MÁGNESES MAGREZONANCIA A KÉMIÁBAN, GYÓGYSZERÉSZETBEN, ORVOSTUDOMÁNYBAN

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "MÁGNESES MAGREZONANCIA A KÉMIÁBAN, GYÓGYSZERÉSZETBEN, ORVOSTUDOMÁNYBAN"

Átírás

1 MÁGNESES MAGREZONANCIA A KÉMIÁBAN, GYÓGYSZERÉSZETBEN, ORVOSTUDOMÁNYBAN 1) A jelenség 2) Nuclear Magnetic Resonance (NMR) 3) Magnetic Resonance Imaging (MRI) 4) Magnetic Resonance Spectroscop (MRS)

2 NMR és Nobel díj 1952 Fizika Módszer és elméleti alapok Feli Bloch Edward Mills Purcell 1991 Kémia Nag felbontású NMR spektroszkópia Fourier transzformáció, 2D technika Richard Ernst 2002 Kémia Biológiai makromolekulák 3D szerkezete Kurt Wüthrich 2003 Orvosi MRI (Magnetic Resonance Imaging) felfedezése Paul C. Lauterbur Sir Peter Mansfield

3 Atommagok mágneses tulajdonságai spin Mag Proton Kvark fel Kvark fel Kvark le Töltések: Kvark fel : +2/3 Kvark le : -1/3 1/2 1/2 Neutron Kvark fel Kvark le Kvark le Proton : +1 Neutron : 0 1/2 1/2 Spin: saját, belső impulzusmomentum (perdület megtévesztő, mert azt sugallja, hog a részecske saját tengele körüli forgásából adódik) A protonok és neutronok a legalacsonabb energiaszintű pálákat igekeznek elfoglalni (ebben az elektronokkal megegeznek), és az ellentétes spinűek igekeznek párosítódni (ebben az elektronoktól eltérnek).

4 A protonok és neutronok saját impulzusmomentumának következméne az atommag saját impulzusmomentuma (spinje), ennek nagsága kvantált. Spinimpulzus-momentum nagsága= I(I 1) h 2 I: a mag spinkvantumszáma, függ a magban lévő protonok és neutronok számának típusától Mag Protonszám Neutronszám I Példa páros páros 0 12 C, 16 O páratlan páratlan 1 Az egik páros, a másik páratlan (2,3..) 14 N.,5 1, 13 C, 19 F, 31 P 23 Na (1,5) NMR inaktív magok NMR aktív magok 17 O (2,5)

5 A spinimpulzus momentum vektormenniség: irána és nagsága is kvantált. Eg I spinű mag I impulzusmomentumának (vektor félkövér!) eg tetszőlegesen választott (pl. a z) tengelre nézve 2I+1 számú merőleges vetülete van. Azaz, I z komponense, I z kvantált: I z m m: a mag mágneses kvantumszáma, melnek értéke lehet: -I, -I+1,, I-1, I cos 1 (I I I z m I I(I 1) 0.5) : 54.7 m I I(I 1) I=0,5 I=1 A mag mágneses momentuma, m szintén vektormenniség arános I-vel. A g aránossági ténezőt giromágneses (csavarómágneses) hánadosnak nevezzük. m = g I

6 Eges izotópok mágneses magrezonanciás tulajdonságai Izotóp I Természetes előfordulás % m magmagneton g radian/ Tesla sec NMR frekvencia [Mz] 4,7 Tesla térerőnél Kémiai eltolódás tartomán [ppm] Relatív érzékenség Egenlő számú magra Természetes izotóp-arán mellett 1 1/2 99,9844 2,7927 2, ,000 1, ,0156 0,8574 0, ,7 10 9, , B 3/2 81,17 2,6880 0, , ,165 0, C 1/2 1,108 0,7022 0, , , , N 1 99,635 0,4036-0, , , , N 1/2 0,365-0,2830-0, , , , O 5/2 0,037-1,8930-0, , ,0291 1, F 1/ ,6273 2, ,833 0, Na 3/ ,2161 0, ,095 0, Si 1/2 4,70-0,5548-0, , , , P 1/ ,1305 1, ,0663 0, Cl 3/2 75,53 0,8209 0, ,6 7, ,

7 Mágneses energiaszintek E mb0 mgb 0 Példa: I=1/2 E 1 b antiparallel 13 C b m= -1/2 E=0,5għB 0 13 C a m= +1/2 E=-0,5għB 0 1 a parallel B 0 E= għb 0 N N a b e E kt pl.: B 0 = 11,74 Tesla (500 Mz) 1 (500 Mz) N totál = N a = N b =

8 B 0 precesszió z eredő mágnesezettség z B 0 a különböző fázisú spinek egenletes eloszlása a precesszió szöge q M z M XY B 0 >>>>M z (mérhetetlen) 0 0

9 A precesszió frekvenciája: 1 2 g B0 g B0 ertz radián sec Larmor frekvencia = f (g, B 0 ) A rezonancia (a spinek parallel állapotból antiparallel állapotba jutnak): a besugárzás frekvenciája egezzen meg a Larmor frekvenciával. E = h = għb 0 Rezonancia frekvencia: 1 g 2 B 0 CW NMR (continuous wave, -t (B 0 -t) fokozatosan változtatják, pásztázzák) PFT NMR (pulse Fourier transformation, az összes átmenetet egszerre gerjesztik eg rövid pulzussal)

10 g-sugarak Az elektromágneses spektrum röntgensugarak Mössbauer ultraibola látható infravörös elektrongerjesztési rezgési F 31 P mikrohullámú C rádiófrekvenciás forgási NMR /Mz /z

11 z z B 0 B 0 B 1 M z eredő mágnesezettség rezonancia fázis-koherencia (kötegelődés) M eredő mágnesezettség

12 Az eredő mágnesezettség megváltozása B 0 B 1 Rezonancia: M z 0, M alakul ki Relaáció: M z visszaépül, M 0 B 0 >>>> B 1

13 FT FID: free induction deca szabad indukciós lecsengés szinuszoid oszcilláló FT FT B 1 Idő Frekvencia

14 korrekciós tekercs forgó légpárna

15 vákuum folékon N 2 -kamra (-70 C) vákuum folékon e-kamra (-269 C) szupravezető tekercs

16 900 Mz 3500 e USD 600 Mz 750 e USD 200 Mz 250 e USD

17 A rezonancia frekvencia függ: - a mag fajtájától - a mag kémiai körnezetétől Mágneses térerő eg adott mag körnezetében: B heli B B0 B0(1 : árnékolási ténező 0 ) 1 g 2 Bheli Kémiai eltolódás 1729,6 z 502,4 z 6,136 ppm 4324 z 1256 z 6,136 ppm megfigelt spektromét er TMS 6 10 ppm, dimenzió nélküli C 3 C 3 Si C3 C 3 O 2 C C 2 2 C O C 2 3 C C C 3 O C 3 TMS dioán tercier-butanol

18 Legfontosabb NMR jellemzők: 1) Kémiai eltolódás 2) Spin-spin csatolás (csatolási állandók, multiplicitás) 3) Intenzitás/terület 4) Relaációs idő 1) Kémiai eltolódás 1 NMR: 10 ppm 13 C NMR: 250 ppm 19 F NMR: 800 ppm 31 P NMR: 700 ppm N DO C C 2 C 3 TMS ppm Magasabb heli tér Magasabb frekvencia Kisebb árnékolás Alacsonabb elektronsűrűség

19 p A p változtatás hatása a kémiai eltolódásra savas karakterű molekulák esetén Ecetsav 1 NMR titrálása L L az 1 kémiai eltolódást meghatározó egik fő faktor a heli elektronsűrűség a savi disszociáció növeli az elektronsűrűséget a savi csoport körnezetében a szomszédos szénhez kapcsolódó protonok NMR jele alacsonabb ppm felé tolódik chemical shift (ppm) köztes p értékeknél a savi és bázikus forma kiátlagolt jele látható obs L L L L

