Vonatok pályán elfoglalt helyzetének sorozatos meghatározása műholdas helyzetazonosító rendszerrel



Hasonló dokumentumok
Vonatok pályán elfoglalt helyzetének sorozatos meghatározása műholdas helyzetazonosító rendszerrel

Kinematika szeptember Vonatkoztatási rendszerek, koordinátarendszerek

Mit nevezünk nehézségi erőnek?

GPS mérési jegyz könyv

A Föld alakja TRANSZFORMÁCIÓ. Magyarországon még használatban lévő vetületi rendszerek. Miért kell transzformálni? Főbb transzformációs lehetőségek

KOVÁCS BÉLA, MATEMATIKA II.

Tömegpontok mozgása egyenes mentén, hajítások

Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk

Mechanika. Kinematika

Pálya : Az a vonal, amelyen a mozgó tárgy, test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz.

Átszámítások különböző alapfelületek koordinátái között

Pálya : Az a vonal, amelyen a mozgó test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz.

Pálya : Az a vonal, amelyen a mozgó test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz.

Keresztmetszet másodrendű nyomatékainak meghatározása

Összeállította: dr. Leitold Adrien egyetemi docens

2014/2015. tavaszi félév

Matematikai geodéziai számítások 5.

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program

rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika

(Forrás:

Andó Mátyás Felületi érdesség matyi.misi.eu. Felületi érdesség. 1. ábra. Felületi érdességi jelek

Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó

Matematikai geodéziai számítások 4.

Vágánykapcsolások. Szabványos vágánykapcsolások

A személyközlekedés minősítési rendszere

Számítási feladatok a Számítógépi geometria órához

A GNSS infrastruktúrára támaszkodó műholdas helymeghatározás. Borza Tibor (FÖMI KGO) Busics György (NyME GEO)

MÁGNESVASÚT MÜNCHENBEN

Aktív GNSS hálózat fejlesztése

Példa: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével

Robotika. Kinematika. Magyar Attila

Robotok inverz geometriája

TOL A MEGYEI SZILÁRD LEÓ FIZIKAVERSE Y Szekszárd, március óra 11. osztály

Nyári menetrendi módosítások

PÉLDÁK ERŐTÖRVÉNYEKRE

Integrált Ütemes Menetrend. A jövő vasútja most

SZÁMÍTÁSI FELADATOK I.

Három dimenziós barlangtérkép elkészítésének matematikai problémái

EGY ABLAK - GEOMETRIAI PROBLÉMA

A TRAM-TRAIN HELYE ÉS SZEREPE A VASÚTI KÖZLEKEDÉSBEN

Gépészeti rendszertechnika (NGB_KV002_1)

A végeselem módszer alapjai. 2. Alapvető elemtípusok

KÖZLEKEDÉSI ALAPISMERETEK (KÖZLEKEDÉS - ÜZEMVITEL, KÖZLEKEDÉS-TECHNIKA) KÖZLEKEDÉSI ALAPISMERETEK ÉRETTSÉGI VIZSGA I. RÉSZLETES KÖVETELMÉNYEK

Mérések állítható hajlásszögű lejtőn

Matematikai geodéziai számítások 9.

A térképen ábrázolt vonal: - sík felület egyenese? - sík felület görbéje? - görbült felület egyenese ( geodetikus )? - görbült felület görbéje?

A térképen ábrázolt vonal: - sík felület egyenese? - sík felület görbéje? - görbült felület egyenese ( geodetikus )? - görbült felület görbéje?

A vasúti pálya felújítása, karbantartása a forgalmi szakszolgálat szemszögéből

TestLine - nummulites_gnss Minta feladatsor

Infobionika ROBOTIKA. X. Előadás. Robot manipulátorok II. Direkt és inverz kinematika. Készült a HEFOP P /1.0 projekt keretében

Elővárosi vasúti szolgáltatásfejlesztés sikere. Pákozdy Réka, MÁV-START Zrt., Személyszállítási szolgáltatásértékesítési vezető

Felvételi, 2018 szeptember - Alapképzés, fizika vizsga -

Q 1 D Q 2 (D x) 2 (1.1)

Hely, idő, haladó mozgások (sebesség, gyorsulás)

Matematika III előadás

Egy nyíllövéses feladat

file://c:\coeditor\data\local\course410\tmp.xml

Matematikai geodéziai számítások 5.

KÖZLEKEDÉSI ALAPISMERETEK

Utak és környezetük tervezése

Esri Arcpad Utó- feldolgozás. Oktatási anyag - utókorrekció

Személyszállítási vasútvállalati igények. a KÖSZ jegyében Ughy Kálmán

MIKOVINY SÁMUEL TÉRINFORMATIKAI EMLÉKVERSENY

Matematikai geodéziai számítások 9.

Mozgatható térlefedő szerkezetek

Közlekedési áramlatok MSc. Csomóponti-, útvonali eljutási lehetőségek minősítése

A brachistochron probléma megoldása

A loxodrómáról. Előző írásunkban melynek címe: A Gudermann - függvényről szó esett a Mercator - vetületről,illetve az ezen alapuló térképről 1. ábra.

Példa: Tartó lehajlásfüggvényének meghatározása a Rayleigh Ritz-féle módszer segítségével

Amit a Ferihegyi gyorsvasútról tudni érdemes. XVII. Városi közlekedés aktuális kérdései Budapest, szeptember 8.

Az elliptikus hengerre írt csavarvonalról

Hossz-szelvény tervezés

A magától becsukódó ajtó működéséről

Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS!

