vásárlót átlag 2 perc alatt intéz el (blokkolás, kártyaleolvasás), de ez az

Hasonló dokumentumok
1. Név:... Neptun Kód:... Feladat: Egy összeszerel½o üzemben 3 szalag van. Mindehárom szalagon ugyanazt

( 1) i 2 i. megbízhatóságú a levont következtetése? A matematikai statisztika eszközeivel értékelje a kapott eredményeket!

2. A ξ valószín ségi változó eloszlásfüggvénye a következ : x 4 81 F (x) = x 4 ha 3 < x 0 különben

Gyakorló feladatok. Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László

Gyakorlat. Szokol Patricia. September 24, 2018

Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév

Feladatok 2. zh-ra. 1. Eseményalgebra április Feladat. Az A és B eseményekr l tudjuk, hogy P (A) = 0, 6, P (B) = 0, 7 és

0,9268. Valószín ségszámítás és matematikai statisztika NGB_MA001_3, NGB_MA002_3 zárthelyi dolgozat

36 0,3. Mo.: 36 0,19. Mo.: 36 0,14. Mo.: 32 = 0, = 0, = 0, Mo.: 32 = 0,25

4.4. Egy úton hetente átlag 3 baleset történik. Mi a valószínűsége, hogy egy adott héten 2?

Azaz 56 7 = 49 darab 8 jegyű szám készíthető a megadott számjegyekből.

2. A ξ valószín ségi változó s r ségfüggvénye a következ : c f(x) =

Villamosmérnök A4 4. gyakorlat ( ) Várható érték, szórás, módusz

Valószín ségszámítás és statisztika

Eredmények, megoldások

1. Hányféle sorrendben vonulhat ki a pályára egy focimeccsen a tizenegy kezdő játékos?

Gyakorló feladatok a 2. dolgozathoz

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

Gyakorló feladatok valószínűségszámításból végeredményekkel. a megoldásra ajánlott feladatokat jelöli, a nehezebb feladatokat jelöli

a megoldásra ajánlott feladatokat jelöli, a nehezebb feladatokat jelöli

Poisson-eloszlás Exponenciális és normális eloszlás (házi feladatok)

A sztochasztika alapjai. Szorgalmi feladatok tavaszi szemeszter

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

Valószín ségszámítás és statisztika

Valószínűségszámítás és statisztika

2. Egy mértani sorozat második tagja 6, harmadik tagja 18. Adja meg a sorozat ötödik tagját!

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

Klasszikus valószínűségszámítás

Sztochasztikus folyamatok alapfogalmak

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem.

Valószínűségszámítás és Statisztika I. zh november MEGOLDÁS

VALÓSZÍNŰSÉGSZÁMÍTÁS. MSc. Órai Feladatok

Házi feladatok. Valószín ségszámítás és statisztika programtervez informatikusoknak, 2015 sz

törtet, ha a 1. Az egyszerűsített alak: 2 pont

Gazdasági matematika II. vizsgadolgozat megoldása A csoport

Matematika B4 II. gyakorlat

A sztochasztika alapjai. Szorgalmi feladatok tavaszi szemeszter

c.) Mely valós számokra teljesül a következő egyenlőtlenség? 3

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA

Bodó Beáta - MATEMATIKA II 1

Biometria, haladó biostatisztika EA+GY biometub17vm Szerda 8:00-9:00, 9:00-11:00 Déli Tömb 0-804, Lóczy Lajos terem

Normális eloszlás tesztje

Negyedik A4 gyakorlat rövid megoldási útmutató

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

Tantárgy kódja Meghirdetés féléve 3 Kreditpont 4 Összóraszám (elm+gyak) 2+2

MATEMATIKA HETI 5 ÓRA. IDŐPONT: június 8.

Minta 2. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR. I. rész

Való szí nű sé gi va ltózó, sű rű sé gfű ggvé ny, élószla sfű ggvé ny

3. gyakorlat. 1. Független események. Matematika A4 Vetier András kurzusa február 27.