20 Ecetsav NMR-p titrálási görbéje 2.2 obs (ppm) L pk a 4.64 L p p pk a log obs L L obs

21 2) Spin-spin csatolás: aktív magok közötti kölcsönhatás, ami jelfelhasadást okoz (multiplicitás) Csatolás: 1) direkt (D, dipoláris), téren keresztüli (szilárd fázisú NMR-ben) 2) indirekt (J, skaláris, független B 0 -tól), kötő elektronokon keresztüli csatolási állandók 3 J 2 (vicinális) J C (geminális ) A 3-kötéses csatolási állandók fontos jelzői a konformációnak Összefüggés a diéderes szög és 3 J csatolási állandók között (Karplus) q C z C 3 J (ertz) 1 J C transz q mágnesesen ekvivalens magok: azonos kémiai eltolódással és csatolási állandókkal (kémiailag ekvivalens magoknál a csatolási állandók eltérőek) multiplicitás 2 n : nem ekvivalens magok (három kötésen belül) (a csúcsok száma) n+1: ekvivalens magok (három kötésen belül)

22 Multiplicitás egenértékű szomszédokkal Az NMR csúcs: Lorentz görbe a) F C Nincs szomszédos mag: szingulet b) F C Eg szomszédos mag: dublet 1:1 c) d) B B F C F C C A A Két szomszédos mag: A a a b b B a b a b triplet árom szomszédos mag: kvartet A B C a a a a a b a b a b a a a b b b a b b b a b b b n+1 1:2:1 1:3:3:1 Intenzitások: Binomiális egütthatók (összegük 2 n ) Eg spin energiája függ a szomszédos spinek orientációjától

23 Multiplicitás nem-ekvivalens szomszédos magok esetén: ABX spinrendszer ppm 3 C O N A X S COO B N-acetilcisztein A B 3 J AX 3 J AX 3 J BX 3 J BX 3 J BX 2 J AB 2 J AB 2 J AB 2 J AB ppm Ez elsőrendű (Δ AB /J AB > 7) spektrumokra igaz, a másodrendű spektrumok bonolultabbak (háztető effektus, a csúcsok összeolvadása) B o legen nag

24 1 -NMR spektrum: N-acetilcisztein D 2 O-ban pd~ Mz 3 C O N a COO b S d-d t-but

25 h 1h 1h 3h 3h DO Terc-butanol Efedrin-hidroklorid D 2 O-ban (360 Mz) C O C N C C 3 3 A B D 2 D ) Intenzitás/terület

26 4) Relaációs idő E 2 b 90 B 0 E1 a z z z z 90 1,2 M z 1 0,8 spin-rács 0,6 0,4 0,2 Mz Ml Mzma idő M A populáció különbség visszaáll zma gerjesztés relaáció e t T 1 1,2 1 M 0,8 0,6 0,4 0,2 0 spin-spin M M ma idő t M e A fázis-koherencia megszűnik t T 2

27 A térerő hatása a spektrumra c a COO 1,88 Tesla b d OCOMe ertzben a skála ~3-szorosára növekedett, a vonalszélesség ppm-ben 1/3-ára csökkent. 5,87 Tesla c a COO b d OCOMe

28 ertz = f(b 0 ) J ertz = f(b 0 ) Me O 18 Me 19 O 1-dehidrotesztoszteron

29 Érzékenség növelés spektrum akkumulációval Jel/zaj S/N ~ ncg g B ec det 0

30 Mag Overhauser hatás (NOE - Nuclear Overhauser effect) NOE: az I spin intenzitásának megváltozása, ha az S spint telítésbe visszük. Mágneses dipólusok relaációján alapul, a molekulák rotációs mozgása révén Két térközeli mag J (kötéseken keresztüli) csatolás nélkül besugárzás telítés S telítése, I nagsága nő vag csökken a) b)

31 I I I 0 0 molekulatömeg 1000 gors bukfencezés lassú bukfencezés A molekulák átfordulási sebességét befolásolja a) őmérséklet b) Oldószer (viszkozitás) A NOe arános r -6 -nal 5 Å távolságon belül érvénesül A NOe és annak 2D változata a fő eszközök a a) 3D konformáció b) atóanag-receptor kölcsönhatás meghatározására.

32 Dinamikus NMR Kémiai csere: olan folamat, amel során az atommag cserélődik két olan körnezet között, amelben NMR paraméterei eltérőek - intramolekuláris folamatok: proton átadás (pl. keto-enol tautoméria), konformációs változások (pl. rotamerek egmásba alakulása) - intermolekuláris folamatok: kis molekulák kötődése makromolekulákhoz, protonálódási folamatok Kicserélődési sebességek az NMR kémiai eltolódás skálához viszonítva - lassú csere: k << AB ( A - B ) a két rezonancia láthatóan elkülönül k - gors csere: k >> AB A B csak eg átlagos rezonancia figelhető meg k observed = A A + B B 3 C O 3 C k N N N N 3 C k 3 C O

33 őmérsékletfüggő spektrumsorozat Kémiai csere A k k B k << AB k >> AB

34 Több-pulzusos technikák 1) Inverziós visszaépülés Pulzusszekvencia t D Felvétel 2) ahn spin echo 3) 2D NMR t D t D Felvétel

35 Inverziós visszaépülés B 0 z z t D Felvétel z /2 z t D z /2 z t D z /2 T 1 relaációs idő mérése z t D z /2

36 DO O m C 2 R Magok relaációs tulajdonságainak (T 1 ) mérése A relaációs idő az 1 és 13 C NMR spektroszkópiában másodperc tartománba esik.

37 ahn spin echo: T 2 relaációs idő mérése, spinek refókuszálása z z /2 t D z B 0 z t D z z 3 spin z z

38 2D NMR A kísérlet 3 (4) fázisa: 1) Előkészítés /2 2) Kifejlődés: 1D kísérletek sorozata t D t D +i t D +i+i t D +i+i+i tipikusan 256 i 3) Keverés (nem feltétlenül) 4) Detektálás: az utolsó /2

39 B 0 z z /2 t 1 z z t 1. /2 Felvétel M M Mtsin(2π νt1 M cos(2π ν t M t 1 t M ) ) 0 e 2π νt 1 t T 1 2 (t 2 )

40 t 1 t 1 =0 t 1 2

41 COSY Correlation Spectroscop Kontúr plot átlón kívüli off-diagonális

42 DNS-RNS oligonukleotid 500 Mz NOESY Diagonális Off-diagonális

43 Aszpirin kis-felbontású 400 Mz-es COSY spektruma c a COO 1 b d OCOMe 2

44 COSY Gl Tr Gl COSY TOCSY NOESY

45 Térbeli információ in vivo Egész test képalkotás NMR képalkotó technikák 1 31 P NMR mikroszkópia mm felbontás 2 O Mágneses Rezonancia Képalkotás Magnetic Resonance Imaging MRI Térerő B 01 B 02 B 0 gradiens ν γ B 2π 0 ω γ B0 ω 1 γ B 01 ω2 γ B02 Frekvencia

46 in vivo MRI 1, 31 P Morfológiai profil Valós idejű, non-invazív A tumor sejtekhez kötött víz relaációs ideje eltérő Kontraszt anagok: Emberi fej MRI felvétele Szerv-specifikus Gd 3+ kompleek E E rtg MRI Agtumor diagnosztizálása MRI-vel

47 A képalkotó technikákban T 1 vag T 2 relaációs időt vizsgálunk. A relaációs idő megmutatja: 1) og a víz kötött -e 2) og van e jelen valamilen fémion (főként paramágneses) Kötött víz: lassú átfordulás (bukfencezés) Paramágneses fémionok: gors víz relaáció Íg daganatokat, főként körülírt (solid ) daganatokat lehet diagnosztizálni. agtumor májtumor

48 in vivo MRS magnetic resonance spectroscop Kémiai és metabolikus profil Valós idejű Non-invazív, non-destruktív 1, 31 P, 19 F, 23 Na, 13 C kreatin-foszfát PO 4 3- Emberi felkar 40 Mz-es 31P NMR spektruma nehéz fizikai munka elött és után.

49 Kreatin-foszfát szintje galoglás előtt és után

50 in vivo MRS Emberi máj in vivo (2,1 T) 13 C MR spektruma. Etanol 1 NMR spektruma, amelben külön láthatók az O, C 2 és C 3 protonok jelei (balról jobbra.)

