Lehetőségek és kihívások a modern bionmr spektroszkópia területén

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Lehetőségek és kihívások a modern bionmr spektroszkópia területén"

Átírás

1 Lehetőségek és kihívások a modern bionmr spektroszkópia területén Perczel András és munkatársai Szerkezeti Kémia és Biológia Laboratórium és ELTE-MTA Fehérjemodellező Kutatócsoport 1

2 The Nobel Prize in Physics 1952 "for their development of new methods for nuclear magnetic precision measurements and discoveries in connection therewith Felix Bloch ( ) Edward Mills Purcell ( ) 2

3 The Nobel Prize in Chemistry 1991 "for his contributions to the development of the methodology of high resolution nuclear magnetic resonance (NMR) spectroscopy" Richard R. Ernst 3

4 Fehérjék oldatban: NMR-spektroszkópia Fehérje NMR: kémiai Nobel-díj, 2002 Kurt Wüthrich A dinamikára és a belső mozgásra is reflektáló szerkezeti sokaság 4

5 NMR spektrum spinrendszerek azonosítása spinrendszerek szekvenciális rendezése kényszerfeltételek alapján szerkezetszámolás 5

6 Miért az NMR? Powerful modern structural tools for looking at complexes Crystallography ~ 45,000 structures Molecular modelling Electron microscopy ~190 Nuclear Magnetic Resonance ~7,500 - can also give 6 K d and k

7 Az NMR-spektroszkópia szükséges feltétele a nullától különböző magspin (I 0) 1) I= 0, ha mind a protonok mind a neutronok száma páros: ( 12 C, 16 O) 2) I= 1/2, ha tömegszáma páratlan ( 1 H, 3 H, 13 C, 15 N, 19 F, 57 Fe, 113 Cd) vagy a protonok, vagy a neutronok száma páratlan. 3) I= k (k=1,2,..) mind a protonok mind a neutronok száma páratlan ( 2 H, 14 N) B 0 Külső mágneses tér tér hatására hiányában rendeződött a magok és spinjei precesszáló rendezetlenül magok állnak 7

8 Feles spin esetén az impulzusmomentum (perdület) z-komponensének operátora: Î Z - két sajátfüggvénye: ψ +½ és ψ ½ - két sajátértéke van: +½ћ és ½ћ A megfelelő két sajátérték egyenlet: Î Z ψ +½ = +½ћ ψ +½ és Î Z ψ ½ = +½ћ ψ ½ vagy röviden Î Z ψ m = mћψ m ahol m ±½. A feles-spin Hamilton-operátorának sajátértékei: Az impulzusmomentum z-komponense (Î Z ) és a B 0 indukciójú mágneses tér (B 0 z) kölcsönhatását egyetlen spin esetében leíró H-operátor: Ĥ egy-spin = γb 0 Î z ( ahol γ = giromágneses együttható) a ψ +½ és ψ ½ függvények a Ĥ egy-spin nek is sajátfüggvényei (hiszen Î Z től csak a γb 0 konstansban tér el. ). Az egyik (m= +½) sajátérték egyenlet tehát : Ĥ one-spin ψ +½ = γb 0 [Î Z ψ +½ ] = γb 0 [+½ћ ψ +½ ] = ½ ћ γb 0 ψ +½ Tehát Ĥ egy-spin egyik sajátfüggvénye a ψ +½, melyhez tartozó sajátérték a ½ ћ γb 0, míg a másik sajátfüggvénye a ψ ½, melyhez tartozó sajátérték a +½ ћ γb 0. 8

9 Az egy-spin spektruma: Spin ½ esetén tehát 2 energiaszint van: E m = m ћγb 0 Tehát E +½ = ½ ћγb 0 (E α vagy spin up), illetve E ½ = +½ ћγb 0. (E β vagy spin down) ahol m ±½. A kiválasztási szabály értelmében (mivel m = +1 vagy -1) a Δm α β = ( ½) (+½) = 1, tehát az az α-ból β-ba való átmenet megengedett. υ 0 = γb 0 /2π E b E α υ 0 ΔE α β =E β E α = +½ ћγb 0 ( ½ ћγb 0 ) = ћγb 0 hυ α β = (h/2π)γb 0 υ α β = υ 0 = γb 0 /2π ami a Larmor-frekvencia E b E α B0 Pl. Ha B 0 = 9,4T és γ= 2, rad s -1 T -1 (protonra) akkor a Larmorfrekvencia = 4, Hz ~ 400MHz 9

10 Két csatolt spin spektruma: Ha az egy-spin: Ĥ egy-spin = υ 0 Î z, akkor két csatolatlan spin esetében: Ĥ két-spin, csatolatlan = υ 0,1 Î 1z + υ 0,2 Î 2z = υ I Î z + υ S Ŝ z, illetve két csatolt spin esetében: Ĥ két-spin, csatolat = υ I Î z + υ S Ŝ z + J 12 Î z Ŝ z, ahol J 12 a skaláris csatolási állandó spin1 és spin2 között. Két-spin rendszer energiadiagramja, a megengedett átmenetek és a spektrum: b b 4 Sm =-1 Sm =0 24 a b b a átmenet spin állapotok frekvencia 12 aa αβ υ S ½J βα ββ υ S +½J αα βα υ I ½J αβ ββ υ I +½J 12 Sm =+1 a a J J υ I υ S 10

11 Külső B 0 indukciójú mágneses térben a makroszkopikus mágnesezettség (M) gerjesztése, annak precessziójához vezet, amely mérhető indukált feszültséget (mv) eredményez. 11

12 A Vektor modell és a Bloch-egyenletek z-irányú mágnesezettség időbeni alakulása: dm z' /dt= (M z' M o )/T 1 M z' (t)=m o (1 exp( t/t 1 ) az x,y-síkban zajló csillapított amplitúdójú precesszió alakulása: dm x' /dt= ( o )M y' M x' /T 2 dm y' /dt= ( o )M x' M y' /T 2 Csatolt differenciál-egyenletrendszer megoldásaként a következőt kapjuk: M x' (t)=m o exp( t/t 2 )sin( o ) M y' (t)=m o exp( t/t 2 )cos( o ), ahol ( o ) a forgó referencia rendszerben a precesszió szögsebessége. A nagy felbontású NMR-spektrumok öt jellemző paramétere: csatolási állandó (J érték) félértékszélesség multiplicitás terület kémiai eltolódás =[( M - R )/ R ]

13 13

14 spinrendszerek azonosítása 1 H-spektrum I I z és S z S -I y és -S y és I x sin( I t 2 ) S x sin( S t 2 ) Ω I Ω S F1(ppm) 14 A spektrumban a J IS okozta modulációtól eltekintünk

15 spinrendszerek azonosítása Egy ~17 kda globuláris fehérje 1 H-spektruma H 2 O/D 2 O 9/1, T=300K, c 1mM amid aromás H a alifás metil ( p p m )

16 1. spinrendszerek azonosítása 2. spinrendszerek szekvenciális rendezése 3. kényszerfeltételek alapján szerkezetszámolás 16

17 spinrendszerek azonosítása Homonukleáris eljárás (homonukleáris 3 J, M<8kDa) ( 1 H- 1 H COSY, 1 H- 1 H RELAY, 1 H- 1 H TOCSY ) Heteronukleáris eljárás (heteronukleáris 1 J, 2 J, 3 J) 15 N-szerkesztés (M <15kDa) ( 1 H- 15 N TOCSY-HSQC, 1 H- 15 N NOESY-HSQC ) 15 N, 13 C-szerkesztés (M <20kDa) (HNCA, HNCOCA,.) 15 N, 13 C-szerkesztés ( 2 H) (M <30kDa) 17

18 spinrendszerek azonosítása Peptidekben és a fehérjékben az aminosavak hidrogénatomjai elkülönülő spinrendszereket alkotnak 13 J Ala Ser Glu Gly Phe Cys 18

19 A Vektor modell és a Bloch-egyenletek helyett a szorzatoperátor-elmélet Alapfogalmak: magspin-operátor vagy impulzusnyomaték-operátor: Î Î = Î x, Î y, Î z az időtől függő spinsűrűség-operátor az időtől függő Hamilton-operátor az időtől függő, normalizált állapotfüggvény (t) Ĥ(t) (t) Az alapegyenlet: d (t)/dt = i 1 [Ĥ(t), (t)] Liouville- von Neumann-egyenlet Mi kerül a Hamilton-operátorba? Az I és S spinek (AX spinrendszer) esetén, oldatfázisban: Zeeman-effektust + a skaláris csatolást + a rádiófrekvenciás gerjesztést leíró három tag. Ĥ = 1 Î x 2 Ŝ x + JÎ z Ŝ z I Î z S Ŝ z 19