Gyakorló feladatok. 2. Matematikai indukcióval bizonyítsuk be, hogy n N : 5 2 4n n (n + 1) 2 n (n + 1) (2n + 1) 6

Geometriai valo szí nű se g

3. gyakorlat. 1. További feladatok feltételes valószínűségekkel. 2. Független események

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása

1. feladatlap. 1. Határozza meg a következ½o kifejezések értékét: a) b) log 8 6! 3

A matematikai statisztika elemei

Valószínűség számítás

Matematika III. 4. A valószínűségi változó és jellemzői Prof. Dr. Závoti, József

Közlemény. Biostatisztika és informatika alapjai. Alapsokaság és minta

KÖVETKEZTETŐ STATISZTIKA

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Az egyenes egyenlete: 2 pont. Az összevont alak: 1 pont. Melyik ábrán látható e függvény grafikonjának egy részlete?

Matematika A3 Valószínűségszámítás, 5. gyakorlat 2013/14. tavaszi félév

MATEMATIKA HETI 5 ÓRA. IDŐPONT: Június 4.

A valószínűségszámítás elemei

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma:

MATEMATIKA ÉRETTSÉGI május 06. KÖZÉPSZINT I.

Abszolút folytonos valószín ségi változó (4. el adás)

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 3. MA3-3 modul. A valószínűségszámítás elemei

Matematika III. 3. A valószínűségszámítás elemei Prof. Dr. Závoti, József

[Biomatematika 2] Orvosi biometria

NEVEZETES FOLYTONOS ELOSZLÁSOK

AGRÁRMÉRNÖK SZAK Alkalmazott matematika, II. félév Összefoglaló feladatok A síkban 16 db általános helyzetű pont hány egyenest határoz meg?

Populációbecslés és monitoring. Eloszlások és alapstatisztikák

1. Olvassuk be két pont koordinátáit: (x1, y1) és (x2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki.

Valószín ségszámítás gyakorlat Földtudomány BsC

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás

ÁLTALÁNOS STATISZTIKA

13. Egy január elsejei népesség-statisztika szerint a Magyarországon él k kor és nem szerinti megoszlása (ezer f re) kerekítve az alábbi volt:

Vérsejtszámlálás. Bürker kamra

b) Ábrázolja ugyanabban a koordinátarendszerben a g függvényt! (2 pont) c) Oldja meg az ( x ) 2

Gazdasági matematika 2

Valószín ségszámítás és statisztika Gyakorlat (Kétmintás próbák)

MATEMATIKA ÉRETTSÉGI május 8. KÖZÉPSZINT

Matematika kisérettségi I. rész 45 perc NÉV:...

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre

Ismétlés nélküli kombináció

3. Egy szabályos dobókockával háromszor dobunk egymás után. Legyen A az az esemény, hogy

Tartalomjegyzék I. RÉSZ: KÍSÉRLETEK MEGTERVEZÉSE

Valószín ségszámítás. Survey statisztika mesterszak és földtudomány alapszak Backhausz Ágnes 2018/2019.

Valószínűségszámítás feladatok

Matematika B4 VIII. gyakorlat megoldása

a. minden számjegy csak egyszer szerepelhet? b. egy számjegy többször is szerepelhet?

Matematikai statisztika szorgalmi feladatok

Koordináta-geometria feladatok (középszint)

1. Tekintsük a következő két halmazt: G = {1; 2; 3; 4; 6; 12} és H = {1; 2; 4; 8; 16}. Elemeik felsorolásával adja meg a G H és a H \ G halmazokat!

1. Tekintsük a következő két halmazt: G = {1; 2; 3; 4; 6; 12} és H = {1; 2; 4; 8; 16}. Elemeik felsorolásával adja meg a G H és a H \ G halmazokat!

Néhány kockadobással kapcsolatos feladat 1 P 6

Átírás:

1. Név:......................... Egy ABC-ben délután (5-t½ol 9 óráig) a vásárlók száma óránként 200 várható érték½u Poisson eloszlású valószín½uségi változó. A pénztáros egy vásárlót átlag 2 perc alatt intéz el (blokkolás, kártyaleolvasás), de ez az id½o exponenciális eloszlású valószín½uségi változó. Szimulációval vizsgálja a pénztárak kihasználtságát, és a sorok hosszát! A matematikai statisztika eszközeivel értékelje a kapott eredményeket! Mellékelje a program dokumentációját! Adjon meg egy Windows XP és Windows 2000 alatt futtatható.exe változatot, és adja meg a forrásnyelvi programot is! Írja le a jegyz½okönyvbe a következtetéseit is! 1