51 Kvantitatív NMR - qnmr Ténleges koncentráció meghatározása Relatív koncentráció meghatározása A módszer alapja: Az NMR jelek alatti terület (integrál) arános a jelet adó magok számával O C 2 C

52 A qnmr előne más analitikai módszerekkel szemben Univerzálisan alkalmazható hiszen minden szerves molekula ad NMR jelet ( 1, 13 C). Az integrál jel nagsága csak a megfigelt NMR aktív magok számától függ Az azonosításhoz más NMR paraméterek (pl. a kémiai eltolódás és a csatolási állandók) szolgáltatnak információt Egetlen NMR spektrum felvételével lehetővé válhat többkomponensű rendszerek menniségi analízise a komponensek előzetes elválasztása nélkül.

53 Kvantitatív NMR spektrum felvétel pw Aq 1 NMR 13 C lecsatolással a 13 C szatellit jelek kiküszöbölésére 13 C NMR 1 lecsatolással az 1 csatolások megszüntetése, NOe effektus kiküszöbölése 1 13 C 13 C 1 d1

54 Ténleges koncentráció meghatározása qnmr-el Ismert koncentrációjú standard anag alkalmazása szükséges Standard anagok kritériumai: nag tisztaságú olcsó stabil COO NO 2 kémiailag inert nem illékon nem higroszkópos O OOC COO NO 2 O 1,3,5-benzol-trikarbonsav 1,4-dinitrobenzol 1,4-dioán OOC C C COO C 3 3 C C C3O maleinsav tercier-butanol

55 Levodopa, karbidopa és metildopa meghatározása egmás mellett gógszerkészítménben O C N 2 O COO O metildopa C 3 N N 2 O O karbidopa COO N2 O COO levodopa Talebpour Z., aghgoob S., Shamsipur M. Anal. Chim. Acta 506 (2004)

56 Levodopa, karbidopa és metildopa meghatározása egmás mellett gógszerkészítménben OOC C C COO Talebpour Z., aghgoob S., Shamsipur M. Anal. Chim. Acta 506, , 2004.

57 NMR-t tartalmazó cikkelek a Ph.Eur. 5.1-ben Azonosítás Buserelinum ( 1 ) - a gonadotropinreleasing hormon szintetikus analógja Goserelinum ( 13 C) eparina massae molecularis minoris ( 13 C) Tobramcinum Kvantitatív meghatározás droproplbetadeum Poloamera Salmonis domestici oleum Azonosítás: összehasonlítás Ph.Eur. referencia spektrummal vag CRS spektrummal Poliszacharidok azonosítása vakcinákban Vaccinum haemophili stirpe b coniugatum Vaccinum meningococcale classis C coniugatum Vaccinum pneumococcale polsaccharidicum coniugatum adsorbatum

58 RO RO O idroipropilbetade moláris szubsztitúciójának meghatározása O RO RO O O RO O O OR RO OR OR OR O O O OR RO RO RO RO OR O O O OR O OR RO O OR b-ciklodetrin részlegesen szubsztituált poli(hidroipropil)-étere. OR R=-[C 2 -C(C 3 )-O] n - n=0, 1, 2... Moláris szubsztitúció (MS): az anhidroglükóz egségekre jutó hidroipropil-csoportok száma

59 idroipropilbetade moláris szubsztitúciójának meghatározása O O O O O O C 2 C C 3 O MS A1 3 A 2 A 1 : az 1,2 ppm-nél lévő metil csoportok dublet jeleinek területe A 2 : az 5 és 5,4 ppm közötti glikozidos protonok jeleinek területe

60 Oipropilén-oietilén arán meghatározása Poloamérekben A 1 O dublet, ~1,08 ppm csak az oipropilén egségekből, egségenként 3 proton, összesen 3 b proton C 3 O O Etilén-oid és propilén-oid O a b a szintetikus polimerje összetett jelcsoport 3,2 és 3,8 ppm között az oipropilén egségekből 3 proton, az oietilén egségekből 4 proton, összesen 3 b+4 a proton A 2 m% oietilén 100 ( A 2 ( A 2 A 4 1 A1 ) 44 4 ) A ( A 2 ( A2 A 1 A1 ) 33 ) 33 A 1 58

61 E vivo NMR Élő szervezetből nert testfoladékok és szöveti kivonatok komponenseinek közvetlen NMR spektroszkópiás vizsgálata (előzetes elválasztás nélkül) agi és gerincvelői liquor nál vér izzadtság magzatvíz vizelet ondófoladék

62 Vizeletanalízis

63 Valproinsav-mérgezés diagnózisa NMR spektroszkópiával Egészséges ember vizelete 3 C C 2 C 2 C C 3 C 2 C 2 COO Mérgezett ember vizelete C, kreatinin U, urea L, lactát G, glicin T, trimetilamin oid Ci, citrát, hippurát Al, alanin 2,3,4,5, a valproinsav protonjai 1,2,3,4,5, glukuronsav protonjai Azaroual N. et al. Magn Reson. Mater. Phs. Biol. Med. 10, , 2000

MÁGNESES MAGREZONANCIA A KÉMIÁBAN, GYÓGYSZERÉSZETBEN, ORVOSTUDOMÁNYBAN

MÁGNESES MAGREZONANCIA A KÉMIÁBAN, GYÓGYSZERÉSZETBEN, ORVOSTUDOMÁNYBAN MÁGNESES MAGREZONANIA A KÉMIÁBAN, GYÓGYSZERÉSZETBEN, ORVOSTUDOMÁNYBAN 1) A jelenség 2) Nuclear Magnetic Resonance (NMR) 3) Magnetic Resonance Imaging (MRI) 4) Magnetic Resonance Spectroscopy (MRS) NMR

Részletesebben

MÁGNESES MAGREZONANCIA A KÉMIÁBAN, GYÓGYSZERÉSZETBEN, ORVOSTUDOMÁNYBAN

MÁGNESES MAGREZONANCIA A KÉMIÁBAN, GYÓGYSZERÉSZETBEN, ORVOSTUDOMÁNYBAN MÁGNESES MAGREZONANIA A KÉMIÁBAN, GYÓGYSZERÉSZETBEN, ORVOSTUDOMÁNYBAN 1) A jelenség 2) Nuclear Magnetic Resonance (NMR) 3) Magnetic Resonance Imaging (MRI) 4) Magnetic Resonance Spectroscopy (MRS) NMR

Részletesebben

Műszeres analitika II. (TKBE0532)

Műszeres analitika II. (TKBE0532) Műszeres analitika II. (TKBE0532) 7. előadás NMR spektroszkópia Dr. Andrási Melinda Debreceni Egyetem Természettudományi és Technológiai Kar Szervetlen és Analitikai Kémiai Tanszék NMR, Nuclear Magnetic

Részletesebben

MÁGNESES MAGREZONANCIA A KÉMIÁBAN, GYÓGYSZERÉSZETBEN, ORVOSTUDOMÁNYBAN

MÁGNESES MAGREZONANCIA A KÉMIÁBAN, GYÓGYSZERÉSZETBEN, ORVOSTUDOMÁNYBAN MÁGNESES MAGREZONANCIA A KÉMIÁBAN, GYÓGYSZERÉSZETBEN, ORVOSTUDOMÁNYBAN 1) A jelenség 2) Nuclear Magnetic Resonance (NMR) 3) Magnetic Resonance Imaging (MRI) 4) Magnetic Resonance Spectroscop (MRS) NMR

Részletesebben

Biomolekuláris szerkezeti dinamika

Biomolekuláris szerkezeti dinamika Kísérletek, mérések célja Biomolekuláris szerkezeti dinamika Kellermayer Miklós Biomolekuláris szerkezet és működés pontosabb megismerése (folyamatok, állapotok, átmenetek, kölcsönhatások, stb.) Rádióspektroszkópiák

Részletesebben

Spektroszkópiai módszerek 2.

