Lehet ségek és kihívások a modern bionmr spektroszkópia területén

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Lehet ségek és kihívások a modern bionmr spektroszkópia területén"

Átírás

1 Lehet ségek és kihívások a modern bionmr spektroszkópia területén Perczel András és munkatársai Szerkezeti Kémia és Biológia Laboratórium és ELTE-MTA Fehérjemodellez Kutatócsoport ELTE/TTK/FI/ Ortvay kollokvium december 9. 1

2 The Nobel Prize in Physics 1952 "for their development of new methods for nuclear magnetic precision measurements and discoveries in connection therewith Felix Bloch ( ) Edward Mills Purcell ( ) 2

3 The Nobel Prize in Chemistry 1991 "for his contributions to the development of the methodology of high resolution nuclear magnetic resonance (NMR) spectroscopy" Richard R. Ernst 3

4 Fehérjék oldatban: NMR-spektroszkópia Fehérje NMR: kémiai Nobel-díj, 2002 Kurt Wüthrich A dinamikára és a bels mozgásra is reflektáló szerkezeti sokaság 4

5 NMR spektrum spinrendszerek azonosítása sa spinrendszerek szekvenciális rendezése kényszerfeltételek telek alapján szerkezetszámol molás 5

6 Miért az NMR? Powerful modern structural tools for looking at complexes (OHFWURQ PLFURVFRS\ a &U\VWDOORJUDSK\ a VWUXFWXUHV 0RGHOOLQJ 1XFOHDU 0DJQHWLF 5HVRQDQFH a 6 FDQ DOVR JLYH. G DQG N

7 Az NMR-spektroszkópia szükséges feltétele a nullától különböz magspin (I 0) 1) I=0, ha mind a protonok mind a neutronok száma páros: ( 12 C, 16 O) 2) I=1/2, ha tömegszáma páratlan ( 1 H, 3 H, 13 C, 15 N, 19 F, 57 Fe, 113 Cd) vagy a protonok, vagy a neutronok száma páratlan. 3) I=k (k=1,2,..) mind a protonok mind a neutronok száma páratlan ( 2 H, 14 N) Küls mágneses tér tér hatására hiányában rendez dött a magok és spinjei precesszáló rendezetlenül magok állnak 7

8 Feles spin esetén az impulzusmomentum (perdület) z-komponensének operátora: Î Z - két sajátfüggvénye: +½ és ½ - két sajátértéke van: +½ és ½ A megfelel két sajátérték egyenlet: Î Z +½ = +½ +½ és Î Z ½ = +½ ½ vagy röviden Î Z m = m m ahol m ±½. A feles-spin Hamilton-operátorának sajátértékei: Az impulzusmomentum z-komponense (Î Z ) és a B 0 indukciójú mágneses tér (B 0 z) kölcsönhatását egyetlen spin esetében leíró H-operátor: egy-spin = B 0 Î z ( ahol = giromágneses együttható) a +½ és ½ függvények a egy-spin nek is sajátfüggvényei (hiszen Î Z t l csak a B 0 konstansban tér el. ). A megfelel egyik sajátérték egyenlet tehát : one-spin +½ = B 0 [Î Z +½ ] = B 0 [+½ +½ ] = ½ B 0 +½ Tehát egy-spin egyik sajátfüggvénye a +½, melyhez tartozó sajátérték a ½ B 0, míg a másik sajátfüggvénye a ½, melyhez tartozó sajátérték a +½ B 0. 8

9 Az egy-spin spektruma: Spin ½ esetén tehát 2 energiaszint van: E m = m B 0 Tehát E +½ = ½ B 0 (E vagy spin up), illetve E ½ = +½ B 0. (E vagy spin down) ahol m ±½. A kiválasztási szabály értelmében (mivel m = +1 vagy -1) a m = ( ½) +(½) = 1, tehát az az -ból -ba való átmenet megengedett. 0 = B 0 /2 E β E 0 E =E E = +½ B 0 ( ½ B 0 ) = B 0 h = (h/2 ) B 0 = 0 = B 0 /2 ami a Larmor-frekvencia E β E B0 Pl. Ha B 0 = 9,4T és = 2, rad s -1 T -1 (protonra) akkor a Larmorfrekvencia = 4, Hz ~ 400MHz 9

10 Két csatolt spin spektruma: Ha az egy-spin: egy-spin = 0 Î z, akkor két csatolatlan spin esetében: két-spin, csatolatlan = 0,1 Î 1z + 0,2 Î 2z = I Î z + S z, illetve két csatolatlan spin esetében: két-spin, csatolat = I Î z + S z + J 12 Î z z, ahol J 12 a skaláris csatolási állandó spin1 és spin2 között. Két-spin rendszer energiadiagramja, a megengedett átmenetek és a spektrum: α β β β β α átmenet spin állapotok frekvencia 12 αα S ½J S +½J I ½J I +½J 12 α α J 12 J 12 I S 10

11 Küls B 0 indukciójú mágneses térben a makroszkopikus mágnesezettség (M) gerjesztése, annak precessziójához vezet, amely mérhet indukált feszültséget (mv) eredményez. 11

12 A Vektor modell és a Bloch-egyenletek z-irányú mágnesezettség id beni alakulása: dm z' /dt= (M z' M o )/T 1 M z' (t)=m o (1 exp( t/t 1 ) az x,y-síkban zajló csillapított amplitúdójú precesszió alakulása: dm x' /dt= (ω o ω)m y' M x' /T 2 dm y' /dt= (ω o ω)m x' M y' /T 2 Csatolt differenciál-egyenletrendszer megoldásaként a következ t kapjuk: M x' (t)=m o exp( t/t 2 )sin(ω o ω) M y' (t)=m o exp( t/t 2 )cos(ω o ω), ahol (ω o ω) a forgó referencia rendszerben a precesszió szögsebessége. A nagy felbontású NMR-spektrumok öt jellemz paramétere: csatolási állandó (J érték) félértékszélesség multiplicitás terület kémiai eltolódás δ=[(υ M -υ R )/ υ R ]

13 13

14 spinrendszerek azonosítása sa 1 H-spektrum I I z és S z S -I y és -S y és I x sin(ω I t 2 ) S x sin(ω S t 2 ) I S F1(ppm) 14 A spektrumban a J IS okozta modulációtól eltekintünk

15 spinrendszerek azonosítása sa Egy ~17 kda globuláris fehérje 1 H-spektruma H 2 O/D 2 O 9/1, T=300K, c 1mM amid aromás H α alifás metil (ppm)

16 1. spinrendszerek azonosítása sa 2. spinrendszerek szekvenciális rendezése 3. kényszerfeltételek telek alapján szerkezetszámol molás 16

17 spinrendszerek azonosítása sa Homonukleáris eljárás (homonukleáris 3 J, M<8kDa) ( 1 H- 1 H COSY, 1 H- 1 H RELAY, 1 H- 1 H TOCSY ) Heteronukleáris eljárás (heteronukleáris 1 J, 2 J, 3 J) 15 N-szerkesztés (M <15kDa) ( 1 H- 15 N TOCSY-HSQC, 1 H- 15 N NOESY-HSQC ) 15 N, 13 C-szerkesztés (M <20kDa) (HNCA, HNCOCA,.) 15 N, 13 C-szerkesztés ( 2 H) (M <30kDa) 17

18 spinrendszerek azonosítása sa Peptidekben és s a fehérj rjékben az aminosavak hidrogénatomjai elkülönül spinrendszereket alkotnak 13 J Ala Ser Glu Gly Phe Cys 18

19 A Vektor modell és a Bloch-egyenletek helyett a szorzatoperátor-elmélet Alapfogalmak: magspin-operátor vagy impulzusnyomaték-operátor: Î Î = Î x, Î y, Î z az id t l függ spins r ség-operátor az id t l függ Hamilton-operátor az id t l függ, normalizált állapotfüggvény σ(t) (t) ψ(t) Az alapegyenlet: dσ(t)/dt = i 1 [ (t),σ(t)] Liouville- von Neumann-egyenlet Mi kerül a Hamilton-operátorba? Az I és S spinek (AX spinrendszer) esetén, oldatfázisban: Zeeman-effektust + a skaláris csatolást + a rádiófrekvenciás gerjesztést leíró három tag. = ω 1 Î x ω 2 x + JÎ z z Ω I Î z Ω S z 19