2. /Név:......................... Egy városban 6-tól 14 óráig a taxik száma 50 várható érték½u Poisson eloszlású valószín½uségi változó. Az óránkénti utas-igények száma 100 várható érték½u Poisson eloszlású valószín½uségi változó, átlag 20 perc taxi használattal (a taxizás ideje 20 perc várható érték½u exponenciális eloszlású valószín½uségi változó. Ha van szabad taxi, akkor az azonnal használható (függetlenül a helyzetét½ol), ha egy utas nem kap taxit, elmegy busszal (elvész az igény). Szimulációval vizsgálja a taxik kihasználtságát, és az elvesztett utasok számát! A matematikai statisztika eszközeivel értékelje a kapott eredményeket! Mellékelje a program dokumentációját! Adjon meg egy Windows XP és Windows 2000 alatt futtatható.exe változatot, és adja meg a forrásnyelvi programot is! Írja le a jegyz½okönyvbe a következtetéseit is! 2

3. /Név:......................... Egy elektromos hálózat az 1. csomópontból a 7. csomópontba szállít villamos áramot. Az egyes csomópontokban az els½o meghibásodásig (órában) eltelt id½o normális eloszlású valószín½uségi változó, míg a csomópontok között az els½o meghibásodásig (órában) eltelt id½o exponenciális eloszlású valószín½uségi változó. A csomópontok közötti kapcsolatot és két csomópont között az els½o meghibásodásig eltelt id½o várható értékét, illetve a csomópontok élettartamának eloszlását (várható érték és szórás) az alábbi táblázat írja le: (A 0 azt jelenti, hogy a két csomópont között nincs közvetlen összeköttetés. A szimmetria miatt a táblázat alsó felét nem töltöttük ki.): 1: 2: 3: 4: 5: 6: 7: 1: 100; 2 200 100 100 0 150 0 2: 10; 2 201 300 100 0 100 3: 100; 2 202 0 100 230 4: 10; 2 203 0 100 5: 100; 2 204 0 6: 100; 2 205 7: 100; 2 Szimulációval vizsgálja a végpontban az els½o meghibásodásig eltelt id½o eloszlását! Adott megbízhatósági szinten hány óra áramellátásra lehet garanciát vállalni? A matematikai statisztika eszközeivel értékelje a kapott eredményeket! Mellékelje a program dokumentációját! Adjon meg egy Windows XP és Windows 2000 alatt futtatható.exe változatot, és adja meg a forrásnyelvi programot is! Írja le a jegyz½okönyvbe a következtetéseit is! 3

4. /Név:......................... Vizsgálja Monte-Carlo módszerrel egy olyan gép megbízhatóságát, amelyik 10 párhuzamosan kapcsolt alkatrészb½ol áll. Az alkatrészek élettartama egyenként exponenciális eloszlású, rendre 1; 1:1; 1:2; : : : ; 1:9 év átlagos élettartammal. A matematikai statisztika eszközeivel értékelje a kapott eredményeket! Mellékelje a program dokumentációját! Adjon meg egy Windows XP és Windows 2000 alatt futtatható.exe változatot, és adja meg a forrásnyelvi programot is! Írja le a jegyz½okönyvbe a következtetéseit is! 4

5. Név:......................... Egy egységnyi befogójú egyenl½oszárú derrékszög½u háromszögben véletlenszer½uen választunk egy pontot, és erre mint középpontra ráteszünk egy 1 10 sugarú körlapot. Vizsgálja Monte-Carlo módszerrel, mennyi a valószín½usége, hogy a körlap teljesen a háromszögben lesz! A matematikai statisztika eszközeivel értékelje a kapott eredményeket! Mellékelje a program dokumentációját! Adjon meg egy Windows XP és Windows 2000 alatt futtatható.exe változatot, és adja meg a forrásnyelvi programot is! Írja le a jegyz½okönyvbe a következtetéseit is! 5

6. Név:......................... Egy egyenl½ooldalú háromszög belsejében egyenletes eloszlás szerint választunk három pontot egymástól függetlenül. Szimulációval határozza meg, mennyi annak a valószín½usége, hogy az így keletkez½o háromszög tartalmazza az eredeti háromszög súlypontját! A matematikai statisztika eszközeivel értékelje a kapott eredményeket! Mellékelje a program dokumentációját! Adjon meg egy Windows XP és Windows 2000 alatt futtatható.exe változatot, és adja meg a forrásnyelvi programot is! Írja le a jegyz½okönyvbe a következtetéseit is! 6