Spektroszkópiai módszerek 2. Spektroszkópiai módszerek 2. NMR spektroszkópia magspinek rendeződése külső mágneses tér hatására az eredő magspin nem nulla, ha a magot alkotó nukleonok közül legalább az egyik páratlan a szerves kémiában

Részletesebben

Dóczy-Bodnár Andrea október 3. Magmágneses rezonancia (NMR) és elektronspinrezonancia (ESR) alapjai

Dóczy-Bodnár Andrea október 3. Magmágneses rezonancia (NMR) és elektronspinrezonancia (ESR) alapjai Dóczy-Bodnár Andrea 2012. október 3. Magmágneses rezonancia (NMR) és elektronspinrezonancia (ESR) alapjai Atommagok saját impulzusmomentuma (spin) protonok, neutronok (elektronhoz hasonlóan) saját impulzusmomentum

Részletesebben

Szerves vegyületek szerkezetfelderítése NMR spektroszkópia

Szerves vegyületek szerkezetfelderítése NMR spektroszkópia Szerves vegyületek szerkezetfelderítése NMR spektroszkópia Az anyag összeállításához Krajsovszky Gábor, Mátyus Péter és Perczel András diáit is felhasználtuk. 1 (hullámhossz) -sugárzás röntgensugárzás

Részletesebben

Magmágneses rezonancia (NMR) és elektronspinrezonancia (ESR) alapjai

Magmágneses rezonancia (NMR) és elektronspinrezonancia (ESR) alapjai Magmágneses rezonancia (NMR) és elektronspinrezonancia (ESR) alapjai Dóczy-Bodnár Andrea 2011. szeptember 28. Magmágneses rezonanciához kapcsolódó Nobel-díjak * Otto Stern, USA: Nobel Prize in Physics

Részletesebben

M N. a. Spin = saját impulzus momentum vektor: L L nagysága:

M N. a. Spin = saját impulzus momentum vektor: L L nagysága: Az MR és MRI alapjai Magmágneses Rezonancia Spektroszkópia (MR) és Mágneses Rezonancia Képalkotás (MRI) uclear Magnetic Resonance: Alapelv felfedezéséért Fizikai obel díj, 1952 Felix Bloch és Edward M.

Részletesebben

Az NMR képalkotás alapjai. Bányai István Kolloid- és Környezetkémiai Tanszék DE, TEK

Az NMR képalkotás alapjai. Bányai István Kolloid- és Környezetkémiai Tanszék DE, TEK Az NMR képalkotás alapjai Bánai István Kolloid- és Körnezetkémiai Tanszék DE, TEK Az NMR alapjai alapjai Bánai István Kolloid- és Körnezetkémiai Tanszék DE, TEK A mágnesség A mágneses erı: F = pp 1 2 r

Részletesebben

Mágneses módszerek a mőszeres analitikában

Mágneses módszerek a mőszeres analitikában Mágneses módszerek a mőszeres analitikában NMR, ESR: mágneses momentummal rendelkezı anyagok minıségi és mennyiségi meghatározására alkalmas analitikai módszer Atommag spin állapotok közötti energiaátmenetek:

Részletesebben

Mágneses módszerek a műszeres analitikában

Mágneses módszerek a műszeres analitikában Mágneses módszerek a műszeres analitikában NMR, ESR: mágneses momentummal rendelkező anyagok minőségi és mennyiségi meghatározására alkalmas Atommag spin állapotok közötti energiaátmenetek: NMR (magmágneses

Részletesebben

Medical Imaging 10 2009.04.07. 1. Mágneses rezonancia (MR, MRI, NMR) x B. Makroszkopikus tárgyalás

Medical Imaging 10 2009.04.07. 1. Mágneses rezonancia (MR, MRI, NMR) x B. Makroszkopikus tárgyalás Mágneses rezonancia (MR, MRI, NMR) Bloch, Purcell 1946, Nobel díj 1952. Mágneses momentum + - Mágneses térben a mágneses momentum az erővonalakkal csak meghatározott szöget zárhat be. Különböző irányokhoz

Részletesebben

Mágneses rezonanciás képalkotás AZ MRI elve, fizikai alapok

Mágneses rezonanciás képalkotás AZ MRI elve, fizikai alapok MR-ALAPTANFOLYAM 2011 SZEGED Mágneses rezonanciás képalkotás AZ MRI elve, fizikai alapok Martos János Országos Idegtudományi Intézet Az agy MR vizsgálata A gerinc MR vizsgálata Felix Bloch Edward Mills

Részletesebben

Az NMR spektroszkópia a fehérjék szolgálatában. Bodor Andrea. ELTE Szerkezeti Kémia és Biológia Laboratórium Visegrád

Az NMR spektroszkópia a fehérjék szolgálatában. Bodor Andrea. ELTE Szerkezeti Kémia és Biológia Laboratórium Visegrád Az NMR spektroszkópia a fehérjék szolgálatában Bodor Andrea ELTE Szerkezeti Kémia és Biológia Laboratórium 2011.01.18. Visegrád Nobel díjak tükrében 1952 Fizika: Módszer és elméleti alapok Felix Bloch

Részletesebben

Mi mindenről tanúskodik a Me-OH néhány NMR spektruma

Mi mindenről tanúskodik a Me-OH néhány NMR spektruma Mi mindenről tanúskodik a Me-OH néhány NMR spektruma lcélok és fogalmak: l- az NMR-rezonancia frekvencia (jel), a kémiai környezete, a kémiai eltolódás, l- az 1 H-NMR spektrum, l- az -OH és a -CH 3 csoportokban

Részletesebben

MRI áttekintés. Orvosi képdiagnosztika 3. ea ősz

MRI áttekintés. Orvosi képdiagnosztika 3. ea ősz MRI áttekintés Orvosi képdiagnosztika 3. ea. 2015 ősz MRI Alapelv: hogyan lehet mágneses vizsgálattal valamilyen anyag (jelen esetben az élő emberi szervezet) belső felépítéséről információt kapni? A mágneses

Részletesebben

Biomolekuláris szerkezeti dinamika

Biomolekuláris szerkezeti dinamika Kísérletek, mérések célja Biomolekuláris szerkezeti dinamika Kellermayer Miklós Biomolekuláris szerkezet és működés pontosabb megismerése (folyamatok, állapotok, átmenetek, kölcsönhatások, mozgások, stb.)

Részletesebben

1D multipulzus NMR kísérletek

1D multipulzus NMR kísérletek D multipulzus NMR kísérletek Rohonczy János ELTE, Szervetlen Kémia Tanszék Modern szerkezetkutatási módszerek elıadás 202. . Protonlecsatolt heteronukleáris mérések Elv 3 C mag detektálása alatt a protoncsatornán

Részletesebben

A nehézfémek növényi vízháztartásra gyakorolt hatásának vizsgálata Mágneses Rezonancia készülékkel. Készítette: Jakusch Pál Környezettudós

A nehézfémek növényi vízháztartásra gyakorolt hatásának vizsgálata Mágneses Rezonancia készülékkel. Készítette: Jakusch Pál Környezettudós A nehézfémek növényi vízháztartásra gyakorolt hatásának vizsgálata Mágneses Rezonancia készülékkel Készítette: Jakusch Pál Környezettudós Célkitűzés MR készülék növényélettani célú alkalmazása Kontroll

Részletesebben

Sohár Pál Varázslat, amitől láthatóvá válnak és életre kelnek a molekulák: Az NMR spektroszkópia

Sohár Pál Varázslat, amitől láthatóvá válnak és életre kelnek a molekulák: Az NMR spektroszkópia MTA -ELTE FEÉRJEMODELLEZŐ KUTATÓCSOPORT - ÁLTALÁNOS ÉS SZERVETLEN KÉMIAI TANSZÉK EÖTVÖS LORÁND TUDOMÁNYEGYETEM Sohár Pál Varázslat, amitől láthatóvá válnak és életre kelnek a molekulák: Az NMR spektroszkópia

Részletesebben

Times, 2003. október 9 MRI

Times, 2003. október 9 MRI Times, 2003. október 9 MRI: orvosi diagnosztikát forradalmasító képalkotó módszer This Year s Nobel Prize in Medicine The Shameful Wrong That Must Be Righted This year the committee that awards The Nobel

Részletesebben

24/04/ Röntgenabszorpciós CT

24/04/ Röntgenabszorpciós CT CT ésmri 2012.04.10. Röntgenabszorpciós CT 1 Élettani és Orvostudományi Nobel díj- 1979 Allan M. Cormack, Godfrey N. Hounsfield Godfrey N. Hounsfield Born:28 August 1919, Newark, United Kingdom Died: 12

Részletesebben

Alkalmazott spektroszkópia Serra Bendegúz és Bányai István

Alkalmazott spektroszkópia Serra Bendegúz és Bányai István Alkalmazott spektroszkópia 2014 Serra Bendegúz és Bányai István A mágnesség A mágneses erő: F p1 p2 r p1 p2 C ( F C ) C áll 2 2 r r r A mágneses (dipólus) momentum: m p l ( m p l ) Ahol p a póluserősség

Részletesebben

Magmágneses rezonancia. alapjai. Magmágneses rezonanciához kapcsolódó Nobel-díjak. γ N = = giromágneses hányados. v v