20 Cél a mérhető makroszkopikus mágnesezettség-vektor (M) nagyságának és moduláltságának meghatározása: A megfigyelhető makroszkopikus mágnesezettség pl. M y összetevője a következő: M y (t) = N Tr[SI ky (t)] k ahol és mellett, N az egységnyi térfogatban vett spinek darabszáma. A feladat: A magspin operátor (I) valamint a spinsűrűség-operátor { (t)} szorzatának valamilyen bázison vett mátrixreprezentációjának a spurját (Tr) kell meghatároznunk! A nagy kérdés: mi legyen az alkalmas bázis? Mi legyen az s elemből álló báziskészletet (B s )? (t) =S b s (t)b s s A megoldás: a B s báziskészlet legyen a spin impulzusmomentum-operátor. Sorensen korábbi javaslata értelmében a Descartes-típusú I kl bázisoperátorok használata az alábbiak szerint felettébb eredményes: B s = n ( q- 2 1 ) k = 1 ( I ) kl a sk 20

21 Az I és S spinek (AX spinrendszer) 16 bázisoperátort táblázatos alakban: E S x S y S z B s elemeihez milyen fizikai kép rendelhető? mágnesezettség (populáció, NOE) E E S x S y S z I x I x 2I x S x 2I x S y 2I x S z I y I y 2I y S x 2I y S y 2I y S z I z I z 2I z S x 2I z S y 2I z S z szin-fázisú egyszeres kvantumkoherenciáik. S spinen lokalizálható ellentétesfázisú koherenciák I spinhez tartozó ellentétesfázisú koherenciák 21

22 Tipikus transzformációk a 16 bázisoperátor által kifeszített koherencia-térben: (t=0) = hb 0 ( I I y + S S z )/(8 kt) H = I I z + S S z J IS I z S z (t=0) S z [ s t] I y (t=0) (t) (t) I z [ I t] + I y cos( I t) - I x sin( I t) 2I z S z (J IS t) + I y cos( I t)cos(j IS t) - 2I x S z cos( I t) sin(j IS t) - I x sin( I t) cos(j IS t) - 2I y S z sin( I t) sin(j IS t) I y I y 22

23 + I y cos( I t)cos(j IS t): cos(a)cos(b) = 1/2[cos(A+B)+cos(A B)] következően a spektrum alakja: +1/2I y [ +cos{( I + J IS )t} + cos{( I - J IS )t} ] I y [ +a, +a] I kémiai eltolódásértéknél memo: az spektrum a Bloch-egyenlet alapján: S(t) = C*exp( t/t 2 )cos( I t). I 1 H-spektrum I z és S z S -I y és -S y és I x sin( I t 2 ) S x sin( S t 2 ) Ω I Ω S F1(ppm) A spektrumban a J IS okozta modulációtól eltekintünk 23

24 spinrendszerek azonosítása 1 H- 1 H COSY (homonukleáris korrelációs spektrum) I 2I z S y sin( I t 1 ) S S I y S x sin( I t 1 )cos( S t 2 ) I 2I y S z sin( I t 1 ) I S 24

25 spinrendszerek azonosítása 1 H- 1 H COSY NH H 2 H α H 1 H b H b H 1 H 2 H α F 1 (ppm) S NH I I S F 2 (ppm) 25 A spektrumban a J IS okozta modulációtól eltekintünk

26 spinrendszerek azonosítása Fehérje modul 1 H- 1 H COSY spektruma 26

27 spinrendszerek azonosítása 1 H- 1 H TOCSY protonok teljes korrelációját létrehozó spektrum I NH H 1 H 2 H α S 1 S 2 H b 3S H 4 1 H3S 2 3 I y K H α H b F 1 (ppm) ΣS kx b od sin( I t 1 )cos( S t 2 ) k=1 diagonális jelek diagonálison kívüli jelek NH b od = diagonálison F 2 (ppm) kívüli intenzitások 27 A spektrumban a J IS okozta modulációtól eltekintünk

28 spinrendszerek azonosítása Fehérje modul 1 H- 1 H TOCSY spektruma 28

29 Heteronukleáris egyszeres-kvantum koherencia spektrum HSQC = Heteronuclear Single-Quantum Coherence 1,1 J~90Hz H z -2H z N y +2H z N y cos( N t 1 ) H x cos( N t 1 ) N H x cos( N t 1 )cos( H t 2 ) H 29

30 A kalmodulin 1 H- 15 N HSQC spektruma A kalmodulin 1 H spektrumának amid NH és aromás tartománya J 90 Hz ( p p m )

31 spinrendszerek azonosítása 15 N-szerkesztéssel 3D-TOCSY-HSQC 2I z b od cos( K t 1 ) 2I z cos( I t 1 ) I x b od cos( K t 1 )cos(ω N t 2 ) I x b od sin(ω I t 3 ) cos(ω N t 2 ) cos( K t 1 ) -I y N K I H 2I z N y b od cos( K t 1 ) 2I z N y b od cos( K t 1 )cos(ω N t 2 ) N NH 31 b od = off diagonális intenzitás A J IK okozta modulációtól eltekintünk

32 spinrendszerek azonosítása 15 N-szerkesztett TOCSY spektrum 1 H- 1 H TOCSY amid NH (ujjlenyomat) tartománya Homonukleáris 2D TOCSY 32

33 spinrendszerek azonosítása 15 N-szerkesztett 2D TOCSY 1 H 1 H 1 H- 15 N 3D TOCSY-HSQC csíkok 1 H- 1 H TOCSYamid NH 15 N (ujjlenyomat) tartománya EVTCEPGTTFKDKCNTCRCGSDGKSAACTLKACPQ 33

34 (AMX) Ser (AX) Gly 1. spinrendszerek azonosítása (A 3 X) Ala (A 2 M 2 X) Glu 2. spinrendszerek szekvenciális rendezése 3. kényszerfeltételek alapján szerkezetszámolás 34

35 A szekvenciális hozzárendelés és a szerkezetszámolás alapja a nukláris Overhauser- effektus (NOE) 6Å (NOE) Távolság jellegű adatok 35

36 spinrendszerek azonosítása Fehérje modul 1 H- 1 H NOESY spektruma 36

37 spinrendszerek szekvenciális rendezése A spinrendszerek szekvenciális rendezését biztosító H a i-1-h NH i NOE-k Ala Ser Glu Gly Phe Cys 37

38 spinrendszerek szekvenciális rendezése Ala Glu Ser A szekvenciális hozzárendelés Phe Gly Cys Ala Ser Glu Gly Phe Cys 38

39 (AMX) Ser (AX) Gly 1. spinrendszerek azonosítása (A 3 X) Ala (A 2 M 2 X) Glu 2. spinrendszerek szekvenciális rendezése - Ala Ser Glu - Gly - 3. kényszerfeltételek alapján szerkezetszámolás 39

40 szerkezetszámolás Egy fehérje modul 1 H- 1 H NOESY spektruma 40

41 Fehérjék NMR-szerkezetvizsgálata Kurt Wüthrich (ETH, Zürich) OmpX bakteriális membránfehérje térszerkezete Mozgékony szekvenciarésszel rendelkező prion fehérje 41

42 Biomolekulák dinamikai vizsgálata GCN4 élesztő transzkripciós faktor gerinc-dinamikájának vizsgálata Arthur G. Palmer III (Columbia University) 42

43 Fehérje feltekeredés vizsgálatok (ns és ms időskálán) Alan Fersht (Cambridge University) 43

44 Our most recent targets: dutpase Beáta Vértessy Calpastatin Péter Tompa MASP-2 Péter Gál CCP Péter Gál APPase László Polgár Peptides and miniproteins Gábor Tóth Homeodomains Botond Penke P DLC László Nyitray Calmodulin Ovádi Judit 44 Inhibitors László Gráf

45 A kulcs & zár modell (Emil Fischer) Hogyan tervezzünk gyógyszert? Minél többet meg kell tudnunk a 45 fehérjék dinamikus téralkatáról!