20 Cél a mérhet makroszkopikus mágnesezettség-vektor (M) nagyságának és moduláltságának meghatározása: A megfigyelhet makroszkopikus mágnesezettség pl. M y következ : M y (t) = Nγ Tr[ΣI ky σ(t)] k összetev je a ahol γ és mellett, N az egységnyi térfogatban vett spinek darabszáma. A feladat: A magspin operátor (I) valamint a s r ségoperátor {σ(t)} szorzatának valamilyen bázison vett mátrixreprezentációjának a spurját (Tr) kell meghatároznunk! A nagy kérdés: mi legyen az alkalmas bázis? Mi legyen az s elemb l álló báziskészletet (B s )? σ(t) =Σ b s (t)b s s A megoldás: a B s báziskészlet legyen a spin impulzusmomentum-operátor. Sorensen korábbi javaslata értelmében a Descartes-típusú I kl bázisoperátorok használata az alábbiak szerint felettébb eredményes: B s = n ( q 2 1 ) k = 1 ( I ) kl a sk 20

21 Az I és S spinek (AX spinrendszer) 16 bázisoperátort táblázatos alakban: E E E S x S x S y S y S z S z B s elemeihez milyen fizikai kép rendelhet? mágnesezettség (populáció, NOE) I x I x 2I x S x 2I x S y 2I x S z szin-fázisú egyszeres kvantumkoherenciáik. I y I z I y I z 2I y S x 2I z S x 2I y S y 2I z S y 2I y S z 2I z S z S spinen lokalizálható ellentétesfázisú koherenciák I spinhez tartozó ellentétesfázisú koherenciák 21

22 Tipikus transzformációk a 16 bázisoperátor által kifeszített koherencia-térben: σ (t=0) = hb 0 (γ I I y + γ S S z )/(8πkT) H = Ω I I z + Ω S S z πj IS I z S z σ (t=0) S z [Ω s t] I y σ (t=0) σ (t) σ (t) I z [Ω I t] + I y cos(ω I t) - I x sin(ω I t) 2I z S z (J IS πt) + I y cos(ω I t)cos(j IS πt) - 2I x S z cos(ω I t) sin(j IS πt) - I x sin(ω I t) cos(j IS πt) - 2I y S z sin(ω I t) sin(j IS πt) I y I y 22

23 + I y cos(ω I t)cos(j IS πt): cos(a)cos(b) = 1/2[cos(A+B)+cos(A B)] következ en a spektrum alakja: +1/2I y [ +cos{(ω I +πj IS )t} + cos{(ω I πj IS )t} ] I y [ +a, +a] Ω I kémiai eltolódásértéknél memo: az spektrum a Bloch-egyenlet alapján: S(t) = C*exp( t/t 2 )cos(ω I t). I 1 H-spektrum I z és S z S -I y és -S y és I x sin(ω I t 2 ) S x sin(ω S t 2 ) I S F1(ppm) A spektrumban a J IS okozta modulációtól eltekintünk 23

24 spinrendszerek azonosítása sa I 1 H- 1 H COSY (homonukleáris korrelációs spektrum) 2I z S y sin(ω I t 1 ) S Ω S I y S x sin(ω I t 1 )cos(ω S t 2 ) Ω I 2I y S z sin(ω I t 1 ) Ω I Ω S 24

25 spinrendszerek azonosítása sa 1 H- 1 H COSY NH Hγ2 γ2 H H γ1 H β H β H γ1 H γ2 H F 1 (ppm) Ω S NH Ω I Ω I Ω S F 2 (ppm) 25 A spektrumban a J IS okozta modulációtól eltekintünk

26 spinrendszerek azonosítása sa Fehérje modul 1 H- 1 H COSY spektruma 26

27 spinrendszerek azonosítása sa 1 H- 1 H TOCSY protonok teljes korrelációját létrehozó spektrum I NH H γ1 Hγ2 γ2 H S 1 S 2 H β 3S H 4 γ1 H3S γ2 3 I y K H H β F 1 (ppm) S kx β od sin(ω I t 1 )cos(ω S t 2 ) k=1 diagonális jelek diagonálison kívüli jelek NH β od = diagonálison F 2 (ppm) kívüli intenzitások 27 A spektrumban a J IS okozta modulációtól eltekintünk

28 spinrendszerek azonosítása sa Fehérje modul 1 H- 1 H TOCSY spektruma 28

29 Heteronukleáris egyszeres-kvantum koherencia spektrum HSQC = Heteronuclear Single-Quantum Coherence 1,1 J~90Hz H z Ω N -2H z N y +2H z N y cos(ω N t 1 ) H x cos(ω N t 1 ) H x cos(ω N t 1 )cos(ω H t 2 ) Ω H 29

30 A kalmodulin 1 H- 15 N HSQC spektruma (ppm) A kalmodulin 1 H spektrumának amid NH és aromás tartománya J 90 Hz (ppm) (ppm)

31 spinrendszerek azonosítása sa 15 N-szerkesztéssel 3D-TOCSY-HSQC 2I z β od cos(ω K t 1 ) 2I z cos(ω I t 1 ) I x β od cos(ω K t 1 )cos( N t 2 ) I x β od sin( I t 3 ) cos( N t 2 ) cos(ω K t 1 ) -I y N K I Ω H 2I z N y β od cos(ω K t 1 ) 2I z N y β od cos(ω K t 1 )cos( N t 2 ) Ω N Ω NH 31 β od = off diagonális intenzitás A J IK okozta modulációtól eltekintünk

32 spinrendszerek azonosítása sa 15 N-szerkesztett TOCSY spektrum 1 H- 1 H TOCSY amid NH (ujjlenyomat) tartománya Homonukleáris 2D TOCSY 32

33 spinrendszerek azonosítása sa 15 N-szerkesztett 2D TOCSY 1 H 1 H- 1 H TOCSYamid NH (ujjlenyomat) tartománya 1 H 15 N 1 H- 15 N 3D TOCSY-HSQC csíkok EVTCEPGTTFKDKCNTCRCGSDGKSAACTLKACPQ 33

34 (AMX) Ser (AX) Gly 1. spinrendszerek azonosítása sa (A 3 X) Ala (A 2 M 2 X) Glu 2. spinrendszerek szekvenciális rendezése 3. kényszerfeltételek telek alapján szerkezetszámol molás 34

35 A szekvenciális hozzárendel rendelés és s a szerkezetszámol molás s alapja a nukláris Overhauser- effektus (NOE) 6Å (NOE) Távolság jelleg adatok 35

36 spinrendszerek azonosítása sa Fehérje modul 1 H- 1 H NOESY spektruma 36

37 spinrendszerek szekvenciális rendezése A spinrendszereks szekvenciális rendezését biztosító H α i-1 -HNH NH i NOE-k Ala Ser Glu Gly Phe Cys 37

38 spinrendszerek szekvenciális rendezése Ala Glu Ser A szekvenciális hozzárendel rendelés Phe Gly Cys Ala Ser Glu Gly Phe Cys 38

39 (AMX) Ser (AX) Gly 1. spinrendszerek azonosítása sa (A 3 X) Ala (A 2 M 2 X) Glu 2. spinrendszerek szekvenciális rendezése - Ala Ser Glu - Gly - 3. kényszerfeltételek telek alapján szerkezetszámol molás 39

40 szerkezetszámol molás Fehérje modul 1 H- 1 H NOESY spektruma 40

41 Fehérjék NMR-szerkezetvizsgálata Kurt Wüthrich (ETH, Zürich) OmpX bakteriális membránfehérje térszerkezete Mozgékony szekvenciarésszel rendelkez prion fehérje 41

42 Biomolekulák dinamikai vizsgálata GCN4 éleszt transzkripciós faktor gerinc-dinamikájának vizsgálata Arthur G. Palmer III (Columbia University) 42

43 Fehérje feltekeredés vizsgálatok (ns és ms id skálán) Alan Fersht (Cambridge University) 43

44 Our most recent targets: dutpase Beáta Vértessy Calpastatin Péter Tompa MASP-2 Péter Gál CCP Péter Gál APPase László Polgár Peptides and miniproteins Gábor Tóth Homeodomains Botond Penke P DLC László Nyitray Calmodulin Ovádi Judit 44 Inhibitors László Gráf

45 (Emil Fischer) 45

46 A kalmodulin reorientációja célfehérje vagy antagonista hatására a molekula összecsuklik, - az N- és C-terminális közel kerül egymáshoz, - ám a D és az E -hélixeket összeköt részr l az alacsony elektrons r ség miatt nincs krisztallográfiai információ együttm ködésben Ovádi Judittal és munkatársaival (MTA SZBK Enzimológiai Intézet) 46

47 Vinca alkaloidok (biszindol) mint CaM antagonisták Catharantus (Vinca) roseus alkaloidjai (vinblasztin, vinkrisztin) VBL - sejtosztódásgátló hatás (kemoterápia) - célpontjuk a sejt mikrotubuláris hálózata - jelent s mellékhatások (neurotoxicitás) Vinblasztin KAR - In vivo kísérletekben ugyanolyan hatékonynak bizonyult, mint a természetes vinca alkaloidok - Mellékhatása jóval kisebb KAR-2 Orosz és mts. British J.Pharmacol. 1997, 121, 947 Orosz és mts. British J.Pharmacol. 1997, 121, Orosz és mts. British J.Cancer 1999, 79, 1356