Magmágneses rezonancia. alapjai. Magmágneses rezonanciához kapcsolódó Nobel-díjak. γ N = = giromágneses hányados. v v Magmágneses rezonancia (MR) és elektronspinrezonancia (ESR) alapjai Dóczy-Bodnár Andrea 211. szeptember 28. Magmágneses rezonanciához kapcsolódó obel-díjak * Otto Stern, USA: obel Prize in Physics 1943,

Részletesebben

Fizikai kémia Mágneses magrezonancia spektroszkópia alapjai. Mágneses magrezonancia - NMR. Mágneses magrezonancia - NMR

Fizikai kémia Mágneses magrezonancia spektroszkópia alapjai. Mágneses magrezonancia - NMR. Mágneses magrezonancia - NMR Fizikai kémia 2.. Mágneses magrezonancia spektroszkópia alapjai Dr. Berkesi Ottó SZTE Fizikai Kémiai és Anyagtudományi Tanszéke 205 Mágneses magrezonancia - NMR Amint azt a korábbiakban megismertük a molekulákban

Részletesebben

Alkalmazott spektroszkópia

Alkalmazott spektroszkópia Alkalmazott spektroszkópia 009 Bányai István MR és a fémionok: koordinációs kémiai alkalmazások Bányai István Debreceni Egyetem TEK Kolloid- és Környezetkémiai Tanszék A mágnesség A mágneses erő: F pp

Részletesebben

NMR, MRI. Magnetic Resonance Imaging. Times, 2003. október 9 MRI

NMR, MRI. Magnetic Resonance Imaging. Times, 2003. október 9 MRI Times, 2003. október 9 NMR, MRI Magnetic Resonance Imaging This Year s Nobel Prize in Medicine The Shameful Wrong That Must Be Righted This year the committee that awards The Nobel Prize for Physiology

Részletesebben

lásd: enantiotóp, diasztereotóp

lásd: enantiotóp, diasztereotóp anizokrón anisochronous árnyékolási állandó shielding constant árnyékolási járulékok és empirikus értelmezésük shielding contributions diamágneses és paramágneses árnyékolás diamagnetic and paramagnetic

Részletesebben

palkotás alapjai Bányai István Kolloid- és Környezetkémiai Tanszék DE, TEK

palkotás alapjai Bányai István Kolloid- és Környezetkémiai Tanszék DE, TEK Az NMR képalkotk palkotás alapjai Bánai István Kolloid- és Körnezetkémiai Tanszék DE, TEK Az NMR alapjai alapjai Bánai István Kolloid- és Körnezetkémiai Tanszék DE, TEK Kvantummechanikai alapok Az atommag

Részletesebben

Rádióspektroszkópiai módszerek

Rádióspektroszkópiai módszerek Rádióspektroszkópiai módszerek NMR : Nuclear magneic resonance : magmágneses rezonancia ESR : electron spin resonance: elektronspin-rezonancia Mikrohullámú spektroszkópia Schay G. Rádióspektroszkópia elég

Részletesebben

I. Az NMR spektrométer

I. Az NMR spektrométer I. Az NMR spektrométer I. Az NMR spektrométer fő részei Rádióelektronikai konzol Munkaállomás Mágnes 2 I. Ultra-árnyékolt mágnesek Kettős szupravezető tekerccsel csökkenthető a mágnes szórt tere. Kisebb

Részletesebben

Hogyan bírhatjuk szóra a molekulákat, avagy mi is az a spektroszkópia?

Hogyan bírhatjuk szóra a molekulákat, avagy mi is az a spektroszkópia? Hogyan bírhatjuk szóra a molekulákat, avagy mi is az a spektroszkópia? Prof. Túri László (ELTE, Kémiai Intézet) turi@chem.elte.hu 2012. november 19. Szent László Gimnázium Önképzőkör 1 Kapcsolódási pontok

Részletesebben

Fizikai kémia Részecskék mágneses térben, ESR spektroszkópia. Részecskék mágneses térben. Részecskék mágneses térben

Fizikai kémia Részecskék mágneses térben, ESR spektroszkópia. Részecskék mágneses térben. Részecskék mágneses térben 06.08.. Fizikai kémia. 3. Részecskék mágneses térben, ESR spektroszkópia Dr. Berkesi Ottó SZTE Fizikai Kémiai és Anyagtudományi Tanszéke 05 Részecskék mágneses térben A részecskék mágneses térben ugyanúgy

Részletesebben

A fény és az anyag kölcsönhatása

A fény és az anyag kölcsönhatása A fény és az anyag kölcsönhatása Bohr-feltétel : E = E 2 E 1 = hν abszorpció foton (hν) E 2 E 2 E 1 E 1 E 2 E 2 spontán emisszió E 1 E 1 stimulált (kényszerített) emisszió E 2 E 2 E 1 E 1 Emissziós és

Részletesebben

Morfológiai képalkotó eljárások CT, MRI, PET

Morfológiai képalkotó eljárások CT, MRI, PET Morfológiai képalkotó eljárások CT, MRI, PET Kupi Tünde 2009. 12. 03. Röntgen 19. sz. vége: Röntgen abszorbciós mechanizmusok: - Fotoelektromos hatás - Compton-szórás - Párkeltés Kép: Röntgenabszorbancia

Részletesebben

Elektronspinrezonancia (ESR) - spektroszkópia

Elektronspinrezonancia (ESR) - spektroszkópia Elektronspinrezonancia (ESR) - spektroszkópia Paramágneses anyagok vizsgáló módszere. A mágneses momentum iránykvantáltságán alapul. A mágneses momentum energiája B indukciójú mágneses térben E m S μ z

Részletesebben

NMR spektroszkópia (Nuclear Magnetic Resonance) Mágneses (atom)magrezonancia Spektroszkópia

NMR spektroszkópia (Nuclear Magnetic Resonance) Mágneses (atom)magrezonancia Spektroszkópia NMR spektroszkópia (Nuclear Magnetic Resonance) Mágneses (atom)magrezonancia Spektroszkópia Anyagszerkezeti vizsgálatok 2016. őszi félév Balogh Szabolcs sz.balogh@gmail.com Pannon Egyetem, NMR Laboratórium

Részletesebben

CT/MRI képalkotás alapjai. Prof. Bogner Péter

CT/MRI képalkotás alapjai. Prof. Bogner Péter CT/MRI képalkotás alapjai Prof. Bogner Péter CT - computed tomography Godfrey N. Hounsfield Allan M. Cormack The Nobel Prize in Physiology or Medicine 1979 MRI - magnetic resonance imaging Sir Peter Mansfield

Részletesebben

Műszeres analitika. Abrankó László. Molekulaspektroszkópia. Kémiai élelmiszervizsgálati módszerek csoportosítása

Műszeres analitika. Abrankó László. Molekulaspektroszkópia. Kémiai élelmiszervizsgálati módszerek csoportosítása Abrankó László Műszeres analitika Molekulaspektroszkópia Minőségi elemzés Kvalitatív Cél: Meghatározni, hogy egy adott mintában jelen vannak-e bizonyos ismert komponensek. Vagy ismeretlen komponensek azonosítása

Részletesebben

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18.

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18. Modern Fizika Labor Fizika BSc A mérés dátuma: 28. március 18. A mérés száma és címe: 5. mérés: Elektronspin rezonancia Értékelés: A beadás dátuma: 28. március 26. A mérést végezte: 1/7 A mérés leírása:

Részletesebben

Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008.

Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Kiss István,Vértes Attila: Magkémia (Akadémiai Kiadó) Nagy Lajos György,

Részletesebben

http://www.nature.com 1) Magerő-sugár: a magközéppontból mért távolság, ameddig a magerők hatótávolsága terjed. Rutherford-szórásból határozható meg. R=1,4 x 10-13 A 1/3 cm Az atommag terének potenciálja

Részletesebben

Modern Fizika Labor Fizika BSC

Modern Fizika Labor Fizika BSC Modern Fizika Labor Fizika BSC A mérés dátuma: 2009. március 2. A mérés száma és címe: 5. Elektronspin rezonancia Értékelés: A beadás dátuma: 2009. március 5. A mérést végezte: Márton Krisztina Zsigmond

Részletesebben

NMR a peptid- és fehérje-kutatásban

NMR a peptid- és fehérje-kutatásban NMR a peptid- és fehérje-kutatásban A PDB adatbázisban megtalálható NMR alapú fehérjeszerkezetek számának alakulása az elmúlt évek során 4000 3500 3000 2500 2000 1500 1000 500 0 1987 1988 1989 1990 1991

Részletesebben

2.2.33. MÁGNESES MAGREZONANCIA SPEKTROMETRIA

2.2.33. MÁGNESES MAGREZONANCIA SPEKTROMETRIA 2.2.33. Mágneses magrezonancia spektrometria Ph.Hg.VIII. Ph.Eur.6.3-1 2.2.33. MÁGNESES MGREZONNCI SPEKTROMETRI 01/2009:20233 EVEZETÉS mágneses magrezonancia spektrometria (NMR) olyan analitikai módszer,

Részletesebben

Stern Gerlach kísérlet. Készítette: Kiss Éva

Stern Gerlach kísérlet. Készítette: Kiss Éva Stern Gerlach kísérlet Készítette: Kiss Éva Történelmi áttekintés 1890. Thomson-féle atommodell ( mazsolás puding ) 1909-1911. Rutherford modell (bolygó hasonlat) Bohr-féle atommodell Frank-Hertz kísérlet

Részletesebben

Mágneses magrezonancia-spektroszkópia (NMR) Szalontai Gábor: alapelvek nyolc órában

Mágneses magrezonancia-spektroszkópia (NMR) Szalontai Gábor: alapelvek nyolc órában Mágneses magrezonancia-spektroszkópia (NMR) Szalontai Gábor: alapelvek nyolc órában Előadásábrák (85 ábra, 2013 ősz) 1. Bevezetés, alkalmazási területek 2. Az alapjelenség, a magspinek viselkedése állandó

Részletesebben

ESR-spektrumok különbözı kísérleti körülmények között A számítógépes értékelés alapjai anizotróp kölcsönhatási tenzorok esetén

ESR-spektrumok különbözı kísérleti körülmények között A számítógépes értékelés alapjai anizotróp kölcsönhatási tenzorok esetén ESR-spektrumok különbözı kísérleti körülmények között A számítógépes értékelés alapjai anizotróp kölcsönhatási tenzorok esetén A paraméterek anizotrópiája egykristályok rögzített tengely körüli forgatásakor

Részletesebben

Speciális fluoreszcencia spektroszkópiai módszerek

Speciális fluoreszcencia spektroszkópiai módszerek Speciális fluoreszcencia spektroszkópiai módszerek Fluoreszcencia kioltás Fluoreszcencia Rezonancia Energia Transzfer (FRET), Lumineszcencia A molekuláknak azt a fényemisszióját, melyet a valamilyen módon

Részletesebben

Vektorok, mátrixok, tenzorok, T (emlékeztető)

Vektorok, mátrixok, tenzorok, T (emlékeztető) Vektorok, mátrixok, tenzorok, T (emlékeztető) A = T*B Tenzor: lineáris vektorfüggvény, amely két vektormennyiség közötti összefüggést ír le, egy négyzetmátrix, M reprezentálja. M M M M = M M M M M M 11

Részletesebben

8. AZ ATOMMAG FIZIKÁJA

8. AZ ATOMMAG FIZIKÁJA 8. AZ ATOMMAG FIZIKÁJA Az atommag szerkezete (40-44 oldal) A tömegspektrométer elve Az atommag komponensei Izotópok Tömeghiány, kötési energia, stabilitás Magerők Magmodellek Az atommag stabilitásának

Részletesebben

Műszeres analitika II. (TKBE0532)

Műszeres analitika II. (TKBE0532) Műszeres analitika II. (TKBE0532) 4. előadás Spektroszkópia alapjai Dr. Andrási Melinda Debreceni Egyetem Természettudományi és Technológiai Kar Szervetlen és Analitikai Kémiai Tanszék A fény elektromágneses

Részletesebben

Mágneses magrezonancia (NMR) spektroszkópiák

Mágneses magrezonancia (NMR) spektroszkópiák 1 A szerves vegyületek szerkezetének meghatározására kezdetben az elemi analízist és az analógiákon alapuló szerkezetbizonyító szintézist illetve lebontást alkalmazták. Bonyolultabb vegyületek szerkezetének

Részletesebben

A BioNMR spektroszkópia alapjai

A BioNMR spektroszkópia alapjai A BioNMR spektroszkópia alapjai Az NMR-spektroszkópia szükséges feltétele a nullától különböző magspin (I 0) 1) I=0, ha mind a protonok mind a neutronok száma páros: ( 12 C, 16 O) 2) I=1/2, ha tömegszáma

Részletesebben

Az MR(I) módszer elve. Dr.Fidy Judit 2012 március 7

Az MR(I) módszer elve. Dr.Fidy Judit 2012 március 7 Az MR(I) módszer elve Dr.Fidy Judit 2012 március 7 Az MR(I) módszer Ábrák: Kastler-Patay: MRI orvosoknak, Folia Neuroradiologica, 1993 (Nuclear) Magnetic Resonance Imaging mag (atommag) mágneses rezonancia

Részletesebben

Sugárzások kölcsönhatása az anyaggal

Sugárzások kölcsönhatása az anyaggal Radioaktivitás Biofizika előadások 2013 december Sugárzások kölcsönhatása az anyaggal PTE ÁOK Biofizikai Intézet, Orbán József Összefoglaló radioaktivitás alapok Nukleononkénti kötési energia (MeV) Egy

Részletesebben

Az MR(I) módszer elve. Az MR(I) módszer. (Nuclear) Magnetic Resonance Imaging mag (atommag) mágneses rezonancia alapu képalkotó módszer

Az MR(I) módszer elve. Az MR(I) módszer. (Nuclear) Magnetic Resonance Imaging mag (atommag) mágneses rezonancia alapu képalkotó módszer Az MR(I) módszer elve Mai kérdés: Hogyan változik a röntgensugárzás elnyelődésének valószínűsége lágy szövetekben a sugárzás foton-energiájával? Dr.Fidy Judit 05 március 8 Az MR(I) módszer Történelem -

Részletesebben

Az (N)MR(I) módszer elve

Az (N)MR(I) módszer elve A biomolekuláris szerkezet és dinamika vizsgáló módszerei Az (N)MR(I) módszer elve Dr.Fidy Judit 215 május 5 Biomolekuláris szerkezet? (összefoglalás az eddig tanultak alapján) Nagyságrendek - sejtek,

Részletesebben

0) I=0 I=1/2 I=k (k=1,2,..) töltéssel forog (I=1/2)

0) I=0 I=1/2 I=k (k=1,2,..) töltéssel forog (I=1/2) Az NMR-spektroszkópia szükséges feltétele a nullától különbözÿ magspin (I 0) I=0 mind a protonok mind a neutronok száma páros ( 12 C, 16 O) I=1/2 ha tömegszáma páratlan ( 1, 3, 13 C, 15 N, 19 F, 57 Fe,

Részletesebben

Fizikai kémia 2. ZH V. kérdések I. félévtől

Fizikai kémia 2. ZH V. kérdések I. félévtől Fizikai kémia 2. ZH V. kérdések 2016-17 I. félévtől Szükséges adatok és állandók: k=1,38066 10-23 JK; c= 2,99792458 10 8 m/s; e= 1,602177 10-19 C; h=6,62608 10-34 Js; N A= 6,02214 10 23 mol -1 ; me= 9,10939

Részletesebben

Emlékeztető Paramágneses anyagok

Emlékeztető Paramágneses anyagok Emlékeztető Paramágneses anyagok Ha az eredő spinkvantumszám S 0, vagyis a részecske rendelkezik eredő spinimpulzus momentummal, akkor mágneses momentuma is van. E vektorok abszolútértéke (hossza) S S(S

Részletesebben

A testek részecskéinek szerkezete

A testek részecskéinek szerkezete A testek részecskéinek szerkezete Minden test részecskékből, atomokból vagy több atomból álló molekulákból épül fel. Az atomok is összetettek: elektronok, protonok és neutronok találhatók bennük. Az elektronok

Részletesebben

László István, Fizika A2 (Budapest, 2013) Előadás

László István, Fizika A2 (Budapest, 2013) Előadás László István, Fizika A (Budapest, 13) 1 14.A Maxwell-egenletek. Az elektromágneses hullámok Tartalmi kiemelés 1.Maxwell általánosította Ampère törvénét bevezetve az eltolási áramot. szerint ha a térben

