A BioNMR spektroszkópia alapjai
|
|
- Gyöngyi Borosné
- 7 évvel ezelőtt
- Látták:
Átírás
1 A BioNMR spektroszkópia alapjai
2 Az NMR-spektroszkópia szükséges feltétele a nullától különböző magspin (I 0) 1) I=0, ha mind a protonok mind a neutronok száma páros: ( 12 C, 16 O) 2) I=1/2, ha tömegszáma páratlan ( 1, 3, 13 C, 15 N, 19 F, 57 Fe, 113 Cd) vagy a protonok, vagy a neutronok száma páratlan. 3) I=k (k=1,2,..) mind a protonok mind a neutronok száma páratlan ( 2, 14 N) klasszikus modell: atommag egy töltéssel rendelkező részecske, mely továbbá egy adott tengely mentén forog. Töltéssel rendelkező mag + forgás = köráram létesítése köráram mágneses momentum (m). Bio-NMR : Feles spin kvantumszámú (I=1/2) magok, ahol a m egy mágneses dipolmomentum vektorral (rúdmágnessel) modellezhető. A mágneses dipólmomentum (m) arányos a szögimpulzus-momentum vektorral (I). Giromágneses állandó (g) egy, az atommagra jellemző mennyiség: m =g I.
3 Külső mágneses tér hiányában a magok spinjei rendezetlenül állnak kérdés: Egy ilyen elemi dipólmomentum vektor (m) a külső térerőnek (B o ) megfelelően, azzal párhuzamos irányba rendeződik-e? válasz: Nem! magyarázat: Az említett atommagokhoz mágnese tulajdonsága mellett forgó mozgást is rendeltünk, ezért az elemi mágneses dipólmomentum vektorok (m) a külső sztatikus mágneses térre (B 0 ) merőleges sík szerinti forgó mozgást, úgynevezett precessziót fognak végezni.
4 B 0 Külső mágneses tér hatására rendeződött és precesszáló magok z y B 0 x Külső mágneses tér hatására rendeződött és precesszáló spinek (közös origóból ábrázolva)
5 B 0 és B 1 után a helyzet: (búgócsiga modell) Impulzusmomentum w o szögsebesség nagysága arányos a külső statikus térerő nagyságával: w o = gb o. Az w o szögsebességgel arányos n o (Larmor-frekvencia): n o = w o /2p. A mágneses dipólmomentum vektor (m) időbeli változását a következő vektoriális szorzat írja le: dm/dt = g B o m Forgásirány Forgó korong impulzusmomentuma
6 A makroszkopikus-, globális- vagy mérhető-mágnesezettség (M), a megfelelő elemi vagy mikroszkopikus mennyiség additív összege: M = S m i Ennek segítségével a Larmor-precesszió átírható makroszkopikus alakba: d M /dt = -g B o M A m i vektoroknak kizárólag a B o -al párhuzamos, szokásosan z irányúnak nevezett komponensei adódnak konstruktívan össze. A termikus egyensúly állapotában tehát, a M z = S (m z) i a tehát I =1/2 (pl. 1, 13 C, stb.) akkor a (2I+1)=2, azaz két állapot; két kvantumállapotot a> és b> két energia (E a és E b ) két betöltöttségek (N a és N b ) N b / N a = exp (-DE/kT). Az egy átmenet (Zeeman-átmenet) energiakülönbsége (DE): DE=hgB o /2p
7 A BLOC-egyenletek z-irányú mágnesezettség időbeni alakulása: dm z' /dt= (M z' M o )/T 1 Az egyszerű differenciál-egyenletet megoldásaként a következő függvényt kapjuk: M z' (t)=m o (1 exp( t/t 1 ) az x,y-síkban zajló csillapított amplitúdójú precesszió alakulása: dm x' /dt=(w o w)m y' M x' /T 2 dm y' /dt= (w o w)m x' M y' /T 2 Csatolt differenciál-egyenletrendszer megoldásaként a következőt kapjuk: M x' (t)=m o exp( t/t 2 )sin(w o w) M y' (t)=m o exp( t/t 2 )cos(w o w), ahol (w o w) a forgó referencia rendszerben a precesszió szögsebessége.
8 Ennek a függvény a Fourier-transzformáltja az NMR-spektrum.
9 Külső mágneses térben a makroszkopikus mágnesezettség gerjesztése annak precessziójához vezet, amely mérhető indukált feszültséget eredményez
10
11 A nagy felbontású NMR-spektrumok öt jellemző paramétere: csatolási állandó (J érték) félértékszélesség multiplicitás terület kémiai eltolódás =[( M - R )/ R ]10 6 Jellegzetes proton kémiaieltolódás értékek COO CO N=C Ar RCONQ Ar-O C=C RO RQN C C 2 C 3 TMS
12
13 Spin-spin csatolás (a színkép finomszerkezete) a b A B A és B magok indirekt módon a és b elektronokon keresztül csatoltak. A jelenség a spin-spin felhasadás, a skaláris csatolás vagy a J-csatolás dublet mintázat
14 triplet mintázat kvadruplet mintázat
15
16
17
18
19
20 Jellegzetes 13 C kémiaieltolódás értékek CO CO COO COOQ CONQ CN Ar alkin alkilhalogenid alkilamin alkén alkán CO (alkohol, éter)
21
22
23 Solvent dependence of chemical shifts *chemical shift changes with solvent used*
24 p dependence of chemical shifts 13 C-NMR spectra of wild type BCX (xylanase from Bacillus circulans) recorded as function of p at 25C. Peaks corresponding to E78 and E172 are highlighted black to emphasize the titration of these residues. McIntosh, L.P. et al. Biochemistry 35 (1996) 9958.
25 p dependence of chemical shifts 13 C-NMR spectra of wild E172Q BCX recorded as function of p at 25C. The peak corresponding to E78 is highlighted in black. McIntosh, L.P. et al. Biochemistry 35 (1996) 9958.
