A temodinamika I. főtétele Fizikai kémia előadások. uányi amás ELE Kémiai Intézet A temodinamika A temodinamika egy fucsa tudomány. Amiko az embe előszö tanula, egyáltalán nem éti. Amiko második alkalommal megy át ata, azt hiszi mindent ét, kivéve egy-két apóbb dolgot. Amiko hamadszo is végigmegy ata áön, hogy mégsem éti, viszont akkoa má úgy megszokta, hogy ez egyáltalán nem zavaa. Anold Sommefeld http://en.wikiquote.og/wiki/anold_sommefeld Következtetések: aki csak egysze megy végig a tananyagon, meg fog bukni. Aki ó egyet aka, pontosan kétsze vegye át a tananyagot. Anold Johannes Wilhelm Sommefeld (1868 1951) német fizikus 1
Vázlat a temodinamika tanulása elé: A temodinamika. Ó-Egyiptom: közéthető módszeek téglalap és kö alakú földek kiméésée nem feleszthető tovább Euklídész: elvont geometia. A definíciók életidegenek: végtelenül pici pont, végtelenül vékony vonal DE: logikailag konzisztens (ellentmondásmentes) endsze, továbbfeleszthető, így bonyolult épületek/gépek tevezhetők, amiket utána meg is lehet építeni temodinamika: sok olyan definíció, ami életidegennek tűnik ( tökéletes hőszigetelés ), de kell, hogy logikailag konzisztens legyen a temodinamika enegiával, munkával, hővel kapcsolatos tudományág az idő nem elenik meg sehol: igazából temosztatika megváltozást ad meg a kezdeti és végállapotok között gyakan csak alsó/felső kolátokat ad meg 3 Rendsze és könyezet a endsze a könyezet az általunk vizsgálni kívánt téész veszi köül A endsze és a könyezet kapcsolata nyitott endsze zát endsze izolált endsze a könyezettől elválasztó hatáoló felületen át anyag és enegia is átáamolhat. csak enegiaátadás lehetséges semmiféle kölcsönhatás nincs a endsze és könyezete között 4
Állapotelzők DEF temodinamikai függvény: egy mennyiség, amely változhat az állapotelzők étéke függvényében fatái: állapotfüggvény, folyamatfüggvény DEF állapotfüggvény étékének megváltozása csak az állapotelzők kezdeti és végső étékétől függ és független attól, hogy az állapotelzők a változás soán milyen közbenső étékeken mentek át ( útfüggetlen ). megváltozását teles diffeenciál ía le DEF folyamatfüggvény étékének megváltozása függhet a állapotelzők változása útától megváltozást teles diffeenciál nem ía le 5 Extenzív és intenzív mennyiségek DEF extenzív saátság étéke függ a endsze anyagmennyiségétől és azonos észendszeek egyesítéseko mindig összeadódik pl. anyagmennyiség, téfogat, tömeg DEF intenzív saátság étéke független a endsze anyagmennyiségétől és észendszeek egyesítéseko kiegyenlítődhet pl. hőméséklet, nyomás, sűűség extenzív/extenzív = intenzív (pl. tömeg/téfogat=sűűség) moláis mennyiség (egy mól anyaghoz tatozó extenzív mennyiség: X/n) mindig intenzív pl. moláis téfogat vagy móltéfogat: V m moláis tömeg vagy móltömeg: M 6 3
Revezibilis ievezibilis evezibilis visszafodítható, megfodítható (Idegen szavak szótáa) evezibilis folyamat a kémiában megfodítható folyamat (pl. fehéék evezibilis denatuációa) SAJNOS a elentése más a temodinamikában! evezibilis folyamat: változás közel egyensúlyi állapotokon keesztül DEF evezibilis köfolyamat leátszódása után nem változtak meg az állapotelzők sem a endszeben, sem a könyezetben. - ilyen nincs a valóságban - közelítően előállítható kíséletileg ievezibilis folyamat: csak ilyen van a valóságban 7 Belső enegia, munka, hő DEF belső enegia: a észecskék kölcsönhatási és kinetikus enegiáa. Jele U, métékegysége Joule [J] Abszolút étékének nincs ételme, csak mint viszonylagos mennyiségnek. A belső enegia állapotfüggvény és extenzív mennyiség. belső enegia munka, hő állapotfüggvény folyamatfüggvények 8 4
