A NEHÉZSÉGI ERŐTÉR 3D POTENCIÁLFÜGGVÉNYÉNEK INVERZIÓS ELŐÁLLÍTÁSA

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A NEHÉZSÉGI ERŐTÉR 3D POTENCIÁLFÜGGVÉNYÉNEK INVERZIÓS ELŐÁLLÍTÁSA"

Átírás

1 Geomata Köeméne XII., 009 A EÉZSÉGI ERŐTÉR 3D POTECIÁLÜGGVÉYÉEK IVERZIÓS ELŐÁLLÍTÁSA Dobróa há *, Vöges Laos **,*** Inverson reconstructon of 3D gravt potenta based on torson baance measurements - Inverson reconstructon of 3D gravt potenta based on each of the torson baance and gravt measurements, defectons of the vertca and dgta terran mode data have been soved b deveopng our former D souton. Appng ths method the eements of the fu Eötvös-tensor ncudng the vertca gradents can be determned not on n the torson baance statons, but anwhere n the surroundngs of these ponts. Ths gves a smpe possbt to transform the torson baance measurements to dfferent heghts and the anatca determnaton of the eupotenta surfaces of the gravt fed. Kewords: nverson, torson baance measurements, Eötvös-tensor, defecton of the vertca, potenta functon, gravt gradents A átaun orábban dogoott D eárás továbbfeestéséve megodottu a nehéség erőtér 3 dmenós potencáfüggvénéne nverós eőáítását Eötvös-nga mérés adato, nehéség gorsuás mérése, függővona-ehaás értée és dgtás terepmode adato egüttes fehasnáásáva. A módserre nem csupán a Eötvös-nga mérés pontoban, hanem ee örneetében s meghatároható a tees Eötvös-tenor, és íg megaphatu a Eötvös-ngáva övetenü nem mérhető vertás gradens értéeet s. Ee egserű ehetőség adód a Eötvös-nga mérése átsámítására üönböő magasságora, és megodható a nehéség erőtér potencá sntfeüetene anatus meghatároása. Kucssava: nveró, Eötvös-nga mérése, Eötvös-tenor, függővona-ehaás, potencáfüggvén, gradense Beveetés agarorságon a mút sáadban a öe Eötvös-nga mérést végete esősorban ásván nersanago utatása céábó. apanban erre a céra már énegesen hatéonabb utatás módsereet aamana, eért a Eötvös-nga mérése geofa hasnosítása heett a geodéa hasnosítás erüt eőtérbe. A geofa aamaáso céára orábban csa a és a horontás gradenseet dogotá fe, a és görbüet adato eddg fedogoatano maradta. A geodéában vsont éppen a görbüet gradense aapán sámítható függővonaehaáso, ameene többe öött a geod fnomsereeténe meghatároása sempontábó van nag eentősége (Vöges 993, 995, 00, 005). A Eötvös-nga mérése geodéa céú fehasnáás ehetősége a egutóbb dőben tovább bővüte (Vöges et a. 005). A és a horontás gradense fehasnáásáva a nehéség erőtér, etve a gravtácós anomáá határoható meg nterpoácóva (Vöges et a. 004, 00), a és a horontás gradense és a és görbüet adato egüttes fehasnáásáva pedg a vertás gradense áítható eő a Eötvös-nga mérés pontoban (aac 950, Tóth et a. 004, 005, Tóth 00). Vaamenn probéma megodása sempontábó nag eentősége van a potencáfüggvén eőáításána. Amennben meg tudu határon a nehéség erőtér potencáfüggvénét, ebbő meg- * soc Egetem, Geofa Tansé, -355 soc-egetemváros, E-ma: dobroa@god.un-msoc.hu ** Budapest űsa és Gadaságtudomán Egetem, Átaános és esőgeodéa Tansé, -5 Budapest *** agar Tudomános Aadéma esőgeodéa és Geodnama Kutatócsoport, -5 Budapest E-ma: voges@e.bme.hu

2 DOBRÓKA, VÖLGYESI L feeő ránú eső dervátaa eő tudu áítan a erőtér vetorána össetevőt, a másod derváta pedg a Eötvös-tenor eemet adá. A átaun orábban dogoott D eárássa megodottu a és a Eötvös-nga mérése aapán a nehéség erőtér potencáfüggvénéne és a potencáfüggvén vaamenn fontos dervátána nverós eőáítását (Dobróa és Vöges 005, 008). A aábbaban a D eárás továbbfeestéséve a nehéség erőtér 3D potencáfüggvénéne nverós reonstrucóára adun megodást. A 3D nverós agortmus eenőrésére a Sabadsáás-Ksőrös örné öe 50 m teredésű terüeten végetün íséret sámításoat. A avasot módserre ehetőség ní a eddg aamaott nterpoácós módsere pontosságát feümúó sámításo evégésére és a orábban aamaott eáráso során femerüő bonos probémá áthdaására. Ee apcsoatos utatásanban több résetérdés még tstáásra soru, aonban a módser bonítottan ó műöd. A nverós agortmus Íru fe a nehéség erőtér potencáfüggvénét vaame sorfetés aaában:...p básfüggvén rendser sernt (,, ) B ( ) ( ) ( ), () aho + ( )* + ( )* *. Básfüggvéneént p. hatvánfüggvéneet aamahatun. A nde a onstans tagot eö, és mve a potencá onstans ereég egértemű eért a árható. A () potencá másod dervátaént egserűen eőáíthatu a Eötvös-ngáva mérhető görbüet adato-, etve a horontás gradense eméet értéet: B ( ) ( ) ( ) { ( ) ( ) ( ) ( ) } B ( ) ( ) B ( ) ( ) ( ) B ( ) Veessü be a -,, ) mérés pontban a aább eöéseet: ( S Q D ( ) ( ) ( { ( ) ( ) ( ) ( )} ( ) ) ( ) ( ) ( ) ( ) (3) ( ) ( ) ( ), ameee a () Eötvös-nga adato a - pontban: ( ) B S ( ), BQ ( ), B D ( ), B aho a sorfetés egüttható sáma, S, Q, D, pedg smerte. A nverós eárásho süséges eső derváta: (), (4) Geomata Köeméne XII., 009

3 A EÉZSÉGI ERŐTÉR 3D POTECIÁLÜGGVÉYÉEK IVERZIÓS ELŐÁLLÍTÁSA 3 B ( ) ( ) ( ) B ( ) ( ) ( ) (5) B ( ) ( ) ( ). Aamau a -,, ) mérés pontban a aább eöéseet: ( A ( ) ( ) ( ), C ( ) ( ) ( ), ( ) ( ) ( ). (6) Ee sntén sámoható és mátrba fogaható eeme, ameee a eső dervát adato a - pontban: ( ) B A ( ), BC ( ), B, () aho a sorfetés egüttható sáma, A, C, pedg smerte. A mért és a értéebő aotott etérés vetoro eeme a másod dervát adatora: e e () (3) mért mért a eső dervát adatora pedg: e (5) mért ( ) B A ( ) ( ) B S B D (6) mért ( ), e BC () mért ( ), e BQ (4) mért ( ), e B () mért ( ), e B, (8), (9) () aho a mért () a nehéség gorsuás gravméterre mérhető értée, és a mért () és mért pedg csagásat függővona ehaásobó sámítható értée. (A eső derváta a függővonaehaásbó: gξ + U és gη + U, aho U a epsod normátér smert potencáfüggvéne, g a átagos nehéség gorsuás, ξ és η pedg a függővona-ehaás össetevő.) A mnmaáandó függvén egen a etérésvetor L normáa: E s s ( e ), (0) aho a s- típusú adato sáma. Vetoros írásmódot aamava veessü be a s ( s) { } () ( ) () () ( 3,...,,,...,,,..., ),...,..., (),..., ( ) d () ( mért ) C értéeet egeten (a ún. Jaob- eöést. A S Q D vaamnt a egütthatómátrba) fogava: S A mért és a értée etérése: G A 6 s s < s s. () Geomata Köeméne XII., 009