26 Temperature dependence of chemical shifts double stranded single stranded (imino protons exchange with water protons) O O N N N N 2 N N N guanine N N N N 2 N N N O N O N cytosine imino resonance signals of d(gcgcgcgc) 2 in water
27 Peptid és fehérje NMR-spektroszkópia alapjelenség eltérő kémiai környezet eltérő rezonancia frekvencia N a- b- g-
28 Peptid és fehérje NMR-spektroszkópia 1. jelhozzárendelés a jelhozzárendelés vagy spektrum asszignáció ez előbbi megfigyelésen alapszik eltérő rezonancia frekvencia eltérő kémiai környezet N a- b- g-
29 omonukleáris NMR-spektroszkópia egy dimenzióban N(W indol) N(amid gerinc) N(amid oldallánc) (aromás) C(a) C( ) C(b) C( ) C(g) C 3 TMS
30 omo- vagy eteronukleáris NMR-spektroszkópia két dimenzióban
31 DQF-COSY = Double-Quantum Filtered- COrrelated SpectroscopY TOCSY =TOtal-Correlated SpectroscopY NOESY = Nuclear Overhauser Effect SpectroscopY
32 Ala A 3 X COSY * O N C C C 3 a b TOCSY Gly COSY a 1 a 2 AX TOCSY * O N C C
33 Val A 3 B 3 MX COSY * O N C C C C 3 C 3 a b g 1 g 2 TOCSY Lys COSY A 2 (F 2 T 2 )MPX * O N C C C C 2 C 2 a b 1 b 2 g TOCSY C 2 N 2
34 Leu A 3 B 3 MPTX COSY a b 1 b 2 g 1 2 TOCSY * N O C C C C C 3 C 3 Ile A 3 MPT(B 3 )X COSY a b g 11 g 12 g 2 TOCSY * N O C C g 2 C C 3 C g 11 g 12 C 3
35 J típus COSY AMX O N * C C C R a b 1 b 2 TOCSY R = O Ser S Cys COO Asp CON 2 Asn C 6 5 Phe C 6 5 O Tyr C 3 3 N 2 is C 8 6 N 1 Trp
36 Phe gyűrű COSY AA XX M N * O C C C 2 z z TOCSY Tyr gyűrű COSY AA XX * O N C C C 2 TOCSY O
37 is gyűrű COSY AX O N C C * C 2 N 2 1 N * TOCSY Trp gyűrű COSY A(X)MP + A * N O C C C 2 N * z h 2 z h 2 TOCSY
38 NOESY B D b Ala A G F C a Ala b1 Ser b2 Ser E a Ser N Ser N Ala TOCSY E C CO F C C N G D CO O Ser intrareziduális NOE (A,B,E,F,G) A C N B C 3 Ala interreziduális NOE (C,D)
39 omonukleáris NMR-spektroszkópia Jelhozzárendelés
40 Peptid és fehérje NMR-spektroszkópia 2. szerkezetmeghatározás Távolság jellegű adatok (NOE) 3D-szerkezet
41 1-1 -NOESY
42 Schistocerca gregaria kimotripszin inhibitor (SGCI) hidrofób magja
43 Makromolekulák 3D szerkezetének meghatározása NMR adatok alapján NMR spektrumok NMR jelhozárendelés távolság jellegű kényszerfeltételek torziószög típusú kényszerfeltételek Kezdeti szerkezet distance geometry restrained dynamics simulated annealing IGEN Konvergencia? Restrained dynamics Restrained minimization NEM 3D szerkezet
44 Egy helikális fragmens szerkezetének finomítása
45 Makromolekulák 3D szerkezetének Meghatározása NMR adatok alapján
46 Miért NMR? Powerful modern structural tools for looking at complexes Crystallography ~ 45,000 structures Electron microscopy ~190 Modelling Nuclear Magnetic Resonance ~7,500 - can also give K d and k
47 eteronukleáris egyszeres-kvantum koherencia spektrum SQC = eteronuclear Single-Quantum Coherence z -2 z N y +2 z N y cos( N t 1 ) x cos( N t 1 ) x cos( N t 1 )cos( t 2 ) N
48 3D-NOESY-SQC
49 2D és 3D NMR-spektrumok összevetése VTCEPGTTFKDKCNTCRCGSDGKSAACTLKACPQ omonukleáris 2D TOCSY omonukleáris 2D TOCSY amid N (ujjlenyomat) tartománya 1-15 N 3D TOCSY csíkok (strips)
50 A proteomika és genomika korát éljük több mint 800 organizmus teljes genom ismert az emberi genom gén fehérje a gyümölcsök nem maguktól érnek meg új közelítésmód szükséges: szerkezeti genomika (structural genomics) Mi a szerkezeti genomikában az NMR szerepe: fehérje szerkezet található a PDB, ebből 17% NMR (2200) és 82% Röntgen (2001 január) célkitűzés: minden szerkezet minden fehérjecsalád egy-egy reprezentatív elemének meghatározása (Prestegard et al. Biochem. 2001, 40,
51 A program: Nagy mennyiségű fehérje expresszálása - Európa (einemann Nat. Struct. Biol. 2000) - Japán (Yokoyama et al. Prog. Biophys.Mol.Biol.2000) - USA (NI) 7 kiemelt centrum (Terwillinger Nat. Struct. Biol. 2000) Legfontosabb eszközök: - röntgenkrisztallográfia - NMR spektroszkópia Az NMR szerepe: - kristályosítás peremfeltételeinek optimálása - a helyes feltekeredés társmolekuláinak azonosítása - alternatív szerkezetmeghatározó eszköz - ha nincs egykristály - aggregáció esetén - poszttranszlációs módosítás esetén - membrán fehérje esetén Japán RIKEN (39 spektrométer) pl. hélix köteg (helical bundle) fehérjék 75 millió $/év a teljes genom 15 milliárd Ft/év akár % ilyen fehérje
52 Az NMR mint szerkezetmeghatározó eszköz: - NOE alapú közelítés (mérethatár <50kDa) (nem deuterált de 15 N és 13 C jelölt minta <25kDa) molekulatömeg vonalszélesség spektrális felbontás Kedvező tény: fehérjék átlagos doménjének mérete: 17kDa ( 150 aminosav) atékonyság: csúcs: egy 90 aminosav hosszú fehérje esetében plazmidtól a 3D szerkezetig mindössze 30 nap (Kozlov et al. J.Biomol.NMR 2000) stratégia: automatizáció