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1

Kutatási beszámoló február. Tangens delta mérésére alkalmas mérési összeállítás elkészítése

VILLAMOS VASÚTI PÁLYÁK. Juhász Zsoltné tervező FŐMTERV ZRT április 20. MISKOLC

17. előadás: Vektorok a térben

Vasúti személyszállítás aktuális trendjei a V4 országokban. Csépke András, MÁV-START vezérigazgató

Szakmai nap február r 7. Zrt. Magyar Államvasutak. Szolgáltat. stabilitása sa. a pálya-jármű kölcsönhatás kérdéskörének tükrében

1 2. Az anyagi pont kinematikája

1. ábra. 24B-19 feladat

Jegyzet A vasútmodellezés és a nagyvasút szakkifejezéseinek megismeréséhez és megértéséhez. 2. rész.

FUTÁR projekt A forgalomirányítási és utastájékoztatási rendszer fejlesztése

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS

Foglalkozási napló. Vasútforgalmi szolgálattevő

Nehézségi gyorsulás mérése megfordítható ingával

BT-R820 Használati utasítás BT-R820 Wireless GPS Egység Használati utasítás Dátum: Szeptember, 2006 Verzió: 1.1

A Hamilton-Jacobi-egyenlet

Piri Dávid. Mérőállomás célkövető üzemmódjának pontossági vizsgálata

Matematikai geodéziai számítások 6.

GPS nyomvonalkövető megvalósítása DSP-n

Körforgalmak élettartama a tervezés és kivitelezés függvényében

Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont)

MÁV Zrt. INFRASTRUKTÚRA FEJLESZTÉSEI. Pál László általános vezérigazgatóhelyettes

Autóbusz előnyben részesítésének lehetőségei

A forgalomsűrűség és a követési távolság kapcsolata

A MÁV-START utasbarát szolgáltatásfejlesztései. Kazai Katalin, MÁV-START értékesítési igazgató

Mérési hibák

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra

Átírás:

Budapesti Műszaki és Gazdaságtudományi Egyetem, Építőmérnöki Kar 2006. évi Tudományos Diákköri Konferencia www.vit.bme.hu/tdk/2006 Vonatok pályán elfoglalt helyzetének sorozatos meghatározása műholdas helyzetazonosító rendszerrel Szerző: Konzulensek: Ferencz Viktória: ferencz.viktoria@chello.hu, építőmérnök hallgató Dr Zobory István, egyetemi tanár, BME Vasúti Járművek Tanszék Dr Takács Bence, egyetemi adjunktus, BME Általános és Felsőgeodézia Tanszék Tartalom: A dolgozat egy olyan programrendszert mutat be, amely a vasúti személyszállításban széleskörben alkalmazott ütemes menetrendet, korszerű járműüzemeltetési elveket és járműparkot feltételezve képes biztosítani az ágazat fenntartható fejlődését. Célja egy olyan részprogram fejlesztése MATLAB alatt, amely folyamatosan képes koordinátákat biztosítani a vasúti üzemeltetés optimalizálására szolgáló szimulációs főprogram számára. A koordináták mérése tesztüzemmódban működő navigációs GPS vevő alkalmazásával valósult meg, a részprogram egyszerűen meghívható alkalmazásként került kifejlesztésre. Az eszközök közötti kommunikációs kapcsolatot az NMEA adatok jelentik, amelyek közül a fontosabb mondatok jelentésének ismertetése megtalálható a dolgozatban. Az alprogram azaz a koordináta transzformáció teszteléséhez magyarországi, ismert EOV és WGS-84 koordinátájú GPS pontok kerültek felhasználásra. A távlati cél az, hogy a főprogram és a részprogram online működése valósuljon meg a jelenleg kifejlesztett félonline megoldással szemben. Viktória Ferencz: Developing MATLAB program for determining of location of railcars using GPS receiver Abstract: The goal of the study was to develop a program under MATLAB for handle online process of receiving GPS coordinates. In practice this program will a part of a simulation program whom aim is to optimalize operation of railcars. The additional program is easy to call from an another program because it separates 3 functions. Actually this is not ready, because there is an intermediate step in the communication process. The base of the interface are the different NMEA sentenses have sent by GPS receiver to MATLAB via COM1 port. Input data of program are WGS-84 geographical ellipsoidal coordinates and output are EOV coordinates and altitude. I used 7 transformation parameters to realize the conformity transformation between WGS-84 and IUGG-67 systems. Cite as: Viktoria Ferencz: Developing MATLAB program for determining of location of railcars using GPS receiver. WWW Proceedings of the Scientific Student Conference, Budapest University of Technology and Economics, Faculty of Civil Engineering, 2006. (in Hungarian), otka0.vit.bme.hu/tdk/2006 Budapest, 2006. december 12.

2

Tartalomjegyzék 1 Bevezetés... 5 2 A vasúti pálya-jármű rendszer... 6 2.1 Közlekedéskinematika [4]... 6 2.2 Közlekedéskinetika [5]... 7 2.3 Vasúti jármű szabálytalan mozgásai [5]... 9 3 Problémaelemzés a műholdas adatok szerepe...11 1.1. Az elővárosi közlekedés jővője [3]...11 1.2. Az ütemes menetrend...13 1.3. A GPS adatok szerepe...15 4 NMEA interface-formátum [8]...18 5 Programillesztések feltételei és megvalósítása...21 5.1 Az alprogram megvalósítása...21 5.1.1 MATLAB interface kezelés...21 5.1.2 A fél-onlie rendszer megvalósítása...23 5.1.3 A szükséges adatok kiemelése a szöveges állományból...25 5.1.4 A checksum karakter ellenőrzése...26 5.1.5 A transzformációs számítások végrehajtása [2]...29 5.2 Az alprogram önálló működése...32 5.3 A programok együttműködése...38 6 A vonatok folyamatos helymeghatározása, mint lehetséges építőmérnöki alkalmazás..39 7 Következtetések és kitekintés...43 8 Irodalomjegyzék...45 3