7. Név:......................... Az els½o 1000000 természetes számból veszünk visszatevéssel egy 20 elem½u mintát. Monte-Carlo módszerrel határozza meg a minta maximális elemének az eloszlását! A matematikai statisztika eszközeivel értékelje a kapott eredményeket! Mellékelje a program dokumentációját! Adjon meg egy Windows XP és Windows 2000 alatt futtatható.exe változatot, és adja meg a forrásnyelvi programot is! Írja le a jegyz½okönyvbe a következtetéseit is! 7

8. Név:......................... Egy 10 f½os társaság minden tagja addig dob kosárra, amíg bele nem talál. A társaság tagjai egymástól függetlenül azonos 0:7 valószín½uséggel találnak bele a kosárba. Monte-Carlo módszerrel vizsgálja az egyes emberek által végzett dobások maximális számának az eloszlását! A matematikai statisztika eszközeivel értékelje a kapott eredményeket! Mellékelje a program dokumentációját! Adjon meg egy Windows XP és Windows 2000 alatt futtatható.exe változatot, és adja meg a forrásnyelvi programot is! Írja le a jegyz½okönyvbe a következtetéseit is! 8

9. Név:......................... Monte-Carlo módszer segítségével vizsgálja, hogy a) egy egyenesen b) a síkon történ½ovéletlen bolyongás esetén n lépésb½ol hányszor fogunk visszatérni a kiinduló pontba! A matematikai statisztika eszközeivel értékelje a kapott eredményeket! Mellékelje a program dokumentációját! Adjon meg egy Windows XP és Windows 2000 alatt futtatható.exe változatot, és adja meg a forrásnyelvi programot is! Írja le a jegyz½okönyvbe a következtetéseit is! 9

10. Név:......................... Egy urna 19 fehér és 11 fekete golyót tartalmaz. Visszatevéssel kihúznak 300 golyót. Monte-Carlo módszerrel adjon közelítést annak a valószín½uségére, hogy a fehérek száma a [185; 195] intervallumban lesz! Hasonlítsa össze a közelít½o és a pontos eredményt! A matematikai statisztika eszközeivel értékelje a kapott eredményeket! Mellékelje a program dokumentációját! Adjon meg egy Windows XP és Windows 2000 alatt futtatható.exe változatot, és adja meg a forrásnyelvi programot is! Írja le a jegyz½okönyvbe a következtetéseit is! 10

11. Név:......................... Monte-Carlo módszer segítségével vizsgálja, hogy egy szabályos pénzérme esetén n független dobásból hányszor fog megegyezni a fejek és írások száma! A matematikai statisztika eszközeivel értékelje a kapott eredményeket! Mellékelje a program dokumentációját! Adjon meg egy Windows XP és Windows 2000 alatt futtatható.exe változatot, és adja meg a forrásnyelvi programot is! Írja le a jegyz½okönyvbe a következtetéseit is! 11

12. Név:......................... Monte-Carlo módszer segítségével vizsgálja, hogy egy szabályos kocka esetén n független dobásból hányszor fog megegyezni az addig dobott páros és páratlan számok száma! A matematikai statisztika eszközeivel értékelje a kapott eredményeket! Mellékelje a program dokumentációját! Adjon meg egy Windows XP és Windows 2000 alatt futtatható.exe változatot, és adja meg a forrásnyelvi programot is! Írja le a jegyz½okönyvbe a következtetéseit is! 12

13. Név:......................... Négy pénzdarabot feldobunk, majd megismételjük a kísérletet. Monte- Carlo módszerrel határozza meg, hogy mi a valószín½usége, hogy megismétl½odik az els½o dobás eredménye, amennyiben a pénzdarabok a) megkülönböztethet½ok? b) nem megkülönböztethet½ok? Hasonlítsa össze a közelít½o és a pontos eredményt! A matematikai statisztika eszközeivel értékelje a kapott eredményeket! Mellékelje a program dokumentációját! Adjon meg egy Windows XP és Windows 2000 alatt futtatható.exe változatot, és adja meg a forrásnyelvi programot is! Írja le a jegyz½okönyvbe a következtetéseit is! 13