48 A kalmodulin 1 H- 15 N HSQC spektruma (ppm) A kalmodulin 1 H spektrumának amid NH és aromás tartománya J 90 Hz (ppm) (ppm)

49 A kalmodulin KAR2 vel való titrálása során kapott 1 H- 15 N HSQC spektrumok összevetése l5 N 49 l H

50 Ligandkötés azonosítása 50

51 Az ERD-14 egy szerkezetnélküli fehérje: lombiktól az él sejtig G Tompa 51Péter Szalainé Ágoston Bianka

52 Dehidrin = abiotikus stressz (abszcizinsav) hatására fejez dik ki a növényben: vízhiány, magas sótartalom (NaCl), hideg ERD14 = Early Response to Dehydration aminosav, 20 kda rendezetlen fehérje sok poláris, töltött aminosav kevés hidrofób aminosav 52

53 TROSY-HSQC spektrum 15 N J 90 Hz 1 H 800 MHz 10 mm MES ph K 53

54 Az ERD14-nek nincs oldatban térszerkezete (valójában túl sok is van neki) Relaxációs mérések: hetnoe 5 régió, amely 5-25 % helikális hajlammal rendelkezik 54

55 Vizes oldat vagy puffer sejt Ez különösen igaz rendezetlen fehérjékre: A fehérjezsúfoltság / crowding a sejten belül sokat számíthat! Él sejtben kell mérni! E.coli az NMR cs ben 55

56 NMR él E.coli-ban in cell NMR E.coli ERD14 kifejeztetés S r sejtszuszpenzió az NMR cs ben 500 MHz sejtekben 277 K Pufferben Él sejtekben Sejtek felülúszója üres spektrumot ad 56

57 Kontroll az in cell NMR-hez Dextrán: Sejten belüli állapotot (fehérjes r séget és viszkozitást) utánoz Itt nem t nnek el a jelek Puffer Puffer + 150g/L dextrán => Puffer Amit látunk, + 300g/L tényleges köt dés, dextrán kölcsönhatás! 57

58 Szerkezet sejtben = Rendezetlen Elt n Elmozduló Helyükön maradó csúcsok 5 régió, amely valamihez köt dik a sejtben 58

59 A molekuláris mozgás id skálái hurkok és kanyarok záródása 0.1ms 10ms másodlagos szerkezeti elemek 10ns 1ms feltekeredés 1ms 1h H/D R ex Rot. Dif. korrel. id 1ns<τ c < 10ns gerinc dinamika 1ps 10ns τ lokális aggregáció 1 s 1 év Kiss Róbert τ effektiv = τ C +τ lok. oldallánc forgás 0.1ps 1059 ps

60 ~ 1s ~ 100 ezer 1h ~ 30 millió 1év 60

61 A fehérjék bels dinamikája NMR ps 10-9 ns 10-6 µs 10-3 ms 10 0 s 10 2 ~min sec feltekeredés kötések mozgásai domének, nagyobb szerkezeti egységek mozgásai Shifman J M et al. PNAS 2006;103:

62 A fehérjék bels dinamikája NMR ps 10-9 ns 10-6 µs 10-3 ms 10 0 s 10 2 ~min sec R 1, R 2, NOE R 1 ρ CPMG Line-shape analízis ZZ- csere 62

63 Fehérjék mozgása; µs-ms id skála Bels dinamikája lefedi a különböz partnerfehérjékkel alkotott komplexeiben észlelt konformációs variációkat. R 1, R 2, NOE R 1 ρ NMR /RDC X-ray különböz partnerfehérjékkel µs-ms id skálájú mozgások alapján számolt S 2 Ubiquitin; a halál csókja Lange és mts., Science, 2008, 320,

64 Fehérjék mozgása; ns-ps id skála NMR /NOE + S 2 MUMO szerkezeti sokaság Gáspári Zoltán X-ray a komplexr l R 1, R 2, NOE R 1 ρ f komponens-elemzés Az inhibitor bels dinamikájával számolt térszerkezetek lefedik az enzimmel alkotott komplexben (3 eltér komplex) mért röntgen konformereket. 64 Gráf László

65 Köszönet minden munkatársamnak és barátomnak 65

66 Fehérjék szerkezete: mit rejt a kristály? Fehérje röntgenkrisztallográfia: kémiai Nobel-díj, 1962 Max Perutz, John Kendrew kristályban az egyes atomok helye térben jól meghatározott részletgazdag szerkezet 66

67 spinrendszerek azonosítása sa 2H z N x C (i-1) z cos( N t 1 ) és 2H z N x C (i) 3D-NHCA z cos( N t 1 ) 2H z N y cos( N t 1 ) H z H x cos( N t 1 ) cos( C (i) t 2 ) cos( H t 3 ) és H x cos( N t 1 ) cos( C (i-1) t 2 ) cos( H t 3 ) 2H z N y Ω C (i) C α(i- 1) H N C α(i) 2H y N x C y (i-1) cos( N t 1 ) és 2H y N x C y (i) cos( N t 1 ) 2H y N x C (i-1) y cos( N t 1 ) cos( C (i) t 2 ) és 2H y N x C (i) y cos( N t 1 ) cos( C (i-1) t 2 ) Ω NH Ω C (i-1 Ω N 67 A skaláris csatolás okozta modulációktól eltekintünk

NMR a peptid- és fehérje-kutatásban

NMR a peptid- és fehérje-kutatásban NMR a peptid- és fehérje-kutatásban A PDB adatbázisban megtalálható NMR alapú fehérjeszerkezetek számának alakulása az elmúlt évek során 4000 3500 3000 2500 2000 1500 1000 500 0 1987 1988 1989 1990 1991

Részletesebben

Lehetőségek és kihívások a modern bionmr spektroszkópia területén

Lehetőségek és kihívások a modern bionmr spektroszkópia területén Lehetőségek és kihívások a modern bionmr spektroszkópia területén Perczel András és munkatársai Szerkezeti Kémia és Biológia Laboratórium és ELTE-MTA Fehérjemodellező Kutatócsoport 1 The Nobel Prize in

Részletesebben

Az NMR spektroszkópia a fehérjék szolgálatában. Bodor Andrea. ELTE Szerkezeti Kémia és Biológia Laboratórium Visegrád

Az NMR spektroszkópia a fehérjék szolgálatában. Bodor Andrea. ELTE Szerkezeti Kémia és Biológia Laboratórium Visegrád Az NMR spektroszkópia a fehérjék szolgálatában Bodor Andrea ELTE Szerkezeti Kémia és Biológia Laboratórium 2011.01.18. Visegrád Nobel díjak tükrében 1952 Fizika: Módszer és elméleti alapok Felix Bloch

Részletesebben

FEHÉRJÉK A MÁGNESEKBEN. Bodor Andrea ELTE, Szerkezeti Kémiai és Biológiai Laboratórium. Alkímia Ma, Budapest,

FEHÉRJÉK A MÁGNESEKBEN. Bodor Andrea ELTE, Szerkezeti Kémiai és Biológiai Laboratórium. Alkímia Ma, Budapest, FEHÉRJÉK A MÁGNESEKBEN Bodor Andrea ELTE, Szerkezeti Kémiai és Biológiai Laboratórium Alkímia Ma, Budapest, 2013.02.28. I. FEHÉRJÉK: L-α aminosavakból felépülő lineáris polimerek α H 2 N CH COOH amino

Részletesebben

0) I=0 I=1/2 I=k (k=1,2,..) töltéssel forog (I=1/2)

0) I=0 I=1/2 I=k (k=1,2,..) töltéssel forog (I=1/2) Az NMR-spektroszkópia szükséges feltétele a nullától különbözÿ magspin (I 0) I=0 mind a protonok mind a neutronok száma páros ( 12 C, 16 O) I=1/2 ha tömegszáma páratlan ( 1, 3, 13 C, 15 N, 19 F, 57 Fe,

Részletesebben

fˆ = Klasszikus mechanika Kvantummechanika Fizikai modell r: koordináta p: lendület Állapot ), komplex függvény Ψ(r 1 Fizikai mennyiség Mérés

fˆ = Klasszikus mechanika Kvantummechanika Fizikai modell r: koordináta p: lendület Állapot ), komplex függvény Ψ(r 1 Fizikai mennyiség Mérés Klasszikus mechanika r: koordináta p: lendület f(r,p) =f(r,p) Fizikai modell Állapot Fizikai mennyiség Mérés fˆ = rˆ r Kvantummechanika Ψ(r 1, r N ), komplex függvény f (rˆ, pˆ ) fˆ Ψ * 1 Ψdr,..., r