Részletesebben

Nyers adat - Fourier transformáció FFT

Nyers adat - Fourier transformáció FFT Nyers adat - Fourier transformáció FFT Multi-slice eljárás Inversion Recovery (IR) TR 1800 1800 900 TI TE Inverziós idő (TI) konvencionális SE vagy FSE Mágnesesség IR Víz Idõ STIR Short TI Inversion Recovery

Részletesebben

FEHÉRJÉK A MÁGNESEKBEN. Bodor Andrea ELTE, Szerkezeti Kémiai és Biológiai Laboratórium. Alkímia Ma, Budapest,

FEHÉRJÉK A MÁGNESEKBEN. Bodor Andrea ELTE, Szerkezeti Kémiai és Biológiai Laboratórium. Alkímia Ma, Budapest, FEHÉRJÉK A MÁGNESEKBEN Bodor Andrea ELTE, Szerkezeti Kémiai és Biológiai Laboratórium Alkímia Ma, Budapest, 2013.02.28. I. FEHÉRJÉK: L-α aminosavakból felépülő lineáris polimerek α H 2 N CH COOH amino

Részletesebben

Az Orvosi Fizika Szigorlat menete a 2012/2. tanévtől

Az Orvosi Fizika Szigorlat menete a 2012/2. tanévtől Az Orvosi Fizika Szigorlat menete a 2012/2. tanévtől 1. A szigorlat menete A szigorlatot a Fizikus MSc orvosi fizika szakirányos hallgatók a második vagy harmadik szemeszterük folyamán tehetik le. A szigorlat

Részletesebben

Elektronspin rezonancia

Elektronspin rezonancia Elektronspin rezonancia jegyzıkönyv Zsigmond Anna Fizika MSc I. Mérés vezetıje: Kürti Jenı Mérés dátuma: 2010. november 25. Leadás dátuma: 2010. december 9. 1. A mérés célja Az elektronspin mágneses rezonancia

Részletesebben

A BioNMR spektroszkópia alapjai

A BioNMR spektroszkópia alapjai A BioNMR spektroszkópia alapjai Az NMR-spektroszkópia szükséges feltétele a nullától különböző magspin (I 0) 1) I=0, ha mind a protonok mind a neutronok száma páros: ( 12 C, 16 O) 2) I=1/2, ha tömegszáma

Részletesebben

A GYULLADÁSOS BÉLBETEGEK EURÓPAI NAPJA 2009. május 23. szombat Petıfi Sándor Mővelıdési Ház (1103 Budapest, Kada u. 38-40.)

A GYULLADÁSOS BÉLBETEGEK EURÓPAI NAPJA 2009. május 23. szombat Petıfi Sándor Mővelıdési Ház (1103 Budapest, Kada u. 38-40.) A GYULLADÁSOS BÉLBETEGEK EURÓPAI NAPJA 2009. május 23. szombat Petıfi Sándor Mővelıdési Ház (1103 Budapest, Kada u. 38-40.) Képalkotó diagnosztika Szerkesztette: Dió Mihály 06 30 2302398 Témák 1. Röntgen

Részletesebben

Az NMR és a bizonytalansági elv rejtélyes találkozása

Az NMR és a bizonytalansági elv rejtélyes találkozása Az NMR és a bizonytalansági elv rejtélyes találkozása ifj. Szántay Csaba MTA Kémiai Tudományok Osztálya 2012. február 21. a magspínek pulzus-gerjesztésének értelmezési paradigmája GLOBÁLISAN ELTERJEDT

Részletesebben

WOLFGANG PAULI ÉS AZ ANYAGTUDOMÁNY KROÓ NORBERT MAGYAR TUDOMÁNYOS AKADÉMIA ÓBUDAI EGYETEM,2010.04.23

WOLFGANG PAULI ÉS AZ ANYAGTUDOMÁNY KROÓ NORBERT MAGYAR TUDOMÁNYOS AKADÉMIA ÓBUDAI EGYETEM,2010.04.23 WOLFGANG PAULI ÉS AZ ANYAGTUDOMÁNY KROÓ NORBERT MAGYAR TUDOMÁNYOS AKADÉMIA ÓBUDAI EGYETEM,2010.04.23 Minden részecske rendelkezik egy furcsa tulajdonsággal, ez a spinje. Mivel ez úgy viselkedik, mint az

Részletesebben

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény Orvosi iofizika I. Fénysugárzásanyaggalvalókölcsönhatásai. Fényszóródás, fényabszorpció. Az abszorpciós spektrometria alapelvei. (Segítséga 12. tételmegértéséhezésmegtanulásához, továbbá a Fényabszorpció

Részletesebben

Készítette: NÁDOR JUDIT. Témavezető: Dr. HOMONNAY ZOLTÁN. ELTE TTK, Analitikai Kémia Tanszék 2010

Készítette: NÁDOR JUDIT. Témavezető: Dr. HOMONNAY ZOLTÁN. ELTE TTK, Analitikai Kémia Tanszék 2010 Készítette: NÁDOR JUDIT Témavezető: Dr. HOMONNAY ZOLTÁN ELTE TTK, Analitikai Kémia Tanszék 2010 Bevezetés, célkitűzés Mössbauer-spektroszkópia Kísérleti előzmények Mérések és eredmények Összefoglalás EDTA

Részletesebben

Modern Fizika Labor. A mérés száma és címe: A mérés dátuma: Értékelés: Infravörös spektroszkópia. A beadás dátuma: A mérést végezte:

Modern Fizika Labor. A mérés száma és címe: A mérés dátuma: Értékelés: Infravörös spektroszkópia. A beadás dátuma: A mérést végezte: Modern Fizika Labor A mérés dátuma: 2005.10.26. A mérés száma és címe: 12. Infravörös spektroszkópia Értékelés: A beadás dátuma: 2005.11.09. A mérést végezte: Orosz Katalin Tóth Bence 1 A mérés során egy

Részletesebben

Az NMR spektroszkópia alapjai Dr. Rohonczy János ELTE Szervetlen Kémiai Tanszék

Az NMR spektroszkópia alapjai Dr. Rohonczy János ELTE Szervetlen Kémiai Tanszék Az NMR spektroszkópia alapjai Dr. Rohonczy János ELTE Szervetlen Kémiai Tanszék A mágneses magrezonancia spektroszkópia (röviden NMR angolul Nuclear Magnetic Resonace) egyike azon modern kémiai szerkezetvizsgálati

Részletesebben

Természettudományi Kutatóközpont, Magyar Tudományos Akadémia (MTA-TTK) Agyi Képalkotó Központ (AKK)

Természettudományi Kutatóközpont, Magyar Tudományos Akadémia (MTA-TTK) Agyi Képalkotó Központ (AKK) Szimultán multi-slice EPI szekvenciák: funkcionális MRI kompromisszumok nélkül? Kiss Máté, Kettinger Ádám, Hermann Petra, Gál Viktor MTA-TTK Agyi Képalkotó Központ Természettudományi Kutatóközpont, Magyar

Részletesebben

Funkcionális konnektivitás vizsgálata fmri adatok alapján

Funkcionális konnektivitás vizsgálata fmri adatok alapján Funkcionális konnektivitás vizsgálata fmri adatok alapján Képalkotási technikák 4 Log Resolution (mm) 3 Brain EEG & MEG fmri TMS PET Lesions 2 Column 1 0 Lamina -1 Neuron -2 Dendrite -3 Synapse -4 Mikrolesions

Részletesebben

2011.11.07. Biofizika és orvostechnika alapjai

2011.11.07. Biofizika és orvostechnika alapjai Biofizika és orvostechnika alapjai MRI Képalkotó diagnosztika 2 Noninvazív módszerek: MRI, termográfia Szerkesztette: Szekrényesi Csaba Áttekintés Történelem Nagy mágneses tér A szövetek mágneses különbségei

Részletesebben

MAGYARÁZAT A MATEMATIKA NULLADIK ZÁRTHELYI MINTAFELADATSOR FELADATAIHOZ 2010.