4

1 Bevezetés A dolgozat célja egy olyan program létrehozása MATLAB alatt, amely folyamatosan biztosítani képes egy mozgó vonat X,Y,Z koordinátáit GPS vevő segítségével. A feladat tulajdonképpen nem új, hiszen az EU országaiban és Magyarországon is a GPS felhasználása a közlekedés területén meglehetősen változatos. A BME Közlekedésmérnöki Karának Vasúti Járművek Tanszékével együttműködve azonban a feladat más megvilágítást kap, mivel a GPS koordinátákat egy már meglévő, a vasúti járművek üzemeltetésének optimalizálását célzó program igényli. A célalkalmazás egy online rendszert jelent, amelyet folyamatosan fejlesztenek. Jelen dolgozat ebből egy részprobléma bemutatására és megoldására tett javaslatot, illetve néhány kezdeti eredményt tartalmaz. A tanulmány 2. fejezetében bemutatásra kerülnek a vasúti pálya-jármű rendszer alapismeretei, a vasúti pályán közlekedő jármű szabályos és szabálytalan mozgásai. A 3. fejezet az elővárosi közlekedés fejlesztési koncepcióit mutatja be Budapest környékére vonatkozóan. Szót ejt még az ütemes menetrend fontosságáról és a korszerű motorkocsik előnyeiről a hagyományos vontató mozdonyokkal szemben. Szintén ebben a fejezetben található az, hogy tulajdonképpen miért elkerülhetetlen a GPS használata és az általa biztosított pontos pozíció meghatározása a bemutatott alkalmazásban. A 4. fejezet mutatja be részletesen a szabványos NMEA formátumú üzeneteket, amelyek ismerete elengedhetetlen a feladat megoldásához. Az általam létrehozott program működését részletesen az 5. fejezet tárgyalja, amely a megvalósítás szinte minden lépését bemutatja az interface -től kezdve a vetületi átszámításokig. Ugyancsak ebben a részben található ennek a kódnak, mint önállóan is működő egységnek a szemléltetése, valamint a főprogrammal való együttműködésének megvalósítása. A probléma elemezhető tisztán építőmérnöki szemmel is, ennek lehetőségét taglalja a 6. fejezet. Az alkalmazás jövőjéről és a fejlesztési lehetőségekről ad kitekintést az utolsó, a 7. fejezet. 5

2 A vasúti pálya-jármű rendszer Elméleti síkon a kötött pályás vasúti közlekedés tárgyalásakor nem elég csak a pályageometriát figyelembe venni a jármű helyzetének meghatározásához, hanem tekintettel kell lenni a rajta közlekedő járműre is. A vasúti jármű mozgása ugyanis nem feltétlenül követi egzakt módon a pályageometriát; a járműnek szabályos ill. számos szabálytalan mozgásösszetevője van a pályán való közlekedés során. Ha a jármű szabálytalan mozgásösszetevőitől eltekintünk is, a pálya-jármű kölcsönhatásaként létrejövő dinamikai hatásokat mindenképpen figyelembe kell venni. 2.1 Közlekedéskinematika [4] A közlekedéskinematika a jármű vasúti pályán való főmozgásával (haladó mozgás) és annak a pályageometriára gyakorolt hatásával foglalkozik. A vasúti pályát a valóságnak megfelelően térgörbeként értelmezi, a mozgást pedig, mint időben lefolyó jelenséget vizsgálja. A vasúti pályán haladó pont (pontrendszer-merev test) mozgása akkor egyértelmű, ha minden egyes időpillanatban ismerjük minden egyes pont térbeli helyzetét (vagyis a kinematikai mozgástörvényt). A pályán mozgó pont helyzetét az r = r(t) helyvektorral jellemezzük. Az idő skalár változó, amelynek minden egyes értékéhez egy vektor rendelhető (skalár-vektor függvény). A pálya-mint térgöbe- vektoregyenlete tehát r = x ( t) i + y( t) j + z( t) k alakban írható fel, ahol i,j,k vektorok tengelyirányú egységvektorok. 1.ábra Térbeli pont helyzetét megadó skalár-vektor függvény szemléltetése 6

A térgörbén mozgó ponttal együtt folyamatosan változik a kísérő triéder vektorok helyzete is. Az érintő vektort és a pillanatnyi sebességvektort a helyvektor idő szerinti első derivált vektora adja meg. A főnormális vektor a helyvektor idő szerinti második deriváltjaként adódik, a simulósíkban fekszik. Abszolút értéke a pálya görbületét határozza meg. 2 dr ds 2 = g = A binormális egységvektor az érintő irányú és a főnormális egységvektorok vektoriális szorzataként áll elő: b = t n 1 ρ A vasúti pályán bekövetkező mozgás jellemzésére a mozgásjellemzőket használják, amit a - sebesség (v) - gyorsulás (a) - és a harmadrendű (h) vektor ismerete jelent 1. A sebességvektor a helyvektor idő szerinti első deriváltja, amely érintő irányú és nagysága a mozgás sebességével egyező, tulajdonképpen a helyváltoztatás jellemzője. A gyorsulásvektor a sebességvektor idő szerinti első, a helyvektor idő szerinti második derivált vektoraként adható meg, a sebességváltozás jellemzője. A harmadrendű jellemző a gyorsulás változásáról ad képet, a helyvektor idő szerinti harmadik derivált vektora. 2.2 Közlekedéskinetika [5] A közlekedéskinetika elsőrendű feladata a pályán haladó vasúti jármű mozgásállapotának meghatározása a fellépő erők hatására. Ezek az erők lehetnek aktív erők, amelyek a mozgást előidézik (pl. vonóerő), illetve lehetnek passzívak, amelyek alatt a mozgást akadályozó erőket értjük (ellenállások). A vasúti ellenállások csoportosítása a következőképpen történhet: 1. Menetellenállás - gördülési ellenállás - csapsúrlódási ellenállás - sínütközési ellenállás - levegőellenállás 1 Létezik egy negyedrendű un. m vektor is, amely a h vektor időszerinti első deriváltja, de ettől egyelőre eltekintünk. 7