53 Az NMR mint rosta (screening tool): -az amidok N frekvenciáin keresztül kiszűrjük a fehérje rendezetlen részeit (CLEANEX wang et al. J.Am.Soc.Chem. 1997, 119, 6203) - a kémiai eltolódásban rejlő információk kiaknázása ( 1-15 N correlation (e.g. SQC)
54 The Nobel Prize in Chemistry 1991 Richard R. Ernst "for his contributions to the development of the methodology of high resolution nuclear magnetic resonance (NMR) spectroscopy"
55 The Nobel Prize in Chemistry 2002 Kurt Wüthrich "for the development of methods for identification and structure analyses of biological macromolecules"
56 Magnetic Resonance Imaging (MRI) a gyógyászatban előnyök: - nem használ ionizáló sugárzást mint a röntgen - nem kell festék vagy kontrasztanyagot bevinni - lágy-szövetek kontrasztosabbak kivitelezés: tipikus 1 -NMR kisérlet ahol a szöveteket felépítő sejtek protonjait figyeljük meg. képalkotás függ: az adott szövetben lévő protonok számától, az adott protonok relaxációs idejétől (T1 spin-mátrix relaxációs idő és T2 spin-spin relaxációs idő) felhasználási terület: tumor sejtek, ödémák, koros elváltozások azonosítása 31 P-NMR sejt-metabolizmusok követése
57 The Nobel Prize in Physiology or Medicine 2003 Paul C. Lauterbur The Lancet, : "for their discoveries concerning magnetic resonance imaging" Sir Peter Mansfield RepProgPhys, :
A BioNMR spektroszkópia alapjai
A BioNMR spektroszkópia alapjai Az NMR-spektroszkópia szükséges feltétele a nullától különböző magspin (I 0) 1) I=0, ha mind a protonok mind a neutronok száma páros: ( 12 C, 16 O) 2) I=1/2, ha tömegszáma
0) I=0 I=1/2 I=k (k=1,2,..) töltéssel forog (I=1/2)
Az NMR-spektroszkópia szükséges feltétele a nullától különbözÿ magspin (I 0) I=0 mind a protonok mind a neutronok száma páros ( 12 C, 16 O) I=1/2 ha tömegszáma páratlan ( 1, 3, 13 C, 15 N, 19 F, 57 Fe,
NMR a peptid- és fehérje-kutatásban
NMR a peptid- és fehérje-kutatásban A PDB adatbázisban megtalálható NMR alapú fehérjeszerkezetek számának alakulása az elmúlt évek során 4000 3500 3000 2500 2000 1500 1000 500 0 1987 1988 1989 1990 1991
Magmágneses rezonancia (NMR) és elektronspinrezonancia (ESR) alapjai
Magmágneses rezonancia (NMR) és elektronspinrezonancia (ESR) alapjai Dóczy-Bodnár Andrea 2011. szeptember 28. Magmágneses rezonanciához kapcsolódó Nobel-díjak * Otto Stern, USA: Nobel Prize in Physics
Műszeres analitika II. (TKBE0532)
Műszeres analitika II. (TKBE0532) 7. előadás NMR spektroszkópia Dr. Andrási Melinda Debreceni Egyetem Természettudományi és Technológiai Kar Szervetlen és Analitikai Kémiai Tanszék NMR, Nuclear Magnetic
Dóczy-Bodnár Andrea október 3. Magmágneses rezonancia (NMR) és elektronspinrezonancia (ESR) alapjai
Dóczy-Bodnár Andrea 2012. október 3. Magmágneses rezonancia (NMR) és elektronspinrezonancia (ESR) alapjai Atommagok saját impulzusmomentuma (spin) protonok, neutronok (elektronhoz hasonlóan) saját impulzusmomentum
MÁGNESES MAGREZONANCIA A KÉMIÁBAN, GYÓGYSZERÉSZETBEN, ORVOSTUDOMÁNYBAN
MÁGNESES MAGREZONANIA A KÉMIÁBAN, GYÓGYSZERÉSZETBEN, ORVOSTUDOMÁNYBAN 1) A jelenség 2) Nuclear Magnetic Resonance (NMR) 3) Magnetic Resonance Imaging (MRI) 4) Magnetic Resonance Spectroscopy (MRS) NMR
MÁGNESES MAGREZONANCIA A KÉMIÁBAN, GYÓGYSZERÉSZETBEN, ORVOSTUDOMÁNYBAN
MÁGNESES MAGREZONANIA A KÉMIÁBAN, GYÓGYSZERÉSZETBEN, ORVOSTUDOMÁNYBAN 1) A jelenség 2) Nuclear Magnetic Resonance (NMR) 3) Magnetic Resonance Imaging (MRI) 4) Magnetic Resonance Spectroscopy (MRS) NMR
Mágneses módszerek a mőszeres analitikában
Mágneses módszerek a mőszeres analitikában NMR, ESR: mágneses momentummal rendelkezı anyagok minıségi és mennyiségi meghatározására alkalmas analitikai módszer Atommag spin állapotok közötti energiaátmenetek:
Az NMR spektroszkópia a fehérjék szolgálatában. Bodor Andrea. ELTE Szerkezeti Kémia és Biológia Laboratórium Visegrád
Az NMR spektroszkópia a fehérjék szolgálatában Bodor Andrea ELTE Szerkezeti Kémia és Biológia Laboratórium 2011.01.18. Visegrád Nobel díjak tükrében 1952 Fizika: Módszer és elméleti alapok Felix Bloch
M N. a. Spin = saját impulzus momentum vektor: L L nagysága:
Az MR és MRI alapjai Magmágneses Rezonancia Spektroszkópia (MR) és Mágneses Rezonancia Képalkotás (MRI) uclear Magnetic Resonance: Alapelv felfedezéséért Fizikai obel díj, 1952 Felix Bloch és Edward M.