A temodinamika első főtétele temodinamika első főtétele: A endsze enegiáa változatlan, amíg munkavégzés vagy hőközlés meg nem változtata. az enegiamegmaadás tétele munka és hő az enegiamegváltozás egyenétékű fatái U = w + q du = δw + δq U w q U du δw belső enegia [J] munka [J] hő [J] a belső enegia véges nagy változása végtelenül kicsiny (infinitezimális) U változás végtelenül kicsiny munkavégzés δq végtelenül kicsiny hőcsee 9 Enegiaváltozás előele egocentikus előelkonvenció (magyaul: endszeközpontú előel megállapodás) a endsze által végzett munka és leadott hő negatív előelű (ilyenko a endsze enegiáa csökken), a endszeen végzett munka és az általa felvett hő pozitív előelű (ilyenko a endsze enegiáa növekszik) Fucsa következmény: a hőtemelő (exotem) fizikai és kémiai folyamatok enegiaváltozása negatív! 10 5
Pepetuum mobile = öökmozgó Az öökmozgó Fatái: elsőfaú öökmozgó: enegiafelhasználás nélkül végez munkát másodfaú öökmozgó: hőenegiát telesen munkává alakít munkát első főtétel nem létezhet elsőfaú öökmozgó, met a belső enegia nem kimeíthetetlen foás. második főtétel nem létezhet másodfaú öökmozgó 11 téfogatváltozás éfogati munka téfogati munka x A DEF elemi téfogati munka: δw = p ex dv dv p ex a endsze téfogatának kis megváltozása a endszee ható külső nyomás (nem feltétlenül azonos a endsze nyomásával) a endsze nyomása és a külső nyomás csupán végtelenül kevéssé té el egymástól ekko p ex = p kvázisztatikus kiteedés vagy összenyomódás (ez a evezibilis változás mechanikai megfelelőe). éfogati munka, δw = F dx= F/A A dx = p ex A dx = p ex dv métékegysége: [Pa m 3 ] = [N/m m 3 ] = [N m] = [J] Az első főtétel téfogati munkával: du = p ex dv + δ w egyéb + δ q 1 6
DEF entalpia: H = U + pv Jele H, métékegysége Joule [J] Entalpia ételme: téfogati munkával koigált belső enegia az entalpia állapotfüggvény és extenzív saátság dh az entalpia megváltozása ( ld. (uv) =u v+v u ) dh = du + p dv + V dp Az első főtétel téfogati munkával: du = p ex dv + δ w egyéb + δ q ha p ex = p, akko du = p dv + δ w egyéb + δ q A kettő egyesítése: dh = V dp + δ w egyéb + δ q Állandó nyomású ( dp = 0 Vdp = 0 ) és hasznos munka nélküli (dw egyéb = 0) folyamatban az entalpia megváltozása egyenlő a endsze által leadott vagy felvett hővel: dh = δ q 13 H és U teles diffeenciála ekintsük az U belső enegiát a hőméséklet függvényének állandó V téfogaton. U() egyváltozós függvény du (azaz U kis megváltozása) számítása, ha a hőmésékletet d-vel megváltoztatuk: U du d U = d = d d U du = V ekintsük az U belső enegiát a hőméséklet és V téfogat függvényének U(, V) kétváltozós függvény du számítása ha a hőmésékletet d-vel, a V téfogatot dv-vel megváltoztatuk: V U d + V dv ekintsük az H entalpiát a hőméséklet és p nyomás függvényének H(, p) kétváltozós függvény dh számítása, ha a hőmésékletet d-vel, a p nyomást dp-vel megváltoztatuk: H d H = p H d p + d p 14 7
ezt megváltoztatuk A paciális deivált ételme U A következő oldalakon azt nézzük végig, hogy az előbbi paciális deiváltaknak mi a fizikai ételmük. Az eedmény: V leolvassuk ennek a változását ezt állandónak tatuk U U = C hőkapacitás = 0 V V állandó téfogaton V (ideális gáz esetén) H p = C p hőkapacitás állandó nyomáson H p = µ izotem Joule-hompson együttható 15 Ideális gázok belső enegiáa nem függ a téfogattól Ideális gáz esetén U nem függ a téfogattól: ( U/ V) = 0. Reális gázok esetén ( U/ V) nem nulla, de nagyon kicsi. Kíséleti igazolása a Joule-kísélettel: James Pescott Joule (1818-1889) skót söfőző 3 4 1 (1) lombikban nagynyomású gáz () lombikban vákuum. A (3) csapot kinyitották, a gáz téfogata duplááa nőtt, de a (4) hőméő nem mutatta a vízhőméséklet megváltozását 16 8