14. /2007 Név:............................ Számítsa ki a x 2 4 + y2 9 + z4 = 1 zárt felület által határolt test köbtartalmát szimulációval! Vizsgálja a közelítés jóságát a felhasznált véletlenszámok számának függvényében! A matematikai statisztika eszközeivel értékelje a kapott eredményeket! Mellékelje a program dokumentációját! Adjon meg egy Windows XP és Windows 2000 alatt futtatható.exe változatot, és adja meg a forrásnyelvi programot is! Írja le a jegyz½okönyvbe a következtetéseit is! 14

15. Név:......................... Számítsa ki a x 2 4 + y2 9 2 + z2 4 = 1 zárt felület által határolt test köbtartalmát szimulációval! Vizsgálja a közelítés jóságát a felhasznált véletlenszámok számának függvényében! A matematikai statisztika eszközeivel értékelje a kapott eredményeket! Mellékelje a program dokumentációját! Adjon meg egy Windows XP és Windows 2000 alatt futtatható.exe változatot, és adja meg a forrásnyelvi programot is! Írja le a jegyz½okönyvbe a következtetéseit is! 15

16. Név:......................... Számítsa ki a x 2 + y 2 + z 2 3 = 4z 4 zárt felület által határolt test köbtartalmát szimulációval! Vizsgálja a közelítés jóságát a felhasznált véletlenszámok számának függvényében! A matematikai statisztika eszközeivel értékelje a kapott eredményeket! Mellékelje a program dokumentációját! Adjon meg egy Windows XP és Windows 2000 alatt futtatható.exe változatot, és adja meg a forrásnyelvi programot is! Írja le a jegyz½okönyvbe a következtetéseit is! 16

17. Név:......................... Számítsa ki a x 2 + y 2 + z 2 3 = 4 x 2 + y 2 2 zárt felület által határolt test köbtartalmát szimulációval!vizsgálja a közelítés jóságát a felhasznált véletlenszámok számának függvényében! A matematikai statisztika eszközeivel értékelje a kapott eredményeket! Mellékelje a program dokumentációját! Adjon meg egy Windows XP és Windows 2000 alatt futtatható.exe változatot, és adja meg a forrásnyelvi programot is! Írja le a jegyz½okönyvbe a következtetéseit is! 17

18. Név:......................... Egy szelet kalácsban a mazsolák száma Poisson-eloszlást követ, és egy szeletben átlag 6 szem mazsola van. Monte-Carlo módszerrel határozza meg, hogy mi a valószín½usége, hogy egy szeletben legalább 4, de legfeljebb 9 szem mazsola van? Hasonlítsa össze a közelít½o és a pontos eredményt! A matematikai statisztika eszközeivel értékelje a kapott eredményeket! Mellékelje a program dokumentációját! Adjon meg egy Windows XP és Windows 2000 alatt futtatható.exe változatot, és adja meg a forrásnyelvi programot is! Írja le a jegyz½okönyvbe a következtetéseit is! 18

19. Név:......................... Rulettezzen a duplázási rendszerrel. A ruletten a 0,00,1,2,...,36 számok vannak. Ha egy páros/páratlan számra tesz 1 egységet, akkor nyerés esetén a tétet plusz 1 egységet nyer. Értékelje a duplázási stratégiát! A matematikai statisztika eszközeivel értékelje a kapott eredményeket! Mellékelje a program dokumentációját! Adjon meg egy Windows XP és Windows 2000 alatt futtatható.exe változatot, és adja meg a forrásnyelvi programot is! Írja le a jegyz½okönyvbe a következtetéseit is! 19

20. Név:......................... Szimuláljon egy n hosszúságú fej-írás dobássorozatot és szemléltesse a fejek számához mint valószín½uségi változóhoz tartozó tapasztalati eloszlásfüggvényt.vesse össze a megfelel½o elméleti binomiális eloszlással. Módosítsa a kísérletet úgy, hogy a fej dobás valószín½usége 0,01 legyen, és n = 100- ra szemléltesse a tapasztalati eloszlást. Vesse össze a megfelel½o Poissoneloszlással! A matematikai statisztika eszközeivel értékelje a kapott eredményeket! Mellékelje a program dokumentációját! Adjon meg egy Windows XP és Windows 2000 alatt futtatható.exe változatot, és adja meg a forrásnyelvi programot is! Írja le a jegyz½okönyvbe a következtetéseit is! 20