Mi mindenről tanúskodik a Me-OH néhány NMR spektruma
Mi mindenről tanúskodik a Me-OH néhány NMR spektruma lcélok és fogalmak: l- az NMR-rezonancia frekvencia (jel), a kémiai környezete, a kémiai eltolódás, l- az 1 H-NMR spektrum, l- az -OH és a -CH 3 csoportokban
Mágneses módszerek a műszeres analitikában
Mágneses módszerek a műszeres analitikában NMR, ESR: mágneses momentummal rendelkező anyagok minőségi és mennyiségi meghatározására alkalmas Atommag spin állapotok közötti energiaátmenetek: NMR (magmágneses
Alkalmazott spektroszkópia Serra Bendegúz és Bányai István
Alkalmazott spektroszkópia 2014 Serra Bendegúz és Bányai István A mágnesség A mágneses erő: F p1 p2 r p1 p2 C ( F C ) C áll 2 2 r r r A mágneses (dipólus) momentum: m p l ( m p l ) Ahol p a póluserősség
Az NMR képalkotás alapjai. Bányai István Kolloid- és Környezetkémiai Tanszék DE, TEK
Az NMR képalkotás alapjai Bánai István Kolloid- és Körnezetkémiai Tanszék DE, TEK Az NMR alapjai alapjai Bánai István Kolloid- és Körnezetkémiai Tanszék DE, TEK A mágnesség A mágneses erı: F = pp 1 2 r
Magmágneses rezonancia. alapjai. Magmágneses rezonanciához kapcsolódó Nobel-díjak. γ N = = giromágneses hányados. v v
Magmágneses rezonancia (MR) és elektronspinrezonancia (ESR) alapjai Dóczy-Bodnár Andrea 211. szeptember 28. Magmágneses rezonanciához kapcsolódó obel-díjak * Otto Stern, USA: obel Prize in Physics 1943,
Alkalmazott spektroszkópia
Alkalmazott spektroszkópia 009 Bányai István MR és a fémionok: koordinációs kémiai alkalmazások Bányai István Debreceni Egyetem TEK Kolloid- és Környezetkémiai Tanszék A mágnesség A mágneses erő: F pp
Mágneses rezonanciás képalkotás AZ MRI elve, fizikai alapok
MR-ALAPTANFOLYAM 2011 SZEGED Mágneses rezonanciás képalkotás AZ MRI elve, fizikai alapok Martos János Országos Idegtudományi Intézet Az agy MR vizsgálata A gerinc MR vizsgálata Felix Bloch Edward Mills
Biomolekuláris szerkezeti dinamika
Kísérletek, mérések célja Biomolekuláris szerkezeti dinamika Kellermayer Miklós Biomolekuláris szerkezet és működés pontosabb megismerése (folyamatok, állapotok, átmenetek, kölcsönhatások, stb.) Rádióspektroszkópiák
Lehetőségek és kihívások a modern bionmr spektroszkópia területén
Lehetőségek és kihívások a modern bionmr spektroszkópia területén Perczel András és munkatársai Szerkezeti Kémia és Biológia Laboratórium és ELTE-MTA Fehérjemodellező Kutatócsoport 1 The Nobel Prize in
lásd: enantiotóp, diasztereotóp
anizokrón anisochronous árnyékolási állandó shielding constant árnyékolási járulékok és empirikus értelmezésük shielding contributions diamágneses és paramágneses árnyékolás diamagnetic and paramagnetic
Szerves vegyületek szerkezetfelderítése NMR spektroszkópia
Szerves vegyületek szerkezetfelderítése NMR spektroszkópia Az anyag összeállításához Krajsovszky Gábor, Mátyus Péter és Perczel András diáit is felhasználtuk. 1 (hullámhossz) -sugárzás röntgensugárzás
I. Az NMR spektrométer
I. Az NMR spektrométer I. Az NMR spektrométer fő részei Rádióelektronikai konzol Munkaállomás Mágnes 2 I. Ultra-árnyékolt mágnesek Kettős szupravezető tekerccsel csökkenthető a mágnes szórt tere. Kisebb
Spektroszkópiai módszerek 2.
Spektroszkópiai módszerek 2. NMR spektroszkópia magspinek rendeződése külső mágneses tér hatására az eredő magspin nem nulla, ha a magot alkotó nukleonok közül legalább az egyik páratlan a szerves kémiában
Lehet ségek és kihívások a modern bionmr spektroszkópia területén
Lehet ségek és kihívások a modern bionmr spektroszkópia területén Perczel András és munkatársai Szerkezeti Kémia és Biológia Laboratórium és ELTE-MTA Fehérjemodellez Kutatócsoport ELTE/TTK/FI/ Ortvay kollokvium
MRI áttekintés. Orvosi képdiagnosztika 3. ea ősz
MRI áttekintés Orvosi képdiagnosztika 3. ea. 2015 ősz MRI Alapelv: hogyan lehet mágneses vizsgálattal valamilyen anyag (jelen esetben az élő emberi szervezet) belső felépítéséről információt kapni? A mágneses
A nehézfémek növényi vízháztartásra gyakorolt hatásának vizsgálata Mágneses Rezonancia készülékkel. Készítette: Jakusch Pál Környezettudós
A nehézfémek növényi vízháztartásra gyakorolt hatásának vizsgálata Mágneses Rezonancia készülékkel Készítette: Jakusch Pál Környezettudós Célkitűzés MR készülék növényélettani célú alkalmazása Kontroll
FEHÉRJÉK A MÁGNESEKBEN. Bodor Andrea ELTE, Szerkezeti Kémiai és Biológiai Laboratórium. Alkímia Ma, Budapest,
FEHÉRJÉK A MÁGNESEKBEN Bodor Andrea ELTE, Szerkezeti Kémiai és Biológiai Laboratórium Alkímia Ma, Budapest, 2013.02.28. I. FEHÉRJÉK: L-α aminosavakból felépülő lineáris polimerek α H 2 N CH COOH amino
Biomolekuláris szerkezeti dinamika
Kísérletek, mérések célja Biomolekuláris szerkezeti dinamika Kellermayer Miklós Biomolekuláris szerkezet és működés pontosabb megismerése (folyamatok, állapotok, átmenetek, kölcsönhatások, mozgások, stb.)