2. Járulékos ellenállások - ívellenállás - emelkedési ellenállás - kitérő ellenállás - belső ellenállás - gépészeti ellenállás - gyorsítási ellenállás A gördülési ellenállás figyelembe veszi, hogy a kerekek és a sín érintkezésénél rugalmas alakváltozások jönnek létre, ami a jármű mozgását tekintve akadályozó tényezőként jelentkezik. Nagysága egyenesen arányos a jármű súlyával, és a sebesség függvényében állandónak tekinthető. A csapágysúrlódási ellenállás nagymértékben függ a csapágy fajtájától, így mivel napjainkban gördülő csapágyakat alkalmaznak ennek a kezdeti kiugróan nagy hatásától eltekintenek. A sebességgel való kapcsolata közel lineárisnak tekinthető. A sínütközési ellenállás a hevederes sínillesztéseknél lép fel, a hézagnélküli pályáknál ez a hatás nem érvényesül. Értéke tapasztalati képletből meghatározható. A légellenállás fontos passzív hatás, amely több részből tevődik össze: - mozgó jármű homlokfelületére ható levegő nyomása - tető- és oldalfelületekre ható levegősúrlódás - járművek alatt és között keletkező örvénylő mozgás - utolsó jármű után keletkező légritkulás. Nagysága független a jármű súlyától, egyenesen arányos a redukált homlokfelülettel és négyzetesen arányos a jármű sebességével. A menetellenállást az összetevők szuperpozíciója adja, értéke járműtípusonként különböző. A gyakorlatban alkalmazott képleteket tapasztalati úton határozták meg - vontató járművek (mozdonyok, motorkocsik) - vontatott járművek (vasúti kocsik) - és a teljes szerelvény esetére. A járulékos ellenállások közül az ívellenálás a pályageometria kialakítása miatt viszonylag gyakori egy-egy pályaszakaszon. Ez a hatás tartalmazza a kerék nem tiszta gördülése miatt fellépő csúszásokat és súrlódásokat. Meglehetősen összetett, értékét sok tényező befolyásolja. Nagyságának meghatározásához tapasztalati képleteket használnak. Az emelkedési ellenállás akkor lép fel, amikor a jármű emelkedő pályán halad. Ha a vasúti járműre ható súlyerőt lejtőirányú és lejtőre merőleges összetevőkre bontjuk, akkor a lejtővel párhuzamos komponens ellenállásként jelentkezik. Ha a lejtőszög megfelelően kicsi, akkor a tgα sinα közelítés érvényesnek tekinthető. 8

A kitérőellenállás kizárólag a kitérők hosszán lép fel, ami tulajdonképpen a vasúti jármű által megtett út egy töredékét jelenti. A belső ellenállások a vonaton belül keletkező lengések, ütközések és súrlódások eredménye. Nagysága a tapasztalatok szerint egyenesen arányos a jármű sebességével. A gyorsítási ellenállás nem kifejezetten tartozik az ellenállások közé, mégis fontos szerepe lehet. A vasúti szerelvény induláskor ugyanis bár a kifejtett vonóerő a jármű mozgási energiáját növeli az ellenállásokon felül még a gyorsításhoz is vonóerőt fejt ki. A vonóerő a kerekek és a sín érintkezési helyén ébred, a vontató járművet meghajtó erőgép forgatónyomatékának hatására. Nagysága nem haladhatja meg az adhéziós vonóerő értékét. 2.3 Vasúti jármű szabálytalan mozgásai [5] A vasúti járműkerék és a sínprofil geometriai kialakítása miatt a vasúti jármű a vágánytengellyel párhuzamos haladó mozgáson kívül szabálytalan mozgásokat is végez. A kígyózó mozgás a pálya síkjára merőleges tengelykörüli mozgást jelent, aminek oka a kúpos futófelületű kerékpár valamint a kerekek és sínek között meglévő méretkülönbség (oldalirányú játék). A támolygó mozgás a pályatengellyel párhuzamos tengely körüli mozgás, amelyet a két sínszál közötti magasságkülönbség és a kétoldali hordrugók eltérő mozgása okoz. A bólintó mozgás a vágány tengelyére merőleges, vízszintes tengely körüli mozgás, amelyet a sínillesztéseknél kialakuló magassági lépcső idéz elő. Ez a típusú szabálytalan mozgás a hézagnélküli vágányok esetében csaknem kiküszöbölhető. Azonban ezeknél a pályáknál a kígyózó mozgás erőteljesebben jelentkezik, amit nyomszűkítés alkalmazásával küszöbölnek ki. Az alkalmazott járműmodellek a dinamikából jól ismert rezgés-egyenletek alapján írhatók fel attól függően, hogy a rendszert csillapítottnak/csillapítatlannak tekintjük-e, illetve a gerjesztés hatásait és jellegét milyen módon vesszük figyelembe. A többszabadságfokú (gerjesztett, csillapítatlan) rezgő rendszer mátrix differenciálegyenlete az alábbi alakban írható fel [7]:.. M x( t) + K x( t) = q( t), ahol M tömegmátrix K merevségi mátrix x(t) tömegpontok elmozdulásai q(t) tömegpontokra ható gerjesztő erők vektora. 9