46 A kalmodulin reorientációja célfehérje vagy antagonista hatására a molekula összecsuklik, - az N- és C-terminális közel kerül egymáshoz, - ám a D és az E α-hélixeket összekötő részről az alacsony elektronsűrűség miatt nincs krisztallográfiai információ együttműködésben Ovádi Judittal és munkatársaival (MTA SZBK Enzimológiai Intézet) 46

47 Vinca alkaloidok (biszindol) mint CaM antagonisták Catharantus (Vinca) roseus alkaloidjai (vinblasztin, vinkrisztin) VBL - sejtosztódásgátló hatás (kemoterápia) - célpontjuk a sejt mikrotubuláris hálózata - jelentős mellékhatások (neurotoxicitás) Vinblasztin KAR - In vivo kísérletekben ugyanolyan hatékonynak bizonyult, mint a természetes vinca alkaloidok - Mellékhatása jóval kisebb KAR-2 Orosz és mts. British J.Pharmacol. 1997, 121, 947 Orosz és mts. British J.Pharmacol. 1997, 121, Orosz és mts. British J.Cancer 1999, 79, 1356

48 A kalmodulin 1 H- 15 N HSQC spektruma A kalmodulin 1 H spektrumának amid NH és aromás tartománya J 90 Hz ( p p m )

49 A kalmodulin KAR2 vel való titrálása során kapott 1 H- 15 N HSQC spektrumok összevetése l5 N l H 49

50 Felület, nmr színezés alapján (két szín) ( KAR2 yes) Ligandkötés azonosítása 50

51 Az ERD-14 egy szerkezetnélküli fehérje: lombiktól az élő sejtig ΔG Tompa 51 Péter Szalainé Ágoston Bianka

52 Dehidrin = abiotikus stressz (abszcizinsav) hatására fejeződik ki a növényben: vízhiány, magas sótartalom (NaCl), hideg ERD14 = Early Response to Dehydration aminosav, 20 kda rendezetlen fehérje sok poláris, töltött aminosav kevés hidrofób aminosav 52

53 TROSY-HSQC spektrum 15 N J 90 Hz 1 H 800 MHz 10 mm MES ph K 53

54 hetnoe Az ERD14-nek nincs oldatban térszerkezete (valójában túl sok is van neki) Relaxációs mérések: merev flexibilis 5 régió, amely 5-25 % helikális hajlammal rendelkezik 54

55 Vizes oldat vagy puffer sejt Ez különösen igaz rendezetlen fehérjékre: A fehérjezsúfoltság / crowding a sejten belül sokat számíthat! Élő sejtben kell mérni! E.coli az NMR csőben 55

56 NMR élő E.coli-ban in cell NMR E.coli ERD14 kifejeztetés Sűrű sejtszuszpenzió az NMR csőben 500 MHz sejtekben 277 K Pufferben Élő sejtekben Sejtek felülúszója üres spektrumot ad 56

57 Kontroll az in cell NMR-hez Dextrán: Sejten belüli állapotot (fehérjesűrűséget és viszkozitást) utánoz Itt nem tűnnek el a jelek Puffer Puffer + 150g/L dextrán => Puffer Amit látunk, + 300g/L tényleges kötődés, dextrán kölcsönhatás! 57

58 Szerkezet sejtben = Rendezetlen Eltűnő Elmozduló Helyükön maradó csúcsok 5 régió, amely valamihez kötődik a sejtben 58

59 A molekuláris mozgás időskálái hurkok és kanyarok záródása 0.1ms 10ms másodlagos szerkezeti elemek 10ns 1ms feltekeredés 1ms 1h H/D R ex Rot. Dif. korrel. idő 1ns<t c < 10ns gerinc dinamika 1ps 10ns t lokális aggregáció 1 s 1 év Kiss Róbert t effektiv = t C +t lok. oldallánc forgás 0.1ps 1059 ps

60 A mozgás időskálái ~ 1s ~ 100 ezer 1h ~ 30 millió 1év 60

61 A fehérjék belső dinamikája NMR ps 10-9 ns 10-6 ms 10-3 ms 10 0 s 10 2 ~min sec feltekeredés kötések mozgásai domének, nagyobb szerkezeti egységek mozgásai Shifman J M et al. PNAS 2006;103:

62 A fehérjék belső dinamikája NMR ps 10-9 ns 10-6 ms 10-3 ms 10 0 s 10 2 ~min sec R 1, R 2, NOE R 1 r CPMG Line-shape analízis ZZ- csere 62

63 Fehérjék mozgása; ms-ms időskála Belső dinamikája lefedi a különböző partnerfehérjékkel alkotott komplexeiben észlelt konformációs variációkat. R 1, R 2, NOE R 1 r NMR /RDC X-ray különböző partnerfehérjékkel ms-ms időskálájú mozgások alapján számolt S 2 Ubiquitin; a halál csókja Lange és mts., Science, 2008, 320,

64 Fehérjék mozgása; ns-ps időskála R 1, R 2, NOE R 1 r NMR /NOE + S 2 MUMO szerkezeti sokaság Gáspári Zoltán X-ray a komplexről főkomponens-elemzés Az inhibitor belső dinamikájával számolt térszerkezetek lefedik az enzimmel alkotott komplexben (3 eltérő komplex) mért röntgen konformereket. 64 Gráf László

65 Fehérjék szerkezete: mit rejt a kristály? Fehérje röntgenkrisztallográfia: kémiai Nobel-díj, 1962 Max Perutz, John Kendrew kristályban az egyes atomok helye térben jól meghatározott részletgazdag szerkezet 65

66 spinrendszerek azonosítása 2H z N x C α(i-1) z cos(ω N t 1 ) és 2H z N x C α(i) 3D-NHCA z cos(ω N t 1 ) 2H z N y cos(ω N t 1 ) H z H x cos(ω N t 1 ) cos(ω Cα(i) t 2 ) cos(ω H t 3 ) és H x cos(ω N t 1 ) cos(ωc α(i-1) t 2 ) cos(ω H t 3 ) 2H z N y Cα(i) C a(i- 1) H N C a(i) 2H y N x C y α(i-1) cos(ω N t 1 ) és 2H y N x C y α(i) cos(ω N t 1 ) 2H y N x C α(i-1) y cos(ω N t 1 ) cos(ω Cα(i) t 2 ) és 2H y N x C α(i) y cos(ω N t 1 ) cos(ωc α(i-1) t 2 ) NH Cα(i-1 N 66 A skaláris csatolás okozta modulációktól eltekintünk

NMR a peptid- és fehérje-kutatásban

NMR a peptid- és fehérje-kutatásban NMR a peptid- és fehérje-kutatásban A PDB adatbázisban megtalálható NMR alapú fehérjeszerkezetek számának alakulása az elmúlt évek során 4000 3500 3000 2500 2000 1500 1000 500 0 1987 1988 1989 1990 1991

Részletesebben

Az NMR spektroszkópia a fehérjék szolgálatában. Bodor Andrea. ELTE Szerkezeti Kémia és Biológia Laboratórium Visegrád

Az NMR spektroszkópia a fehérjék szolgálatában. Bodor Andrea. ELTE Szerkezeti Kémia és Biológia Laboratórium Visegrád Az NMR spektroszkópia a fehérjék szolgálatában Bodor Andrea ELTE Szerkezeti Kémia és Biológia Laboratórium 2011.01.18. Visegrád Nobel díjak tükrében 1952 Fizika: Módszer és elméleti alapok Felix Bloch

Részletesebben

FEHÉRJÉK A MÁGNESEKBEN. Bodor Andrea ELTE, Szerkezeti Kémiai és Biológiai Laboratórium. Alkímia Ma, Budapest,

FEHÉRJÉK A MÁGNESEKBEN. Bodor Andrea ELTE, Szerkezeti Kémiai és Biológiai Laboratórium. Alkímia Ma, Budapest, FEHÉRJÉK A MÁGNESEKBEN Bodor Andrea ELTE, Szerkezeti Kémiai és Biológiai Laboratórium Alkímia Ma, Budapest, 2013.02.28. I. FEHÉRJÉK: L-α aminosavakból felépülő lineáris polimerek α H 2 N CH COOH amino

Részletesebben

0) I=0 I=1/2 I=k (k=1,2,..) töltéssel forog (I=1/2)

0) I=0 I=1/2 I=k (k=1,2,..) töltéssel forog (I=1/2) Az NMR-spektroszkópia szükséges feltétele a nullától különbözÿ magspin (I 0) I=0 mind a protonok mind a neutronok száma páros ( 12 C, 16 O) I=1/2 ha tömegszáma páratlan ( 1, 3, 13 C, 15 N, 19 F, 57 Fe,