21. Név:......................... Egy céllöv½o találati pontossága 2.5 cm várható érték½u exponenciális eloszlású valószín½uségi változó. Monte-Carlo módszerrel határozza meg, hogy legfeljebb hányszor l½ohet, ha azt akarjuk, hogy még legalább 86%-os biztonsággal minden találata a 8.0 cm sugarú körbe essen?a matematikai statisztika eszközeivel értékelje a kapott eredményeket! Mellékelje a program dokumentációját! Adjon meg egy Windows XP és Windows 2000 alatt futtatható.exe változatot, és adja meg a forrásnyelvi programot is! Írja le a jegyz½okönyvbe a következtetéseit is! 21

22. Név:......................... Lewis Carroll Pillow Problems c. híres könyvében az 58. probléma így szól: számoljuk ki, mi annak a valószín½usége, hogy a síkon véletlenül kiválasztott három pont tompaszög½u háromszöget alkot. Adjon becslést szimuláció segítségével erre a valószín½uségre! A matematikai statisztika eszközeivel értékelje a kapott eredményeket! Mellékelje a program dokumentációját! Adjon meg egy Windows XP és Windows 2000 alatt futtatható.exe változatot, és adja meg a forrásnyelvi programot is! Írja le a jegyz½okönyvbe a következtetéseit is! 22

23. Név:......................... Végezzen számítógépes szimulációt a Bu on-féle t½uproblémára! Adjon a szimuláció alapján közelítést a értékére! Van-e. és ha igen, milyen befolyása a kísérleti adatok megválasztásának a számítás hatékonyságára? Vizsgálja a közelítés jóságát a felhasznált véletlenszámok számának függvényében! A matematikai statisztika eszközeivel értékelje a kapott eredményeket! Mellékelje a program dokumentációját! Adjon meg egy Windows XP és Windows 2000 alatt futtatható.exe változatot, és adja meg a forrásnyelvi programot is! Írja le a jegyz½okönyvbe a következtetéseit is! (Vigyázat! Használhatja-e programját a értékének közelít½o kiszámítására?) 23

24. Név:......................... Számítógépes szimulációval becsülje meg, mi annak a valószín½usége, hogy az egységnégyzet határán kiválasztott három pont tompaszög½u háromszöget alkot. Van-e. és ha igen, milyen befolyása a kísérleti adatok megválasztásának a számítás hatékonyságára? Vizsgálja a közelítés jóságát a felhasznált véletlenszámok számának függvényében! A matematikai statisztika eszközeivel értékelje a kapott eredményeket! Mellékelje a program dokumentációját! Adjon meg egy Windows XP és Windows 2000 alatt futtatható.exe változatot, és adja meg a forrásnyelvi programot is! Írja le a jegyz½okönyvbe a következtetéseit is! 24

25. Név:......................... Jelöljön és két egymástól független, a ( 1; 1) intervallumban egyenletes eloszlású valószín½uségi változót. Szimulációval határozza meg, mennyi annak a valószín½usége, hogy az x 2 + x + = 0 (1) egyenletnek valósak a gyökei! A matematikai statisztika eszközeivel értékelje a kapott eredményeket! Mellékelje a program dokumentációját! Adjon meg egy Windows XP és Windows 2000 alatt futtatható.exe változatot, és adja meg a forrásnyelvi programot is! Írja le a jegyz½okönyvbe a következtetéseit is! 25

26. Név:......................... A CHIPCAD microchip gyártó cég teljes termelése két gépsorról származik. Az I. gépsor adja a termelés 68 %-át 0.038 % selejttel, míg a II. gépsor adja a termelés 32 %-át 0.027 % selejttel. Monte-Carlo módszerrel határozza meg, hogy ha egy véletlenül kiválasztott chip selejtes, akkor mi a valószín½usége, hogy azt a II. gépsor gyártotta? Hasonlítsa össze a közelít½o és a pontos eredményt! A matematikai statisztika eszközeivel értékelje a kapott eredményeket! Mellékelje a program dokumentációját! Adjon meg egy Windows XP és Windows 2000 alatt futtatható.exe változatot, és adja meg a forrásnyelvi programot is! Írja le a jegyz½okönyvbe a következtetéseit is! 26