Ha az ismertetett rendszerben csillapítás van, akkor a mátrix egyenlet kiegészül egy olyan taggal, amely a D csillapítási mátrixot tartalmazza az alábbiak szerint [1]:... M x( t) + D x( t) + K x( t) = q( t) A vasúti szerelvényre általában az utóbbi egyenlet (mozgásegyenlet)-rendszer érvényes azzal a kiegészítéssel, hogy - a haladó mozgásra vonatkozóan n számú tömegközéppontra írandó fel - a csillapítások a sebességgel arányosak - alkalmazni kell továbbá az elfordulásra vonatkozó egyenleteket m számú forgástengelyre felírva [1]. Kijelenthető tehát, hogy a jármű mozgása két összetevőből áll: egy elsődleges haladó mozgásból, és a szabálytalan mozgásokból (1. táblázat). Tengely Transzlációs lengés Szöglengés X rángatás támolygás Y szitálás bólintás Z rázás kígyózás 1. táblázat A vasúti jármű szabálytalan mozgásai [1] 10

3 Problémaelemzés a műholdas adatok szerepe A GPS mérési technika és ennek fejlődése alkalmazások széles spektrumát tárta fel nemcsak a szakemberek, hanem bármely halandó ember számára, aki GPS vevővel rendelkezik. Azonban kijelenthető, hogy általában a GPS nem önálló alkalmazás, hanem egy komplexen kialakított szolgáltatás részeként jelenik meg a gyakorlatban. Ismert tény, hogy ezt a technikát előszeretettel alkalmazzák az interdiszciplináris tudományok szakemberei, azonban egy-egy feladat megoldása, a GPS adatok felhasználása igen jelentős erőforrást igényel mindegyik fél részéről. A működőképes komplex alkalmazás előfeltétele az, hogy a különböző tudományokban jártas szakemberek tudásuk egy részét - amely a feladat megoldásához szükséges - adják át egymásnak és működjenek együtt a cél érdekében. 3.1 Az elővárosi közlekedés jővője [3] Az EU közlekedéspolitikájában a vasúti közlekedés fejlesztése prioritást élvez mivel a ez jelenti az eszközt a közlekedési módok közötti egyensúly kialakításához és fenntartásához. A közúti közlekedés szűk keresztmetszetei miatt a forgalom növekedésével egyenes arányban nő az eljutási idő a kiinduló és a célállomás között, amely az emberi munka kiesése, a közlekedési pálya túlzott igénybevétele valamint az időtényező végett jelentős gazdasági károkat okozhat. A Budapesten lévő 3 jelentős 2 fejpályaudvart tekintve a Keleti pályaudvar bonyolítja le a fogalom csaknem 40%-át, valamint itt koncentrálódik a nemzetközi és belföldi IC forgalom is. A tömegközlekedés és a vasúti közlekedés közötti kapcsolatot fejleszteni szükséges, hogy az utazóközönség a lehető legegyszerűbb módon és legrövidebb úton tudjon átszállni egyik közlekedési eszközről a másikra. A magyarországi fejpályaudvarok az 1930-as évektől kezdve kapacitásproblémával küzdenek. A Keleti pályaudvar fejlesztési tervei jelentős többletterhelést rónak a pályaudvar fogalmára, mert - a Budapest-Józsefváros személyszállító szerelvényeinek Keleti pályaudvarra történő átterelését jelentik - további viszonylatok IC vonatainak áthelyezését tervezik a Keleti pályaudvarra - a Keleti pályaudvarnak részt kell vennie a budapesti elővárosi forgalom kialakításában és korszerűsítésében, ami jelentős többletvonat-mennyiséggel jár - a Keleti pályaudvar a repülőtéri gyorsvasút fejállomása lesz - a Rákosi üzemi pályaudvar kiszolgálásának biztosítását meg kell valósítani. 2 A 4. fejpályaudvar a Józsefvárosi pályaudvar, de ennek mind kapacitása, mind kapcsolata a tömegközlekedési eszközökkel nem megfelelő. Tervek szerint a személyforgalmi szerepet a Keletipályaudvar veszi át. 11

Tanulmányok szerint ha a Bp.-Keleti pályaudvar peronvágányainak 33%-os bővítése megvalósul, akkor lehetőség nyílik kétszerannyi vonatot indítani és fogadni. Ennek azonban feltételei vannak: - megbízható infrastruktúra - ütemes menetrendek - javuló menetrendszerűség - irányváltó szerelvények alkalmazása - zárt szerelvények közlekedtetése a nemzetközi forgalomban. A MÁV által a közelmúltban kiírt közbeszerzési pályázat a Budapest-környéki elővárosi vonalak fejlesztését szolgálja, amely konkrétan a - Budapest-Déli pályaudvar- Székesfehérvár - Budapest-Déli pályaudvar - Pusztaszabolcs és a - Budapest- Déli pályaudvar -Tatabánya vonalak kiszolgálásának korszerű megoldására vonatkozott [6]. Mindezek mellett természetesen nemcsak a Keleti és Déli pályaudvar bonyolít le elővárosi forgalmat, hanem a Nyugati pályaudvar is. A növekvő utasforgalom miatt ezek a vasútvonalak is fejlesztésre szorulnak. 2.ábra Elővárosi vasútvonalak Budapest környékén [11] 12