Részletesebben

Biológiailag aktív molekulák kölcsönhatásvizsgálata NMR-spektroszkópiával

Biológiailag aktív molekulák kölcsönhatásvizsgálata NMR-spektroszkópiával Biológiailag aktív molekulák kölcsönhatásvizsgálata MR-spektroszkópiával 1 H- 15 -HSQC Perczel András Budapest, 2004. 03. 26. Ugyanazt az MR paramétert ( 1 H, 13 C, 15, 31 P, 57 Fe) követjük. L szabad

Részletesebben

A BioNMR spektroszkópia alapjai

A BioNMR spektroszkópia alapjai A BioNMR spektroszkópia alapjai Az NMR-spektroszkópia szükséges feltétele a nullától különböző magspin (I 0) 1) I=0, ha mind a protonok mind a neutronok száma páros: ( 12 C, 16 O) 2) I=1/2, ha tömegszáma

Részletesebben

Dóczy-Bodnár Andrea október 3. Magmágneses rezonancia (NMR) és elektronspinrezonancia (ESR) alapjai

Dóczy-Bodnár Andrea október 3. Magmágneses rezonancia (NMR) és elektronspinrezonancia (ESR) alapjai Dóczy-Bodnár Andrea 2012. október 3. Magmágneses rezonancia (NMR) és elektronspinrezonancia (ESR) alapjai Atommagok saját impulzusmomentuma (spin) protonok, neutronok (elektronhoz hasonlóan) saját impulzusmomentum

Részletesebben

Magmágneses rezonancia (NMR) és elektronspinrezonancia (ESR) alapjai

Magmágneses rezonancia (NMR) és elektronspinrezonancia (ESR) alapjai Magmágneses rezonancia (NMR) és elektronspinrezonancia (ESR) alapjai Dóczy-Bodnár Andrea 2011. szeptember 28. Magmágneses rezonanciához kapcsolódó Nobel-díjak * Otto Stern, USA: Nobel Prize in Physics

Részletesebben

MÁGNESES MAGREZONANCIA A KÉMIÁBAN, GYÓGYSZERÉSZETBEN, ORVOSTUDOMÁNYBAN

MÁGNESES MAGREZONANCIA A KÉMIÁBAN, GYÓGYSZERÉSZETBEN, ORVOSTUDOMÁNYBAN MÁGNESES MAGREZONANIA A KÉMIÁBAN, GYÓGYSZERÉSZETBEN, ORVOSTUDOMÁNYBAN 1) A jelenség 2) Nuclear Magnetic Resonance (NMR) 3) Magnetic Resonance Imaging (MRI) 4) Magnetic Resonance Spectroscopy (MRS) NMR

Részletesebben

A fehérjék harmadlagos vagy térszerkezete. Még a globuláris fehérjék térszerkezete is sokféle lehet.

A fehérjék harmadlagos vagy térszerkezete. Még a globuláris fehérjék térszerkezete is sokféle lehet. A fehérjék harmadlagos vagy térszerkezete Még a globuláris fehérjék térszerkezete is sokféle lehet. A ribonukleáz redukciója és denaturálódása Chrisian B. Anfinsen A ribonukleáz renaturálódása 1972 obel-díj

Részletesebben

Mágneses módszerek a műszeres analitikában

Mágneses módszerek a műszeres analitikában Mágneses módszerek a műszeres analitikában NMR, ESR: mágneses momentummal rendelkező anyagok minőségi és mennyiségi meghatározására alkalmas Atommag spin állapotok közötti energiaátmenetek: NMR (magmágneses

Részletesebben

1D multipulzus NMR kísérletek

1D multipulzus NMR kísérletek D multipulzus NMR kísérletek Rohonczy János ELTE, Szervetlen Kémia Tanszék Modern szerkezetkutatási módszerek elıadás 202. . Protonlecsatolt heteronukleáris mérések Elv 3 C mag detektálása alatt a protoncsatornán

Részletesebben

Szerves vegyületek szerkezetfelderítése NMR spektroszkópia

Szerves vegyületek szerkezetfelderítése NMR spektroszkópia Szerves vegyületek szerkezetfelderítése NMR spektroszkópia Az anyag összeállításához Krajsovszky Gábor, Mátyus Péter és Perczel András diáit is felhasználtuk. 1 (hullámhossz) -sugárzás röntgensugárzás

Részletesebben

Spektroszkópiai módszerek 2.

Spektroszkópiai módszerek 2. Spektroszkópiai módszerek 2. NMR spektroszkópia magspinek rendeződése külső mágneses tér hatására az eredő magspin nem nulla, ha a magot alkotó nukleonok közül legalább az egyik páratlan a szerves kémiában

Részletesebben

Mágneses rezonanciás képalkotás AZ MRI elve, fizikai alapok

Mágneses rezonanciás képalkotás AZ MRI elve, fizikai alapok MR-ALAPTANFOLYAM 2011 SZEGED Mágneses rezonanciás képalkotás AZ MRI elve, fizikai alapok Martos János Országos Idegtudományi Intézet Az agy MR vizsgálata A gerinc MR vizsgálata Felix Bloch Edward Mills

Részletesebben

ERD14: egy funkcionálisan rendezetlen dehidrin fehérje szerkezeti és funkcionális jellemzése

ERD14: egy funkcionálisan rendezetlen dehidrin fehérje szerkezeti és funkcionális jellemzése Doktori értekezés tézisei ERD14: egy funkcionálisan rendezetlen dehidrin fehérje szerkezeti és funkcionális jellemzése DR. SZALAINÉ ÁGOSTON Bianka Ildikó Témavezetők Dr. PERCZEL András egyetemi tanár és

Részletesebben

lásd: enantiotóp, diasztereotóp

lásd: enantiotóp, diasztereotóp anizokrón anisochronous árnyékolási állandó shielding constant árnyékolási járulékok és empirikus értelmezésük shielding contributions diamágneses és paramágneses árnyékolás diamagnetic and paramagnetic

Részletesebben

Magmágneses rezonancia. alapjai. Magmágneses rezonanciához kapcsolódó Nobel-díjak. γ N = = giromágneses hányados. v v

Magmágneses rezonancia. alapjai. Magmágneses rezonanciához kapcsolódó Nobel-díjak. γ N = = giromágneses hányados. v v Magmágneses rezonancia (MR) és elektronspinrezonancia (ESR) alapjai Dóczy-Bodnár Andrea 211. szeptember 28. Magmágneses rezonanciához kapcsolódó obel-díjak * Otto Stern, USA: obel Prize in Physics 1943,

Részletesebben

Biomolekuláris szerkezeti dinamika

Biomolekuláris szerkezeti dinamika Kísérletek, mérések célja Biomolekuláris szerkezeti dinamika Kellermayer Miklós Biomolekuláris szerkezet és működés pontosabb megismerése (folyamatok, állapotok, átmenetek, kölcsönhatások, mozgások, stb.)

Részletesebben

M N. a. Spin = saját impulzus momentum vektor: L L nagysága:

M N. a. Spin = saját impulzus momentum vektor: L L nagysága: Az MR és MRI alapjai Magmágneses Rezonancia Spektroszkópia (MR) és Mágneses Rezonancia Képalkotás (MRI) uclear Magnetic Resonance: Alapelv felfedezéséért Fizikai obel díj, 1952 Felix Bloch és Edward M.

