Tananyag: KissBéla-KrebszAnna:Lineárisalgebra,többváltozósfüggvények,valószínűségszámítás,4.18.,



Hasonló dokumentumok
2. A ξ valószín ségi változó eloszlásfüggvénye a következ : x 4 81 F (x) = x 4 ha 3 < x 0 különben

( 1) i 2 i. megbízhatóságú a levont következtetése? A matematikai statisztika eszközeivel értékelje a kapott eredményeket!

Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév

Gyakorló feladatok. Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László

NEVEZETES FOLYTONOS ELOSZLÁSOK

Valószínűségszámítás összefoglaló

1. Név:... Neptun Kód:... Feladat: Egy összeszerel½o üzemben 3 szalag van. Mindehárom szalagon ugyanazt

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás

4 ÉVFOLYAMOS FELVÉTELI EREDMÉNYEK

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

A valószínűségszámítás elemei

4.4. Egy úton hetente átlag 3 baleset történik. Mi a valószínűsége, hogy egy adott héten 2?

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem

A Statisztika alapjai

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

Valószínűségszámítás és Statisztika I. zh november MEGOLDÁS

Gyakorló feladatok a 2. dolgozathoz

Régebbi Matek M1 zh-k. sztochasztikus folyamatokkal kapcsolatos feladatai.

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Bevezetés a hipotézisvizsgálatokba

Közlemény. Biostatisztika és informatika alapjai. Alapsokaság és minta

Kísérlettervezés alapfogalmak

36 0,3. Mo.: 36 0,19. Mo.: 36 0,14. Mo.: 32 = 0, = 0, = 0, Mo.: 32 = 0,25

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma:

A valószínűségszámítás elemei

Mérési hibák

KÖVETKEZTETŐ STATISZTIKA

vásárlót átlag 2 perc alatt intéz el (blokkolás, kártyaleolvasás), de ez az

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok.

Oktatási azonosító Vizsga idıpontja Vizsga típusa Tantárgy Elért pontszám

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok.

Kísérlettervezés alapfogalmak

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

1. Hányféle sorrendben vonulhat ki a pályára egy focimeccsen a tizenegy kezdő játékos?

Valószínűségszámítás és statisztika

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

Gazdasági matematika II. vizsgadolgozat megoldása A csoport

Készítette: Fegyverneki Sándor

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre

Számítógépes döntéstámogatás. Statisztikai elemzés

2. A ξ valószín ségi változó s r ségfüggvénye a következ : c f(x) =

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása

Feladatok 2. zh-ra. 1. Eseményalgebra április Feladat. Az A és B eseményekr l tudjuk, hogy P (A) = 0, 6, P (B) = 0, 7 és

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 3. MA3-3 modul. A valószínűségszámítás elemei

Biometria az orvosi gyakorlatban. Számítógépes döntéstámogatás

Matematika III. 3. A valószínűségszámítás elemei Prof. Dr. Závoti, József

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Gazdasági matematika II. Tantárgyi útmutató

Biomatematika 2 Orvosi biometria

egyetemi jegyzet Meskó Balázs

[Biomatematika 2] Orvosi biometria

6. Előadás. Vereb György, DE OEC BSI, október 12.

4. Az A és B események egymást kizáró eseményeknek vagy idegen (diszjunkt)eseményeknek nevezzük, ha AB=O

x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a

A bergengóc lakosság szemszín szerinti megoszlása a négy tartományban azonos:

Matematika III. Nagy Károly 2011

A sztochasztika alapjai. Szorgalmi feladatok tavaszi szemeszter

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége

Matematika A3 Valószínűségszámítás, 5. gyakorlat 2013/14. tavaszi félév

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA

Adatok statisztikai értékelésének főbb lehetőségei

4. A negatív binomiális eloszlás

Feladatok és megoldások a 8. hétre Építőkari Matematika A3

Elméleti összefoglaló a Valószín ségszámítás kurzushoz

Biomatematikai Tanszék

a megoldásra ajánlott feladatokat jelöli, a nehezebb feladatokat jelöli

Feladatok és megoldások az 1. sorozat Építőkari Matematika A3

egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.

Valószín ségszámítás. Survey statisztika mesterszak és földtudomány alapszak Backhausz Ágnes 2018/2019.