24/04/ Röntgenabszorpciós CT
CT ésmri 2012.04.10. Röntgenabszorpciós CT 1 Élettani és Orvostudományi Nobel díj- 1979 Allan M. Cormack, Godfrey N. Hounsfield Godfrey N. Hounsfield Born:28 August 1919, Newark, United Kingdom Died: 12
Sohár Pál Varázslat, amitől láthatóvá válnak és életre kelnek a molekulák: Az NMR spektroszkópia
MTA -ELTE FEÉRJEMODELLEZŐ KUTATÓCSOPORT - ÁLTALÁNOS ÉS SZERVETLEN KÉMIAI TANSZÉK EÖTVÖS LORÁND TUDOMÁNYEGYETEM Sohár Pál Varázslat, amitől láthatóvá válnak és életre kelnek a molekulák: Az NMR spektroszkópia
A fehérjék harmadlagos vagy térszerkezete. Még a globuláris fehérjék térszerkezete is sokféle lehet.
A fehérjék harmadlagos vagy térszerkezete Még a globuláris fehérjék térszerkezete is sokféle lehet. A ribonukleáz redukciója és denaturálódása Chrisian B. Anfinsen A ribonukleáz renaturálódása 1972 obel-díj
Times, 2003. október 9 MRI
Times, 2003. október 9 MRI: orvosi diagnosztikát forradalmasító képalkotó módszer This Year s Nobel Prize in Medicine The Shameful Wrong That Must Be Righted This year the committee that awards The Nobel
CT/MRI képalkotás alapjai. Prof. Bogner Péter
CT/MRI képalkotás alapjai Prof. Bogner Péter CT - computed tomography Godfrey N. Hounsfield Allan M. Cormack The Nobel Prize in Physiology or Medicine 1979 MRI - magnetic resonance imaging Sir Peter Mansfield
Rádióspektroszkópiai módszerek
Rádióspektroszkópiai módszerek NMR : Nuclear magneic resonance : magmágneses rezonancia ESR : electron spin resonance: elektronspin-rezonancia Mikrohullámú spektroszkópia Schay G. Rádióspektroszkópia elég
A fény és az anyag kölcsönhatása
A fény és az anyag kölcsönhatása Bohr-feltétel : E = E 2 E 1 = hν abszorpció foton (hν) E 2 E 2 E 1 E 1 E 2 E 2 spontán emisszió E 1 E 1 stimulált (kényszerített) emisszió E 2 E 2 E 1 E 1 Emissziós és
NMR, MRI. Magnetic Resonance Imaging. Times, 2003. október 9 MRI
Times, 2003. október 9 NMR, MRI Magnetic Resonance Imaging This Year s Nobel Prize in Medicine The Shameful Wrong That Must Be Righted This year the committee that awards The Nobel Prize for Physiology
Medical Imaging 10 2009.04.07. 1. Mágneses rezonancia (MR, MRI, NMR) x B. Makroszkopikus tárgyalás
Mágneses rezonancia (MR, MRI, NMR) Bloch, Purcell 1946, Nobel díj 1952. Mágneses momentum + - Mágneses térben a mágneses momentum az erővonalakkal csak meghatározott szöget zárhat be. Különböző irányokhoz
Hogyan bírhatjuk szóra a molekulákat, avagy mi is az a spektroszkópia?
Hogyan bírhatjuk szóra a molekulákat, avagy mi is az a spektroszkópia? Prof. Túri László (ELTE, Kémiai Intézet) turi@chem.elte.hu 2012. november 19. Szent László Gimnázium Önképzőkör 1 Kapcsolódási pontok
NMR spektroszkópia (Nuclear Magnetic Resonance) Mágneses (atom)magrezonancia Spektroszkópia
NMR spektroszkópia (Nuclear Magnetic Resonance) Mágneses (atom)magrezonancia Spektroszkópia Anyagszerkezeti vizsgálatok 2016. őszi félév Balogh Szabolcs sz.balogh@gmail.com Pannon Egyetem, NMR Laboratórium
MÁGNESES MAGREZONANCIA A KÉMIÁBAN, GYÓGYSZERÉSZETBEN, ORVOSTUDOMÁNYBAN
MÁGNESES MAGREZONANCIA A KÉMIÁBAN, GYÓGYSZERÉSZETBEN, ORVOSTUDOMÁNYBAN 1) A jelenség 2) Nuclear Magnetic Resonance (NMR) 3) Magnetic Resonance Imaging (MRI) 4) Magnetic Resonance Spectroscop (MRS) NMR
A Ca 2+ szerepe a tormaperoxidáz enzim aktív szerkezetében. Szigeti Krisztián
A Ca 2+ szerepe a tormaperoxidáz enzim aktív szerkezetében Doktori értekezés Szigeti Krisztián Semmelweis Egyetem Gyógyszertudományok Doktori Iskola Témavezető: Hivatalos Bírálók: Szigorlati Bizottság
Műszeres analitika. Abrankó László. Molekulaspektroszkópia. Kémiai élelmiszervizsgálati módszerek csoportosítása
Abrankó László Műszeres analitika Molekulaspektroszkópia Minőségi elemzés Kvalitatív Cél: Meghatározni, hogy egy adott mintában jelen vannak-e bizonyos ismert komponensek. Vagy ismeretlen komponensek azonosítása
Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18.