Részletesebben

Biomolekuláris szerkezeti dinamika

Biomolekuláris szerkezeti dinamika Kísérletek, mérések célja Biomolekuláris szerkezeti dinamika Kellermayer Miklós Biomolekuláris szerkezet és működés pontosabb megismerése (folyamatok, állapotok, átmenetek, kölcsönhatások, stb.) Rádióspektroszkópiák

Részletesebben

A KAR-2, egy antimitotikus ágens egyedi farmakológiájának atomi és molekuláris alapjai

A KAR-2, egy antimitotikus ágens egyedi farmakológiájának atomi és molekuláris alapjai A KAR-2, egy antimitotikus ágens egyedi farmakológiájának atomi és molekuláris alapjai A doktori értekezés tézisei Horváth István Eötvös Loránd Tudományegyetem Biológia Doktori Iskola (A Doktori Iskola

Részletesebben

Hangfrekvenciás mechanikai rezgések vizsgálata

Hangfrekvenciás mechanikai rezgések vizsgálata Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk

Részletesebben

Több oxigéntartalmú funkciós csoportot tartalmazó vegyületek

Több oxigéntartalmú funkciós csoportot tartalmazó vegyületek Több oxigéntartalmú funkciós csoportot tartalmazó vegyületek Hidroxikarbonsavak α-hidroxi karbonsavak -Glikolsav (kézkrémek) - Tejsav (tejtermékek, izomláz, fogszuvasodás) - Citromsav (citrusfélékben,

Részletesebben

Az NMR képalkotás alapjai. Bányai István Kolloid- és Környezetkémiai Tanszék DE, TEK

Az NMR képalkotás alapjai. Bányai István Kolloid- és Környezetkémiai Tanszék DE, TEK Az NMR képalkotás alapjai Bánai István Kolloid- és Körnezetkémiai Tanszék DE, TEK Az NMR alapjai alapjai Bánai István Kolloid- és Körnezetkémiai Tanszék DE, TEK A mágnesség A mágneses erı: F = pp 1 2 r

Részletesebben

MedInProt Szinergia IV. program. Szerkezetvizsgáló módszer a rendezetlen fehérjék szerkezetének és kölcsönhatásainak jellemzésére

MedInProt Szinergia IV. program. Szerkezetvizsgáló módszer a rendezetlen fehérjék szerkezetének és kölcsönhatásainak jellemzésére MedInProt Szinergia IV. program Szerkezetvizsgáló módszer a rendezetlen fehérjék szerkezetének és kölcsönhatásainak jellemzésére Tantos Ágnes MTA TTK Enzimológiai Intézet, Rendezetlen fehérje kutatócsoport

Részletesebben

NMR spektroszkópia a fehérje biokémiában

NMR spektroszkópia a fehérje biokémiában NMR spektroszkópia a fehérje biokémiában Závodszky Péter Beinrohr László MTA SzBK Enzimológiai Intézet NMR spektroszkópia a fehérje biokémiában Závodszky Péter Beinrohr László MTA SzBK Enzimológiai Intézet

Részletesebben

Egy antifungális diszulfid fehérje szerkezeti dinamikája és hideg/meleg kitekeredése (avagy PAF, a hűvös sárkány)

Egy antifungális diszulfid fehérje szerkezeti dinamikája és hideg/meleg kitekeredése (avagy PAF, a hűvös sárkány) Egy antifungális diszulfid fehérje szerkezeti dinamikája és hideg/meleg kitekeredése (avagy PAF, a hűvös sárkány) Batta Gyula Debreceni Egyetem Szerkezeti Biológiai és Molekuláris Felismerési Műhely structbiol.unideb.hu

Részletesebben

BIOFIZIKA. Metodika- 4. Liliom Károly. MTA TTK Enzimológiai Intézet liliom@enzim.hu

BIOFIZIKA. Metodika- 4. Liliom Károly. MTA TTK Enzimológiai Intézet liliom@enzim.hu BIOFIZIKA 2012 11 26 Metodika- 4 Liliom Károly MTA TTK Enzimológiai Intézet liliom@enzim.hu A biofizika előadások temamkája 1. 09-03 Biofizika: fizikai szemlélet, modellalkotás, biometria 2. 09-10 SZÜNET

Részletesebben

Atomok és molekulák elektronszerkezete

Atomok és molekulák elektronszerkezete Atomok és molekulák elektronszerkezete Szabad atomok és molekulák Schrödinger egyenlete Tekintsünk egy kvantummechanikai rendszert amely N n magból és N e elektronból áll. Koordinátáikat jelölje rendre

Részletesebben

A Ca 2+ szerepe a tormaperoxidáz enzim aktív szerkezetében. Szigeti Krisztián

A Ca 2+ szerepe a tormaperoxidáz enzim aktív szerkezetében. Szigeti Krisztián A Ca 2+ szerepe a tormaperoxidáz enzim aktív szerkezetében Doktori értekezés Szigeti Krisztián Semmelweis Egyetem Gyógyszertudományok Doktori Iskola Témavezető: Hivatalos Bírálók: Szigorlati Bizottság

Részletesebben

I. Az NMR spektrométer

I. Az NMR spektrométer I. Az NMR spektrométer I. Az NMR spektrométer fő részei Rádióelektronikai konzol Munkaállomás Mágnes 2 I. Ultra-árnyékolt mágnesek Kettős szupravezető tekerccsel csökkenthető a mágnes szórt tere. Kisebb

Részletesebben

A polipeptidlánc szabályozott lebontása: mit mondanak a fehérjekristályok? Harmat Veronika ELTE Kémiai Intézet, Szerkezeti Kémia és Biológia Laboratórium MTA-ELTE Fehérjemodellező Kutatócsoport A magyar

Részletesebben

A fehérjék szerkezeti hierarchiája. Fehérje-szerkezetek! Klasszikus szerkezet-funkció paradigma. szekvencia. funkció. szerkezet! Myoglobin.

A fehérjék szerkezeti hierarchiája. Fehérje-szerkezetek! Klasszikus szerkezet-funkció paradigma. szekvencia. funkció. szerkezet! Myoglobin. Myoglobin Fehérje-szerkezetek! MGLSDGEWQLVLNVWGKVEADIPGGQEVLIRLFK GPETLEKFDKFKLKSEDEMKASE DLKKGATVLTALGGILKKKGEAEIKPLAQSA TKKIPVKYLEFISECIIQVLQSK PGDFGADAQGAMNKALELFRKDMASNYKELGFQG Fuxreiter Mónika! Debreceni

Részletesebben

Modern Fizika Labor. 12. Infravörös spektroszkópia. Fizika BSc. A mérés dátuma: okt. 04. A mérés száma és címe: Értékelés:

Modern Fizika Labor. 12. Infravörös spektroszkópia. Fizika BSc. A mérés dátuma: okt. 04. A mérés száma és címe: Értékelés: Modern Fizika Labor Fizika BSc A mérés dátuma: 011. okt. 04. A mérés száma és címe: 1. Infravörös spektroszkópia Értékelés: A beadás dátuma: 011. dec. 1. A mérést végezte: Domokos Zoltán Szőke Kálmán Benjamin

Részletesebben

Peptid- és fehérjék másodlagos-, harmadlagos- és negyedleges szerkezete

Peptid- és fehérjék másodlagos-, harmadlagos- és negyedleges szerkezete Peptid- és fehérjék másodlagos-, harmadlagos- és negyedleges szerkezete Polipeptidek térszerkezete Tipikus (rendezett) konformerek em tipikus (rendezetlen) konformerek Periodikus vagy homokonformerek Aperiodikus

Részletesebben

Fluktuáló terű transzverz Ising-lánc dinamikája

Fluktuáló terű transzverz Ising-lánc dinamikája 2016. szeptember 8. Phys. Rev. B 93, 134305 Modell H(t) = 1 2 L 1 σi x σi+1 x h(t) 2 i=1 h(t)-fluktuáló mágneses tér. Hogyan terjednek jelek a zajos rendszerben? L σi z, i=1 Zajok típusai 1 fehér zaj 2

Részletesebben

Röntgen sugárzás. Wilhelm Röntgen. Röntgen feleségének keze

Röntgen sugárzás. Wilhelm Röntgen. Röntgen feleségének keze Röntgendiffrakció Kardos Roland 2010.03.08. Előadás vázlata Röntgen sugárzás Interferencia Huygens teória Diffrakció Diffrakciós eljárások Alkalmazás Röntgen sugárzás 1895 röntgen sugárzás felfedezés (1901

Részletesebben

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1 Méréstechnika Rezgésmérés Készítette: Ángyán Béla Iszak Gábor Seidl Áron Veszprém 2014 [Ide írhatja a szöveget] oldal 1 A rezgésekkel kapcsolatos alapfogalmak A rezgés a Magyar Értelmező Szótár megfogalmazása

Részletesebben

Az NMR és a bizonytalansági elv rejtélyes találkozása

Az NMR és a bizonytalansági elv rejtélyes találkozása Az NMR és a bizonytalansági elv rejtélyes találkozása ifj. Szántay Csaba MTA Kémiai Tudományok Osztálya 2012. február 21. a magspínek pulzus-gerjesztésének értelmezési paradigmája GLOBÁLISAN ELTERJEDT

Részletesebben

Peptid- és fehérjék másodlagos-, harmadlagos- és negyedleges szerkezete

Peptid- és fehérjék másodlagos-, harmadlagos- és negyedleges szerkezete Peptid- és fehérjék másodlagos-, harmadlagos- és negyedleges szerkezete Polipeptidek térszerkezete Tipikus (rendezett) konformerek em tipikus (rendezetlen) konformerek Periodikus vagy homokonformerek Aperiodikus