4 4 DOBRÓKA, VÖLGYESI L és ee a (0) sernt: A íg defnát nver feadat megodását a fetéterendser aapán feáított egenetrendserbő apu: e d e (mért) GB, (3) E ( e, e) (aho: s ). (4) E B s 0, (,..., ) (5) T T (mért) G GB G d (6) T T ( G G) G d B. () A nver probéma neárs, megodásáva a sorfetés egüttható B vetora meghatároható. A B vetor eemene smeretében a tees Eötvös-tenor (beeértve a Eötvös-ngáva övetenü nem mérhető vertás gradens értéeet s), een ívü pedg a függővona-ehaás sámításáho süséges, mennsége továbbá a nehéség gorsuás értée s egatu sámítható nemcsa a mérés pontoban, hanem a tees mérés terüeten. 3 Kíséret sámításo A módser aamahatóságána vsgáatára a. ábrán átható Sabadsáás-Ksőrös örné terüeten végetün íséret sámításoat, aho 48 Eötvös-nga és 9 gravméteres mérés eredméne ána rendeeésre. A test terüeten három astrogeodéa és tovább tí astrogravmetra pont s taáható, aho smerte a GRS80 rendserre vonatoó ξ, η függővona-ehaás értée. A ábrán a ponto a gravméteres mérése, a örö a nga-mérése hesínét a feete négete a astrogeodéa, a háromsöge pedg a astrogravmetra pontoat eö. A ereten a EOV oordnátá átható méterben. A. és a 3. ábrán a, a 4. és a 5. ábrán a görbüet gradense, 6. és a. ábrán a, a 8. és a 9. ábrán pedg a horontás gradense ovonaas térépe átható. A és a 8. ábrán a 48 Eötvös-nga mérés aapán megserestett ép, a és a 9. ábrán pedg a nverós eárássa eőáított ép átható. A ábráon a ovonaa épésöe 5 E. (E Eötvös egség 0-9 s - ).. ábra. Gravméteres és Eötvös-nga mérés ponto a test terüeten Geomata Köeméne XII., 009

5 A EÉZSÉGI ERŐTÉR 3D POTECIÁLÜGGVÉYÉEK IVERZIÓS ELŐÁLLÍTÁSA 5 A ábráat úg csoportosítottu, hog a Eötvös-ngáva mért eredet és a eenőrés céábó nverós reonstrucóva eőáított épe egmás meett övetenü össehasonítható egene. A, a, a és a gradense és 8. ábrán átható megehetősen vátoatos épe at vetítette eőre, hog esetünben a potencátér sorfetéses eírása csa vsonag magas fosámú ponomoa es ehetséges. A nverós feadat megodása során meghatárotu mndaon sorfetés egütthatóat, amee segítségéve a tees testterüetre eőáítható mnd a nehéség erőtér potencáfüggvéne, mnd a potencáfüggvén vaamenn eső és másod derváta. Össehasonítva pédáu a. és 3. etve a 4. és 5. ábráon a Eötvös-ngáva mért, vaamnt a egüttes nveróva eőáított és görbüet gradense épét, a egeés gen óna mondható, de ugane a ó egeés tapastaható a és a horontás gradense esetében s a 6. és. etve a 8. és 9. ábráon. Tapastaatan sernt a ponomo fosámána meghatároásaor örütentően e eárnun, mert a fosám növeéséve edetben assan, mad egre gorsabban csöen a megodandó normáegenete egütthatómátrána ondconátsága, a fosám csöentéséve vsont rom a febontóépesség. Vsgáatan sernt a P 8 4 átaában ó ompromssumna áts a febontóépesség és a normáegenete ondconátsága vonatoásában, m most P 9 fosámú hatvánponomot aamatun. A sorfetés egüttható smeretében ehetőség van a nehéség erőtér potencáfüggvénéne vaamnt a potencáfüggvén eső dervátana meghatároására s. A 0. ábrán eg addtív áan-. ábra. Eötvös-ngáva mért terüet eosása. 3. ábra. A nveróva eőáított terüet eosása. 4. ábra. Eötvös-ngáva mért terüet eosása. 5. ábra. A nveróva eőáított terüet eosása. Geomata Köeméne XII., 009

6 6 DOBRÓKA, VÖLGYESI L 6. ábra. Eötvös-ngáva mért terüet eosása.. ábra. A nveróva eőáított terüet eosása. 8. ábra. Eötvös-ngáva mért terüet eosása. 9. ábra. A nveróva eőáított terüet eosása. dó ereég egüttes nveróva meghatároott potencámeő átható.a ábrán a ovonaa épésöe 0. m /s. A geodéa sámára gen fontos függővona-ehaáso sámításáho a és mennsége smerete süséges, ugans a ξ és a η értée a és ξ / g () η / g (8) össefüggése aapán sámítható. A 0. ábrán egútta a függővona-ehaáso vetorat s bemutatu a egüttes nverós megodásábó, aho a vetoro hossát a θ ξ + η össefüggés aapán u. Végü, amnt eetü, a nverós eárássa ehetőség ní a Eötvös-ngáva övetenü nem mérhető vertás gradense meghatároására s. A íg meghatároott vertás gradense eenőrésére eddg nem vot ehetőségün, ebbő a cébó néhán eenőrő pontban vertás gradens méréseet terveü. Geomata Köeméne XII., 009

7 A EÉZSÉGI ERŐTÉR 3D POTECIÁLÜGGVÉYÉEK IVERZIÓS ELŐÁLLÍTÁSA 6 Össefogaás 0. ábra. Egüttes nveróva eőáított potencátér (a ovonaa épésöe 0. m /s ) és a függővona-ehaáso vetorábráa A átaun orábban dogoott D eárás továbbfeestéséve megodottu a nehéség erőtér 3 dmenós potencáfüggvénéne nverós eőáítását. A bemutatott módser a potencáfüggvén nagsámú Eötvös-nga és gravméteres mérés, vaamnt dgtás terepmode adato és néhán függővona-ehaás adat egüttes nveróána fehasnáásáva történő meghatároására nút ehetőséget. A íg reonstruát potencáfüggvénbő sámos gaorat fontosságú teret, (p. vertás gradenseet, függővona-ehaásoat) sármatathatun e a vsgáat terüet bárme pontában. A eárás eőne, hog mndet eg eentősen túhatároott nver probéma megodásáva tehetü. Kösönetnvánítás. Kutatásan a K6065 és a K63 OTKA támogatásáva fona. vatoáso Dobróa, Vöges L (005): A nehéség erőtér potencáfüggvénéne nverós reonstrucóa Eötvös-nga adato aapán. Geomata Köeméne VIII, Dobróa, Vöges L (008): Inverson reconstructon of gravt potenta based on gravt gradents. athematca Geoscences, 40(3), aac (950): De voständge Berechnung örtcher gravmetrscher Störefeder aus Drehwaagemessungen. Veröffentchungen des Geodätschen Insttutes Potsdam, r. 4, Potsdam. Tóth G, Vöges L, Csapó G (004): Determnaton of vertca gradents from torson baance measurements. IAG Internatona Smposum, Gravt, Geod and Space ssons. Porto, Portuga August 30 - September 3, 004. Tóth G, Vöges L, Csapó G (005): Determnaton of vertca gradents from torson baance measurements. IAG Smposa Vo 9, Gravt, Geod and Space ssons, C. Jee, L. Bastos, J. ernandes (Eds.), Sprnger, 9-9. Tóth G (00): Vertás gravtácós gradens meghatároás Eötvös-nga mérése háóatában. Geomata Köeméne X Vöges L (993) Interpoaton of defecton of the vertca based on gravt gradents. Perodca Potechnca Cv.Eng., 3(), Vöges L (995) Test Interpoaton of defecton of the vertca n ungar based on gravt gradents. Perodca Potechnca Cv.Eng., 39(), 3-5. Vöges L (00): Loca geod determnatons based on gravt gradents. Acta Geodaetca et Geophsca ung. 36(), Vöges L, Tóth G, Csapó G (004): Determnaton of gravt anomaes from torson baance measurements. Gravt, Geod and Space ssons GGS 004. IAG Internatona Smposum Porto, Portuga. Jee C, Bastos L, ernandes J. (Eds.) Sprnger Verag Bern, edeberg, ew Yor; Seres: IAG Smposa, Vo. 9. pp Vöges L, Tóth G, Csapó G, Sabó Z (005): A Eötvös-ngamérése geodéa céú hasnosításána heete agarorságon. Geodéa és Kartográfa, 5(5), 3-. Vöges L (005) Defectons of the vertca and geod heghts from gravt gradents. Acta Geodaetca et Geophsca ungarca, 40(), Vöges L, Tóth G, Csapó G (00): Determnaton of gravt fed from horonta gradents of gravt. Acta Geodaetca et Geophsca ungarca, 4(), 0-. Geomata Köeméne XII., 009

A NEHÉZSÉGI ERŐTÉR POTENCIÁLFÜGGVÉNYÉNEK INVERZIÓS REKONSTRUKCIÓJA EÖTVÖS-INGA ADATOK ALAPJÁN. Dobróka Mihály 1, Völgyesi Lajos 2,3

A NEHÉZSÉGI ERŐTÉR POTENCIÁLFÜGGVÉNYÉNEK INVERZIÓS REKONSTRUKCIÓJA EÖTVÖS-INGA ADATOK ALAPJÁN. Dobróka Mihály 1, Völgyesi Lajos 2,3 A EHÉZSÉGI ERŐTÉR POTECIÁLFÜGGVÉYÉEK IVERZIÓS REKOSTRUKCIÓJA EÖTVÖS-IGA ADATOK ALAPJÁ Dobóa háy Vögyes Laos 3 Inveson econstucton of gavty potenta base on toson baance measuements - Suggeston can be foun