Modern Fizika Labor Fizika BSc A mérés dátuma: 28. március 18. A mérés száma és címe: 5. mérés: Elektronspin rezonancia Értékelés: A beadás dátuma: 28. március 26. A mérést végezte: 1/7 A mérés leírása:
Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény; Abszorpciós spektroszkópia
Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2016 március 1.) Az abszorpció mérése;
FIZIKA II. Az áram és a mágneses tér kapcsolata
Az áram és a mágneses tér kapcsolata Mágneses tér jellemzése: Mágneses térerősség: H (A/m) Mágneses indukció: B (T = Vs/m 2 ) B = μ 0 μ r H 2Seres.Istvan@gek.szie.hu Sztatikus terek Elektrosztatikus tér:
1D multipulzus NMR kísérletek
D multipulzus NMR kísérletek Rohonczy János ELTE, Szervetlen Kémia Tanszék Modern szerkezetkutatási módszerek elıadás 202. . Protonlecsatolt heteronukleáris mérések Elv 3 C mag detektálása alatt a protoncsatornán
Morfológiai képalkotó eljárások CT, MRI, PET
Morfológiai képalkotó eljárások CT, MRI, PET Kupi Tünde 2009. 12. 03. Röntgen 19. sz. vége: Röntgen abszorbciós mechanizmusok: - Fotoelektromos hatás - Compton-szórás - Párkeltés Kép: Röntgenabszorbancia
FIZIKA II. Dr. Rácz Ervin. egyetemi docens
FIZIKA II. Dr. Rácz Ervin egyetemi docens Fontos tudnivalók e-mail: racz.ervin@kvk.uni-obuda.hu web: http://uni-obuda.hu/users/racz.ervin/index.htm Iroda: Bécsi út, C. épület, 124. szoba Fizika II. - ismertetés
http://www.nature.com 1) Magerő-sugár: a magközéppontból mért távolság, ameddig a magerők hatótávolsága terjed. Rutherford-szórásból határozható meg. R=1,4 x 10-13 A 1/3 cm Az atommag terének potenciálja
Az NMR és a bizonytalansági elv rejtélyes találkozása
Az NMR és a bizonytalansági elv rejtélyes találkozása ifj. Szántay Csaba MTA Kémiai Tudományok Osztálya 2012. február 21. a magspínek pulzus-gerjesztésének értelmezési paradigmája GLOBÁLISAN ELTERJEDT
BIOFIZIKA. Metodika- 4. Liliom Károly. MTA TTK Enzimológiai Intézet liliom@enzim.hu
BIOFIZIKA 2012 11 26 Metodika- 4 Liliom Károly MTA TTK Enzimológiai Intézet liliom@enzim.hu A biofizika előadások temamkája 1. 09-03 Biofizika: fizikai szemlélet, modellalkotás, biometria 2. 09-10 SZÜNET
Az elektromágneses hullámok
203. október Az elektromágneses hullámok PTE ÁOK Biofizikai Intézet Kutatók fizikusok, kémikusok, asztronómusok Sir Isaac Newton Sir William Herschel Johann Wilhelm Ritter Joseph von Fraunhofer Robert
A kvantumszámok jelentése: A szokásos tárgyalás a pályák alakját vizsgálja, ld. majd azt is; de a lényeg: fizikai mennyiségeket határoznak meg.
I.6. A H-atom kvantummechanikai leírása I.6.1. Schrödinger-egyenlet, kvantumszámok Szimbolikusan tehát: Ĥψ i = E iψ i A Schrödinger-egyenletben a rendszert specifikálja: a V = e /r a potenciális energia
Az MR(I) módszer elve. Dr.Fidy Judit 2012 március 7
Az MR(I) módszer elve Dr.Fidy Judit 2012 március 7 Az MR(I) módszer Ábrák: Kastler-Patay: MRI orvosoknak, Folia Neuroradiologica, 1993 (Nuclear) Magnetic Resonance Imaging mag (atommag) mágneses rezonancia
Az MR(I) módszer elve. Az MR(I) módszer. (Nuclear) Magnetic Resonance Imaging mag (atommag) mágneses rezonancia alapu képalkotó módszer
Az MR(I) módszer elve Mai kérdés: Hogyan változik a röntgensugárzás elnyelődésének valószínűsége lágy szövetekben a sugárzás foton-energiájával? Dr.Fidy Judit 05 március 8 Az MR(I) módszer Történelem -
Röntgen sugárzás. Wilhelm Röntgen. Röntgen feleségének keze
Röntgendiffrakció Kardos Roland 2010.03.08. Előadás vázlata Röntgen sugárzás Interferencia Huygens teória Diffrakció Diffrakciós eljárások Alkalmazás Röntgen sugárzás 1895 röntgen sugárzás felfedezés (1901
Bioinformatika 2 5.. előad
5.. előad adás Prof. Poppe László BME Szerves Kémia és Technológia Tsz. Bioinformatika proteomika Előadás és gyakorlat 2009. 03. 21. Fehérje térszerkezet t megjelenítése A fehérjék meglehetősen összetett
Gnädig Péter: Golyók, labdák, korongok és pörgettyűk csalafinta mozgása április 16. Pörgettyűk különböző méretekben az atomoktól a csillagokig
Gnädig Péter: Golyók, labdák, korongok és pörgettyűk csalafinta mozgása 2015. április 16. Pörgettyűk különböző méretekben az atomoktól a csillagokig Egyetlen tömegpont: 3 adat (3 szabadsági fok ) Példa:
Fizika M1, BME, gépészmérnök szak, szi félév (v6)
Fizika M, BME, gépészmérnök szak, 7. szi félév (v6 Pályi András Department of Physics, Budapest University of Technology and Economics, Hungary (Dated: 7. október. Ebben a fájlban az el adás menetrendjét
Az NMR spektroszkópia alapjai Dr. Rohonczy János ELTE Szervetlen Kémiai Tanszék
Az NMR spektroszkópia alapjai Dr. Rohonczy János ELTE Szervetlen Kémiai Tanszék A mágneses magrezonancia spektroszkópia (röviden NMR angolul Nuclear Magnetic Resonace) egyike azon modern kémiai szerkezetvizsgálati
Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény; Abszorpciós spektroszkópia
Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2015 január 27.) Az abszorpció mérése;
Nagy Sándor: Magkémia
Nagy Sándor: Magkémia (kv1c1mg1) 03. Magpotenciálok, magspin, mágneses momentumok & kölcsönhatások Nagy Sándor honlapja ismeretterjesztő anyagokkal: http://nagysandor.eu/ A Magkémia tantárgy weboldala:
palkotás alapjai Bányai István Kolloid- és Környezetkémiai Tanszék DE, TEK
Az NMR képalkotk palkotás alapjai Bánai István Kolloid- és Körnezetkémiai Tanszék DE, TEK Az NMR alapjai alapjai Bánai István Kolloid- és Körnezetkémiai Tanszék DE, TEK Kvantummechanikai alapok Az atommag
Egy antifungális diszulfid fehérje szerkezeti dinamikája és hideg/meleg kitekeredése (avagy PAF, a hűvös sárkány)
Egy antifungális diszulfid fehérje szerkezeti dinamikája és hideg/meleg kitekeredése (avagy PAF, a hűvös sárkány) Batta Gyula Debreceni Egyetem Szerkezeti Biológiai és Molekuláris Felismerési Műhely structbiol.unideb.hu
A fehérjék hierarchikus szerkezete
Fehérjék felosztása A fehérjék hierarchikus szerkezete Smeller László Semmelweis Egyetem Biofizikai és Sugárbiológiai Intézet Biológiai funkció alapján Enzimek (pl.: tripszin, citokróm-c ) Transzportfehérjék
Több oxigéntartalmú funkciós csoportot tartalmazó vegyületek
Több oxigéntartalmú funkciós csoportot tartalmazó vegyületek Hidroxikarbonsavak α-hidroxi karbonsavak -Glikolsav (kézkrémek) - Tejsav (tejtermékek, izomláz, fogszuvasodás) - Citromsav (citrusfélékben,
Abszorpciós spektroszkópia
Tartalomjegyzék Abszorpciós spektroszkópia (Nyitrai Miklós; 2011 február 1.) Dolgozat: május 3. 18:00-20:00. Egész éves anyag. Korábbi dolgozatok nem számítanak bele. Felmentés 80% felett. A fény; Elektromágneses
Bevezető. 1. ábra. A Trp-kalitka minifehérje szerkezetének szalagmodelje (PDB: 1L2Y).