Részletesebben

Bordács Sándor doktorjelölt. anyagtudományban. nyban. Dr. Kézsmárki István Prof. Yohinori Tokura Prof. Ryo Shimano

Bordács Sándor doktorjelölt. anyagtudományban. nyban. Dr. Kézsmárki István Prof. Yohinori Tokura Prof. Ryo Shimano Bordács Sándor doktorjelölt Túl l a távoli t infrán: THz spektroszkópia pia az anyagtudományban nyban Dr. Kézsmárki István Prof. Yohinori Tokura Prof. Ryo Shimano Terahertz sugárz rzás THz tartomány: frekvencia:

Részletesebben

A fehérjék hierarchikus szerkezete

A fehérjék hierarchikus szerkezete Fehérjék felosztása A fehérjék hierarchikus szerkezete Smeller László Semmelweis Egyetem Biofizikai és Sugárbiológiai Intézet Biológiai funkció alapján Enzimek (pl.: tripszin, citokróm-c ) Transzportfehérjék

Részletesebben

TDK lehetőségek az MTA TTK Enzimológiai Intézetben

TDK lehetőségek az MTA TTK Enzimológiai Intézetben TDK lehetőségek az MTA TTK Enzimológiai Intézetben Vértessy G. Beáta egyetemi tanár TDK mind 1-3 helyezettek OTDK Pro Scientia különdíj 1 második díj Diákjaink Eredményei Zsűri különdíj 2 első díj OTDK

Részletesebben

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:

Részletesebben

CD-spektroszkópia. Az ORD spektroskópia alapja

CD-spektroszkópia. Az ORD spektroskópia alapja CD-spektroszkópia Az ORD spektroskópia alapja - A XIX. század elején Biot megfigyelte, hogy bizonyos, a természetben előforduló szerves anyagok a lineárisan polarizált fény síkját elforgatják. - 1817-ben

Részletesebben

Fehérjeszerkezet, és tekeredés

Fehérjeszerkezet, és tekeredés Fehérjeszerkezet, és tekeredés Futó Kinga 2013.10.08. Polimerek Polimer: hasonló alegységekből (monomer) felépülő makromolekulák Alegységek száma: tipikusan 10 2-10 4 Titin: 3,435*10 4 aminosav C 132983

Részletesebben

Készítette: NÁDOR JUDIT. Témavezető: Dr. HOMONNAY ZOLTÁN. ELTE TTK, Analitikai Kémia Tanszék 2010

Készítette: NÁDOR JUDIT. Témavezető: Dr. HOMONNAY ZOLTÁN. ELTE TTK, Analitikai Kémia Tanszék 2010 Készítette: NÁDOR JUDIT Témavezető: Dr. HOMONNAY ZOLTÁN ELTE TTK, Analitikai Kémia Tanszék 2010 Bevezetés, célkitűzés Mössbauer-spektroszkópia Kísérleti előzmények Mérések és eredmények Összefoglalás EDTA

Részletesebben

MRI áttekintés. Orvosi képdiagnosztika 3. ea ősz

MRI áttekintés. Orvosi képdiagnosztika 3. ea ősz MRI áttekintés Orvosi képdiagnosztika 3. ea. 2015 ősz MRI Alapelv: hogyan lehet mágneses vizsgálattal valamilyen anyag (jelen esetben az élő emberi szervezet) belső felépítéséről információt kapni? A mágneses

Részletesebben

Kémiai reakciók mechanizmusa számítógépes szimulációval

Kémiai reakciók mechanizmusa számítógépes szimulációval Kémiai reakciók mechanizmusa számítógépes szimulációval Stirling András stirling@chemres.hu Elméleti Kémiai Osztály Budapest Stirling A. (MTA Kémiai Kutatóközpont) Reakciómechanizmus szimulációból 2007.

Részletesebben

palkotás alapjai Bányai István Kolloid- és Környezetkémiai Tanszék DE, TEK

palkotás alapjai Bányai István Kolloid- és Környezetkémiai Tanszék DE, TEK Az NMR képalkotk palkotás alapjai Bánai István Kolloid- és Körnezetkémiai Tanszék DE, TEK Az NMR alapjai alapjai Bánai István Kolloid- és Körnezetkémiai Tanszék DE, TEK Kvantummechanikai alapok Az atommag

Részletesebben

Gyors, multidimenzionális mérések adaptálása és tesztelése a p53 fehérje rendezetlen TAD régiójának esetében

Gyors, multidimenzionális mérések adaptálása és tesztelése a p53 fehérje rendezetlen TAD régiójának esetében Tudományos Diákköri Dolgozat SEBÁK FANNI Gyors, multidimenzionális mérések adaptálása és tesztelése a p53 fehérje rendezetlen TAD régiójának esetében Témavezető: Dr. Bodor Andrea Analitikai Kémiai Tanszék

Részletesebben

Gáspári Zoltán. Élő molekulák az élet molekulái

Gáspári Zoltán. Élő molekulák az élet molekulái Gáspári Zoltán Élő molekulák az élet molekulái Invokáció Kajtár Márton 1929-1991 www.eotvoskiado.hu Élő és élettelen? Élő és élettelen: a kemoton Élő kémiai rendszer, de nem élőlény (Gánti, 1975) Autokatalitikus

Részletesebben

Térjünk vissza a mágneses momentumok viselkedésének a leírásához, hogy megértsük a modern, Fourier-transzformációs NMR spektrométer működési elvének

Térjünk vissza a mágneses momentumok viselkedésének a leírásához, hogy megértsük a modern, Fourier-transzformációs NMR spektrométer működési elvének 1 Térjünk vissza a mágneses momentumok viselkedésének a leírásához, hogy megértsük a modern, Fourier-transzformációs NMR spektrométer működési elvének a megértéséhez. A jelenségeket két egymással szoros

Részletesebben

Mechanika I-II. Példatár

Mechanika I-II. Példatár Budapesti Műszaki és Gazdaságtudományi Egyetem Műszaki Mechanika Tanszék Mechanika I-II. Példatár 2012. május 24. Előszó A példatár célja, hogy támogassa a mechanika I. és mechanika II. tárgy oktatását

Részletesebben

Vektorok, mátrixok, tenzorok, T (emlékeztető)

Vektorok, mátrixok, tenzorok, T (emlékeztető) Vektorok, mátrixok, tenzorok, T (emlékeztető) A = T*B Tenzor: lineáris vektorfüggvény, amely két vektormennyiség közötti összefüggést ír le, egy négyzetmátrix, M reprezentálja. M M M M = M M M M M M 11

Részletesebben

Szerves spektroszkópia

Szerves spektroszkópia Szerves spektroszkópia ETR kód: kv1n1es5 Típus: kötelezően választható előadás (BSC, 5. félév) Heti óraszám: 2, Kreditérték: 2 Tantárgyfelelős: Vass Elemér Az előadás célkitűzése A szerves vegyületek szerkezetvizsgálatában

Részletesebben

Szilárdtestek el e ek e tr t o r n o s n zer e k r ez e et e e t

Szilárdtestek el e ek e tr t o r n o s n zer e k r ez e et e e t Szilárdtestek elektronszerkezete Kvantummechanikai leírás Ismétlés: Schrödinger egyenlet, hullámfüggvény, hidrogén-atom, spin, Pauli-elv, periódusos rendszer 2 Szilárdtestek egyelektron-modellje a magok

Részletesebben

Medical Imaging 10 2009.04.07. 1. Mágneses rezonancia (MR, MRI, NMR) x B. Makroszkopikus tárgyalás

Medical Imaging 10 2009.04.07. 1. Mágneses rezonancia (MR, MRI, NMR) x B. Makroszkopikus tárgyalás Mágneses rezonancia (MR, MRI, NMR) Bloch, Purcell 1946, Nobel díj 1952. Mágneses momentum + - Mágneses térben a mágneses momentum az erővonalakkal csak meghatározott szöget zárhat be. Különböző irányokhoz

Részletesebben

ω mennyiségek nem túl gyorsan változnak

ω mennyiségek nem túl gyorsan változnak Licenszvizsga példakérdések Fizika szak KVANTUMMECHANIKA Egy részecskére felírt Schrödinger egyenlet szétválasztható a három koordinátatengely irányában levő egydimenziós egyenletre ha a potenciális energiára

Részletesebben

Abszorpciós spektroszkópia

Abszorpciós spektroszkópia Tartalomjegyzék Abszorpciós spektroszkópia (Nyitrai Miklós; 2011 február 1.) Dolgozat: május 3. 18:00-20:00. Egész éves anyag. Korábbi dolgozatok nem számítanak bele. Felmentés 80% felett. A fény; Elektromágneses

Részletesebben

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18.