Részletesebben

Biológiailag aktív molekulák kölcsönhatásvizsgálata NMR-spektroszkópiával

Biológiailag aktív molekulák kölcsönhatásvizsgálata NMR-spektroszkópiával Biológiailag aktív molekulák kölcsönhatásvizsgálata MR-spektroszkópiával 1 H- 15 -HSQC Perczel András Budapest, 2004. 03. 26. Ugyanazt az MR paramétert ( 1 H, 13 C, 15, 31 P, 57 Fe) követjük. L szabad

Részletesebben

A BioNMR spektroszkópia alapjai

A BioNMR spektroszkópia alapjai A BioNMR spektroszkópia alapjai Az NMR-spektroszkópia szükséges feltétele a nullától különböző magspin (I 0) 1) I=0, ha mind a protonok mind a neutronok száma páros: ( 12 C, 16 O) 2) I=1/2, ha tömegszáma

Részletesebben

A BioNMR spektroszkópia alapjai

A BioNMR spektroszkópia alapjai A BioNMR spektroszkópia alapjai Az NMR-spektroszkópia szükséges feltétele a nullától különböző magspin (I 0) 1) I=0, ha mind a protonok mind a neutronok száma páros: ( 12 C, 16 O) 2) I=1/2, ha tömegszáma

Részletesebben

Dóczy-Bodnár Andrea október 3. Magmágneses rezonancia (NMR) és elektronspinrezonancia (ESR) alapjai

Dóczy-Bodnár Andrea október 3. Magmágneses rezonancia (NMR) és elektronspinrezonancia (ESR) alapjai Dóczy-Bodnár Andrea 2012. október 3. Magmágneses rezonancia (NMR) és elektronspinrezonancia (ESR) alapjai Atommagok saját impulzusmomentuma (spin) protonok, neutronok (elektronhoz hasonlóan) saját impulzusmomentum

Részletesebben

Magmágneses rezonancia (NMR) és elektronspinrezonancia (ESR) alapjai

Magmágneses rezonancia (NMR) és elektronspinrezonancia (ESR) alapjai Magmágneses rezonancia (NMR) és elektronspinrezonancia (ESR) alapjai Dóczy-Bodnár Andrea 2011. szeptember 28. Magmágneses rezonanciához kapcsolódó Nobel-díjak * Otto Stern, USA: Nobel Prize in Physics

Részletesebben

MÁGNESES MAGREZONANCIA A KÉMIÁBAN, GYÓGYSZERÉSZETBEN, ORVOSTUDOMÁNYBAN

MÁGNESES MAGREZONANCIA A KÉMIÁBAN, GYÓGYSZERÉSZETBEN, ORVOSTUDOMÁNYBAN MÁGNESES MAGREZONANIA A KÉMIÁBAN, GYÓGYSZERÉSZETBEN, ORVOSTUDOMÁNYBAN 1) A jelenség 2) Nuclear Magnetic Resonance (NMR) 3) Magnetic Resonance Imaging (MRI) 4) Magnetic Resonance Spectroscopy (MRS) NMR

Részletesebben

Alkalmazott spektroszkópia

Alkalmazott spektroszkópia Alkalmazott spektroszkópia 009 Bányai István MR és a fémionok: koordinációs kémiai alkalmazások Bányai István Debreceni Egyetem TEK Kolloid- és Környezetkémiai Tanszék A mágnesség A mágneses erő: F pp

Részletesebben

Mágneses módszerek a mőszeres analitikában

Mágneses módszerek a mőszeres analitikában Mágneses módszerek a mőszeres analitikában NMR, ESR: mágneses momentummal rendelkezı anyagok minıségi és mennyiségi meghatározására alkalmas analitikai módszer Atommag spin állapotok közötti energiaátmenetek:

Részletesebben

Műszeres analitika II. (TKBE0532)

Műszeres analitika II. (TKBE0532) Műszeres analitika II. (TKBE0532) 7. előadás NMR spektroszkópia Dr. Andrási Melinda Debreceni Egyetem Természettudományi és Technológiai Kar Szervetlen és Analitikai Kémiai Tanszék NMR, Nuclear Magnetic

Részletesebben

A fehérjék harmadlagos vagy térszerkezete. Még a globuláris fehérjék térszerkezete is sokféle lehet.

A fehérjék harmadlagos vagy térszerkezete. Még a globuláris fehérjék térszerkezete is sokféle lehet. A fehérjék harmadlagos vagy térszerkezete Még a globuláris fehérjék térszerkezete is sokféle lehet. A ribonukleáz redukciója és denaturálódása Chrisian B. Anfinsen A ribonukleáz renaturálódása 1972 obel-díj

Részletesebben

KÖLCSÖNHATÁS ÉS DINAMIKA. az NMR spektroszkópia, mint a modern szem. Bodor Andrea

KÖLCSÖNHATÁS ÉS DINAMIKA. az NMR spektroszkópia, mint a modern szem. Bodor Andrea KÖLCSÖNHATÁS ÉS DINAMIKA az NMR spektroszkópia, mint a modern szem Bodor Andrea ELTE Szerkezeti Kémiai és Biológiai Laboratórium A Magyar Tudomány Ünnepe, 2012.11.08. Edvard Munch: A Nap (1911-1916) AZ

Részletesebben

Mágneses módszerek a műszeres analitikában

Mágneses módszerek a műszeres analitikában Mágneses módszerek a műszeres analitikában NMR, ESR: mágneses momentummal rendelkező anyagok minőségi és mennyiségi meghatározására alkalmas Atommag spin állapotok közötti energiaátmenetek: NMR (magmágneses

Részletesebben

MÁGNESES MAGREZONANCIA A KÉMIÁBAN, GYÓGYSZERÉSZETBEN, ORVOSTUDOMÁNYBAN

MÁGNESES MAGREZONANCIA A KÉMIÁBAN, GYÓGYSZERÉSZETBEN, ORVOSTUDOMÁNYBAN MÁGNESES MAGREZONANIA A KÉMIÁBAN, GYÓGYSZERÉSZETBEN, ORVOSTUDOMÁNYBAN 1) A jelenség 2) Nuclear Magnetic Resonance (NMR) 3) Magnetic Resonance Imaging (MRI) 4) Magnetic Resonance Spectroscopy (MRS) NMR

Részletesebben

Mi mindenről tanúskodik a Me-OH néhány NMR spektruma

Mi mindenről tanúskodik a Me-OH néhány NMR spektruma Mi mindenről tanúskodik a Me-OH néhány NMR spektruma lcélok és fogalmak: l- az NMR-rezonancia frekvencia (jel), a kémiai környezete, a kémiai eltolódás, l- az 1 H-NMR spektrum, l- az -OH és a -CH 3 csoportokban

Részletesebben

Mágneses rezonanciás képalkotás AZ MRI elve, fizikai alapok

Mágneses rezonanciás képalkotás AZ MRI elve, fizikai alapok MR-ALAPTANFOLYAM 2011 SZEGED Mágneses rezonanciás képalkotás AZ MRI elve, fizikai alapok Martos János Országos Idegtudományi Intézet Az agy MR vizsgálata A gerinc MR vizsgálata Felix Bloch Edward Mills

Részletesebben

Alkalmazott spektroszkópia Serra Bendegúz és Bányai István

Alkalmazott spektroszkópia Serra Bendegúz és Bányai István Alkalmazott spektroszkópia 2014 Serra Bendegúz és Bányai István A mágnesség A mágneses erő: F p1 p2 r p1 p2 C ( F C ) C áll 2 2 r r r A mágneses (dipólus) momentum: m p l ( m p l ) Ahol p a póluserősség

Részletesebben

Spektroszkópiai módszerek 2.