Hipotéziselmélet - paraméteres próbák. eloszlások. Matematikai statisztika Gazdaságinformatikus MSc szeptember 10. 1/58

Normális eloszlás tesztje

Poisson-eloszlás Exponenciális és normális eloszlás (házi feladatok)

Követelmény a 7. évfolyamon félévkor matematikából

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

Statisztika I. 9. előadás. Előadó: Dr. Ertsey Imre

Területi sor Kárpát medence Magyarország Nyugat-Európa

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás

földtudományi BSc (geológus szakirány) Matematikai statisztika elıadás, 2014/ félév 6. elıadás

Gyakorló feladatok valószínűségszámításból végeredményekkel. a megoldásra ajánlott feladatokat jelöli, a nehezebb feladatokat jelöli

Statisztika elméleti összefoglaló

Kutatásmódszertan és prezentációkészítés


biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió

STATISZTIKA. Egymintás u-próba. H 0 : Kefir zsírtartalma 3% Próbafüggvény, alfa=0,05. Egymintás u-próba vagy z-próba

Matematikai statisztika szorgalmi feladatok

Próbaérettségi feladatsor_a NÉV: osztály Elért pont:

Statisztika I. 12. előadás. Előadó: Dr. Ertsey Imre

HÁZI DOLGOZAT. Érmefeldobások eredményei és statisztikája. ELTE-TTK Kémia BSc Tantárgy: Kémia felzárkóztató (A kémia alapjai)

[Biomatematika 2] Orvosi biometria

0,9268. Valószín ségszámítás és matematikai statisztika NGB_MA001_3, NGB_MA002_3 zárthelyi dolgozat

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )

TANTÁRGYI PROGRAM Matematikai alapok II. útmutató

Matematika III. 5. Nevezetes valószínűség-eloszlások Prof. Dr. Závoti, József

Átírás:

// KURZUS: Matematika II. MODUL:Valószínűség-számítás 30. lecke: A nagy számok törvényei Tananyag: KissBéla-KrebszAnna:Lineárisalgebra,többváltozósfüggvények,valószínűségszámítás,4.18., 4.19. fejezet Elméleti összefoglaló A nagy számok törvényének Csebisev-féle alakja Haaξ1,ξ2,,ξn azonosvárhatóérétkűésszórásúfüggetlen valószínűségiváltozókm(ξi )=m várhatóértékkelésd(ξi)=σ szórással(i=1,2,,n),akkorp( ξ1+ξ2+ +ξnn m ε ) σ2ε2 n.tetszőlegesε>0 pozitívszám esetén. AnagyszámoktörvényénekCsebisev-félealakjafüggetlen,azonosvárhatóértékűésszórású valószínűségiváltozókszámtaniközepénekaközösvárhatóértéktőlvalóeltéréséreadbecslést. A nagy számok Bernoulli-féle törvénye Han függetlenkísérletetvégzünkegyp=p(a)valószínűségűa eseménymegfigyeléséreésa kísérleteksoránaza eseménykn-szerkövetkezetbe,akkorp( knn p ε) p (1 p)ε2 n, tetszőlegesε>0 pozitívszám esetén. AnagyszámokBernouli-féletörvényétáltalábanP( knn p <ε)=1 P( knn p ε) 1 p ( 1 p)ε2 n formábanannakbecslésérehasználjuk,hogyarelatívgyakoriságmilyen valószínűséggelközelítimegazadota eseményp valószínűségét. Mivelp (1 p) 14,ezértaBernouli-féletörvénybőlaP( knn p ε) 14 ε2 n egyenlőtlenségteljesüléseiskövetkezik,amiismeretlenp eseténisalkalmazhatóp( knn p <ε)=1 P( knn p ε) 1 14 ε2 n becsléstteszlehetővé. Központi (centrális) határeloszlás tétel Haaξ1,ξ2,,ξn,.azonoseloszlásúésvégesszórásúfüggetlenvalószínűségiváltozókegy sorozata,m(ξi)=m,ésd(ξi)=σ (i=1,2,.),akkora0várhatóértékűés1szórásúηn=ξ1+ ξ2+.+ξn n m n σ,(n=1,2,.)valószínűségiváltozóksorozataaszimptotikusanstandard normáliseloszlású,azazlim n P(ηn<x)=Φ(x),aholΦ(x)astandardnormáliseloszlás eloszlásfüggvényétjelöli. Kidolgozott feladatok coedu.sze.hu/print.php4?print_items= 1/7