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18. Modern Fizika Labor Fizika BSc A mérés dátuma: 28. március 18. A mérés száma és címe: 5. mérés: Elektronspin rezonancia Értékelés: A beadás dátuma: 28. március 26. A mérést végezte: 1/7 A mérés leírása:

Részletesebben

3. Sejtalkotó molekulák III.

3. Sejtalkotó molekulák III. 3. Sejtalkotó molekulák III. Fehérjék, fehérjeszintézis (transzkripció, transzláció, posztszintetikus módosítások). Enzimműködés 3.1 Fehérjék A genetikai információ egyik fő manifesztálódása Számos funkció

Részletesebben

Az NMR spektroszkópia alapjai Dr. Rohonczy János ELTE Szervetlen Kémiai Tanszék

Az NMR spektroszkópia alapjai Dr. Rohonczy János ELTE Szervetlen Kémiai Tanszék Az NMR spektroszkópia alapjai Dr. Rohonczy János ELTE Szervetlen Kémiai Tanszék A mágneses magrezonancia spektroszkópia (röviden NMR angolul Nuclear Magnetic Resonace) egyike azon modern kémiai szerkezetvizsgálati

Részletesebben

Fizikai kémia Mágneses magrezonancia spektroszkópia alapjai. Mágneses magrezonancia - NMR. Mágneses magrezonancia - NMR

Fizikai kémia Mágneses magrezonancia spektroszkópia alapjai. Mágneses magrezonancia - NMR. Mágneses magrezonancia - NMR Fizikai kémia 2.. Mágneses magrezonancia spektroszkópia alapjai Dr. Berkesi Ottó SZTE Fizikai Kémiai és Anyagtudományi Tanszéke 205 Mágneses magrezonancia - NMR Amint azt a korábbiakban megismertük a molekulákban

Részletesebben

Adatelemzési eljárások az idegrendszer kutatásban Somogyvári Zoltán

Adatelemzési eljárások az idegrendszer kutatásban Somogyvári Zoltán Adatelemzési eljárások az idegrendszer kutatásban Somogyvári Zoltán MTA KFKI Részecske és Magfizikai Intézet, Biofizikai osztály Az egy adatsorra (idősorra) is alkalmazható módszerek Példa: Az epileptikus

Részletesebben

Az elektromágneses hullámok

Az elektromágneses hullámok 203. október Az elektromágneses hullámok PTE ÁOK Biofizikai Intézet Kutatók fizikusok, kémikusok, asztronómusok Sir Isaac Newton Sir William Herschel Johann Wilhelm Ritter Joseph von Fraunhofer Robert

Részletesebben

Times, 2003. október 9 MRI

Times, 2003. október 9 MRI Times, 2003. október 9 MRI: orvosi diagnosztikát forradalmasító képalkotó módszer This Year s Nobel Prize in Medicine The Shameful Wrong That Must Be Righted This year the committee that awards The Nobel

Részletesebben

INTRA- ÉS INTERMOLEKULÁRIS CSEREFOLYAMATOK VIZSGÁLATA OLDAT- ÉS SZILÁRDFÁZISÚ MULTINUKLEÁRIS NMR SPEKTROSZKÓPIÁVAL

INTRA- ÉS INTERMOLEKULÁRIS CSEREFOLYAMATOK VIZSGÁLATA OLDAT- ÉS SZILÁRDFÁZISÚ MULTINUKLEÁRIS NMR SPEKTROSZKÓPIÁVAL DOKTORI ÉRTEKEZÉS INTRA- ÉS INTERMOLEKULÁRIS CSEREFOLYAMATOK VIZSGÁLATA OLDAT- ÉS SZILÁRDFÁZISÚ MULTINUKLEÁRIS NMR SPEKTROSZKÓPIÁVAL Király Péter Témavezető: Dr. Tárkányi Gábor, tud.főmunkatárs, osztályvezető

Részletesebben

24/04/ Röntgenabszorpciós CT

24/04/ Röntgenabszorpciós CT CT ésmri 2012.04.10. Röntgenabszorpciós CT 1 Élettani és Orvostudományi Nobel díj- 1979 Allan M. Cormack, Godfrey N. Hounsfield Godfrey N. Hounsfield Born:28 August 1919, Newark, United Kingdom Died: 12

Részletesebben

Hálózatok számítása egyenáramú és szinuszos gerjesztések esetén. Egyenáramú hálózatok vizsgálata Szinuszos áramú hálózatok vizsgálata

Hálózatok számítása egyenáramú és szinuszos gerjesztések esetén. Egyenáramú hálózatok vizsgálata Szinuszos áramú hálózatok vizsgálata Hálózatok számítása egyenáramú és szinuszos gerjesztések esetén Egyenáramú hálózatok vizsgálata Szinuszos áramú hálózatok vizsgálata Egyenáramú hálózatok vizsgálata ellenállások, generátorok, belső ellenállások

Részletesebben

rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika

rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika Fizika mérnm rnök k informatikusoknak 1. FBNxE-1 Mechanika. előadás Dr. Geretovszky Zsolt 1. szeptember 15. Klasszikus mechanika A fizika azon ága, melynek feladata az anyagi testek mozgására vonatkozó

Részletesebben

Az NMR spektroszkópia alapjai

Az NMR spektroszkópia alapjai Az NMR spektroszkópia alapjai Dr. Rohonczy János ELTE, Szervetlen Kémiai Tanszék 2012. A mágneses magrezonacia spektroszkópia (röviden NMR az angol Nuclear Magnetic Resonace kifejezésbıl) egyike azon modern

Részletesebben

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék Jelek és rendszerek 1 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék 1 Ajánlott irodalom: FODOR GYÖRGY : JELEK ÉS RENDSZEREK EGYETEMI TANKÖNYV Műegyetemi Kiadó, Budapest, 2006

Részletesebben

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS 1 EGYENLETES KÖRMOZGÁS Pálya kör Út ív Definíció: Test körpályán azonos irányban haladva azonos időközönként egyenlő íveket tesz meg. Periodikus mozgás 2 PERIODICITÁS

Részletesebben

Ciszteinek szerkezetstabilizáló hatásának vizsgálata minifehérjékben

Ciszteinek szerkezetstabilizáló hatásának vizsgálata minifehérjékben Tudományos Diákköri Dolgozat KOLTAI ANDRÁS Ciszteinek szerkezetstabilizáló hatásának vizsgálata minifehérjékben Témavezető: Prof. Perczel András ELTE Szerkezeti Kémia és Biológia Laboratórium Eötvös Loránd

Részletesebben

Kvantum kontrol frekvencia csörpölt lézer indukált kónikus keresztez désekkel

Kvantum kontrol frekvencia csörpölt lézer indukált kónikus keresztez désekkel Kvantum kontrol frekvencia csörpölt lézer indukált kónikus keresztez désekkel Vibók Ágnes ELI-ALPS, ELI-HU Non-Prot Ltd. University of Debrecen Department of Theoretical Physics, Áttekintés 1 Kónikus keresztez

Részletesebben

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb

Részletesebben

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja Folytonos rendszeregyenletek megoldása 1. Folytonos idejű (FI) rendszeregyenlet általános alakja A folytonos rendszeregyenletek megoldásakor olyan rendszerekkel foglalkozunk, amelyeknek egyetlen u = u(t)

Részletesebben

Mágnesség és elektromos vezetés kétdimenziós

Mágnesség és elektromos vezetés kétdimenziós Mágnesség és elektromos vezetés kétdimenziós molekulakristályokban Jánossy András Budapesti Műszaki és Gazdaságtudományi Egyetem Fizikai Intézet, Fizika Tanszék Kondenzált Anyagok MTA-BME Kutatócsoport

Részletesebben

Mágneses magrezonancia (NMR) spektroszkópiák

Mágneses magrezonancia (NMR) spektroszkópiák 1 A szerves vegyületek szerkezetének meghatározására kezdetben az elemi analízist és az analógiákon alapuló szerkezetbizonyító szintézist illetve lebontást alkalmazták. Bonyolultabb vegyületek szerkezetének

Részletesebben

Modern Fizika Labor Fizika BSC

Modern Fizika Labor Fizika BSC Modern Fizika Labor Fizika BSC A mérés dátuma: 2009. május 4. A mérés száma és címe: 9. Röntgen-fluoreszencia analízis Értékelés: A beadás dátuma: 2009. május 13. A mérést végezte: Márton Krisztina Zsigmond

Részletesebben

K68464 OTKA pályázat szakmai zárójelentés

K68464 OTKA pályázat szakmai zárójelentés K68464 OTKA pályázat szakmai zárójelentés A fehérjeaggregáció és amiloidképződés szerkezeti alapjai; a különféle morfológiájú aggregátumok kialakulásának körülményei és in vivo hatásuk vizsgálata Vezető

Részletesebben

Röntgendiffrakció, tömegspektrometria, infravörös spektrometria.