Részletesebben

3. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: dr. Nagy Zoltán egy. adjunktus; Bojtár Gergely egy. ts.; Tarnai Gábor mérnöktanár) y P

3. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: dr. Nagy Zoltán egy. adjunktus; Bojtár Gergely egy. ts.; Tarnai Gábor mérnöktanár) y P SZÉCHEYI ISTVÁ EGYETEM LKLMZOTT MECHIK TSZÉK MECHIK-SZILÁRDSÁGT GYKORLT (idogota: dr ag Zotán eg adjuntus; Bojtár Gerge eg ts; Tarnai Gábor mérnötanár) Vastag faú cső húása: / d D dott: a ábrán átható

Részletesebben

Sorfejtéses inverzió IV. A nehézségi erőtér potenciálfüggvényének inverziós előállítása

Sorfejtéses inverzió IV. A nehézségi erőtér potenciálfüggvényének inverziós előállítása AGYAR GEOFIZIKA TANULÁNY 51. évf. (010) 3. sám, 1 7 Sorfejtéses inverió IV. A nehéségi erőtér potenciálfüggvényének inveriós előállítása DOBRÓKA IHÁLY 1,3, VÖLGYESI LAJOS,4 1 iskolci Egyetem, Geofiikai

Részletesebben

Az Eötvös-inga mérések geodéziai célú hasznosításának helyzete Magyarországon

Az Eötvös-inga mérések geodéziai célú hasznosításának helyzete Magyarországon A Eötvös-nga mérések geodéa célú hasnosításának helete Magarorságon Dr. Völges Lajos egetem docens,, dr. Tóth Gula egetem docens, dr. Csapó Géa saktanácsadó 3 Sabó Zoltán saktanácsadó 3, BME Általános-

Részletesebben

GEODÉZIA ÉS KARTOGRÁFIA

GEODÉZIA ÉS KARTOGRÁFIA GEODÉZIA ÉS KARTOGRÁFIA 57. ÉVFOLYAM 5 5. SZÁM A Eötvös-nga mérések geodéa célú hasnosításának helete Magarorságon Dr. Völges Lajos egetem docens,, dr. Tóth Gula egetem docens, dr. Csapó Géa saktanácsadó

Részletesebben

x y amelyeket az összenyomhatatlanságot kifejezőkontinuitási egyenlet egészít ki: v x p v

x y amelyeket az összenyomhatatlanságot kifejezőkontinuitási egyenlet egészít ki: v x p v A asonóság transormácó a sócsaág sámításoná A asonóság transormácó a sócsaág sámításoná DR BENKŐJÁNOS Agrártudomán Egetem GödöőMeőgadaság Gétan Intéet A terveő a sócsaága méreteésére a egat megodás ánáan

Részletesebben

2. Közelítő megoldások, energiaelvek:

2. Közelítő megoldások, energiaelvek: SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK 4. MECHANIKA-VÉGESELEM MÓDSZER ELŐADÁS (kidogozta: Szüe Veronika, eg. ts.) IV. eőadás. Közeítő megodások, energiaevek:.4. Ritz-módszer,.4.. Lineáris

Részletesebben

Í Í É Ó Ö Í Ó Ó ű Í Í Ó ű Ó Ó Ö Ö Ó Ö ű Ó Ó Ö ű ű ű Ö Ö Ó Ó Ó Ö Í Ö Ö Ö É Ó Ó Ö Ó Ő Ö Ó Ő Ö Í Ö ű ű Í Í ű ű É Í ű Í Ö Ö Í Í É Ö Ö Í Ö Ö Ö ű Ö Ö Ö Í ű ű Í Í ű Ő Í Ö Í Í Í Ö É Ö Ö Ű Í Ö Ó Í Í Í Í Í Ö ű Ö

Részletesebben

É É É Á Ő É Ű ÖÉ í ö ű ü ö í ö í ö ü ö ö Á Á Í É Ű ö É Á ö í ű ö ü ö ü ű ö ű ö ű ö í ö í ö í í Á Á ö ú ö ö ö ö ü ö ö ű í í ü ö ü í ö í í í ö ö ú ű í í í í Á Á ö ö ö ú ü í í í üü ö í í ü í ö í í í ö ö í

Részletesebben

Ú ó Ó Ú É Á Á É Á É Ó Í É Ö Í Ú ő ó ű é ó ó é é ö ö ő Ú ő ó Ú É Á é é é é ő ó ű é ő é ű é ó ű é é ő ó ű é é ö ö é ó é é é é é é é ó ű é é ű é ó é é é é é ú ű é é é ü é é é é ü ó é é é ö é Í ö ú ü ö ö é

Részletesebben

A centrikusan nyomott nyitott és zárt keresztmetszetb egyenes rúd stabilitása

A centrikusan nyomott nyitott és zárt keresztmetszetb egyenes rúd stabilitása enkusan nomott ntott és zárt keresztmetszetb egenes rú stabtása eu Moga, Kö Gábor,.tean Gu/u, tn Moga 3 proesszor, ajunkus, 3 tanársegé Koozsvár Mszak Egetem bsat Ths paper presents the bass o the anass

Részletesebben

Heloszlás háromszögelt síkrészen

Heloszlás háromszögelt síkrészen Heoszás háromszöget sírészen Mós Bánt és Zsombor Vmos Koozsár Msza Egetem Automatzáás és Számítógépe ar május Konat. Objetum orentát mpentácót és eméet eszözöet adun több NURBS görbe segítségée meghatározott

Részletesebben

A befogott tartóvég erőtani vizsgálatához III. rész

A befogott tartóvég erőtani vizsgálatához III. rész A befogott tartóvég erőtani vizsgáatához III. rész Az I. részben a befogott gerendavéget merevnek, a tehereoszást ineáris függvény szerintinek vettük. A II. részben a befogott gerendavéget rugamasan deformáhatónak,

Részletesebben

KOORDINÁTATRANSZFORMÁCIÓK MEGOLDÁSA SZÁMÍTÓGÉPES

KOORDINÁTATRANSZFORMÁCIÓK MEGOLDÁSA SZÁMÍTÓGÉPES BUDAPESTI MŰSAKI ÉS GADASÁGTUDOMÁNI EGETEM ÉPÍTŐMÉRNÖKI KAR ÁLTALÁNOS- ÉS FELSŐGEODÉIA TANSÉK KOORDINÁTATRANSFORMÁCIÓK MEGOLDÁSA SÁMÍTÓGÉPES ALGEBRA ÉS NEURÁLIS ÁLÓATOK FELASNÁLÁSÁVAL Ph.D. értekeés ALETNIK

Részletesebben

5. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: dr. Nagy Zoltán egy. adjunktus; Bojtár Gergely egy. ts.; Tarnai Gábor mérnöktanár)

5. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: dr. Nagy Zoltán egy. adjunktus; Bojtár Gergely egy. ts.; Tarnai Gábor mérnöktanár) ZÉCHENY TVÁN EGYETEM ALKALMAZOTT MECHANKA TANZÉK 5. MECHANKA-ZLÁRDÁGTAN GYAKORLAT (kidogota: dr. Nag Zotá eg. adjuktus; Bojtár Gerge eg. ts.; Tarai Gábor méröktaár) 5.. Rugamas sá differeciáegeete (ehajás

Részletesebben

Az összetett hajlítás képleteiről

Az összetett hajlítás képleteiről A össetett hajlítás képleteiről Beveetés A elemi silárdságtan ismereteit a tankönvek serői általában igekenek úg kifejteni, hog a kedő sámára se okoanak komolabb matematikai nehéségeket. A húásra / nomásra

Részletesebben

Matematikai összefoglaló

Matematikai összefoglaló Mtemt össefoglló Vetoro Ngon so oln mennség vn, mel nem ellemehető egetlen sámml. A len mennségre legegserű és mnden áltl ól smert péld, vlmel pontn helete téren. Amor táéoódun és eg pont heletét meg ru

Részletesebben

A lecke célja: A tananyag felhasználója megismerje a forgó tömegek kiegyensúlyozásának elméleti alapjait.

A lecke célja: A tananyag felhasználója megismerje a forgó tömegek kiegyensúlyozásának elméleti alapjait. modu: Kinematika Kinetika 4 ecke: Forgó tömegek kiegensúoása ecke céja: tananag fehasnáója megismerje a forgó tömegek kiegensúoásának eméeti aapjait Követemének: Ön akkor sajátította e megfeeően a tananagot

Részletesebben

László István, Fizika A2 ( Budapest, 2013) 1 1. Előadás. 1. Elektrosztatika

László István, Fizika A2 ( Budapest, 2013) 1 1. Előadás. 1. Elektrosztatika Lásló István, Fa 2 ( udapest, 2013) 1 Tartalm emelés 1. Eletrostata 1. termésetben potív és negatív eletromos töltés található. Különböő előelű töltése voná, aonos előelű töltése pedg tasítá egmást. 2.