30.1. Adjunkbecsléstara,hogylegalábbhányszorkelegyszabályosdobókockátfeldobnunk ahhoz,hogyannakvalószínűsége,hogyadobotszámokátlagalegalább0,1-deleltéravárható értéktől,0,05-nélkisebblegyen? Megoldás: Legyenξiazi-edikdobotszámotjelentővalószínűségiváltozó. Ekkorξivárhatóértéke:M(ξi)=1 16+2 16+3 16+4 16+5 16+6 16=3,5, ξi2 várhatóértéke:m(ξi2)=1 16+4 16+9 16+16 16+25 16+36 16=916, ξiszórásnégyzete:d2(ξi)=m(ξi2) M 2(ξi) 2,9167 AnagyszámoktörvényénekCsebisev-félealakjátalkalmazva: P( ξ1+ξ2+.+ξnn m ε) σ2ε2 n Mostm=3,5,σ2 2,9167 ésε=0,1. Behelyetesítve:P( ξ1+ξ2+.+ξnn 3,5 0,1) 2,91670,01 n Afeladatbanszereplőfeltételteljesül,ha2,91670,01 n 0,05, ebbőlaztkapjuk,hogyn 5833,4. Tehátabecslésünkszerintlegalább5834-szerkelfeldobniakockátahhoz,hogyafeladatban kiszabotakteljesüljenek. 30.2. Valamelytermékbenaselejtekarányátszeretnénkmegálapítani.Ehhez12000mérést végeztekés358selejtettaláltak.adjunkbecsléstannakvalószínűségére,hogyakapotrelatív gyakoriság0,005-nélkevesebbeltérelaténylegesértéktől,vagyisannakvalószínűségétől,hogy egyvéletlenszerűenválasztottermékselejtes! Megoldás: Amérésekszáma:n=12000,aselejtekszámak=358,ebbőlarelatívgyakoriság:kn =0,02983.Reményeinkszerintaselejtvalószínűségeezenértéktőlnem téreltúlságosan.mivelaz ap valószínűségnem ismert,ezértanagyszámokbernouli-féletörvényénekalábbialakjátkel használnunk:p( kn p <ε) 1 14 ε2 n. Jelenesetbenε=0,005. Behelyetesítveaztkapjuk,hogy1 14 ε2 n=1 14 0,0052 12000=16 Vagyiscsupánaztálíthatjuk,hogyakapotrelatívgyakoriságérték16-nálnagyobb valószínűséggel0,005-nélkevesebbeltérelazismeretlenp valószínűségtől.nyilváneznem túl meggyőzőérték,tehátavizsgáltmintaelemszámánaknövelésérevanszükség. 30.3. Adjunkbecsléstara,hogylegalábbhányszorkelegyszabályosdobókockátfeldobniahhoz, hogya4-esekrelatívgyakoriságalegalább0,9valószínűséggel0,02-nálkevesebbeltérel16-tól! Megoldás: AlkalmazzukanagyszámokBernouli-féletörvényét!P( kn p <ε) 1 14 ε2 n Afeladatbanp=16 ésε=0,02. Hateljesül,hogy1 p (1 p)ε2 n 0,9,akkorakívántfeltételnekiselegettetünk. 1 p (1 p)ε2 n 0,9,vagyis1 16 560,0004 n 0,9,ebbőln 3472,2. Tehátbecslésünkszerintlegalább3473-szorkelfeldobniakockát. 30.4. Egytömegtermelésbenkészülőterméketvizsgálunk,hatalmasmennyiségál rendelkezésünkre.becsüljükmeg,hogylegalábbhányeleműmintátkelvenniahhoz,hogyahibás termékekarányát95%-osbiztonsággal,0,05-nálkisebbeltérésselmegtudjukadni! Megoldás: Mivelnem ismertaz,hogyegytermékmekkoravalószínűséggelhibás,ezértabernouli- coedu.sze.hu/print.php4?print_items= 2/7