27. Név:......................... Egy dobozban 15 fehér és 25 piros golyó van. Ketten felváltva húznak egy-egy találomra választott golyót, amelyet visszatesznek. Ezt addig folytatják, amíg csak valamelyikük piros golyót nem húz. Monte-Carlo módszerrel határozza meg mennyi a valószín½usége annak, hogy nem a kezd½o húz el½oször piros golyót?a matematikai statisztika eszközeivel értékelje a kapott eredményeket! Mellékelje a program dokumentációját! Adjon meg egy Windows XP és Windows 2000 alatt futtatható.exe változatot, és adja meg a forrásnyelvi programot is! Írja le a jegyz½okönyvbe a következtetéseit is! 27

28. Név:......................... Egy TV élettartama exponenciális eloszlású valószín½uségi változó 18000 óra átlagos élettartammal. Monte-Carlo módszerrel határozza mi a valószín½usége, hogy egy TV 25000 óránál tovább lesz jó? Hasonlítsa össze a közelít½o és a pontos eredményt! A matematikai statisztika eszközeivel értékelje a kapott eredményeket! Mellékelje a program dokumentációját! Adjon meg egy Windows XP és Windows 2000 alatt futtatható.exe változatot, és adja meg a forrásnyelvi programot is! Írja le a jegyz½okönyvbe a következtetéseit is! 28

29. Név:......................... Egy urna 19 fehér és 11 fekete golyót tartalmaz. Visszatevéssel kihúznak 300 golyót. Monte-Carlo módszerrel adjon közelítést annak a valószín½uségére, hogy a fehérek száma a [185; 195] intervallumban lesz! Hasonlítsa össze a közelít½o és a pontos eredményt! A matematikai statisztika eszközeivel értékelje a kapott eredményeket! Mellékelje a program dokumentációját! Adjon meg egy Windows XP és Windows 2000 alatt futtatható.exe változatot, és adja meg a forrásnyelvi programot is! Írja le a jegyz½okönyvbe a következtetéseit is! 29

30. Név:......................... Egy céllöv½o találati pontossága 2.5 cm várható érték½u exponenciális eloszlású valószín½uségi változó. Monte-Carlo módszerrel határozza meg, hogy legfeljebb hányszor l½ohet, ha azt akarjuk, hogy még legalább 86%-os biztonsággal minden találata a 8.0 cm sugarú körbe essen?a matematikai statisztika eszközeivel értékelje a kapott eredményeket! Mellékelje a program dokumentációját! Adjon meg egy Windows XP és Windows 2000 alatt futtatható.exe változatot, és adja meg a forrásnyelvi programot is! Írja le a jegyz½okönyvbe a következtetéseit is! 30

31. Név:......................... Egy dobozban 15 fehér és 25 piros golyó van. Ketten felváltva húznak egy-egy találomra választott golyót, amelyet visszatesznek. Ezt addig folytatják, amíg csak valamelyikük piros golyót nem húz. Monte-Carlo módszerrel határozza meg mennyi a valószín½usége annak, hogy nem a kezd½o húz el½oször piros golyót?a matematikai statisztika eszközeivel értékelje a kapott eredményeket! Mellékelje a program dokumentációját! Adjon meg egy Windows XP és Windows 2000 alatt futtatható.exe változatot, és adja meg a forrásnyelvi programot is! Írja le a jegyz½okönyvbe a következtetéseit is! 31

32. Név:......................... Egy kórház szülészetén a napi szülések száma 30 várható érték½u Poisson eloszlású valószín½uségi változó. Egy szülés id½otartama 1 óra várható érték½u exponenciális eloszlású valószín½uségi változó. Szimulációval vizsgálja az egyidej½u szülések számát! A matematikai statisztika eszközeivel értékelje a kapott eredményeket! Mellékelje a program dokumentációját! Adjon meg egy Windows XP és Windows 2000 alatt futtatható.exe változatot, és adja meg a forrásnyelvi programot is! Írja le a jegyz½okönyvbe a következtetéseit is! 32

33. Név:......................... Egy bankban az ügyfelek óránkénti száma Poisson-eloszlást követ, óránként átlag 60. A pénztárnál eltöltött id½o exponenciális eloszlású 45 másodperc várható értékkel. Monte-Carlo módszerrel határozza meg, mi a valószín½usége, hogy egy ügyfél 5 percnél többet vár? Hasonlítsa össze a közelít½o és a pontos eredményt! Vizsgálja a helyzetet két pénztár esetére is! A matematikai statisztika eszközeivel értékelje a kapott eredményeket! Mellékelje a program dokumentációját! Adjon meg egy Windows XP és Windows 2000 alatt futtatható.exe változatot, és adja meg a forrásnyelvi programot is! Írja le a jegyz½okönyvbe a következtetéseit is! 33

34. Név:......................... Egy kockázati alap 10 olyan kockázatos vállalkozásba kezdett, amelyek egymástól függetlenül egyenként 0.54 valószín½uséggel lesznek sikertelenek. Az alap nem megy tönkre, ha legfeljebb hét vállalkozás lesz sikertelen. Monte-Carlo módszerrel határozza meg mennyi a valószín½usége, hogy a cég tönkremegy? A matematikai statisztika eszközeivel értékelje a kapott eredményeket! Hogyan változik a helyzet, ha a vállalkozások nem függetlenül mennek tönkre? Tegyük fel, hogy egy vállalkozás tönkremenetele esetén a többi vállalkozás tönkremeneteli valószín½usége 0.7 -re n½o. Mellékelje a program dokumentációját! Adjon meg egy Windows XP és Windows 2000 alatt futtatható.exe változatot, és adja meg a forrásnyelvi programot is! Írja le a jegyz½okönyvbe a következtetéseit is! 34

35. Név:......................... Az A esemény bekövetkezésének a valószín½usége 0.43. Monte-Carlo módszerrel határozza meg, hogy mennyi a valószín½usége, hogy legfeljebb kétszer következik be tíz kísérletb½ol? Hasonlítsa össze a közelít½o és a pontos eredményt! A matematikai statisztika eszközeivel értékelje a kapott eredményeket! Mellékelje a program dokumentációját! Adjon meg egy Windows XP és Windows 2000 alatt futtatható.exe változatot, és adja meg a forrásnyelvi programot is! Írja le a jegyz½okönyvbe a következtetéseit is! 35

36. Név:......................... Az igazak városában a lakosok 73%-a igazat mond, a hazugok városában a lakosok 67%-a hazudik. Mi nem tudjuk, hogy melyik városban vagyunk, egyforma eséllyel lehetünk mindkett½oben. Megkérdezünk egy embert és az azt mondja, hogy ez a hazugok városa. Monte-Carlo módszerrel határozza meg, hogy mi a valószín½usége, hogy ez az ember hazudik? Hasonlítsa össze a közelít½o és a pontos eredményt! A matematikai statisztika eszközeivel értékelje a kapott eredményeket! Mellékelje a program dokumentációját! Adjon meg egy Windows XP és Windows 2000 alatt futtatható.exe változatot, és adja meg a forrásnyelvi programot is! Írja le a jegyz½okönyvbe a következtetéseit is! 36

37. Név:......................... Egy munkadarab hossza közelít½oleg normális eloszlású valószín½uségi változó, melynek várható értéke 72 és szórása 0.3. Monte-Carlo módszerrel határozza meg, hogy mennyi a valószín½usége, hogy a munkadarab hossza kisebb, mint 72.33? Hasonlítsa össze a közelít½o és a pontos eredményt! A matematikai statisztika eszközeivel értékelje a kapott eredményeket! Mellékelje a program dokumentációját! Adjon meg egy Windows XP és Windows 2000 alatt futtatható.exe változatot, és adja meg a forrásnyelvi programot is! Írja le a jegyz½okönyvbe a következtetéseit is! 37

38. Név:......................... Szimulálja a szentpétervári játékot! Az els½o esetben N t½okével maximum N lépésig vagy a tönkremenésig játszik, a második esetben N 2 t½okével maximum N lépésig vagy a tönkremenésig játszik. Futtassa a programot különböz½o N értékekre és az elért nyereményeket értékelje! Milyen megbízhatóságú a levont következtetése? A matematikai statisztika eszközeivel értékelje a kapott eredményeket! Mellékelje a program dokumentációját! Adjon meg egy Windows XP és Windows 2000 alatt futtatható.exe változatot, és adja meg a forrásnyelvi programot is! Írja le a jegyz½okönyvbe a következtetéseit is! 38