Részletesebben

R E D U K C I Ó AA. Fürstand Júlia 2013.

R E D U K C I Ó AA. Fürstand Júlia 2013. R E D U K C I Ó AA A edukcó a űíé eköe, céa a ényeg megőée, a feeeg eáoíáa A eneeé an eedeű; ó en eenée ahúá, cökkené Sámo eüeen akamaák: edukí bo 1 a eegő káááa ée bo, a gaonómában a mááok feeege foyadék

Részletesebben

Á É Á É Ü É é í ü ü ü é é ö é é é é ö é ó ó é é í ó é é é é ü é ó ó éó ó ó é é é é é é é í ó Ü ö ö ű é ű í é ó é ó é ü é í ü é ü ü é é í ö ö é ü é í ü ü é é é ü ö é ó ó ö í ó é é ü ö é ö í é é é é ü é

Részletesebben

Í é ö é ő é ő é ű é ó ó é é é ü ő ó é ó é ő ó ő ó ű é ó Í é ü ő ó é ó ü ö ö é ő é ő ó ú é óé ó ó ó é ö é é ó ó é é ó ó ó ó é ö é é ó ü ő ö ő é ő ó ű é ó ó é é ü ó ú ő ó ú é éó ó ú é é é ő ó ű é ó ó é ó

Részletesebben

é é ő ü é ó é é ő ü í ő ő ő é é é é é é í é ő Á é é é ő í é é é é é é ő í ó ő é é ű ő ü é ó ú ó ű é é ő é í ő ő ő é é é é é ő í é í é é é é é é é ú ő é ő ő é é é ő ő é é ő ü é é é í é é ü é ű é é é é é

Részletesebben

TEHETETLENSÉGI NYOMATÉKOK (kidolgozta: Fehér Lajos) A következőkben különböző merev testek tehetetlenségi nyomatékait fogjuk kiszámolni.

TEHETETLENSÉGI NYOMATÉKOK (kidolgozta: Fehér Lajos) A következőkben különböző merev testek tehetetlenségi nyomatékait fogjuk kiszámolni. écheni István Egete kaaott Mechanika MECHNIK-MOZGÁTN TEHETETLENÉGI NYOMTÉKOK (kidogota: Fehér Lajos) követkeőkben küönböő erev testek tehetetenségi noatékait fogjuk kisáoni..1. Péda: Páca tehetetenségi

Részletesebben

É É Ó É É ő É É Ú É É ő Ú Ú Ó Ü ő É Ü É Ó ő É Ó Ú Ö Ö Ó ő Ó Ú Ú Ó ő Ú Ú É É É É Ü É Ó É É É Ó É Ó É Ú É É É Ó É ő ő ű ő ő ő ő ő ő ő Ú ű Ú ő ő ű ő ő ű ű ő Ú Ü ő Ú Ú ő Ú Ú ő ő ű ő ő ő ő ű ű ő ő Ü ő ű ő ő

Részletesebben

EUKLIDESZI TÉR. Euklideszi tér, metrikus tér, normált tér, magasabb dimenziós terek vektorainak szöge, ezek következményei

EUKLIDESZI TÉR. Euklideszi tér, metrikus tér, normált tér, magasabb dimenziós terek vektorainak szöge, ezek következményei Eukldes tér, metrkus tér, ormált tér, magasabb dmeós terek vektoraak söge, eek követkemée Metrkus tér Defícó. A H halmat metrkus térek eveük, ha va ola, metrkáak eveett m: H H R {0} függvé, amelre a követkeők

Részletesebben

é ó é é é ő é é é é é ö í ó ó é í é é é é é é ö é í é é é í é ú é é é é é é ö é í í ó őí ü ü é é ó é ó é ü é é ó ő é é í é í ó í é ő ő ő ü ő é ó é í é

é ó é é é ő é é é é é ö í ó ó é í é é é é é é ö é í é é é í é ú é é é é é é ö é í í ó őí ü ü é é ó é ó é ü é é ó ő é é í é í ó í é ő ő ő ü ő é ó é í é ó ü É Í É Á ú Ü Ü é ó é ö ú óé ü é í é éü Á í é ű é í óé é ú ó ü ó é í é é ú ö é é í í ú ő é í ű ó ó é é í é é é í é ű é í é é é é ü ö ú ó ű é é ó é ö ö ő í őí é é ö ó é í é É é őí é í é ű ő é é í óé ű

Részletesebben

é é ö í Ü ö é ő é é Í Í é é é ű é ő é é ő í ő Ű é é é é ö í é ö ö é ö é é é é ő é ű ő é é Úé é ö ö é Ü ö é ő é éü Ú í í ő ö é é é é é í é é ő é é őé é

é é ö í Ü ö é ő é é Í Í é é é ű é ő é é ő í ő Ű é é é é ö í é ö ö é ö é é é é ő é ű ő é é Úé é ö ö é Ü ö é ő é éü Ú í í ő ö é é é é é í é é ő é é őé é é é ö ő é é é ö é é é é ö ö ö Í Í é Í é ö é Í ö é é é é é ö é ü í é ű é é ö é ö é Í ö ö é é é ú ö ö Ú ö í é í é é í é ö é é é é é é ö í ű ű é é ű Í ö é é é éé é í é é í ö í é é Ü é ő é í é é é é ö í Ü

Részletesebben

2. Koordináta-transzformációk

2. Koordináta-transzformációk Koordnáta-transformácók. Koordnáta-transformácók Geometra, sámítógép graka feladatok során gakran van arra sükség, hog eg alakatot eg ú koordnáta-rendserben, vag a elenleg koordnáta rendserben, de elmogatva,

Részletesebben

é ü ü ő ü ő é ú é é é é é ő í é ő Í ő ü é é í é í é ő í ó é é í é é ő ó í ó é í í é ő Í ú ó ó í é ű í ó é í é ő é é í ó é í í óé í éé ő ó ü é ő úé é ú

é ü ü ő ü ő é ú é é é é é ő í é ő Í ő ü é é í é í é ő í ó é é í é é ő ó í ó é í í é ő Í ú ó ó í é ű í ó é í é ő é é í ó é í í óé í éé ő ó ü é ő úé é ú é é ő ü é í ó é é ő Í Í é é é é óó ó é é Í Á é é í í é ő é é í é é é é é é ü é é ü é é é é ő é ő é é ő ü ü é é é é é é é í ő é é ű é é ü ü ő é é ő é é é ő é é ő ó ó é ő ü é Ú é ü é é ű é é í é í é é í

Részletesebben

ű ó Ó é é é é ó ő ü é é ü ú é é é é Ú ő ú é é é ú é é é ő Ö é ó é Ö ó é ő é é ü ő é ú é é ő é ü é é é é ó é ü ű é ó é ű é é Ö é ű é ó é é ű é é ó ő é

ű ó Ó é é é é ó ő ü é é ü ú é é é é Ú ő ú é é é ú é é é ő Ö é ó é Ö ó é ő é é ü ő é ú é é ő é ü é é é é ó é ü ű é ó é ű é é Ö é ű é ó é é ű é é ó ő é é ú é ú é ő ő é ú é é ú ő ő ó ú é é é ű é é é é é ó é ú é ő ő é ó é é é é é é é Ó é é Ó ó ő é ó ó é ő ő é é ü ú é é ő é ó é é Ó é ú é ú é é ú é ő é é é ó é é é ú é é é é é ó ű ó Ó é é é é ó ő ü é é ü ú

Részletesebben

ü É É ó Ö ü ü é í é é ő ü é Ú é í ü é é é ő é ü í é ü ő é í ü é ó é é é ő ű ő ü é Ö é é é é ő é Ö é é é é é é é é Ö ü ü é ü é é ó é ü é ü é é ű ü Ő é

ü É É ó Ö ü ü é í é é ő ü é Ú é í ü é é é ő é ü í é ü ő é í ü é ó é é é ő ű ő ü é Ö é é é é ő é Ö é é é é é é é é Ö ü ü é ü é é ó é ü é ü é é ű ü Ő é ó é é ő ü é ü é é ő é ó ó é Ö é ő ü é é é ó ó ó é é é é é é é é ő é ő ü é ú ü ú í í ü é ú í ü é í í ó é é é ő ő ő é ü ü é í ó é ő ó ó ü é é ű í ó é é í ü É É ó Ö ü ü é í é é ő ü é Ú é í ü é é é ő é ü í

Részletesebben

í ó ó í é é Ú ó ő é é ö ö ö é ó é ö ő ü é é é Ü ö ú ó é ő é é é é í é ő é ó í ó í é ó ó é őé ó ü éé é é ó í ű ó é é ű ö é é ű ü é é ü é é ö é ü ó Ü ö ö é é Ü í é ó é é é ü ö é ö é ó úé é í éú ó é ó ö é

Részletesebben

+ - kondenzátor. Elektromos áram

+ - kondenzátor. Elektromos áram Tóth : Eektromos áram/1 1 Eektromos áram tapasztaat szernt az eektromos tötések az anyagokban ksebb vagy nagyobb mértékben hosszú távú mozgásra képesek tötések egyrányú, hosszútávú mozgását eektromos áramnak

Részletesebben

. Vonatkoztatási rendszer z pálya

. Vonatkoztatási rendszer z pálya 1. Knemaka alapfogalmak. A pála, a sebesség és a gorsulás defnícója. Sebesség, és gorsulás lokáls koordnáá. Mogás leírása különböő koordnáa-rendserekben. A knemaka a mogás maemaka leírása, a ok felárása

Részletesebben

A lecke célja: A tananyag felhasználója megismerje a merev testek kinematikájának elméleti alapjait.