féletörvényalábbialakjátkelhasználnunk:p( kn p <ε) 1 14 ε2 n. Mostε=0,05 és1 14 ε2 n 0,95 teljesülésétkelvizsgálni. Behelyetesítve:1 14 0,0025 n 0,95,ebbőln 2000. Tehátlegalább2000eleműmintátkelvenni. 30.5. Népszavazásonegybizonyoskérdéseldöntéséhez50%+1beleegyezőszavazatravan szükség.aszavazatokfeldolgozásánakegykoraiszakaszábanazttapasztaljuk,hogy400000 szavazóközül180000szavazotigennelafeltetkérdésre.mekkoraannakvalószínűsége,hogya népszavazásonazigenszavazatokszerezzenektöbbséget? Megoldás: Jelenálásszerintabeleegyezőszavazatokrelatívgyakorisága180000400000=0,45. Ahhoz,hogyazigeneklegyenektöbbségbenp>0,5 szükséges,tehátbernoulitételébenε>0,05 kel. Atételszerint:P( kn p ε) 14 ε2 n. ε=0,05 ésn=400000 eseténahelyetesítésiérték: 14 ε2 n=14 0,0025 400000=0,00025.(0,05-nálnagyobbε eseténennélmégkisebbértéket kapunk) Tehátbecslésünkszerintazigenszavazatoktöbbségének0,00025avalószínűsége(0,025% - "gyakorlatilagnula") 30.6. Egyfűrészüzemben2cm vastagdeszkákatkészítenek,atapasztalatszerint2mm szórással. Raktározáskor100dbdeszkakerülközvetlenülegymásra.Milyenmagastárolóhelyiségrevan szükségahhoz,hogyadeszkák90%-osvalószínűséggelelférjenekbenne? Megoldás: Azegyesdeszkákvastagságaegymástólfüggetlen,azonoseloszlásúvalószínűségi változónaktekinthető(ugyanotkészültek),m(ξ)=20mm várhatóértékkel,ésd(ξ)=2mm szórással.aközpontihatáreloszlástételszerintfüggetlen,azonoseloszlásúvalószínűségiváltozók összegénekstandardizáltjaközelítőlegstandardnormáliseloszlású,azaz P(ξ1+ξ2+.+ξn n M(ξ)n D(ξ)<x) Φ(x),aholΦ(x)astandardnormáliseloszlás eloszlásfüggvényétjelöli. Akérdéstulajdonképpenaz,hogymiazazérték,aminélavalószínűségiváltozókösszege90% valószínűséggelkisebb,vagyismilyenx eseténleszφ(x)=0,9. Táblázatbólkikeresveadódik,hogyx=1,28. Aztkapjuktehát,hogyP(ξ1+ξ2+.+ξn n M(ξ)n D(ξ)<1,28) 0,9. Behelyetesítveaszövegbenszereplőértékeket:P(ξ1+ξ2+.+ξ100 100 20100 2<1,28)=P( ξ1+ξ2+.+ξ100<25,6+2000)=p(ξ1+ξ2+.+ξ100<2025,6) 0,9 Tehátadeszkahalom magassága(adeszkákvastagságánakösszege)0,9valószínűséggel202,56 cm-nélkisebb,vagyislegalábbilyenmagastárolóhelyiségrevanszükség. 30.7. Egy100személyessétahajókapitányahosszúidőalatazttapasztalja,hogyajeggyel rendelkezőknekmindössze90%-ajelenikmegabeszálásnál.ezenfelbuzdulvaegyalkalommal 110jegyetadel.Miavalószínűsége,hogyleszolyanutas,akinem férfelahajóra? Megoldás: Feltételezhetjük,hogyazutasokegymástólfüggetlenüldöntenekaról,hogyutaznak coedu.sze.hu/print.php4?print_items= 3/7