Spektroszkópiai módszerek 2. Spektroszkópiai módszerek 2. NMR spektroszkópia magspinek rendeződése külső mágneses tér hatására az eredő magspin nem nulla, ha a magot alkotó nukleonok közül legalább az egyik páratlan a szerves kémiában

Részletesebben

1D multipulzus NMR kísérletek

1D multipulzus NMR kísérletek D multipulzus NMR kísérletek Rohonczy János ELTE, Szervetlen Kémia Tanszék Modern szerkezetkutatási módszerek elıadás 202. . Protonlecsatolt heteronukleáris mérések Elv 3 C mag detektálása alatt a protoncsatornán

Részletesebben

Hemoglobin - myoglobin. Konzultációs e-tananyag Szikla Károly

Hemoglobin - myoglobin. Konzultációs e-tananyag Szikla Károly Hemoglobin - myoglobin Konzultációs e-tananyag Szikla Károly Myoglobin A váz- és szívizom oxigén tároló fehérjéje Mt.: 17.800 153 aminosavból épül fel A lánc kb 75 % a hélix 8 db hélix, köztük nem helikális

Részletesebben

Magmágneses rezonancia. alapjai. Magmágneses rezonanciához kapcsolódó Nobel-díjak. γ N = = giromágneses hányados. v v

Magmágneses rezonancia. alapjai. Magmágneses rezonanciához kapcsolódó Nobel-díjak. γ N = = giromágneses hányados. v v Magmágneses rezonancia (MR) és elektronspinrezonancia (ESR) alapjai Dóczy-Bodnár Andrea 211. szeptember 28. Magmágneses rezonanciához kapcsolódó obel-díjak * Otto Stern, USA: obel Prize in Physics 1943,

Részletesebben

Hangfrekvenciás mechanikai rezgések vizsgálata

Hangfrekvenciás mechanikai rezgések vizsgálata Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk

Részletesebben

ERD14: egy funkcionálisan rendezetlen dehidrin fehérje szerkezeti és funkcionális jellemzése

ERD14: egy funkcionálisan rendezetlen dehidrin fehérje szerkezeti és funkcionális jellemzése Doktori értekezés tézisei ERD14: egy funkcionálisan rendezetlen dehidrin fehérje szerkezeti és funkcionális jellemzése DR. SZALAINÉ ÁGOSTON Bianka Ildikó Témavezetők Dr. PERCZEL András egyetemi tanár és

Részletesebben

lásd: enantiotóp, diasztereotóp

lásd: enantiotóp, diasztereotóp anizokrón anisochronous árnyékolási állandó shielding constant árnyékolási járulékok és empirikus értelmezésük shielding contributions diamágneses és paramágneses árnyékolás diamagnetic and paramagnetic

Részletesebben

Szerves vegyületek szerkezetfelderítése NMR spektroszkópia

Szerves vegyületek szerkezetfelderítése NMR spektroszkópia Szerves vegyületek szerkezetfelderítése NMR spektroszkópia Az anyag összeállításához Krajsovszky Gábor, Mátyus Péter és Perczel András diáit is felhasználtuk. 1 (hullámhossz) -sugárzás röntgensugárzás

Részletesebben

Biomolekuláris szerkezeti dinamika

Biomolekuláris szerkezeti dinamika Kísérletek, mérések célja Biomolekuláris szerkezeti dinamika Kellermayer Miklós Biomolekuláris szerkezet és működés pontosabb megismerése (folyamatok, állapotok, átmenetek, kölcsönhatások, stb.) Rádióspektroszkópiák

Részletesebben

M N. a. Spin = saját impulzus momentum vektor: L L nagysága:

M N. a. Spin = saját impulzus momentum vektor: L L nagysága: Az MR és MRI alapjai Magmágneses Rezonancia Spektroszkópia (MR) és Mágneses Rezonancia Képalkotás (MRI) uclear Magnetic Resonance: Alapelv felfedezéséért Fizikai obel díj, 1952 Felix Bloch és Edward M.

Részletesebben

BIOFIZIKA. Metodika- 4. Liliom Károly. MTA TTK Enzimológiai Intézet liliom@enzim.hu

BIOFIZIKA. Metodika- 4. Liliom Károly. MTA TTK Enzimológiai Intézet liliom@enzim.hu BIOFIZIKA 2012 11 26 Metodika- 4 Liliom Károly MTA TTK Enzimológiai Intézet liliom@enzim.hu A biofizika előadások temamkája 1. 09-03 Biofizika: fizikai szemlélet, modellalkotás, biometria 2. 09-10 SZÜNET

Részletesebben

A spin. November 28, 2006

A spin. November 28, 2006 A spin November 28, 2006 1 A spin a kvantummechanikában Az elektronnak és sok más kvantummechanikai részecskének is van egy saját impulzusnyomatéka amely független a mozgásállapottól. (Úgy is mondhatjuk,

Részletesebben

Fluktuáló terű transzverz Ising-lánc dinamikája

Fluktuáló terű transzverz Ising-lánc dinamikája 2016. szeptember 8. Phys. Rev. B 93, 134305 Modell H(t) = 1 2 L 1 σi x σi+1 x h(t) 2 i=1 h(t)-fluktuáló mágneses tér. Hogyan terjednek jelek a zajos rendszerben? L σi z, i=1 Zajok típusai 1 fehér zaj 2

Részletesebben

Biomolekuláris szerkezeti dinamika

Biomolekuláris szerkezeti dinamika Kísérletek, mérések célja Biomolekuláris szerkezeti dinamika Kellermayer Miklós Biomolekuláris szerkezet és működés pontosabb megismerése (folyamatok, állapotok, átmenetek, kölcsönhatások, mozgások, stb.)

Részletesebben

NMR spektroszkópia a fehérje biokémiában

NMR spektroszkópia a fehérje biokémiában NMR spektroszkópia a fehérje biokémiában Závodszky Péter Beinrohr László MTA SzBK Enzimológiai Intézet NMR spektroszkópia a fehérje biokémiában Závodszky Péter Beinrohr László MTA SzBK Enzimológiai Intézet

Részletesebben

NMR spektroszkópia (Nuclear Magnetic Resonance) Mágneses (atom)magrezonancia Spektroszkópia

NMR spektroszkópia (Nuclear Magnetic Resonance) Mágneses (atom)magrezonancia Spektroszkópia NMR spektroszkópia (Nuclear Magnetic Resonance) Mágneses (atom)magrezonancia Spektroszkópia Anyagszerkezeti vizsgálatok 2016. őszi félév Balogh Szabolcs sz.balogh@gmail.com Pannon Egyetem, NMR Laboratórium

Részletesebben

I. Az NMR spektrométer

I. Az NMR spektrométer I. Az NMR spektrométer I. Az NMR spektrométer fő részei Rádióelektronikai konzol Munkaállomás Mágnes 2 I. Ultra-árnyékolt mágnesek Kettős szupravezető tekerccsel csökkenthető a mágnes szórt tere. Kisebb

Részletesebben

A KAR-2, egy antimitotikus ágens egyedi farmakológiájának atomi és molekuláris alapjai

A KAR-2, egy antimitotikus ágens egyedi farmakológiájának atomi és molekuláris alapjai A KAR-2, egy antimitotikus ágens egyedi farmakológiájának atomi és molekuláris alapjai A doktori értekezés tézisei Horváth István Eötvös Loránd Tudományegyetem Biológia Doktori Iskola (A Doktori Iskola

Részletesebben

Több oxigéntartalmú funkciós csoportot tartalmazó vegyületek

Több oxigéntartalmú funkciós csoportot tartalmazó vegyületek Több oxigéntartalmú funkciós csoportot tartalmazó vegyületek Hidroxikarbonsavak α-hidroxi karbonsavak -Glikolsav (kézkrémek) - Tejsav (tejtermékek, izomláz, fogszuvasodás) - Citromsav (citrusfélékben,

Részletesebben

Egy antifungális diszulfid fehérje szerkezeti dinamikája és hideg/meleg kitekeredése (avagy PAF, a hűvös sárkány)

Egy antifungális diszulfid fehérje szerkezeti dinamikája és hideg/meleg kitekeredése (avagy PAF, a hűvös sárkány) Egy antifungális diszulfid fehérje szerkezeti dinamikája és hideg/meleg kitekeredése (avagy PAF, a hűvös sárkány) Batta Gyula Debreceni Egyetem Szerkezeti Biológiai és Molekuláris Felismerési Műhely structbiol.unideb.hu

Részletesebben

Lin.Alg.Zh.1 feladatok

Lin.Alg.Zh.1 feladatok Lin.Alg.Zh. feladatok 0.. d vektorok Adott három vektor ā (0 b ( c (0 az R Euklideszi vektortérben egy ortonormált bázisban.. Mennyi az ā b skalárszorzat? ā b 0 + + 8. Mennyi az n ā b vektoriális szorzat?

Részletesebben

Bevezető. 1. ábra. A Trp-kalitka minifehérje szerkezetének szalagmodelje (PDB: 1L2Y).