Az elővárosi vasútvonalak esetében szükségessé válnak olyan fejlesztések, amelyek mind az utazóközönség kényelmét, mind pedig a rendszer fejlesztési szempontjait kielégítik [11]: - interoperábilitás 3 biztosítása - intermodális csomópontok 4 biztosítása a közlekedő utasok számára - kiszámítható (ütemes) menetrend - megfelelő csatlakozások és átszállási lehetőségek biztosítása - korszerű járművek, amelyekkel komfortos utazás érhető el - korszerű utastájékoztatási rendszer - optimális vágánykihasználás, járműigény és vonali kihasználás. A felsorolt kritériumok teljesülése esetén a közúti szűk keresztmetszetek forgalma csökkenthető, hiszen a vasúti közlekedéssel hasonlóan komfortos utazásélmény érhető el, mint személygépkocsival. 3.2 Az ütemes menetrend A főprogram célja tulajdonképpen olyan ütemes menetrend biztosítása az elővárosi vasúti közlekedés számára, amely megvalósulásban nagymértékben hasonlít a jelenleg Budapest környékén üzemeltetett helyi érdekű vasút (HÉV) menetidő-beosztásához. A közelmúltban lezajlott, MÁV által kiírt közbeszerzési pályázat kiindulási alapot biztosít az ütemes menetrend megvalósításához. A szállításra kerülő motorvonatok korszerű fékrendszerrel és berendezésekkel rendelkező járművek, amelyek első felújítási illetve karbantartási idejét a lehető leghosszabb időre szükséges ütemezni. A motorvonatok alkalmazása a hagyományos mozdonyos vontatással szemben számos előnnyel rendelkezik [9]: - fajlagosan (1 férőhelyre vetítve) kisebb tömeg miatt kedvező energiafelhasználás és pályaterhelés - a pályaterhelés tovább csökkenthető, ha több hajtott kerékpárt használnak a szükséges indító-vonóerő biztosításához - az állomási és megállóhelyi peronvágányok hossza csökken - a zárt motorvonati egység üzemi megbízhatósága kedvezőbb, mint a jelenlegi személyszállítási szerelvényeké (alkalomszerűen összeállított) - alkalmazásuk illeszkedik a korszerű elővárosi menetrend 5 megvalósításához 3 Interoperábilitás: átjárhatóságot jelent pl. a különböző közlekedési rendszerek között 4 Intermodalitás: egy közös cél érdekében együttműködő különböző rendszerek által alkotott szállítási lánc 13

- a korszerű motorvonatok felépítése modul jellegű, így tetszés szerinti befogadóképességgel gyárthatók - a járművek egyterű kialakítása előnyös a biztonság és az energiafelhasználás szempontjából - az irányváltó szerelvények költség- és vágánytakarékosak. A korszerű járművek kihasználása céljából célszerűnek látszik tehát az ütemes menetrend mellett a jármű energetikailag optimális üzemeltetése is. 3.ábra Korszerű Stadler FLIRT motorvonat [6] A Nyugat-Európában már évtizedek óta bevált ütemes vasúti közlekedési rendszer lényege, hogy a vonatok napközben azonos időközönként, az óra ugyanazon percében indulnak az állomásokról. A menetrend így átláthatóvá és kiszámíthatóvá válik, a járatok, illetve az utasok rendelkezésére álló ülőhelyek száma nő, a csatlakozások javításával az átszálló utasok eljutási ideje csökken. Az ütemes menetrend bevezetésével hatékonyabban működő, az utasok számára vonzó, a társadalom egésze számára a fenntartható mobilitást biztosító személyszállítási szolgáltatás alakulhat ki. [11] Az ütemes menetrend megvalósítása tulajdonképpen annyit jelent, hogy a járművek a kiinduló állomásról bizonyos előre meghatározott időközönként (tervezetten 10-20 percenként, illetve óránként) indulnak el, és egy olyan menetrendet kénytelenek betartani, ahol a késés/sietés nem preferált. Ez érthető is, hiszen az elővárosi vasútvonalakon a járművek egy forduló után ismét útnak indulnak (ingavonatok), és mindemellett tekintettel kell 5 A korszerű elővárosi menetrend a kisebb egységek gyakori indítását jelenti, amely gazdaságos üzemeltetést eredményez. 14

lenniük a vasúti teherszállító szerelvényekre is. Tehát a menetrend be nem tartása adott esetben beláthatatlan következményekkel járhat. Ennek hosszú távon történő fenntartásához az szükséges, hogy a kialakított üzemeltető rendszer biztosítsa a járművek energetikai szempontból való optimális kihasználását. A korszerű járművek számára-tekintettel a motorvonatok teljesítményére-alapvetően nem jelent problémát az, hogy egy adott pontban regisztrált 5-10 perces késés mellett tartani tudják az előírt menetrendet. Azt azonban, hogy milyen módon valósul meg a menetrend betartása, több, a jármű számára kedvezőtlen tényező is befolyásolhatja. Ha nem az optimalizálást célzó rendszerfigyelés valósul meg, akkor az hátrányos tulajdonságokat hoz előtérbe, miszerint: - a fékrendszer túlzott igénybevétele (kopása) - a sebességkorlátozások figyelmen kívül hagyása - túl nagy sebesség esetén káros rezgések és dinamikai hatások a teljes szerelvényre vonatkozóan - a káros dinamikai hatások érvényesülése a pálya-jármű kapcsolatban (sínkopás,a járműkerék-karima profiljának kopása) - a pályatengellyel párhuzamos és erre merőleges irányú elmozdulások kialakulása (pályadeteriorizáció) figyelhető meg a pálya-jármű rendszerben. 3.3 A GPS adatok szerepe Jelen alkalmazás esetében nem beszélhetünk hagyományos folyamatról, hiszen egy már kialakított főprogramhoz kell illeszteni egy alprogramot. A hagyományos folyamat kezdő fázisán (specifikáció) és megvalósításának egy részén már túl van az alkalmazás. Egy meglévő rendszerhez illeszteni egy részegységet pedig mindíg nehezebb feladat, mintha a kezdetektől együtt fejlődtek volna. A főalkalmazás a vasúti járművek például a beszerzésre kerülő motorvonatok - üzemeltetésének optimalizálását célozza meg. Ez annyit jelent, hogy a menetrendhez, mint kerületi feltételhez igazodva végzi el a program a jármű (mozdony vagy motorkocsi) esetében a vonóerő szabályozását úgy, hogy a jármű minimális energiafelhasználással a menetidőt betartva érkezzen meg a célállomásra. Mivel a vonóerő szabályozásakor figyelembe kell venni az aktív és passzív erőket, elengedhetetlen feltétel a térbeli pályageometria ismerete. A főprogram a geometriát ismerve adott időközönként képes előre számítani azt, hogy egy bizonyos optimalizálás mellett tartható-e a menetrend. Tegyük fel, hogy a vasúti szerelvény A pontból indul és B pontba érkezik, amihez egy bizonyos T idő áll rendelkezésére. Miután a jármű elhagyta az állomást egy adott t idő múlva 15