Bevezető A mindössze 20 aminosavból felépülő, de novo tervezett Trp-kalitka minifehérje már számos in vitro és in silico vizsgálat tárgyát képezte. Jelen doktori munka ennek a model fehérjecsaládnak a
A fehérjék hierarchikus szerkezete
Fehérjék felosztása A fehérjék hierarchikus szerkezete Smeller László Semmelweis Egyetem Biofizikai és Sugárbiológiai Intézet Biológiai funkció alapján Enzimek (pl.: tripszin, citokróm-c ) Transzportfehérjék
3. Sejtalkotó molekulák III.
3. Sejtalkotó molekulák III. Fehérjék, fehérjeszintézis (transzkripció, transzláció, posztszintetikus módosítások). Enzimműködés 3.1 Fehérjék A genetikai információ egyik fő manifesztálódása Számos funkció
Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008.
Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Kiss István,Vértes Attila: Magkémia (Akadémiai Kiadó) Nagy Lajos György,
KÖLCSÖNHATÁS ÉS DINAMIKA. az NMR spektroszkópia, mint a modern szem. Bodor Andrea
KÖLCSÖNHATÁS ÉS DINAMIKA az NMR spektroszkópia, mint a modern szem Bodor Andrea ELTE Szerkezeti Kémiai és Biológiai Laboratórium A Magyar Tudomány Ünnepe, 2012.11.08. Edvard Munch: A Nap (1911-1916) AZ
A Mössbauer-effektus vizsgálata
A Mössbauer-effektus vizsgálata Tóth ence fizikus,. évfolyam 006.0.0. csütörtök beadva: 005.04.0. . A mérés célja három minta: lágyvas, nátrium-nitroprusszid és rozsdamentes acél Mössbauereffektusának
WOLFGANG PAULI ÉS AZ ANYAGTUDOMÁNY KROÓ NORBERT MAGYAR TUDOMÁNYOS AKADÉMIA ÓBUDAI EGYETEM,2010.04.23
WOLFGANG PAULI ÉS AZ ANYAGTUDOMÁNY KROÓ NORBERT MAGYAR TUDOMÁNYOS AKADÉMIA ÓBUDAI EGYETEM,2010.04.23 Minden részecske rendelkezik egy furcsa tulajdonsággal, ez a spinje. Mivel ez úgy viselkedik, mint az
Matematika (mesterképzés)
Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,
Modern Fizika Labor. 12. Infravörös spektroszkópia. Fizika BSc. A mérés dátuma: okt. 04. A mérés száma és címe: Értékelés:
Modern Fizika Labor Fizika BSc A mérés dátuma: 011. okt. 04. A mérés száma és címe: 1. Infravörös spektroszkópia Értékelés: A beadás dátuma: 011. dec. 1. A mérést végezte: Domokos Zoltán Szőke Kálmán Benjamin
Fizikai kémia Mágneses magrezonancia spektroszkópia alapjai. Mágneses magrezonancia - NMR. Mágneses magrezonancia - NMR
Fizikai kémia 2.. Mágneses magrezonancia spektroszkópia alapjai Dr. Berkesi Ottó SZTE Fizikai Kémiai és Anyagtudományi Tanszéke 205 Mágneses magrezonancia - NMR Amint azt a korábbiakban megismertük a molekulákban
Mágneses magrezonancia (NMR) spektroszkópia a fehérjekutatásban. Dr. Tőke Orsolya MTA Kémiai Kutatóközpont Szerkezeti Kémiai Intézet 2007
Mágneses magrezonancia (NMR) spektroszkópia a fehérjekutatásban Dr. Tőke Orsolya MTA Kémiai Kutatóközpont Szerkezeti Kémiai Intézet 2007 1 A fehérjék szerkezetének és működésének megértése alapvető fontosságú
Abszorpciós fotometria
A fény Abszorpciós fotometria Ujfalusi Zoltán PTE ÁOK Biofizikai ntézet 2011. szeptember 15. E B x x Transzverzális hullám A fény elektromos térerősségvektor hullámhossz Az elektromos a mágneses térerősség
Vektorok, mátrixok, tenzorok, T (emlékeztető)
Vektorok, mátrixok, tenzorok, T (emlékeztető) A = T*B Tenzor: lineáris vektorfüggvény, amely két vektormennyiség közötti összefüggést ír le, egy négyzetmátrix, M reprezentálja. M M M M = M M M M M M 11
Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1
Méréstechnika Rezgésmérés Készítette: Ángyán Béla Iszak Gábor Seidl Áron Veszprém 2014 [Ide írhatja a szöveget] oldal 1 A rezgésekkel kapcsolatos alapfogalmak A rezgés a Magyar Értelmező Szótár megfogalmazása
Példák egyszerű szerves vegyületek 1 H és 13 C jelhozzárendelésére. Tartalomjegyzék: - etanol - (D)-glükópiranóz
Példák egyszerű szerves vegyületek 1 H és 13 C jelhozzárendelésére Tartalomjegyzék: - etanol - (D)-glükópiranóz triplett kvartett 1) Az indirekt (skaláris) magspin-magspin csatolást, J-t, az elektronfelhő
Biológiailag aktív molekulák kölcsönhatásvizsgálata NMR-spektroszkópiával
Biológiailag aktív molekulák kölcsönhatásvizsgálata MR-spektroszkópiával 1 H- 15 -HSQC Perczel András Budapest, 2004. 03. 26. Ugyanazt az MR paramétert ( 1 H, 13 C, 15, 31 P, 57 Fe) követjük. L szabad
Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja
Mágneses erőtér Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat A villamos forgógépek mutatós műszerek működésének alapja Magnetosztatikai mező: nyugvó állandó mágnesek és egyenáramok időben
Modern Fizika Labor. A mérés száma és címe: A mérés dátuma: Értékelés: Infravörös spektroszkópia. A beadás dátuma: A mérést végezte:
Modern Fizika Labor A mérés dátuma: 2005.10.26. A mérés száma és címe: 12. Infravörös spektroszkópia Értékelés: A beadás dátuma: 2005.11.09. A mérést végezte: Orosz Katalin Tóth Bence 1 A mérés során egy
Név... intenzitás abszorbancia moláris extinkciós. A Wien-féle eltolódási törvény szerint az abszolút fekete test maximális emisszióképességéhez
A Név... Válassza ki a helyes mértékegységeket! állandó intenzitás abszorbancia moláris extinkciós A) J s -1 - l mol -1 cm B) W g/cm 3 - C) J s -1 m -2 - l mol -1 cm -1 D) J m -2 cm - A Wien-féle eltolódási
MateFIZIKA: Pörgés, forgás, csavarodás (Vektorok és axiálvektorok a fizikában)
MateFIZIKA: Pörgés, forgás, csavarodás (Vektorok és axiálvektorok a fizikában) Tasnádi Tamás 1 2015. április 17. 1 BME, Mat. Int., Analízis Tsz. Tartalom Vektorok és axiálvektorok Forgómozgás, pörgettyűk
Fizikai kémia 2. ZH V. kérdések I. félévtől
Fizikai kémia 2. ZH V. kérdések 2016-17 I. félévtől Szükséges adatok és állandók: k=1,38066 10-23 JK; c= 2,99792458 10 8 m/s; e= 1,602177 10-19 C; h=6,62608 10-34 Js; N A= 6,02214 10 23 mol -1 ; me= 9,10939
A polipeptidlánc szabályozott lebontása: mit mondanak a fehérjekristályok? Harmat Veronika ELTE Kémiai Intézet, Szerkezeti Kémia és Biológia Laboratórium MTA-ELTE Fehérjemodellező Kutatócsoport A magyar
AZ ELEKTRON MÁGNESES MOMENTUMA. H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat.
AZ ELEKTRON MÁGNESES MOMENTUMA Mágneses dipólmomentum: m H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat. M = m H sinϕ (Elektromos töltés, q: monopólus
Alkalmazás a makrókanónikus sokaságra: A fotongáz
Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,
Fizikai kémia Részecskék mágneses térben, ESR spektroszkópia. Részecskék mágneses térben. Részecskék mágneses térben
06.08.. Fizikai kémia. 3. Részecskék mágneses térben, ESR spektroszkópia Dr. Berkesi Ottó SZTE Fizikai Kémiai és Anyagtudományi Tanszéke 05 Részecskék mágneses térben A részecskék mágneses térben ugyanúgy
Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia. 2008. május 6.
Modern Fizika Labor Fizika BSc A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia Értékelés: A beadás dátuma: 28. május 13. A mérést végezte: 1/5 A mérés célja A mérés célja az
Példák egyszerű szerves vegyületek 1 H és 13 C jelhozzárendelésére. Tartalomjegyzék: - etanol - (D)-glükópiranóz
Példák egyszerű szerves vegyületek 1 H és 13 C jelhozzárendelésére Tartalomjegyzék: - etanol - (D)-glükópiranóz http://www.bmrb.wisc.edu triplett BMRB Biological Magnetic Resonance Data Bank kvartett A
Az NMR spektroszkópia alapjai
Az NMR spektroszkópia alapjai Dr. Rohonczy János ELTE, Szervetlen Kémiai Tanszék 2012. A mágneses magrezonacia spektroszkópia (röviden NMR az angol Nuclear Magnetic Resonace kifejezésbıl) egyike azon modern
MEDICINÁLIS ALAPISMERETEK AZ ÉLŐ SZERVEZETEK KÉMIAI ÉPÍTŐKÖVEI AZ AMINOSAVAK ÉS FEHÉRJÉK 1. kulcsszó cím: Aminosavak
Modul cím: MEDICINÁLIS ALAPISMERETEK AZ ÉLŐ SZERVEZETEK KÉMIAI ÉPÍTŐKÖVEI AZ AMINOSAVAK ÉS FEHÉRJÉK 1. kulcsszó cím: Aminosavak Egy átlagos emberben 10-12 kg fehérje van, mely elsősorban a vázizomban található.
Az Orvosi Fizika Szigorlat menete a 2012/2. tanévtől
Az Orvosi Fizika Szigorlat menete a 2012/2. tanévtől 1. A szigorlat menete A szigorlatot a Fizikus MSc orvosi fizika szakirányos hallgatók a második vagy harmadik szemeszterük folyamán tehetik le. A szigorlat
Abszorpció, emlékeztetõ
Hogyan készültek ezek a képek? PÉCI TUDMÁNYEGYETEM ÁLTALÁN RVTUDMÁNYI KAR Fluoreszcencia spektroszkópia (Nyitrai Miklós; február.) Lumineszcencia - elemi lépések Abszorpció, emlékeztetõ Energia elnyelése
Az elektron hullámtermészete. Készítette Kiss László
Az elektron hullámtermészete Készítette Kiss László Az elektron részecske jellemzői Az elektront Joseph John Thomson fedezte fel 1897-ben. 1906-ban Nobel díj! Az elektronoknak, az elektromos és mágneses