vagysem.átlagosan90%-ukdöntazutazásmelet,tehátannakvalószínűsége,hogyegybizonyos utasmegjelenikabeszálásnálp=0,9. Mindenegyesjeggyelrendelkezőutashozrendeljünkegyvalószínűségiváltozót:ξi:{1,haaziedikutasutazik0,hanem Azeloszlása:ξi:{100,90,1 Azinduláskormegjelentekszámaaξi-kösszegelesz.Halegalább101utasjelenikmeg beszálásnál,akkorvalakinekbiztosannem juthely.tehátakérdésannakvalószínűsége,hogyaξi -kösszegenagyobb100-nál. P(ξ1+.+ξ 110101)=1 P(ξ1+.+ξ<110101) AP(ξ1+.+ξ<110101)valószínűségmeghatározásáhozhasználjukfelaközpontihatáreloszlás tételt. M(ξi)=0,9,D(ξi)=0,9 0,9 0,9=0,3 P(ξ1+.+ξ<110101)=P(ξ1+.+ξ 110110 0,9110 0,3<101 110 0,9110 0,3)=P(ξ1 +.+ξ 110993,1464<0,6356) Φ(0,6356),aholΦ astandardnormáliseloszlás eloszlásfüggvényétjelöli.táblázatbólφ(0,6356) 0,7375. Tehátkb.73,75% annakavalószínűsége,hogyvalakinem férfelahajóra. 30.8. Micimackómézetakartlopniaméhektől,derajtavesztet:minda200méhecskeegyszere támadtrá.tudjuk,hogymindenegyesméh0,4valószínűséggelcsípimegatolvajt.mia valószínűsége,hogymicimackó50csípésnélkevesebbelmegússzaakalandot? Megoldás: Másirányútanulmányainkból(biológia,élővilág,környezetismeret,stb.)tudjuk,hogy egyméhecskecsakegyszertudcsípni.ígymindenegyesméhecskéhezrendelhetünkegy valószínűségiváltozót: ξi:{1,haazi-edikméhecskecsípet0,hanem Eloszlása:ξi:{100,40,6 Várhatóértéke:M(ξi)=0,4,szórása:D(ξi)=0,4 0,4 0,4 0,4898. Acsípésekszámátξivalószínűségiváltozókösszegekéntkapjuk.Akérdésannakvalószínűsége, hogyezazösszeg50-nélkevesebb-e.eztavalószínűségetismétaközpontihatáreloszlástétel segítségévelhatározhatjukmeg: P(ξ1+.+ξ<20050)=P(ξ1+.+ξ 200200 M(ξi)200 D(ξi)<50 200 M(ξi)200 D(ξi) )=P(ξ1+.+ξ 200806,9268< 4,331) Φ( 4,331)=1 Φ(4,331)=1 1=0 Megjegyzés:Φ(4,331)értékenem mindenholszerepelatáblázatban,demivelmárφ(3 )=0,99999997,ezértezazérték1-nekvehető. Tehát0annakvalószínűsége,hogyMicimackó50csípésnélkevesebbelmegússzaakalandot. Ellenőrző kérdések 1. feladat Egy szabályos pénzérmét 1000-szer feldobunk. A Bernoulli-féle törvénnyel becsülve mekkora lehet annak valószínűsége, hogy a fejek számának relatív gyakorisága legalább 0,05-dal eltér 1 2 -től? coedu.sze.hu/print.php4?print_items= 4/7

legfeljebb110 legalább110 pontosan110 legfeljebb0,05 2. feladat Egy ismeretlen valószínűségű esemény valószínűségét szeretnénk megbecsülni a relatív gyakorisággal. Adjunk becslést a Bernoulli-féle törvénnyel arra, hányszor kell végrehajtani az adott esemény megfigyelésére vonatkozó kísérletet, ha azt akarjuk, hogy a relatív gyakoriság legalább 0,95 valószínűséggel 0,1-nél kevesebbel térjen el a valószínűségtől? legalább950 legalább500 legalább1000 legalább1800 3. feladat Egy játékban 0,5 valószínűséggel nyerünk, vagy 0,5 valószínűséggel veszítünk 100 Ft-ot. A nagy számok törvényének Csebisev-féle alakját felhasználva adjunk becslést arra, hogy hány játék után mondhatjuk el: a nyereményünk átlaga legalább 90%-os valószínűséggel 0,05-nál kevesebbel tér el a várható értéktől? legalább4 107 legalább5 106 legalább4 106 legalább5 107 4. feladat Egy alkalommal a 100 fős évfolyam számára kiírt "Valószínűség számítás coedu.sze.hu/print.php4?print_items= 5/7

és matematikai statisztika" című előadást egy 90 fő befogadására alkalmas terembe tették. A hallgatók egymástól függetlenül 0,8 valószínűséggel mennek el az órára. Mi lehet annak a valószínűsége, hogy minden megjelent befér? 0,8888 0,7365 0,001 0,9938 5. feladat Valamely típusú alkatrész élettartama exponenciális valószínűségi változó 200 óra várható értékkel. Ha az alkatrész meghibásodik, akkor azonnal cserélik, időveszteség nélkül. Tudjuk, hogy az alkatrész hiányában a teljes berendezés működésképtelen. Ha 100 ilyen alkatrész áll rendelkezésünkre, akkor mi a valószínűsége, hogy legalább 24 000 óráig működőképes marad a berendezés? 0,9772 e 2000 0,3842 0,0228 6. feladat Adott 80 darab független, azonos eloszlású valószínűségi változó, melyek várható értéke 10, szórása 4. Annak valószínűsége, hogy ezek átlaga nagyobb, mint 11: 0,9875 0,2236 0,0125 0,0257 coedu.sze.hu/print.php4?print_items= 6/7

7. feladat Egy érmét 1000-szer feldobva 452 fejet és 548 írást kapunk. A Bernoullitörvény alapján mi lehet annak valószínűsége, hogy az érme szabályos? legfeljebb0,1085 legalább0,1085 legalább0,8915 legfeljebb0,8915 coedu.sze.hu/print.php4?print_items= 7/7