Bevezető. 1. ábra. A Trp-kalitka minifehérje szerkezetének szalagmodelje (PDB: 1L2Y). Bevezető A mindössze 20 aminosavból felépülő, de novo tervezett Trp-kalitka minifehérje már számos in vitro és in silico vizsgálat tárgyát képezte. Jelen doktori munka ennek a model fehérjecsaládnak a

Részletesebben

Foton-visszhang alapú optikai kvantum-memóriák: koherens kontroll optikailag sűrű közegben

Foton-visszhang alapú optikai kvantum-memóriák: koherens kontroll optikailag sűrű közegben Foton-visszhang alapú optikai kvantum-memóriák: koherens kontroll optikailag sűrű közegben Demeter Gábor MTA Wigner Fizikai Kutatóközpont, RMI Demeter Gábor (MTA Wigner RCP... / 4 Bevezetés / Motiváció

Részletesebben

Az NMR képalkotás alapjai. Bányai István Kolloid- és Környezetkémiai Tanszék DE, TEK

Az NMR képalkotás alapjai. Bányai István Kolloid- és Környezetkémiai Tanszék DE, TEK Az NMR képalkotás alapjai Bánai István Kolloid- és Körnezetkémiai Tanszék DE, TEK Az NMR alapjai alapjai Bánai István Kolloid- és Körnezetkémiai Tanszék DE, TEK A mágnesség A mágneses erı: F = pp 1 2 r

Részletesebben

2015/16/1 Kvantummechanika B 2.ZH

2015/16/1 Kvantummechanika B 2.ZH 2015/16/1 Kvantummechanika B 2.ZH 2015. december 10. Információk 0. A ZH ideje minimum 90 perc, maximum 180 perc. 1. Az összesen elérhet pontszám 270 pont. 2. A jeles érdemjegy eléréséhez nem szükséges

Részletesebben

Sohár Pál Varázslat, amitől láthatóvá válnak és életre kelnek a molekulák: Az NMR spektroszkópia

Sohár Pál Varázslat, amitől láthatóvá válnak és életre kelnek a molekulák: Az NMR spektroszkópia MTA -ELTE FEÉRJEMODELLEZŐ KUTATÓCSOPORT - ÁLTALÁNOS ÉS SZERVETLEN KÉMIAI TANSZÉK EÖTVÖS LORÁND TUDOMÁNYEGYETEM Sohár Pál Varázslat, amitől láthatóvá válnak és életre kelnek a molekulák: Az NMR spektroszkópia

Részletesebben

MedInProt Szinergia IV. program. Szerkezetvizsgáló módszer a rendezetlen fehérjék szerkezetének és kölcsönhatásainak jellemzésére

MedInProt Szinergia IV. program. Szerkezetvizsgáló módszer a rendezetlen fehérjék szerkezetének és kölcsönhatásainak jellemzésére MedInProt Szinergia IV. program Szerkezetvizsgáló módszer a rendezetlen fehérjék szerkezetének és kölcsönhatásainak jellemzésére Tantos Ágnes MTA TTK Enzimológiai Intézet, Rendezetlen fehérje kutatócsoport

Részletesebben

Peptid- és fehérjék másodlagos-, harmadlagos- és negyedleges szerkezete

Peptid- és fehérjék másodlagos-, harmadlagos- és negyedleges szerkezete Peptid- és fehérjék másodlagos-, harmadlagos- és negyedleges szerkezete Polipeptidek térszerkezete Tipikus (rendezett) konformerek em tipikus (rendezetlen) konformerek Periodikus vagy homokonformerek Aperiodikus

Részletesebben

A Ca 2+ szerepe a tormaperoxidáz enzim aktív szerkezetében. Szigeti Krisztián

A Ca 2+ szerepe a tormaperoxidáz enzim aktív szerkezetében. Szigeti Krisztián A Ca 2+ szerepe a tormaperoxidáz enzim aktív szerkezetében Doktori értekezés Szigeti Krisztián Semmelweis Egyetem Gyógyszertudományok Doktori Iskola Témavezető: Hivatalos Bírálók: Szigorlati Bizottság

Részletesebben

Modern Fizika Labor. 5. ESR (Elektronspin rezonancia) Fizika BSc. A mérés dátuma: okt. 25. A mérés száma és címe: Értékelés:

Modern Fizika Labor. 5. ESR (Elektronspin rezonancia) Fizika BSc. A mérés dátuma: okt. 25. A mérés száma és címe: Értékelés: Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. okt. 25. A mérés száma és címe: 5. ESR (Elektronspin rezonancia) Értékelés: A beadás dátuma: 2011. nov. 16. A mérést végezte: Szőke Kálmán Benjamin

Részletesebben

Atomok és molekulák elektronszerkezete

Atomok és molekulák elektronszerkezete Atomok és molekulák elektronszerkezete Szabad atomok és molekulák Schrödinger egyenlete Tekintsünk egy kvantummechanikai rendszert amely N n magból és N e elektronból áll. Koordinátáikat jelölje rendre

Részletesebben

MEDINPROT Gépidő Pályázat támogatásával elért eredmények

MEDINPROT Gépidő Pályázat támogatásával elért eredmények A kisszögű röntgenszórási módszer fejlesztése fehérjék oldatfázisú mérésére Bóta Attila, Wacha András, Varga Zoltán MTA TTK Biológiai Nanokémia Kutatócsoport 1117 Bp. Magyar Tudósok krt. 2. MEDINPROT Gépidő

Részletesebben

Röntgen sugárzás. Wilhelm Röntgen. Röntgen feleségének keze

Röntgen sugárzás. Wilhelm Röntgen. Röntgen feleségének keze Röntgendiffrakció Kardos Roland 2010.03.08. Előadás vázlata Röntgen sugárzás Interferencia Huygens teória Diffrakció Diffrakciós eljárások Alkalmazás Röntgen sugárzás 1895 röntgen sugárzás felfedezés (1901

Részletesebben

Mágneses magrezonancia (NMR) spektroszkópia a fehérjekutatásban. Dr. Tőke Orsolya MTA Kémiai Kutatóközpont Szerkezeti Kémiai Intézet 2007

Mágneses magrezonancia (NMR) spektroszkópia a fehérjekutatásban. Dr. Tőke Orsolya MTA Kémiai Kutatóközpont Szerkezeti Kémiai Intézet 2007 Mágneses magrezonancia (NMR) spektroszkópia a fehérjekutatásban Dr. Tőke Orsolya MTA Kémiai Kutatóközpont Szerkezeti Kémiai Intézet 2007 1 A fehérjék szerkezetének és működésének megértése alapvető fontosságú

Részletesebben

Készítette: NÁDOR JUDIT. Témavezető: Dr. HOMONNAY ZOLTÁN. ELTE TTK, Analitikai Kémia Tanszék 2010

Készítette: NÁDOR JUDIT. Témavezető: Dr. HOMONNAY ZOLTÁN. ELTE TTK, Analitikai Kémia Tanszék 2010 Készítette: NÁDOR JUDIT Témavezető: Dr. HOMONNAY ZOLTÁN ELTE TTK, Analitikai Kémia Tanszék 2010 Bevezetés, célkitűzés Mössbauer-spektroszkópia Kísérleti előzmények Mérések és eredmények Összefoglalás EDTA

Részletesebben

Modern Fizika Labor Fizika BSC

Modern Fizika Labor Fizika BSC Modern Fizika Labor Fizika BSC A mérés dátuma: 2009. május 4. A mérés száma és címe: 9. Röntgen-fluoreszencia analízis Értékelés: A beadás dátuma: 2009. május 13. A mérést végezte: Márton Krisztina Zsigmond

Részletesebben

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18.

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18. Modern Fizika Labor Fizika BSc A mérés dátuma: 28. március 18. A mérés száma és címe: 5. mérés: Elektronspin rezonancia Értékelés: A beadás dátuma: 28. március 26. A mérést végezte: 1/7 A mérés leírása:

Részletesebben

Kvantummechanika gyakorlat Beadandó feladatsor Határid : 4. heti gyakorlatok eleje

Kvantummechanika gyakorlat Beadandó feladatsor Határid : 4. heti gyakorlatok eleje Kvantummechanika gyakorlat 015 1. Beadandó feladatsor Határid : 4. heti gyakorlatok eleje 1. Mutassuk meg, hogy A és B tetsz leges operátorokra igaz, hogy e B A e B = A + [B, A] + 1![ B, [B, A] ] +....