Joule-homson hatás izotem Joule-homson együttható meghatáozása Gázt fotáson átvezetnek, a fotás után áammal fűtött tekeccsel visszaállíták az eedeti hőmésékletét. Megnézik, hogy a mét p nyomásváltozáshoz mekkoa p entalpiaváltozás tatozik. H H µ = James Pescott Joule p p (1818-1889) adiabatikus Joule-homson együttható meghatáozása A dugattyúkat úgy mozgaták, hogy a obboldali kamában végig p, a baloldaliban pedig p 1 > p legyen a nyomás. A fal és a dugattyúk hőszigetelők. F D D D D p1, V1, 1 p, V, a) b) F µ = p H p Lod Kelvin született William homson (184-1907) Gázok viselkedése összenyomása adiabatikus Joule homson-együttható: µ = p H kiteedés = nyomáscsökkenés felmelegedés µ negatív inveziós felett lehűlés µ pozitív inveziós alatt p= 1 atm DEF inveziós hőméséklet feletti hőmésékletől indulva a gázok kiteedésko felmelegszenek, alatti hőmésékletől indulva lehűlnek. A Joule-homson hatás gyakolati alkalmazásai: - hűtőszekény - gázok cseppfolyósításának Linde-féle eláása 18 9
Hőkapacitás Pontatlanul, de közéthetően: azt a hőmennyiséget, amely a vizsgált endsze hőmésékletét 1 fokkal növeli, a endsze hőkapacitásának nevezzük. Pontosan, de ugyancsak éthetően: DEF egy endsze hőkapacitása C = δq/d δq a endsze által felvett vagy leadott elemi hő, d pedig az eközben bekövetkező hőmésékletváltozás. A hőkapacitás minden folyamatban más. Kiemelten kezelük: állandó téfogata vonatkozó hőkapacitás C V állandó nyomása vonatkozó hőkapacitás C p Hasznos munka nélküli, állandó téfogatú folyamata: du = δq; du = ( U/ ) V d = C V d DEF állandó téfogathoz tatozó hőkapacitás: C V = ( U/ ) V Hasznos munka nélküli, állandó nyomású folyamatoka: dh = δ q dh = ( H/ ) p d = C p d DEF állandó nyomáshoz tatozó hőkapacitás: C p = ( H/ ) p 19 c p és c V kapcsolata C p és C V c p és c V minden anyaga: ökéletes gáza: extenzív (egész endszee vonatkozó) hőkapacitások métékegysége J K -1 moláis hőkapacitások (intenzív mennyiség) métékegysége J K -1 mol -1 H = U + p V p V = n R H = U + n R H U = n R C p C V = n R c p c V = R szeint diffeenciálva n-el osztunk a moláis hőkapacitások különbsége R R = 8,314 J K -1 mol -1 c p c V c p c V (J K -1 mol -1 ) He (5 C) 0.786 1.47 8,314 N (5 C) 9.1 0.80 8,34 CO (5 C) 36.94 8.46 8,48 H O (100 C) 37.47 8.03 9,44 10
Entalpia hőmésékletfüggése C p az entalpia szeinti deiválta C p = ( H/ ) p, tehát C p integálásával megkapuk az entalpiaváltozást: H = H ) H ( ) = H ( ) = H ( 1) ( 1 + Ha ismeük az entalpiát 1 hőmésékleten, akko a C p ismeetében kiszámíthatuk hőméséklete. 1 C p d 1 C p d Ha C p -t a hőméséklettől függetlennek tekinthetük a 1 - tatományban: H ( ) = H ( 1 ) + Cp( 1 ) Általában a hőkapacitás függ a hőméséklettől, de kis hőmésékletközben hőméséklet-függetlennek tekinthető. 1 emokémia DEF temokémia: eakciót kíséő hőeffektusok vizsgálata exotem folyamat: endotem folyamat hőtemelő folyamat hőelnyelő folyamat állandó téfogaton hő = belső enegia megváltozása q = U állandó nyomáson hő = entalpia megváltozása q = H 11
Sztöchiometiai együttható ν sztöchiometiai együttható (máshol is előfodul mad!) általános kémiai eakció: ν A = 0 ν A eaktánsa negatív, a teméke pozitív. az anyag képlete Például: H + O = H O 0 = H + 1 O + H O ν 1 = ν = 1 ν 3 = + A 1 = H A = O A 3 = H O 3 emokémia alapfogalmai DEF standad állapot: egy anyag akko van standad állapotban, ha (1) kémiailag egynemű (tiszta) és () nyomása p = 1 ba = 10 5 Pa megegyzések: 1) Nem tévesztendő össze a gázok standad állapota fogalommal! ) A temodinamikai standad állapotban a hőméséklet tetszőleges 3) A temodinamikai adatokat gyakan = 98,15 K hőmésékleten közlik. Ez az aánlott hőméséklet. DEF temokémiai egyenlet: olyan kémiai egyenlet, ahol feltüntetük a bennük szeeplő anyagok állapotát is. Pl. halmazállapot (g: gáz, l: folyadék, s: szilád) vagy szolvatációs állapot C H O ( s) + 6O ( g) = 6CO ( g) + 6 H O( l) 6 1 6 4 1