MAGYARÁZAT A MATEMATIKA NULLADIK ZÁRTHELYI MINTAFELADATSOR FELADATAIHOZ 2010. MAGYARÁZAT A MATEMATIKA NULLADIK ZÁRTHELYI MINTAFELADATSOR FELADATAIHOZ 00.. Tetszőleges, nem negatív szám esetén, Göktelenítsük a nevezőt: (B). Menni a 0 kifejezés értéke? (D) 0 0 0 0 0000 400 0. 5 Felhasznált

Részletesebben

BIOFIZIKA. Metodika- 4. Liliom Károly. MTA TTK Enzimológiai Intézet liliom@enzim.hu

BIOFIZIKA. Metodika- 4. Liliom Károly. MTA TTK Enzimológiai Intézet liliom@enzim.hu BIOFIZIKA 2012 11 26 Metodika- 4 Liliom Károly MTA TTK Enzimológiai Intézet liliom@enzim.hu A biofizika előadások temamkája 1. 09-03 Biofizika: fizikai szemlélet, modellalkotás, biometria 2. 09-10 SZÜNET

Részletesebben

Atomfizika. Az atommag szerkezete. Radioaktivitás Biofizika, Nyitrai Miklós

Atomfizika. Az atommag szerkezete. Radioaktivitás Biofizika, Nyitrai Miklós Atomfizika. Az atommag szerkezete. Radioaktivitás. 2010. 10. 13. Biofizika, Nyitrai Miklós Összefoglalás Atommag alkotói, szerkezete; Erős vagy magkölcsönhatás; Tömegdefektus. A kölcsönhatások világképe

Részletesebben

Modern Fizika Labor. 5. ESR (Elektronspin rezonancia) Fizika BSc. A mérés dátuma: okt. 25. A mérés száma és címe: Értékelés:

Modern Fizika Labor. 5. ESR (Elektronspin rezonancia) Fizika BSc. A mérés dátuma: okt. 25. A mérés száma és címe: Értékelés: Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. okt. 25. A mérés száma és címe: 5. ESR (Elektronspin rezonancia) Értékelés: A beadás dátuma: 2011. nov. 16. A mérést végezte: Szőke Kálmán Benjamin

Részletesebben

A TÖMEGSPEKTROMETRIA ALAPJAI

A TÖMEGSPEKTROMETRIA ALAPJAI A TÖMEGSPEKTROMETRIA ALAPJAI web.inc.bme.hu/csonka/csg/oktat/tomegsp.doc alapján tömeg-töltés arány szerinti szétválasztás a legérzékenyebb módszerek közé tartozik (Nagyon kis anyagmennyiség kimutatására

Részletesebben

Jegyzet. Kémia, BMEVEAAAMM1 Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens.

Jegyzet. Kémia, BMEVEAAAMM1 Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens. Kémia, BMEVEAAAMM Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens Jegyzet dr. Horváth Viola, KÉMIA I. http://oktatas.ch.bme.hu/oktatas/konyvek/anal/

Részletesebben

A különböző anyagok mágneses térrel is kölcsönhatásba lépnek, ugyanúgy, ahogy az elektromos térrel. Ez a kölcsönhatás szintén kétféle lehet.

A különböző anyagok mágneses térrel is kölcsönhatásba lépnek, ugyanúgy, ahogy az elektromos térrel. Ez a kölcsönhatás szintén kétféle lehet. 1 A különböző anyagok mágneses térrel is kölcsönhatásba lépnek, ugyanúgy, ahogy az elektromos térrel. Ez a kölcsönhatás szintén kétféle lehet. A legjobban az ún. Gouy-mérlegben való viselkedés példázza

Részletesebben

Drug design Képalkotó eljárások a gyógyszerkutatásban Dr. Kengyel András GK, SPECT, PET, fmri, UH, CT, MRI Doppler UH

Drug design Képalkotó eljárások a gyógyszerkutatásban Dr. Kengyel András GK, SPECT, PET, fmri, UH, CT, MRI Doppler UH Drug design Hatóanyag tervezés molekuláris mechanizmusok alapján eljut-e a gyógyszer a célszervig? felszívódik-e? mennyi idő alatt? Képalkotó eljárások a gyógyszerkutatásban milyen a szöveti eloszlása?

Részletesebben

HYDROXYPROPYLBETADEXUM. Hidroxipropilbetadex

HYDROXYPROPYLBETADEXUM. Hidroxipropilbetadex Hydroxypropylbetadexum Ph.Hg.VIII. Ph.Eur.6.2-1 07/2008:1804 HYDROXYPROPYLBETADEXUM Hidroxipropilbetadex C 42 H 70 O 35 (C 3 H 6 O) x x = 7 MS DEFINÍCIÓ A hidroxipropilbetadex (β-ciklodextrin, 2-hidroxipropil-éter)

Részletesebben

4.A MÁGNESES REZONANCIA (MR) ORVOSI ALKALMAZÁSA

4.A MÁGNESES REZONANCIA (MR) ORVOSI ALKALMAZÁSA [HIBA! A STÍLUS NEM [HIBA! A STÍLUS NEM 4.A MÁGNESES REZONANCIA (MR) ORVOSI ALKALMAZÁSA 4.1Bevezető A mágneses rezonancián alapuló vizsgálati eljárásoknak is előnyös tulajdonsága, hogy a vizsgálat során

Részletesebben

Reakciókinetika. Általános Kémia, kinetika Dia: 1 /53

Reakciókinetika. Általános Kémia, kinetika Dia: 1 /53 Reakciókinetika 9-1 A reakciók sebessége 9-2 A reakciósebesség mérése 9-3 A koncentráció hatása: a sebességtörvény 9-4 Nulladrendű reakció 9-5 Elsőrendű reakció 9-6 Másodrendű reakció 9-7 A reakciókinetika

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

Az ionizáló sugárzások fajtái, forrásai

Az ionizáló sugárzások fajtái, forrásai Az ionizáló sugárzások fajtái, forrásai magsugárzás Magsugárzások Röntgensugárzás Függelék. Intenzitás 2. Spektrum 3. Atom Repetitio est mater studiorum. Röntgen Ionizációnak nevezzük azt a folyamatot,

Részletesebben

Az atommag összetétele, radioaktivitás

Az atommag összetétele, radioaktivitás Az atommag összetétele, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron

Részletesebben

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia. 2008. május 6.

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia. 2008. május 6. Modern Fizika Labor Fizika BSc A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia Értékelés: A beadás dátuma: 28. május 13. A mérést végezte: 1/5 A mérés célja A mérés célja az

Részletesebben

Kolloidkémia 1. előadás Első- és másodrendű kémiai kötések és szerepük a kolloid rendszerek kialakulásában. Szőri Milán: Kolloidkémia

Kolloidkémia 1. előadás Első- és másodrendű kémiai kötések és szerepük a kolloid rendszerek kialakulásában. Szőri Milán: Kolloidkémia Kolloidkémia 1. előadás Első- és másodrendű kémiai kötések és szerepük a kolloid rendszerek kialakulásában 1 Órarend 2 Kurzussal kapcsolatos emlékeztető Kurzus: Az előadás látogatása ajánlott Gyakorlat

Részletesebben

Bevezetés a modern fizika fejezeteibe. 4. (e) Kvantummechanika. Utolsó módosítás: december 3. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 4. (e) Kvantummechanika. Utolsó módosítás: december 3. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 4. (e) Kvantummechanika Utolsó módosítás: 2014. december 3. 1 A Klein-Gordon-egyenlet (1) A relativisztikus dinamikából a tömegnövekedésre és impulzusra vonatkozó

Részletesebben

Az anyagszerkezet alapjai. Az atomok felépítése

Az anyagszerkezet alapjai. Az atomok felépítése Az anyagszerkezet alapjai Az atomok felépítése Kérdések Mik az építőelemek? Milyen elvek szerint épül fel az anyag? Milyen szintjei vannak a struktúrának? Van-e végső, legkisebb építőelem? A legkisebbeknél

Részletesebben

HYDROXYPROPYLBETADEXUM. Hidroxipropilbetadex

HYDROXYPROPYLBETADEXUM. Hidroxipropilbetadex Hydroxypropylbetadexum Ph.Hg.VIII. Ph.Eur.6.3-1 07/2003:1804 HYDROXYPROPYLBETADEXUM Hidroxipropilbetadex C 42 H 70 O 35 (C 3 H 6 O) x, x = 7 MS DEFINÍCIÓ A hidroxipropilbetadex (-ciklodextrin, 2-hidroxipropil-éter)

Részletesebben