Részletesebben

Lin.Alg.Zh.1 feladatok

Lin.Alg.Zh.1 feladatok LinAlgZh1 feladatok 01 3d vektorok Adott három vektor ā = (0 2 4) b = (1 1 4) c = (0 2 4) az R 3 Euklideszi vektortérben egy ortonormált bázisban 1 Mennyi az ā b skalárszorzat? 2 Mennyi az n = ā b vektoriális

Részletesebben

Modern Fizika Labor. 12. Infravörös spektroszkópia. Fizika BSc. A mérés dátuma: okt. 04. A mérés száma és címe: Értékelés:

Modern Fizika Labor. 12. Infravörös spektroszkópia. Fizika BSc. A mérés dátuma: okt. 04. A mérés száma és címe: Értékelés: Modern Fizika Labor Fizika BSc A mérés dátuma: 011. okt. 04. A mérés száma és címe: 1. Infravörös spektroszkópia Értékelés: A beadás dátuma: 011. dec. 1. A mérést végezte: Domokos Zoltán Szőke Kálmán Benjamin

Részletesebben

Bordács Sándor doktorjelölt. anyagtudományban. nyban. Dr. Kézsmárki István Prof. Yohinori Tokura Prof. Ryo Shimano

Bordács Sándor doktorjelölt. anyagtudományban. nyban. Dr. Kézsmárki István Prof. Yohinori Tokura Prof. Ryo Shimano Bordács Sándor doktorjelölt Túl l a távoli t infrán: THz spektroszkópia pia az anyagtudományban nyban Dr. Kézsmárki István Prof. Yohinori Tokura Prof. Ryo Shimano Terahertz sugárz rzás THz tartomány: frekvencia:

Részletesebben

Vektorok, mátrixok, tenzorok, T (emlékeztető)

Vektorok, mátrixok, tenzorok, T (emlékeztető) Vektorok, mátrixok, tenzorok, T (emlékeztető) A = T*B Tenzor: lineáris vektorfüggvény, amely két vektormennyiség közötti összefüggést ír le, egy négyzetmátrix, M reprezentálja. M M M M = M M M M M M 11

Részletesebben

A polipeptidlánc szabályozott lebontása: mit mondanak a fehérjekristályok? Harmat Veronika ELTE Kémiai Intézet, Szerkezeti Kémia és Biológia Laboratórium MTA-ELTE Fehérjemodellező Kutatócsoport A magyar

Részletesebben

MRI áttekintés. Orvosi képdiagnosztika 3. ea ősz

MRI áttekintés. Orvosi képdiagnosztika 3. ea ősz MRI áttekintés Orvosi képdiagnosztika 3. ea. 2015 ősz MRI Alapelv: hogyan lehet mágneses vizsgálattal valamilyen anyag (jelen esetben az élő emberi szervezet) belső felépítéséről információt kapni? A mágneses

Részletesebben

Fehérjeszerkezet, és tekeredés

Fehérjeszerkezet, és tekeredés Fehérjeszerkezet, és tekeredés Futó Kinga 2013.10.08. Polimerek Polimer: hasonló alegységekből (monomer) felépülő makromolekulák Alegységek száma: tipikusan 10 2-10 4 Titin: 3,435*10 4 aminosav C 132983

Részletesebben

Sajátértékek és sajátvektorok. mf1n1a06- mf1n2a06 Csabai István

Sajátértékek és sajátvektorok. mf1n1a06- mf1n2a06 Csabai István Sajátértékek és sajátvektorok A fizika numerikus módszerei I. mf1n1a06- mf1n2a06 Csabai István Lineáris transzformáció Vektorok lineáris transzformációja: általános esetben az x vektor iránya és nagysága

Részletesebben

Fizikai kémia 2. ZH V. kérdések I. félévtől

Fizikai kémia 2. ZH V. kérdések I. félévtől Fizikai kémia 2. ZH V. kérdések 2016-17 I. félévtől Szükséges adatok és állandók: k=1,38066 10-23 JK; c= 2,99792458 10 8 m/s; e= 1,602177 10-19 C; h=6,62608 10-34 Js; N A= 6,02214 10 23 mol -1 ; me= 9,10939

Részletesebben

A fény és az anyag kölcsönhatása

A fény és az anyag kölcsönhatása A fény és az anyag kölcsönhatása Bohr-feltétel : E = E 2 E 1 = hν abszorpció foton (hν) E 2 E 2 E 1 E 1 E 2 E 2 spontán emisszió E 1 E 1 stimulált (kényszerített) emisszió E 2 E 2 E 1 E 1 Emissziós és

Részletesebben

http://www.nature.com 1) Magerő-sugár: a magközéppontból mért távolság, ameddig a magerők hatótávolsága terjed. Rutherford-szórásból határozható meg. R=1,4 x 10-13 A 1/3 cm Az atommag terének potenciálja

Részletesebben

Az NMR és a bizonytalansági elv rejtélyes találkozása

Az NMR és a bizonytalansági elv rejtélyes találkozása Az NMR és a bizonytalansági elv rejtélyes találkozása ifj. Szántay Csaba MTA Kémiai Tudományok Osztálya 2012. február 21. a magspínek pulzus-gerjesztésének értelmezési paradigmája GLOBÁLISAN ELTERJEDT

Részletesebben

Röntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT)

Röntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT) Röntgensugárzás az orvostudományban Röntgen kép és Komputer tomográf (CT) Orbán József, Biofizikai Intézet, 2008 Hand mit Ringen: print of Wilhelm Röntgen's first "medical" x-ray, of his wife's hand, taken

Részletesebben

Fizika II minimumkérdések. A zárójelben lévő értékeket nem kötelező memorizálni, azok csak tájékoztató jellegűek.

Fizika II minimumkérdések. A zárójelben lévő értékeket nem kötelező memorizálni, azok csak tájékoztató jellegűek. izika II minimumkérdések zárójelben lévő értékeket nem kötelező memorizálni, azok csak tájékoztató jellegűek. 1. Coulomb erőtörvény: = kq r 2 e r (k = 9 10 9 m2 C 2 ) 2. Coulomb állandó és vákuum permittivitás

Részletesebben

Fourier transzformáció

Fourier transzformáció a Matematika mérnököknek II. című tárgyhoz Fourier transzformáció Fourier transzformáció, heurisztika Tekintsük egy 2L szerint periodikus függvény Fourier sorát: f (x) = a 0 2 + ( ( nπ ) ( nπ )) a n cos

Részletesebben

Vektorterek. =a gyakorlatokon megoldásra ajánlott

Vektorterek. =a gyakorlatokon megoldásra ajánlott Vektorterek =a gyakorlatokon megoldásra ajánlott 40. Alteret alkotnak-e a valós R 5 vektortérben a megadott részhalmazok? Ha igen, akkor hány dimenziósak? (a) L = { (x 1, x 2, x 3, x 4, x 5 ) x 1 = x 5,

Részletesebben

λx f 1 (x) e λx f 2 (x) λe λx f 2 (x) + e λx f 2(x) e λx f 2 (x) Hasonlóan általában is elérhető sorműveletekkel, hogy csak f (j)

λx f 1 (x) e λx f 2 (x) λe λx f 2 (x) + e λx f 2(x) e λx f 2 (x) Hasonlóan általában is elérhető sorműveletekkel, hogy csak f (j) Matematika A3 gyakorlat Energetika és Mechatronika BSc szakok, 016/17 ősz 10 feladatsor: Magasabbrendű lineáris differenciálegyenletek (megoldás) 1 Határozzuk meg az e λx, xe λx, x e λx,, x k 1 e λx függvények

Részletesebben

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1 Méréstechnika Rezgésmérés Készítette: Ángyán Béla Iszak Gábor Seidl Áron Veszprém 2014 [Ide írhatja a szöveget] oldal 1 A rezgésekkel kapcsolatos alapfogalmak A rezgés a Magyar Értelmező Szótár megfogalmazása

Részletesebben

Kis rendszer nagy kérdés

Kis rendszer nagy kérdés Tudományos Diákköri Dolgozat KOLTAI ANDRÁS Kis rendszer nagy kérdés Témavezető: Prof. Perczel András ELTE Szerkezeti Kémia és Biológia Laboratórium Eötvös Loránd Tudományegyetem Természettudományi Kar

Részletesebben

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:

Részletesebben

palkotás alapjai Bányai István Kolloid- és Környezetkémiai Tanszék DE, TEK

palkotás alapjai Bányai István Kolloid- és Környezetkémiai Tanszék DE, TEK Az NMR képalkotk palkotás alapjai Bánai István Kolloid- és Körnezetkémiai Tanszék DE, TEK Az NMR alapjai alapjai Bánai István Kolloid- és Körnezetkémiai Tanszék DE, TEK Kvantummechanikai alapok Az atommag

Részletesebben

CD-spektroszkópia. Az ORD spektroskópia alapja

CD-spektroszkópia. Az ORD spektroskópia alapja CD-spektroszkópia Az ORD spektroskópia alapja - A XIX. század elején Biot megfigyelte, hogy bizonyos, a természetben előforduló szerves anyagok a lineárisan polarizált fény síkját elforgatják. - 1817-ben

Részletesebben

TDK lehetőségek az MTA TTK Enzimológiai Intézetben

TDK lehetőségek az MTA TTK Enzimológiai Intézetben TDK lehetőségek az MTA TTK Enzimológiai Intézetben Vértessy G. Beáta egyetemi tanár TDK mind 1-3 helyezettek OTDK Pro Scientia különdíj 1 második díj Diákjaink Eredményei Zsűri különdíj 2 első díj OTDK

Részletesebben

A nehézfémek növényi vízháztartásra gyakorolt hatásának vizsgálata Mágneses Rezonancia készülékkel. Készítette: Jakusch Pál Környezettudós