A lecke célja: A tananyag felhasználója megismerje a merev testek kinematikájának elméleti alapjait. 0 odu: Kineatika, Kinetika 03 ecke: Merev test kinetikája ecke céja: tananag fehasnáója egiserje a erev testek kineatikájának eéeti aapjait Követeének: Ön akkor sajátította e egfeeően a tananagot, ha:

Részletesebben

5. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: dr. Nagy Zoltán egy. adjunktus; Bojtár Gergely egy. ts.; Tarnai Gábor mérnöktanár)

5. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: dr. Nagy Zoltán egy. adjunktus; Bojtár Gergely egy. ts.; Tarnai Gábor mérnöktanár) ZÉCHENY TVÁN EGYETEM ALKALMAZOTT MECHANKA TANZÉK 5 MECHANKA-ZLÁRDÁGTAN GYAKORLAT (kidogota: dr Nag Zotá eg adjuktus; Bojtár Gerge eg ts; Tarai Gábor méröktaár) 5 Rugamas sá differeciáegeete (ehajás sögeforduás):

Részletesebben

Tevékenység: Olvassa el a bekezdést! Jegyezze meg a teljes potenciális energia értelmezését! Írja fel és tanulja meg a külső erőrendszer potenciálját!

Tevékenység: Olvassa el a bekezdést! Jegyezze meg a teljes potenciális energia értelmezését! Írja fel és tanulja meg a külső erőrendszer potenciálját! tejes potenciáis energia minimuma ev Ovassa e a bekedést! Jegyee meg a tejes potenciáis energia értemeését! Írja fe és tanuja meg a küső erőrendser potenciáját! tejes potenciáis energia minimuma ev konervatív

Részletesebben

Kérelmezök vállalják a helyiségrész teljes felújítását, amennyiben azt kedvezményes 4 OOO Ft/m2/év bérleti díj megállapításával vehetik igénybe.

Kérelmezök vállalják a helyiségrész teljes felújítását, amennyiben azt kedvezményes 4 OOO Ft/m2/év bérleti díj megállapításával vehetik igénybe. Budapest Főváros X. kerüet Kőbányai Önkormányzat Apogármestere y. ',. sz. napirendi pont Tárgy: Javasat a Budapest X. kerüet Újhegyi sétány 12. szám aatti heyiség egy részének bérbeadására Tisztet Gazdasági

Részletesebben

Mobilis robotok irányítása

Mobilis robotok irányítása Mobiis obotok iánítása. A gakoat céja Mobiis obotok kinematikai modeezése Matab/Simuink könezetben. Mobiis obotok Ponttó Pontig (PTP) iánításának teezése és megaósítása.. Eméeti beezet Mobiis obotok heátoztatása

Részletesebben

Á ű ő ö Í é é ő Ö Ö é ő Ö ő ö é é Ö ü é ó Ő é é ó é ó é é é é Ö ó ó ő é Ü é ó ö ó ö é é Ő ú é é é é ő Ú é ó Ő ö Ő é é é é ű ö é Ö é é ó ű ö é ő é é é é é é é é é Ö é Ö ü é é é é ö ü é ó é ó ó é ü ó é é

Részletesebben

ű Ő ű Ü Ü Ü ű ű Ú ű ű ű ű ű ű ű ű ű ű ű ű ű Ú ű ű ű Ú Ü Ő ű Ö ű Ü ű Ö ű Ú ű ű Ű É É ű ű ű ű ű ű ű Ü ű ű ű ű ű ű ű Ú ű ű ű É Ű É Ü Ü Ú É É ű ű ű Ü ű É É Ű É ű ű ű ű ű ű ű Ö Ó ű ű ű ű ű ű Ö É Ó É É É Ü

Részletesebben

ú Ú Ö É ú ü í í ü í í í í ü Ú í ű í ú ü ü í í ü ü í ü ü ú Í í ű í ü ü Ü í í ü í ú ű ú ú í í ü ú í ü É ü Ö í í ü ú ű í í ü í ű í í Í Ö í í ü Ö ú É Í í í í ü ű ü ű ü ü ü ü í í í í ú í ü í ú É ü ü ü ü í ü

Részletesebben

ó ó ú ú ó ó ó ü ó ü Á Á ü É ó ü ü ü ú ü ó ó ü ó ü ó ó ú ú ú ü Ü ú ú ó ó ü ó ü ü Ü ü ú ó Ü ü ű ű ü ó ü ű ü ó ú ó ú ú ú ó ú ü ü ű ó ú ó ó ü ó ó ó ó ú ó ü ó ó ü ü ó ü ü Ü ü ó ü ü ü ó Ü ó ű ü ó ü ü ü ú ó ü

Részletesebben

:.::-r:,: DlMENZI0l szoc!0toolnl ránsnnat0m A HELYI,:.:l:. * [:inln.itri lú.6lrl ri:rnl:iilki t*kill[mnt.ml Kilírirlrln K!.,,o,.r*,u, é é é ő é é é ő é ő ő ú í í é é é ő é í é ű é é ő ő é ü é é é í é ő

Részletesebben

Ü Ö Á Á Á Á Á É ű Ü Ú ű ű Á É ű Ú Ü ű Ü Ü Ü Ü Ü Ü Ü Ü Ü Á Ü Ü Ü Ö Ö Ú Ö Ü Ö ű ű ű ű ű Á ű Ú ű ű ű ű ű É Á Ö Ö Ö ű ű ű Á ű ű ű ű ű ű ű ű ű ű Ü Ü Ü Ü ű ű ű ű ű ű ű ű ű ű ű Ú ű ű ű ű ű ű Ü Ö Ü Ó Ö ű ű ű

Részletesebben

Ü Éü É ü í í Í ö Ü Ú ú Ó í ő í Ö ű ö Ó ú Ű ü í Ó ö Ó Ü Ó Ó í í ú í Ü Ü ő Ú Ó Ó í ú É ÉÉ É Á Ü Ü Ü Ú ő í Ő Ó Ü ő ö ü ő ü ö ú ő ő ő ü ö ő ű ö ő ü ő ő ü ú ü ő ü ü Í ü Í Á Ö Í É Ú ö Í Á Ö í É ö í ő ő í ö ü

Részletesebben

Ö Ó ú É ű É Ö Ö Ö Ü Ó Ú É ú É Ü Ú ú Ü ű ú Ü Ö Ö ú ű Ú ű ű ú Ö Ö Ö Ö É ú ú Ő Ö ú Ü Ó ú Ú Ü Ö ű ű ű Ö ű ú Ó ű Ö Ü ű ú ú ú ú É ú Ö ú ú Ü ú Ó ú ú ú ú ú ú ű ű ú ű ú ú ű Ö ú ú ú ű Ö ú ű ú ű Ü Ö Ü ű Ü Ö ú ú Ü

Részletesebben

Á Á Ó É ö ó ó ó ő ő ó ö ő ő ű ó ú ö ó ó ő ó ü ó ó ő ó ó ő ó ü ó ő ő ő ó ő ő ö ó ó ó ö ö ü ö Á Á Ó ü ó ö ó ő ó ő ő Á É Á Ó ű ü ö ó ő ó ú ÉÉ ó ú ő ö ó ó ó ó ó ö ö ő ü ó ö ö ü ó ű ö ó ó ó ó ú ó ü ó ó ö ó

Részletesebben

É É É ü É ó ó É ű ó ÉÉ ó É ó É É ó É ü ó ó Ó ű ó ó ó ó ü É ü ű ó É É É É ü ü ó ó ó ü É ó É ó É ó ó ó ü ü ü ü ó ü ü ü ü ó ű ű É Í Ó Ü Ö ó ó ó Ó ó ü ü ü ű ó ü ü ű ü ü ó ü ű ü ó ü ó ó ó ó ó ó ó ü ó ó ó ű

Részletesebben

TRANSZPORTFOLYAMATOK HOMOGÉN ELEKTROKÉMIAI RENDSZEREKBEN

TRANSZPORTFOLYAMATOK HOMOGÉN ELEKTROKÉMIAI RENDSZEREKBEN TRANSZPORTOLYAMATOK HOMOGÉN ELEKTROKÉMIAI RENDSZEREKEN Transport folyamatok legfontosabb össefüggése (smétlés) A entrópatermelés sebessége folytonos rendserekben: ds dt k k k, ahol k : a transportálódó

Részletesebben

ó ó é é é ó ü é é Í ő ő ó ó é ö é ó é ő ü é é ó í é é é ű ő ő ő é é ő í é í é é é ú é é é ó í é ö é ő ö é é é ö ü í é é ő é é ü é é í Ú ő ó ö é ő ö ö

ó ó é é é ó ü é é Í ő ő ó ó é ö é ó é ő ü é é ó í é é é ű ő ő ő é é ő í é í é é é ú é é é ó í é ö é ő ö é é é ö ü í é é ő é é ü é é í Ú ő ó ö é ő ö ö Á Á É é ö ö é ő ő ő é ö é é ő é é é é ő í é é é ó é é é ü ő ő ó é ő é ű ö ö ú é ü ö é é é é ó é é ü ő ö é ő é ő ü ő ő ö ö í é ő ó ó ő é ő é ó é é ő é ó é ű é é ü ö é Í ö é í é ő ó ö é ő é ú í ö é é é ö

Részletesebben

ő á ö é é í í ó ű á ő é é ő á á á é á é á é é é é ő é á á é é é é ö ö ú é íí ü é é ú ő ő é ó í é é é é ó í é é é ü ö ö á é ó é ő ó é á í ó é í ü é é á é é í é é ü é é á í ó í é ü ö ö é é ó ó é ó ó é á

Részletesebben

Ü Á É É í Ő É Ő Á Ü Ó í Á É Ü Á É É í ŐÉ Ő Á Ü ü Ó Ó ö ő ö ö ö ő ó Ó ö ű ö ő ó Ó Ó ö ö Ó í ő ü ü ü Ü Á É í ő ő ü ú í ú Ü ű ö ü ö ü ü ú Ü í í ó ó É Ö ü ő ü ö ú Ü ö ö ü ő ő í ő Á Ó Ó í Ó ú ő ó í Ö Ó ö ö

Részletesebben

ó ö ó őé é ü ő É ö ó ő é ű Ü ú é ü é ő ó ó ó é ő ó é é ó ö ó őé é Ü ő ó ő ú ó é ű Ü ú é ü é ó ó ö é ő ó é ó é ó ó ó ö ó ó őé é ü ő ő őé ü é ó ó ő é ű ü ú é ü é ő ó ö ó é ó é é ó ó Ó Á Á Á é é é ő ő é é

Részletesebben

Í Á ÓÉ Ú Á ö ú ö ó ö ü ö ó ö ü ö ó ö ú ú ö ú ó ó ö ó ó ó ö ó ó ű ó ö ó ö ö ú ó ó ú ö Ö ó ö Ö ö ó ó ó ö ö ú ó ö ú ó ó ó ü ó ú ó ö ö ú ó ó Á Á ú ó ü ö Ö ó ö ö ó ö ú Á ö ú ö ö ö ö ö ú ö ú ü ö ú ű ö ö ó ó

Részletesebben

ő ö é Ü ü é Ó é é ú ü ö ű é é é é í Ü Ö ö ö ö ü ö é é Ó é é ő é ű í ű ő ő é é é ő é é é Ü Ü Ö Ö ő Ö é ü ö ü ő é é é ő ő é ü í ő é ő ő é é é é é é é é ő í ö é ö ő é ő é é ő é ü ő é é é é ú ő é é ő ő é é

Részletesebben

Í Í Á Í Á Ü Ö ü Á ü ó Í ó ű ó ü ó ó ó ú ű ó ó ü ű ó ó ű ó ü ü ü ű Í ű ü ü ű ó ű ü ó ű ü ű ű ü ű óé ű ü ó ű ű ü ü ó ú ü ű ó ü ü É ü ó ó ű ó ó ó ú ó ü ó ü ű ü ó ü ú ó Í ó ó ó ó ó ü ü ó ó ú ó ű ü ú ú ó ü

Részletesebben

ö ö É Ú Á í ö í ö ö öé ö í ö ö Ö Ö Ö ó ó ó ö Ö í í í ó ó Ö í Ö ű í ö ő í ő ü Ö ű í í Ö ó í ű Ö ó í í ó ó ö í Ö Ö Ö ű ó ó ő ő ő ő í ó ó í ó ű ó Ö Ö ű í ő ú ó ő Ö Ö ö Ö ü Ő ö ü ó ó í í ö ü ő Ö ü í ú ó ó

Részletesebben

Projektív ábrázoló geometria, centrálaxonometria

Projektív ábrázoló geometria, centrálaxonometria Projektív ábráoló geometria, centrálaonometria Ennél a leképeésnél a projektív teret seretnénk úg megjeleníteni eg képsíkon, hog a aonometrikus leképeést (paralel aonometriát) speciális esetként megkaphassuk.

Részletesebben

FIZIKA BSc, III. évfolyam / 1. félév Optika előadásjegyzet SKALÁR DIFFRAKCIÓ. dr. Erdei Gábor,

FIZIKA BSc, III. évfolyam / 1. félév Optika előadásjegyzet SKALÁR DIFFRAKCIÓ. dr. Erdei Gábor, FIZIKA BSc III. évoam /. éév Opta őaásjgt SKALÁ DIFFAKCIÓ r. r Gábor 07--0 Ajánott roaom Aapogama Kn-Furta Optcs chtr Bvtés a morn optába Born-Wo Prncps o optcs Gooman Introucton to Fourr optcs Dracó:

Részletesebben

É É ö Ú Ú É ö ő ö É É Ő É É ű ú ö ő ö ő ő ü ö ö ő ő ő ö ö ő ő ö ö ö ű ö É É É É É ö ö ö ö ő ú ö ü É É ő ő ö ő ú ú ü ő ö ő ő ú ő ö É ő ő ű ő ö ú ő ő ő ü ö ö ü ő ú É Ú ö ő ő ö ö ő ő ő ő ö ö ö ő ő ő ü ő ű

Részletesebben

Budapest Főváros X. kerület Kőbányai Önkormányzat Alpolgármestere

Budapest Főváros X. kerület Kőbányai Önkormányzat Alpolgármestere Budapest Főváros X. kerüet Kőbányai Önkormányzat Apogármestere Eőterjesztés a védőnői szakmai napok támogatásáró 2011. szeptember 29-30. között a Kőbányai Egészségügyi Szogáat Védőnői Szogáatának 16 védőnője

Részletesebben

GEODÉZIAI DÁTUMTRANSZFORMÁCIÓ ITERÁCIÓS MEGOLDÁSA KVATERNIÓVAL

GEODÉZIAI DÁTUMTRANSZFORMÁCIÓ ITERÁCIÓS MEGOLDÁSA KVATERNIÓVAL GEODÉZIAI DÁUMRANSZFORMÁIÓ IERÁIÓS MEGOLDÁSA KVAERNIÓVAL Sent István Egetem Yl Mklós Éítéstudomán Kar ÖSSZEFOGLALÁS A dátumtransformácó a egk leggakraan előforduló feladat a geodéáan forogrammetráan térnformatkáan

Részletesebben

Térbeli mechanizmus alkalmazása az emberi térd kinematikai vizsgálatában

Térbeli mechanizmus alkalmazása az emberi térd kinematikai vizsgálatában Dr. Bíró Istvá Térbe mechmus kmás ember tér kemtk vsgátáb Össefgó: A ember tér mgásvst évteek ót sáms bmechk kuttócsprt vsgáj. Műsk semptbó éve rekívü össetett, és sjáts jeemőkke bíró prbémáró v só. Eek

Részletesebben

:J számú előterjesztés

:J számú előterjesztés Budapest Főváros X. kerüet Kőbánya Önkormányzat Apogármestere :J számú eőterjesztés --""----- Eőterjesztés a Képvseő-testüet részére 2012. januártó új kérdőív hasznáatáró és a közétkeztetés színvonaának

Részletesebben

Á Á Á Á Á ö ő ü Ü ö ő ú ű ő ü ü ő ű ö ű ő ö ö ő ö ő ő ő ő ő ő ő ő ő ű ő ő ű ö ö ö ő ő Ü ő ő ű ö ő ő Ü ű ö ö ö ö ö ö ö ü ö ö ú ü ő ü ű ö ö ü ű ő ö ő ö ő ű ő ö ő ü ö ű ő ö ö Ü ö ö ő ő ö ő ű ő ő ü ö ő ő ú