emokémia alapfogalmai DEF standad eakcióentalpia: a standad állapotú eaktánsoktól a standad állapotú temékekig megváltozás H vezető eakció soán bekövetkező entalpiaváltozás. [J mol -1 ] eakció soán standad entalpia megegyzések: - moláis mennyiség, met olyan entalpiaváltozás, ha 1 mólszo (tehát 6,0 10 3 -szo) átszódik le a eakció - nem a kémiai folyamattól függ, hanem az egyenlet felíásától: H + O = H O H θ = 570,0 kj mol -1 H + ½ O = H O H θ = 85,0 kj mol -1 5 emokémia alapfogalmai 3 DEF H f standad moláis képződési entalpia: az adott vegyület efeenciaállapotú elemeiből való képződésének standad eakcióentalpiáa. [J mol -1 ] megegyzés: moláis mennyiség, met olyan entalpiaváltozás, amely 1 mól anyag keletkezéséhez tatozik pl. víz képződési entalpiáa: H +½ O =H O f H θ (H O)= 85,0 kj mol -1 DEF Refeenciaállapotú elem: egy elem p θ (tehát 1 ba) nyomáson és adott hőmésékleten legstabilisabb állapota (kivétel: fehé foszfo) megegyzések: - hőmésékletfüggő, mi éppen a efeenciaállapotú elem - példák szobahőmésékleten: N, O, gafit, fehé ón - a definíció következménye, hogy efeenciaállapotú elem standad moláis képződési entalpiáa mindig nulla - elemnek is lehet nem nulla standad moláis képződési entalpiáa, például szobahőmésékleten ilyenek O 3, gyémánt, szüke ón 6 13
Reakcióentalpia számítása Reakcióentalpia számítása az anyagok moláis entalpiáából H Nem használák, met moláis entalpia = egyetlen közös vonatkoztatási szint (nulla éték) kell minden anyaga Reakcióentalpia számítása az anyagok képződési entalpiáából H = = ν ν H H m f ( ) ( ) Jól használható, a temokémia alapegyenlete minden anyaga a saát vonatkoztatási szint az alkotó elemeinek moláis entalpiáa Példa: szőlőcuko égése C H O ( s) + 6O ( g) = 6CO ( g) + 6 H O( l) H H 6 1 6 = 6H m (CO ( g)) + 6H m (H O( l)) H m (C6H1O6( s)) 6H m (O ( g)), = 6 H f (CO( g)) + 6 H f (HO( l)) H f (C6H1O6( s)) 7 Hess tétele V Hess tétele: Egy eakció entalpiaváltozása egyenlő azon észeakciók entalpiaváltozásainak összegével, amie az adott eakció felbontható. megegyzések: A észeakciók lehetnek nem valódiak is (csak papíon léteznek, a valóságban nem). Hess tétele egyszeű következménye annak, hogy az entalpia állapotfüggvény. Hess tétele különösen akko hasznos, ha valamely eakció eakcióentalpiáa nem méhető ól, met a eakció nem átszatható le kaloiméteben túl lassú nem megy telesen végbe nem iányítható mellékfolyamatok vannak. Герман Иванович Гесс Geman Ivánovics Gess Gemain Heni Hess (180-1850) oosz vegyész 8 14
Hess-tétele: egy példa 1 CO + H O CH 4 + O 3 CH 3 OH + 1½ O 1) metán teles égése: H θ = -890,0 kj mol -1 ) metanol teles elégése H θ = -76,0 kj mol -1 3) metán paciális oxidációa H θ = -164,0 kj mol -1 9 H = A eakcióhő hőmésékletfüggése (Kichhoff tétele) Reakcióentalpia számítása az anyagok moláis entalpiáából ν H m ( ) Deiváluk (= diffeenciáluk) mindkét oldalt szeint: H p = ν c p( ) = cp Kichhoff-tétel, diffeenciális alak Integáluk: H ( ) = H H ( ) = H ( ) + c ( 1 p ( ) + c d 1 p 1 ); 1 ( c p állandó). Gustav Robet Kichhoff (184-1887) német fizikus Az egyik hőmésékleten megadott eakcióentalpiát át tuduk számítani másik hőméséklete, ha ismeük a észtvevő anyagok átlagos (sztöchiometiai együtthatóval súlyozott) moláis hőkapacitását. 30 15
Intenetes foások Belső enegia http://hu.wikipedia.og/wiki/bels%c5%91_enegia Entalpia http://hu.wikipedia.og/wiki/entalpia emokémia http://hu.wikipedia.og/wiki/emok%c3%a9mia Hess-tétel http://hu.wikipedia.og/wiki/hess-t%c3%a9tel William homson, 1st Baon Kelvin http://en.wikipedia.og/wiki/william_homson,_1st_baon_kelvin James Pescott Joule http://hu.wikipedia.og/wiki/james_pescott_joule Gemain Heni Hess http://en.wikipedia.og/wiki/gemain_heni_hess Gustav Robet Kichhoff http://hu.wikipedia.og/wiki/gustav_robet_kichhoff 31 A temodinamika I. főtétele téma VÉGE 3 16