A nehézfémek növényi vízháztartásra gyakorolt hatásának vizsgálata Mágneses Rezonancia készülékkel. Készítette: Jakusch Pál Környezettudós A nehézfémek növényi vízháztartásra gyakorolt hatásának vizsgálata Mágneses Rezonancia készülékkel Készítette: Jakusch Pál Környezettudós Célkitűzés MR készülék növényélettani célú alkalmazása Kontroll

Részletesebben

Szilárdtestek el e ek e tr t o r n o s n zer e k r ez e et e e t

Szilárdtestek el e ek e tr t o r n o s n zer e k r ez e et e e t Szilárdtestek elektronszerkezete Kvantummechanikai leírás Ismétlés: Schrödinger egyenlet, hullámfüggvény, hidrogén-atom, spin, Pauli-elv, periódusos rendszer 2 Szilárdtestek egyelektron-modellje a magok

Részletesebben

Modern Fizika Labor Fizika BSC

Modern Fizika Labor Fizika BSC Modern Fizika Labor Fizika BSC A mérés dátuma: 2009. március 2. A mérés száma és címe: 5. Elektronspin rezonancia Értékelés: A beadás dátuma: 2009. március 5. A mérést végezte: Márton Krisztina Zsigmond

Részletesebben

MateFIZIKA: Pörgés, forgás, csavarodás (Vektorok és axiálvektorok a fizikában)

MateFIZIKA: Pörgés, forgás, csavarodás (Vektorok és axiálvektorok a fizikában) MateFIZIKA: Pörgés, forgás, csavarodás (Vektorok és axiálvektorok a fizikában) Tasnádi Tamás 1 2015. április 17. 1 BME, Mat. Int., Analízis Tsz. Tartalom Vektorok és axiálvektorok Forgómozgás, pörgettyűk

Részletesebben

Gyors, multidimenzionális mérések adaptálása és tesztelése a p53 fehérje rendezetlen TAD régiójának esetében

Gyors, multidimenzionális mérések adaptálása és tesztelése a p53 fehérje rendezetlen TAD régiójának esetében Tudományos Diákköri Dolgozat SEBÁK FANNI Gyors, multidimenzionális mérések adaptálása és tesztelése a p53 fehérje rendezetlen TAD régiójának esetében Témavezető: Dr. Bodor Andrea Analitikai Kémiai Tanszék

Részletesebben

A fehérjék szerkezeti hierarchiája. Fehérje-szerkezetek! Klasszikus szerkezet-funkció paradigma. szekvencia. funkció. szerkezet! Myoglobin.

A fehérjék szerkezeti hierarchiája. Fehérje-szerkezetek! Klasszikus szerkezet-funkció paradigma. szekvencia. funkció. szerkezet! Myoglobin. Myoglobin Fehérje-szerkezetek! MGLSDGEWQLVLNVWGKVEADIPGGQEVLIRLFK GPETLEKFDKFKLKSEDEMKASE DLKKGATVLTALGGILKKKGEAEIKPLAQSA TKKIPVKYLEFISECIIQVLQSK PGDFGADAQGAMNKALELFRKDMASNYKELGFQG Fuxreiter Mónika! Debreceni

Részletesebben

1.1. Vektorok és operátorok mátrix formában

1.1. Vektorok és operátorok mátrix formában 1. Reprezentáció elmélet 1.1. Vektorok és operátorok mátrix formában A vektorok és az operátorok mátrixok formájában is felírhatók. A végtelen dimenziós ket vektoroknak végtelen sok sort tartalmazó oszlopmátrix

Részletesebben

3. Sejtalkotó molekulák III. Fehérjék, enzimműködés, fehérjeszintézis (transzkripció, transzláció, poszt szintetikus módosítások)

3. Sejtalkotó molekulák III. Fehérjék, enzimműködés, fehérjeszintézis (transzkripció, transzláció, poszt szintetikus módosítások) 3. Sejtalkotó molekulák III. Fehérjék, enzimműködés, fehérjeszintézis (transzkripció, transzláció, poszt szintetikus módosítások) 3.1 Fehérjék, enzimek A genetikai információ egyik fő manifesztálódása

Részletesebben

Medical Imaging 10 2009.04.07. 1. Mágneses rezonancia (MR, MRI, NMR) x B. Makroszkopikus tárgyalás

Medical Imaging 10 2009.04.07. 1. Mágneses rezonancia (MR, MRI, NMR) x B. Makroszkopikus tárgyalás Mágneses rezonancia (MR, MRI, NMR) Bloch, Purcell 1946, Nobel díj 1952. Mágneses momentum + - Mágneses térben a mágneses momentum az erővonalakkal csak meghatározott szöget zárhat be. Különböző irányokhoz

Részletesebben

Hegedüs Zsófia. Konformációsan diverz -redős szerkezetek utánzása -peptid foldamerek segítségével

Hegedüs Zsófia. Konformációsan diverz -redős szerkezetek utánzása -peptid foldamerek segítségével Szegedi Tudományegyetem Gyógyszertudományok Doktori Iskola Ph.D. program: Programvezető: Intézet: Témavezető: Gyógyszerkémia, gyógyszerkutatás Prof. Dr. Fülöp Ferenc Gyógyszeranalitikai Intézet Prof. Dr.

Részletesebben

MEDICINÁLIS ALAPISMERETEK AZ ÉLŐ SZERVEZETEK KÉMIAI ÉPÍTŐKÖVEI AZ AMINOSAVAK ÉS FEHÉRJÉK 1. kulcsszó cím: Aminosavak

MEDICINÁLIS ALAPISMERETEK AZ ÉLŐ SZERVEZETEK KÉMIAI ÉPÍTŐKÖVEI AZ AMINOSAVAK ÉS FEHÉRJÉK 1. kulcsszó cím: Aminosavak Modul cím: MEDICINÁLIS ALAPISMERETEK AZ ÉLŐ SZERVEZETEK KÉMIAI ÉPÍTŐKÖVEI AZ AMINOSAVAK ÉS FEHÉRJÉK 1. kulcsszó cím: Aminosavak Egy átlagos emberben 10-12 kg fehérje van, mely elsősorban a vázizomban található.

Részletesebben

Fizikai kémia Mágneses magrezonancia spektroszkópia alapjai. Mágneses magrezonancia - NMR. Mágneses magrezonancia - NMR

Fizikai kémia Mágneses magrezonancia spektroszkópia alapjai. Mágneses magrezonancia - NMR. Mágneses magrezonancia - NMR Fizikai kémia 2.. Mágneses magrezonancia spektroszkópia alapjai Dr. Berkesi Ottó SZTE Fizikai Kémiai és Anyagtudományi Tanszéke 205 Mágneses magrezonancia - NMR Amint azt a korábbiakban megismertük a molekulákban

Részletesebben

3. Sejtalkotó molekulák III.

3. Sejtalkotó molekulák III. 3. Sejtalkotó molekulák III. Fehérjék, fehérjeszintézis (transzkripció, transzláció, posztszintetikus módosítások). Enzimműködés 3.1 Fehérjék A genetikai információ egyik fő manifesztálódása Számos funkció

Részletesebben

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény; Abszorpciós spektroszkópia

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény;   Abszorpciós spektroszkópia Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2016 március 1.) Az abszorpció mérése;

Részletesebben

Példák egyszerű szerves vegyületek 1 H és 13 C jelhozzárendelésére. Tartalomjegyzék: - etanol - (D)-glükópiranóz

Példák egyszerű szerves vegyületek 1 H és 13 C jelhozzárendelésére. Tartalomjegyzék: - etanol - (D)-glükópiranóz Példák egyszerű szerves vegyületek 1 H és 13 C jelhozzárendelésére Tartalomjegyzék: - etanol - (D)-glükópiranóz triplett kvartett 1) Az indirekt (skaláris) magspin-magspin csatolást, J-t, az elektronfelhő

Részletesebben

Kétállapotú spin idbeli változása mágneses mezben

Kétállapotú spin idbeli változása mágneses mezben Kétállapotú spin idbeli változása mágneses mezben 1. Oszcilláció energiasajátállapotok között Egy mágnest, vagy egy kis köráram mágneses nyomatékkal (momentummal) rendelkezik, ez azmennyiség jellemzi azt,

Részletesebben

Abszorpció, emlékeztetõ

Abszorpció, emlékeztetõ Hogyan készültek ezek a képek? PÉCI TUDMÁNYEGYETEM ÁLTALÁN RVTUDMÁNYI KAR Fluoreszcencia spektroszkópia (Nyitrai Miklós; február.) Lumineszcencia - elemi lépések Abszorpció, emlékeztetõ Energia elnyelése

Részletesebben