Részletesebben

É ö í ö í í ű ö ö ú í í ú í ó Ó ö ú í ö ú í ű ö ü ó ü ó í ó ó ű ü í ű ö ó ó í ö Ü Ó í ó ű ó í ó ö ü ó í í ö ö í ó ö ú í ó ó í ó Ü ó í ü ű ö ü ó ó ö ö ö ö í ö ú Ó í í í ü ó ö ü í ó í Á Ó í ó ó ó ú Á ö í

Részletesebben

ű ü ű ű ű ű ö Á ö ö ú ú ö ö ö ü ö ö ö ű ö ú ú ű ö ö ü ö ö ú ö ü ü ö ü ö ű ö ö ü ö ö ü ö ü ü ü ö ö ö ö ű ö ű ü ö ö ü ű ö ü ö ű ü ű ö ö ú ű ö ú ö ö ü ű ű ö ű ü ö ű ö ö ö ú ö ü ö ö ö ö ú ü ü ö ö ü ö ö ö ö

Részletesebben

É á á á ö á á á á á á á á á ű á á á á á á á ű á á á ö á á á á á á á á á á á á á á á ű á ű á á á ö á á ú á á á á á ö ű á ű á á ü á á á É É ú É ü É ü Ú Á É ú Ú Á É Ü É Ú É Ú ű á ű á á ü Í Ú ü Á á É É ű á

Részletesebben

ó Ü ő É ó ó ő Ó Ó í ő ó ő Ö É ó ő ú Ü í ó Ú ő Ó Ó í ó ő ó É ó É ó ö ö ű Ö ő Ó ő ó ó Éó Ó É Ó Ó Ő ó É ó ó Ó É Ó ó ö í Ó ö í ű Ó í í ö Ü ű ó í ó ö ű Ó Ö Ö ó Ö Ó í ö ü ű ú ü ú ő ó í ó ó Ú ú í í í ó Ö ü ő

Részletesebben

ő Ö ő ü ő ó Ó Ő ü ü ő Ö ó ó ű ó ó ó ó ő ő ő ó ó ő ő ő ó ő ő ő Ö ő ü Ő Ö ü ő Ö ó ő ü ü ő ő ő ő ő Ö ó ü ő ő ő ü ü ó ó ó ó ü ő ő ő Ő ü í ő ü ő ü í ó ő í ő Ö ő ó Ö ő ó Ó Ö Ö Ű ő ó Ö Ö ő ő ő ó ő ő ó Ó ó ő ő

Részletesebben

NYÍRBOGDÁNY Településfejlesztési Akcióterv 2007-2013 Készítette: JBM Team Bt. 2007. március Ú 4 5 6 V E 57 Ü 6 M 65 65 5 6 4 5 4 V V 5 4 5 6 65 5 6 4 4 66 44 6 5 6 6 6 6 6 4 5 5 6 54 5 6 6 5 4 4 4 6 6

Részletesebben

ö é ö ó é é é ó é é é ő ó ü é ű é í ü é é ó é é é ö é é ó é é ü é ó é é é é ú ó é ő ő é é é ü é é é É ó í ú ü é é ő Ő é í é é é é é ő é ő ű é ó ö ö é

ö é ö ó é é é ó é é é ő ó ü é ű é í ü é é ó é é é ö é é ó é é ü é ó é é é é ú ó é ő ő é é é ü é é é É ó í ú ü é é ő Ő é í é é é é é ő é ő ű é ó ö ö é ö é Ö é ő ü é ü ö é é ő é ü ö ö ö ő ü é ő ü é ö ó ö ö é é ő ö ő ó ő é ő Á é ő é ő ő é ő ő é í ő ó ö ő éé í ö ő é é ő í ő ö ő é í ő ó ö ö ő é ő é é é ő í é ő ő í é é ő í ó ő ö ő é í é í é é ő ő é é é ü

Részletesebben

I n n o v a t i v e M e t r o l o g y AXIOMTOO. Fejlődés a KMG technológiában. Axiom too manuális és CNC koordináta mérőgépek bemutatása

I n n o v a t i v e M e t r o l o g y AXIOMTOO. Fejlődés a KMG technológiában. Axiom too manuális és CNC koordináta mérőgépek bemutatása I n n o v a t i v e M e t r o o g y AXIOMTOO Fejődés a KMG technoógiában Axiom too manuáis és CNC koordináta mérőgépek bemutatása Aberink Ltd Est. 1993 Egy kompett eenőrző központ Axiom too... a következő

Részletesebben

Fizika A2E, 1. feladatsor

Fizika A2E, 1. feladatsor Fiika AE, 1. feladatsor Vida Görg Jósef vidagorg@gmail.com 1. feladat: Legen a = i + j + 3k, b = i 3j + k és c = i + j k. a Mekkora a a, b és c vektorok hossa? b Milen söget ár be egmással a és b? c Mekkora

Részletesebben

é í ő ü í ü é é ö é Ö é ö é é é ó Ö ó é é ó ó ó ö ó í é í é ö é é í ü ö é Ö é ö é é é ó é Ö ő é ü ó í ü ú ő é ö é í é ü ő ó ó é í ö é é ő ó ó ó ő é é

é í ő ü í ü é é ö é Ö é ö é é é ó Ö ó é é ó ó ó ö ó í é í é ö é é í ü ö é Ö é ö é é é ó é Ö ő é ü ó í ü ú ő é ö é í é ü ő ó ó é í ö é é ő ó ó ó ő é é ó ö É ü ü É í ö É ó ö é Ö é ő ü é é ó í ü é é ő ő ó é é ő é ő ő ő é ü ő ó ö ö í ü é ü é é ő ö ü ő í ü é ü é ő ő é é ő ü ú ü é ó ö ő ö ü ü é ő ő é ú ő ú ó ö ö ő ő é é é é í é é í é é ü é ő ü é é ü ó é é

Részletesebben

Merev test mozgása. A merev test kinematikájának alapjai

Merev test mozgása. A merev test kinematikájának alapjai TÓTH : Merev test (kbővített óraválat) Merev test mogása Eddg olyan dealált "testek" mogását vsgáltuk, amelyek a tömegpont modelljén alapultak E aal a előnnyel járt, hogy nem kellett foglalkon a test kterjedésével

Részletesebben

Á ő ő ö é é ő ü ő ő é Ö é ő ü ő ő ő é ö é Á é é é é ó ó ó é ö é é őí ü ű ö é ö ő ő é ö é ö é ó Ő Ő ö é Ö ö ö é é é ű ö ő ó ö ö Ö ó ő ő é ü ö é é ü ű ö

Á ő ő ö é é ő ü ő ő é Ö é ő ü ő ő ő é ö é Á é é é é ó ó ó é ö é é őí ü ű ö é ö ő ő é ö é ö é ó Ő Ő ö é Ö ö ö é é é ű ö ő ó ö ö Ö ó ő ő é ü ö é é ü ű ö ü ú ö É Á ő ő ö é Ö ő ő é Ö ö ö Á ő ő ö é é ő ü ő ő é Ö é ő ü ő ő ő é ö é Á é é é é ó ó ó é ö é é őí ü ű ö é ö ő ő é ö é ö é ó Ő Ő ö é Ö ö ö é é é ű ö ő ó ö ö Ö ó ő ő é ü ö é é ü ű ö é ő é é í ó ó ó ö

Részletesebben

ö ö ö ö ö ű É ö ö Ú ö ö ö É É É ű ö É ö É Ú Ú É ű ö ö ű Ú É Ü ö Ü ö ű ű ö ö ö ö ö ö ö ö É Ö ű Ú ö ÉÉ ö Ü É ö ű Ú ű ö Üö

ö ö ö ö ö ű É ö ö Ú ö ö ö É É É ű ö É ö É Ú Ú É ű ö ö ű Ú É Ü ö Ü ö ű ű ö ö ö ö ö ö ö ö É Ö ű Ú ö ÉÉ ö Ü É ö ű Ú ű ö Üö Ü É Ü Ú ö É ö ö É ö Ú ű ö Ö É ű É ö ö ö ö ö ö ö ö ű É ö ö Ú ö ö ö É É É ű ö É ö É Ú Ú É ű ö ö ű Ú É Ü ö Ü ö ű ű ö ö ö ö ö ö ö ö É Ö ű Ú ö ÉÉ ö Ü É ö ű Ú ű ö Üö Ó Ú É ö ű ö ű ű Ú ö ű ö ű Ú ö ö ű ö Ú ű ö

Részletesebben

9. osztály 1.) Oldjuk meg a valós számhármasok halmazán a következő egyenletet!

