György OE-KVK-MAI schuster.gyorgy@kvk.uni-obuda.hu 2015. február 10. 2015. február 10. 1 / 32 Algoritmus Alapfogalmak Algoritmus Definíció Algoritmuson olyan

Részletesebben

Rekurzív algoritmusok

Rekurzív algoritmusok Rekurzív algoritmusok 11. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. november 14. Sergyán (OE NIK) AAO 11 2011. november 14. 1 / 32 Rekurzív

Részletesebben

Gyártási folyamatok tervezése

Gyártási folyamatok tervezése Gyártási folyamatok tervezése Dr. Kardos Károly, Jósvai János 2006. március 28. 2 Tartalomjegyzék 1. Gyártási folyamatok, bevezetés 9 1.1. Gyártó vállalatok modellezése.................. 9 1.1.1. Számítógéppel

Részletesebben

Programozás I. Egyszerű programozási tételek. Sergyán Szabolcs

Programozás I. Egyszerű programozási tételek. Sergyán Szabolcs Programozás I. 3. előadás Egyszerű programozási tételek Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Alkalmazott Informatikai Intézet 2015. szeptember

Részletesebben

INFORMATIKAI ALAPISMERETEK

INFORMATIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2005. május 20. INFORMATIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 180 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Megoldási útmutató I.

Részletesebben

Országzászlók (2015. május 27., Sz14)

Országzászlók (2015. május 27., Sz14) Országzászlók (2015. május 27., Sz14) Írjon programot, amely a standard bemenetről állományvégjelig soronként egy-egy ország zászlójára vonatkozó adatokat olvas be! Az egyes zászlóknál azt tartjuk nyilván,

Részletesebben

Objektum Orientált Programozás VII.

Objektum Orientált Programozás VII. Objektum Orientált Programozás VII. Összetett programozási tételek Programozási tételek összeépítése Feladatok ÓE-NIK, 2011 1 Hallgatói Tájékoztató A jelen bemutatóban található adatok, tudnivalók és információk

Részletesebben

ALGORITMUSOK ÉS PROBLÉMAOSZTÁLYOK (1. előadás)

ALGORITMUSOK ÉS PROBLÉMAOSZTÁLYOK (1. előadás) ALGORITMUSOK ÉS PROBLÉMAOSZTÁLYOK (1. előadás) Programozási feladatok megoldásának lépései 1, a feladatok meghatározása -egyértelmű, rövid, tömör, pontos 2, a feladat algoritmusának elkészítése jól definiált

Részletesebben

1. Számoljuk meg egy számokat tartalmazó mátrixban a nulla elemeket!

1. Számoljuk meg egy számokat tartalmazó mátrixban a nulla elemeket! ELTE IK, Programozás, Gyakorló feladatok a 3. zárthelyihez. Mátrix elemeinek felsorolása: 1. Számoljuk meg egy számokat tartalmazó mátrixban a nulla elemeket! 2. Igaz-e, hogy sorfolytonosan végigolvasva

Részletesebben

Kupacrendezés. Az s sorban lévő elemeket rendezzük a k kupac segítségével! k.empty. not s.isempty. e:=s.out k.insert(e) not k.

Kupacrendezés. Az s sorban lévő elemeket rendezzük a k kupac segítségével! k.empty. not s.isempty. e:=s.out k.insert(e) not k. 10. Előadás Beszúró rendezés Használjuk a kupacokat rendezésre! Szúrd be az elemeket egy kupacba! Amíg a sor ki nem ürül, vedd ki a kupacból a maximális elemet, és tedd az eredmény (rendezett) sorba! 2

Részletesebben

Adatszerkezetek Adatszerkezet fogalma. Az értékhalmaz struktúrája

Adatszerkezetek Adatszerkezet fogalma. Az értékhalmaz struktúrája Adatszerkezetek Összetett adattípus Meghatározói: A felvehető értékek halmaza Az értékhalmaz struktúrája Az ábrázolás módja Műveletei Adatszerkezet fogalma Direkt szorzat Minden eleme a T i halmazokból

Részletesebben

Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra:

Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: C(T ) = (u,v) T c(u,v) Az F = (V,T) gráf minimális feszitőfája G-nek,

Részletesebben

1. Jelölje meg az összes igaz állítást a következők közül!

1. Jelölje meg az összes igaz állítást a következők közül! 1. Jelölje meg az összes igaz állítást a következők közül! a) A while ciklusban a feltétel teljesülése esetén végrehajtódik a ciklusmag. b) A do while ciklusban a ciklusmag után egy kilépési feltétel van.

Részletesebben

Számítógép és programozás 2

Számítógép és programozás 2 Számítógép és programozás 2 6. Előadás Problémaosztályok http://digitus.itk.ppke.hu/~flugi/ Emlékeztető A specifikáció egy előfeltételből és utófeltételből álló leírása a feladatnak Léteznek olyan feladatok,

Részletesebben

Alkalmazott modul: Programozás. Programozási tételek, rendezések. Programozási tételek Algoritmusok és programozási tételek

Alkalmazott modul: Programozás. Programozási tételek, rendezések. Programozási tételek Algoritmusok és programozási tételek Eötvös Loránd Tudományegyetem Informatikai Kar Alkalmazott modul: Programozás, rendezések 2015 Giachetta Roberto groberto@inf.elte.hu http://people.inf.elte.hu/groberto Algoritmusok és programozási tételek

Részletesebben

Programozás alapjai C nyelv 7. gyakorlat. Függvények. Függvények(2)

Programozás alapjai C nyelv 7. gyakorlat. Függvények. Függvények(2) Programozás alapjai C nyelv 7. gyakorlat Szeberényi Imre BME IIT Programozás alapjai I. (C nyelv, gyakorlat) BME-IIT Sz.I. 2005.11.05. -1- Függvények C program egymás mellé rendelt függvényekből

Részletesebben