a pálya egy P(X P, Y P, Z P ) pontjában tartózkodik. A program a pályageometria alapján képes kiszámítani - megtett úthossz hátralevő úthossz értékeket - hátralévő időt egy bizonyos sebesség mellett - megállapítja a menetrendhez képesti késést/sietést és ez alapján korrigálja a vonóerőt. A vonóerő felhasználásának optimalizálására több lehetőség létezik: 1. lejtmenetben csak a gravitációs erő hat 2. fékezés nélküli lassulás sebesség-kifuttatás. A főalkalmazás figyelembe veszi az ellenállások értékeit, és a késés/sietés mértékének megfelelően választja ki az optimalizálás egyszerű, vagy kombinált módját. Amikor a szerelvény (pontosabban a mozdony/motorkocsi súlypontja) a P pontban van, triviálisan már megtett egy s úthosszt a pályán. Bármennyire is pontosak a számítások, a pálya és a jármű kölcsönhatása révén számos sztochasztikus hatás terheli ezeket. Mindemellett ha belegondolunk, hogy a számítás alapját egy elméleti pályageometria jelenti, akkor kijelenthetjük, hogy a pályadeteriorizációt a főprogram számítása nem tudja figyelembe venni. Tény tehát, hogy a program által a P koordinátái alapján számolt hátralévő út és idő nem egzaktul pontos. Ez nem csak annyit jelent, hogy ez a pontatlanság egy adott pontban érvényesül, hanem azt jelenti, hogy a teljes számítási folyamatot hibák terhelik. A magyarázat erre az, hogy a program az optimalizálási feladatot t időközönként hajtja végre, minden egyes alkalommal számítva a megtett út-eltelt idő-sebesség értékeket. A számítás tehát tulajdonképpen pályaszakaszonként történik úgy, hogy az egymásra épülő számítások bemeneti paramétere az előző helyzeti számítás eredményének tekinthető koordináta. Ez annyit jelent hogy az úthosszt nem a teljes szakaszra, hanem a pálya következő rész-intervallumára számítja. A hibaterjedés hatása pedig triviálisan csak az első számításkor nem érvényesül. Az ütemes menetrend és a jármű energetikailag optimalizált üzemeltetésének összehangolásához elengedhetetlen a szerelvény (vonat) pontos koordinátájának ismerete a pályaszakaszokon. A GPS egy olyan megoldási lehetőséget kínál, amely több szempontból is előnyös: - a GPS pontos helymeghatározást biztosít a térbeli vonalvezetésű vasúti pályán - a számítási folyamatot csak az észlelési pontokra (t időintervallumok kezdő és végpontjai) vonatkozó GPS-észlelési hiba terheli - lehetőség van a DOP értékek alapján elfogadni/elutasítani a GPS koordinátákat, ha az nem teljesíti adott pillanatban a pontossági követelményeket 16

- a pályageometriai adatokból számított koordináta összevethető a GPS koordinátákkal, ami bizonyos szabálytalan/szabályos hatásokra enged következtetni a differencia függvényében 6 - a programban már meglévő pálya hossz-szelvények EOV-be transzformálása után egységesen és valós időben kezelhetők a folyamatok. 6 Ilyen hatás lehet az elméleti pályageometria módosulása, amely süllyedések, oldalirányú elmozdulások formájában jelentkezik a gyakorlatban. 17

4 NMEA interface-formátum [8] A feladat megoldásához ismerni kell a GPS által küldött szabványos NMEA formátumú üzenetek jelentését és felépítését. Ennek alapján lehetséges ugyanis a szükséges adatok beolvasása és kiválasztása a további számítás céljából. Az NMEA egy mozaikszó, amely a National Marine Electronics Association nevéhez fűződik. Ez a szervezet fejlesztette ugyanis azt az interface 7 -t, amely segítségével a használt eszközök egymással, illetve különböző számítógépekkel egységes formátumú üzenetek alapján képesek kommunikálni. A GPS vevők esetében beállítható paraméterként szerepel, hogy az eszköz az észlelések eredményeit milyen formátumban továbbítsa a számítógép, vagy bármely más adó-vevő készülék felé. Az NMEA formátumban továbbított üzenetek teljes egészében tartalmazzák az észlelési adatokat (PVT position, velocity, time). Az NMEA üzenetek alapja az, hogy a vevő olyan mondatokban kommunikál, amelyek teljesen sajátságosak és függetlenek egymástól. A mondatok egy része szabványos formátum, minden egyes vevő által ismert, lehetőség van azonban egyedi konfigurációval rendelkező üzenetek definiálására is. Minden mondat elején szerepel 2 karakter, amely az üzenetet továbbító berendezés jellemzője, ez a GPS vevők esetén a GP karakter-kombináció. Az egyedileg meghatározott sorok az eszköz gyártójára vonatkozó információt tartalmaznak, ezek első karaktere P és a következő 3 karakter utal az eszközt gyártó cégre (pl. PMGN Magellan). Minden egyes mondat kezdő karaktere a $ és utolsó karaktere az un. CR/LF (Carriage Return/ Line Feed), és a sorok maximális hossza nem haladhatja meg a 80 karaktert a befejező karakter (line terminator) nélkül. Az egy sorban levő különböző üzenetek elválasztására a, karakter szolgál. Minden mondat végét egy un. checksum karakter zárja le, amelyet a fogadó egység nem feltétlenül vizsgál, viszont megléte fontos információ az adatok jóságára vonatkozóan. Az NMEA üzenetek minden serial port esetében az RS232 protokollt használva elérhetőek bármely számítógép számára. Az adattovábbítás sebessége általában 4800 b/s (bit per second rate), de egyes vevők esetében beállítható a 9600 b/s érték is. Az alapérték azt jelenti, hogy a vevő 480 karaktert képes elküldeni egy másodperc alatt, ami tulajdonképpen 6 mondatnak felel meg. A mondatokat felépítő adatok 8 Bitesek, egyezés (parity) nem értelmezett és egyetlen un. StopBit karakter található bennük. Az NMEA mondatok felépítése szabványos, minden egyes mondat egy sort jelent és egyedi azonosítóval rendelkezik. A küldött üzenetek függenek a vevő gyártójától, azonban ezek a szabványos üzenetek kiegészítéseként jelentkeznek az egyes típusoknál. 7 Interface: illesztőprogram két alkalmazás között 18

Az egyik legfontosabb üzenet a GGA karakterhármast tartalmazó mondat, amely tartalmazza a 3D helymeghatározó adatokat és a pontosságra vonatkozó információt. Egy ilyen mondat a következőképpen értelmezhető: $GPGGA,123519,4807.038,N,01131.000,E,1,08,0.9,545.4,M,46.9,M,,*47 GGA GPS észlelési adatok 123519 észlelési időpont (12:35:19 UTC) 4807.038,N földrajzi szélesség (48 07.038', É) 01131.000,E földrajzi hosszúság (11 31.000', K) 1 Észlelés típusa (jóság): 0 = érvénytelen 1 = GPS észlelés (SPS) 2 = DGPS észlelés 3 = PPS észlelés 4 = RTK észlelés 5 = Float (lebegő) RTK 6 = értékelt (számítás nélkül) 7 = manuális bevitel 8 = szimuláció 08 műholdak száma 0.9 HDOP 545.4,M tengerszint feletti magasság [m] 46.9,M geoid-ellipszoid (WGS-84) távolság (üres karakter) az utolsó DGPS frissítés óta eltelt idő [s] (üres karakter) DGPS állomás ID (azonosító) *47 checksum adat (minden esetben * az első karakter) Szintén szabványos üzenetnek számít a GSA karakterhármast tartalmazó mondat, amely a GPS koordinátákra vonatkozó DOP értékeket valamint az aktív műholdakat írja le. $GPGSA,A,3,04,05,,09,12,,,24,,,,,2.5,1.3,2.1*39 GSA műhold-státusz A Automatikus 2D vagy 3D észlelés (M = manuális) 3 3D észlelés lehetséges értékek: 1 = nincs észlelés 2 = 2D észlelés 3 = 3D észlelés 04,05... az észlelésben részt vevő műholdak PRN adatai 2.5 PDOP 1.3 HDOP 2.1 VDOP *39 checksum Azok a mondatok, amelyekben a GSV karakterek szerepelnek, mutatják az észlelési ablakban lévő aktív műholdakat és az ezekre vonatkozó almanach adatokat. 19

$GPGSV,2,1,08,01,40,083,46,02,17,308,41,12,07,344,39,14,22,228,45*75 GSV észlelési ablak műholdjai 2 a teljes adathalmazt tartalmazó mondatok száma 1 mondat sorszáma 08 észlelési ablakban lévő műholdak darabszáma 01 műhold PRN száma 40 magassági szög [ ] 083 Azimut [ ] 46 SNR *75 checksum A fenti mondatban található SNR érték (Signal of Noise Ratio) jósága egyenesen arányos a számértékkel, mivel ez a jelerősséget jelenti. Szabványos értéke a [0;99] intervallumban mozog. Az NMEA formátumban az RMC egyedi azonosítóval rendelkező mondatok írják le a GPS PVT adatokat. $GPRMC,123519,A,4807.038,N,01131.000,E,022.4,084.4,230394,003.1,W*6A RMC Javasolt minimális mondat C 123519 észlelés ideje (12:35:19 UTC) A Státusz (A=aktív vagy V=érvénytelen) 4807.038,N földrajzi szélesség (48 07.038', É) 01131.000,E földrajzi hosszúság (11 31.000', K) 022.4 Sebesség (tengeri mérföld) 084.4 Irányszög [ ] (True) 230394 Dátum 1994.03.23 003.1,W mágneses tér változása *6A checksum A GLL kódot tartalmazó mondat a szélességi és hosszúsági adatokra vonatkozó értékeket adja meg. $GPGLL,4916.45,N,12311.12,W,225444,A,*31 GLL geográfiai helyzet, földrajzi szélesség és hosszúság 4916.46,N földrajzi szélesség (49 16.45, É) 12311.12,W földrajzi hosszúság (123 11.12, NY) 225444 észlelés ideje (22:54:44 UTC) A adatok státusza (aktív vagy érvénytelen) *31 checksum Az értelmezett üzeneteken kívül még számos más, egy adott alkalmazás szempontjából fontos NMEA mondat létezik, azonban elegendőnek ítéltem meg a feladat megoldásához a fentiek ismertetését. 20