9. osztály 1.) Oldjuk meg a valós számhármasok halmazán a következő egyenletet! HANCSÓK KÁLMÁN MEGYEI MAEMAIKAVERSENY MEZŐKÖVESD Sóeli feldto és megoldáso ostál ) Oldju meg vlós sámhármso hlmán öveteő egenletet! ( pont) A egenlet l oldlát átlíthtju öveteőéppen: A l oldl egi tgj sem

Részletesebben

15. Többváltozós függvények differenciálszámítása

15. Többváltozós függvények differenciálszámítása 5. Többváltoós függvének differenciálsámítása 5.. Határoa meg a alábbi kétváltoós függvének elsőrendű parciális derivált függvéneit és a gradiens függvénét, valamint eek értékét a megadott pontban:, =

Részletesebben

Kiváló teljesítmény kivételes megtakarítás

Kiváló teljesítmény kivételes megtakarítás motoro é LPG meghajtáú eenúo targonák 4 pneumatiku gumiabron 1.5 3.5 tonna FD/FG15N FD/FG18N FD/FG0CN FD/FG0N FD/FG5N FD/FG30N FD/FG35N Kiváó tejeítmén kivétee megtakarítá A GRENDIA mode, a egmagaabb zínvonaú

Részletesebben

Nagyteljesítményű elektrolízis berendezések www.prominent.com

Nagyteljesítményű elektrolízis berendezések www.prominent.com Biztonságos és hatékony vízfertőtenítés konyhasóva Nagytejesítményű eektroízis berendezések www.prominent.com Környezetbarát vízfertőtenítés Az eektroízis gazdaságiag böcs, műszakiag érett aternatíva a

Részletesebben

í é ó í ö ö ő é é é é é é í é é é é í ő é é é é é ó í é é é é é é é ö ö é é é é é é é é é ö é é ó é ú é í í í é ö í é í ö é ő ú í ö é ö ú é í ö ő ú é

í é ó í ö ö ő é é é é é é í é é é é í ő é é é é é ó í é é é é é é é ö ö é é é é é é é é é ö é é ó é ú é í í í é ö í é í ö é ő ú í ö é ö ú é í ö ő ú é Á ó Á Á é ó ö ű é ö é ö ő ő ő é ö é é é ó ű ó ű ö é é ő é ó ó ó é Ó ö é é ö í é ó é í é é é é ő é ó é ó é é ű é é é é é é é é É é é é ő ö ö ő é ö ű é é é é é é é é ö é é é ó é é é é Ü é é é é é é ő é é

Részletesebben

- Anyagi pontrendszer: anyagi pontok halmaza / összessége.

- Anyagi pontrendszer: anyagi pontok halmaza / összessége. LFGLK mechnk fk egk (klsskus) résterülete mechnk tárg: testek (ng pontok ng pontrendserek) heletváltottó mogásnk és eeket létrehoó htásoknk (erőknek) vsgált vsgált testek hlmállpot sernt besélhetünk: -

Részletesebben

Á É ő é ü ö á á ö é á é ö á á é ő á á ő á á á ő á ő é á é ő ö ó é ő é é á ó á á á á ó á á ö ö é á é Ó É á á ő á á ú ü ö á á á á é á á á á é é ő á á á á é ü á á ő ú á é á á ü ö á á á á é é á á á á ő á ő

Részletesebben

MEREVSZÁRNYÚ REPÜLŐGÉPEK VEZÉRSÍK-RENDSZEREINEK KIALAKÍTÁSA 3 REPÜLŐKÉPESSÉG

MEREVSZÁRNYÚ REPÜLŐGÉPEK VEZÉRSÍK-RENDSZEREINEK KIALAKÍTÁSA 3 REPÜLŐKÉPESSÉG Dr. Óvári Gula 1 - Dr. Urbán István 2 MEREVSZÁRNYÚ REPÜLŐGÉPEK VEZÉRSÍK-RENDSZEREINEK KILKÍTÁS 3 cikk(soroatban)ben a merev sárnú repülőgépek veérsík rendserinek terveését és építését követheti nomon lépésről

Részletesebben

ö ő ő ú ő ó ű ő ő ó ö ű ú ü ó ő ú ő ő ő ű Ö ő Á Ö ő ő ő ő ó ü ő ő őő ö í ü Ó ö ő Ó Ö ü ö í ü ú Ö ő ú ó ő Ö Ó ő ő ő ő í ő í ó ő ő ú ó í ü ő ő ő ó ó í ő

ö ő ő ú ő ó ű ő ő ó ö ű ú ü ó ő ú ő ő ő ű Ö ő Á Ö ő ő ő ő ó ü ő ő őő ö í ü Ó ö ő Ó Ö ü ö í ü ú Ö ő ú ó ő Ö Ó ő ő ő ő í ő í ó ő ő ú ó í ü ő ő ő ó ó í ő ő ő ú ő ő ő í ú ö ü ü ú ö ú ő ő ú ő ő ő í ó ő ő í Ó ő ő ő ó ő ő ő ő ő ó ő ü í ú ő ő ő ó ú ó ö ó Á ő ő ó ú ő í ő ő ú ö ó ú ő ő ó ó Á ó ó Á ő ő ő ő ő ó ó ő í ü ő ö ő ö ö í ő ő ú í őő ó ő ő í Ó í ő ő ő ő

Részletesebben

Mágneses jelenségek. 1. A mágneses tér fogalma, jellemzői

Mágneses jelenségek. 1. A mágneses tér fogalma, jellemzői . mágneses tér fogama, jeemző Mágneses jeenségek mágneses tér jeenségenek vzsgáatakor a mozgó vamos tötések okozta jeenségekke fogakozunk mozgó vamos tötések (áram) a körüöttük évő teret küöneges áapotba

Részletesebben

Keszthely Város Önkormányzata Képviselő-testületének 32/2009. (X.15) rendelete Keszthely közigazgatási területének helyi építési szabályzatáról (továbbiakban: KÉSZ) ᔗ厇- ü ö ó ó ó 990. LX. ö ( ) 8.. ( )

Részletesebben

4. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: dr. Nagy Zoltán egy. adjunktus; Bojtár Gergely egy. ts.; Tarnai Gábor mérnöktanár) F q

4. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: dr. Nagy Zoltán egy. adjunktus; Bojtár Gergely egy. ts.; Tarnai Gábor mérnöktanár) F q 1 ZÉCHENY TVÁN EGYETE LKLZOTT ECHNK TNZÉK. ECHNK-ZLÁDÁGTN GYKOLT (kidogot: dr. Ng Zotán eg. djunktus; ojtár Gerge eg. ts.; Trni Gáor mérnöktnár).1. rimtikus rúd hjítás: q q / 60 N / m 15 N 75 N m 1 m T

Részletesebben

9. MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozta: Németh Imre óraadó tanár, Bojtár Gergely egyetemi ts., Szüle Veronika, egy. ts.)

9. MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozta: Németh Imre óraadó tanár, Bojtár Gergely egyetemi ts., Szüle Veronika, egy. ts.) ZÉCHENYI ITVÁN EGYETEM LKLMZOTT MECHNIK TNZÉK 9. MECHNIK-MOZGÁTN GYKOLT (kidogot: Néeth Ire órdó tnár Bojtár Gerge egetei ts. üe Veronik eg. ts.) Tehetetenségi notékok tejesítén energi 9/. fedt: Tehetetenségi

Részletesebben

TARTÓSZERKETETEK III.

TARTÓSZERKETETEK III. TARTÓSZERKETETEK III. KERESZTETSZETEK ELLENÁLLÁSA + STABILITÁSI ELLENÁLLÁS 1 KERESZTETSZETEK ELLENÁLLÁSA 1.1 Csavarlukkal gengített köpontosan húott rúd 1. Egik sárán kapsolt köpontosan húott sögaél 1.

Részletesebben

é á ó ó é é ó é é é á é é é á ó á á á é á ó é í é ó é á ó é é é é é é ó ó é ó é á ó á á é é á ó á ó é ó é á é é é á óé é é á ó á é é é í é ééé ó á áé é é é é á á á ó á á ó é á á í á ó é á ó é í é á ó é

Részletesebben

A MÁGNESES VEKTORPOTENCIÁL, MINT VALÓSÁGOSAN LÉTEZÔ VEKTORMEZÔ. A hazai mûhely A FIZIKA TANÍTÁSA

A MÁGNESES VEKTORPOTENCIÁL, MINT VALÓSÁGOSAN LÉTEZÔ VEKTORMEZÔ. A hazai mûhely A FIZIKA TANÍTÁSA etõ Sáno Gee Sáno Kovács István haa mûhe Végü megemítem a sá testek pastkus efomácóát és a sokácók kontnuum-moeét kutató Kovács István 9 fkust a Eötvös Loán Tuománegetem tansékveetô egetem tanáát. Éeme

Részletesebben

Salgótarján Megyei Jogú Város Polgárm estere. Javaslat stratégiai együttműködési megállapodás megkötésére

Salgótarján Megyei Jogú Város Polgárm estere. Javaslat stratégiai együttműködési megállapodás megkötésére Sagótarján Megyei Jogú Város Pogárm estere Szám:12382/2014. Javasat stratégiai együttműködési megáapodás megkötésére A szabad váakozási zónák kedvező fetéteeket és kedvezményeket biztosítanak a gazdasági

Részletesebben