Röntgendiffrakció, tömegspektrometria, infravörös spektrometria. A biomolekuláris szerkezet és dinamika vizsgálómódszerei: Röntgendiffrakció, tömegspektrometria, infravörös spektrometria. Smeller László A molekuláris szerkezet és dinamika vizsgáló módszereinek áttekintése

Részletesebben

Nukleinsavak építőkövei

Nukleinsavak építőkövei ukleinsavak Szerkezeti hierarchia ukleinsavak építőkövei Pirimidin Purin Pirimidin Purin Timin (T) Adenin (A) Adenin (A) Citozin (C) Guanin (G) DS bázisai bázis Citozin (C) Guanin (G) RS bázisai bázis

Részletesebben

Műszeres analitika. Abrankó László. Molekulaspektroszkópia. Kémiai élelmiszervizsgálati módszerek csoportosítása

Műszeres analitika. Abrankó László. Molekulaspektroszkópia. Kémiai élelmiszervizsgálati módszerek csoportosítása Abrankó László Műszeres analitika Molekulaspektroszkópia Minőségi elemzés Kvalitatív Cél: Meghatározni, hogy egy adott mintában jelen vannak-e bizonyos ismert komponensek. Vagy ismeretlen komponensek azonosítása

Részletesebben

Fehérjeszerkezet analízis. Fehérjeszerkezet analízis. Fehérjeszerkezet analízis. Fehérjeszerkezet analízis. Fehérjeszerkezet analízis

Fehérjeszerkezet analízis. Fehérjeszerkezet analízis. Fehérjeszerkezet analízis. Fehérjeszerkezet analízis. Fehérjeszerkezet analízis Szerkezet Protein Data Bank (PDB) http://www.rcsb.org/pdb ~ 35 701 szerkezet közepes felbontás 1552 szerkezet d 1.5 Å 160 szerkezet d 1.0 Å 10 szerkezet d 0.8 Å (atomi felbontás) E globális minimum? funkció

Részletesebben

NMR, MRI. Magnetic Resonance Imaging. Times, 2003. október 9 MRI

NMR, MRI. Magnetic Resonance Imaging. Times, 2003. október 9 MRI Times, 2003. október 9 NMR, MRI Magnetic Resonance Imaging This Year s Nobel Prize in Medicine The Shameful Wrong That Must Be Righted This year the committee that awards The Nobel Prize for Physiology

Részletesebben

Modern Fizika Labor. A mérés száma és címe: A mérés dátuma: Értékelés: Infravörös spektroszkópia. A beadás dátuma: A mérést végezte:

Modern Fizika Labor. A mérés száma és címe: A mérés dátuma: Értékelés: Infravörös spektroszkópia. A beadás dátuma: A mérést végezte: Modern Fizika Labor A mérés dátuma: 2005.10.26. A mérés száma és címe: 12. Infravörös spektroszkópia Értékelés: A beadás dátuma: 2005.11.09. A mérést végezte: Orosz Katalin Tóth Bence 1 A mérés során egy

Részletesebben

Morfológiai képalkotó eljárások CT, MRI, PET

Morfológiai képalkotó eljárások CT, MRI, PET Morfológiai képalkotó eljárások CT, MRI, PET Kupi Tünde 2009. 12. 03. Röntgen 19. sz. vége: Röntgen abszorbciós mechanizmusok: - Fotoelektromos hatás - Compton-szórás - Párkeltés Kép: Röntgenabszorbancia

Részletesebben

FELKÉSZÍTÉS AZ EMELTSZINTŰ KÉMIA ÉRETTSÉGIRE 11. ÉVFOLYAM ÉVES ÓRASZÁM: 72 HETI ÓRASZÁM: 2

FELKÉSZÍTÉS AZ EMELTSZINTŰ KÉMIA ÉRETTSÉGIRE 11. ÉVFOLYAM ÉVES ÓRASZÁM: 72 HETI ÓRASZÁM: 2 FELKÉSZÍTÉS AZ EMELTSZINTŰ KÉMIA ÉRETTSÉGIRE 11. ÉVFOLYAM ÉVES ÓRASZÁM: 72 HETI ÓRASZÁM: 2 Tematikai egység Órakeret 1. Anyagszerkezeti ismeretek 10 2. Anyagi halmazok 10 3. Kémiai reakciótípusok 15 4.

Részletesebben

PAMAM DENDRIMEREK VIZES OLDATBELI VISELKEDÉSE ÉS KÖLCSÖNHATÁSA KISMOLEKULÁKKAL

PAMAM DENDRIMEREK VIZES OLDATBELI VISELKEDÉSE ÉS KÖLCSÖNHATÁSA KISMOLEKULÁKKAL DE TTK 1949 PAMAM DENDRIMEREK VIZES OLDATBELI VISELKEDÉSE ÉS KÖLCSÖNHATÁSA KISMOLEKULÁKKAL Egyetemi doktori (PhD) értekezés Kéri Mónika Témavezető: Bányai István, egyetemi tanár DEBRECENI EGYETEM Természettudományi

Részletesebben

A Mössbauer-effektus vizsgálata

A Mössbauer-effektus vizsgálata A Mössbauer-effektus vizsgálata Tóth ence fizikus,. évfolyam 006.0.0. csütörtök beadva: 005.04.0. . A mérés célja három minta: lágyvas, nátrium-nitroprusszid és rozsdamentes acél Mössbauereffektusának

Részletesebben

ALKÍMIA MA Az anyagról mai szemmel, a régiek megszállottságával. www.chem.elte.hu/pr

ALKÍMIA MA Az anyagról mai szemmel, a régiek megszállottságával. www.chem.elte.hu/pr ALKÍMIA MA Az anyagról mai szemmel, a régiek megszállottságával www.chem.elte.hu/pr Kvíz az előző előadáshoz 1) Mikor kapott Paul Ehrlich orvosi Nobel-díjat? A) Idén. B) Pont 100 éve, 1908-ban. C) Nem

Részletesebben

Bevezetés a modern fizika fejezeteibe. 4. (e) Kvantummechanika. Utolsó módosítás: december 3. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 4. (e) Kvantummechanika. Utolsó módosítás: december 3. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 4. (e) Kvantummechanika Utolsó módosítás: 2014. december 3. 1 A Klein-Gordon-egyenlet (1) A relativisztikus dinamikából a tömegnövekedésre és impulzusra vonatkozó

Részletesebben

Árpád Fejedelem Gimnázium és Általános Iskola Megyervárosi Iskola 9. ÉVFOLYAM. 1. Atomszerkezeti ismeretek

Árpád Fejedelem Gimnázium és Általános Iskola Megyervárosi Iskola 9. ÉVFOLYAM. 1. Atomszerkezeti ismeretek . 9. ÉVFOLYAM 1. Atomszerkezeti ismeretek ismerjék és értsék meg a különféle atommodellek használatának előnyeit, ismerjék meg az atomokat felépítő elemi részecskéket, az izotópok gyakorlati jelentőségét,

Részletesebben

Kétállapotú spin idbeli változása mágneses mezben

Kétállapotú spin idbeli változása mágneses mezben Kétállapotú spin idbeli változása mágneses mezben 1. Oszcilláció energiasajátállapotok között Egy mágnest, vagy egy kis köráram mágneses nyomatékkal (momentummal) rendelkezik, ez azmennyiség jellemzi azt,

Részletesebben

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény; Abszorpciós spektroszkópia

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény;  Abszorpciós spektroszkópia Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2015 január 27.) Az abszorpció mérése;

Részletesebben

Felügyelt önálló tanulás - Analízis III.

Felügyelt önálló tanulás - Analízis III. Felügyelt önálló tanulás - Analízis III Kormos Máté Differenciálható sokaságok Sokaságok Röviden, sokaságoknak nevezzük azokat az objektumokat, amelyek egy n dimenziós térben lokálisan k dimenziósak Definíció:

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben