Valószín½uségszámítás és matematikai statisztika Mihálykóné Orbán Éva Matematika Tanszék MOE (PE MIK) MMAM143VB 1 / 34
Valószín½uségi változók számérték½u jellemz½oi 1 várható érték 2 szórásnégyzet/szórás 3 módusz 4 medián 5 kovariancia, korrelációs együttható MOE (PE MIK) MMAM143VB 2 / 34
A várható érték de níciója De níció Legyen ξ diszkrét eloszlású valószín½uségi változó, ξ : ξ várható értékén az E (ξ) = x i p i i=1 x1 x 2 x 3.. p 1 p 2 p 3.. összeget értjük, amennyiben a jx i j p i végtelen sor konvergens. i=1 MOE (PE MIK) MMAM143VB 3 / 34
A várható érték de níciója ξ : x1 x 2 x 3, E (ξ) = x p 1 p 2 p 3 i p i i=1 Megjegyzés Véges sok lehetséges érték esetén a várható érték egy véges tagszámú összeg, amelynek végessége automatikusan biztosított. jx i j p i végessége miatt x i p i = E (ξ) véges. i=1 i=1 E (ξ) helyett M(ξ) jelölés is használatos. MOE (PE MIK) MMAM143VB 4 / 34
A várható érték de níciója De níció Legyen ξ folytonos eloszlású valószín½uségi változó f s½ur½uségfüggvénnyel. ξ várható értékén az Z E (ξ) = x f (x)dx improprius integrált értjük, amennyiben a integrál konvergens. Z jxj f (x)dx improprius Megjegyzés Z jxj f (x) dx végessége miatt E (ξ) is véges. MOE (PE MIK) MMAM143VB 5 / 34
A várható érték tulajdonságai i) Legyenek ξ, η v.v.-k, a, b, c 2 R 1 Ha ξ és η azonos eloszlásúak, akkor a várható értékük is megegyezik. 2 Ha 0 ξ, akkor 0 E (ξ) 3 E (ξ + η) = E (ξ) + E (η) 4 E (c ξ) = c E (ξ) Következmények: 5 Ha ξ = c 1 valószín½uséggel, akkor E (ξ) = c 6 E (a ξ + b) = a E (ξ) + b 7 Ha a ξ b, akkor a E (ξ) b 8 Ha ξ η, akkor E (ξ) E (η) MOE (PE MIK) MMAM143VB 6 / 34
A várható érték tulajdonságai ii) 9 Ha ξ 1, ξ 2,..., ξ n azonos eloszlású valószín½uségi változók, E (ξ 1 ) =... E (ξ n ) = m, akkor E! n ξ i = n m, i=1 10 továbbá 0 E B @ n i=1 n ξ i 1 C A = m. 11 Ha ξ és η v.v.-k függetlenek, akkor E (ξ η) = E (ξ) E (η). MOE (PE MIK) MMAM143VB 7 / 34
A várható érték tulajdonságai iii) x1 x 12 Ha ξ diszkrét eloszlású valószín½uségi változó, ξ : 2 x 3, p 1 p 2 p 3 g : R! R függvény, amire g(ξ) értelmes, akkor E (g(ξ)) = g(x i ) p i i=1 feltéve, hogy i=1 jg(x i )j p i konvergens. Speciálisan, g(x) = x 2 esetén E (ξ 2 ) = xi 2 p i i=1 MOE (PE MIK) MMAM143VB 8 / 34
A várható érték tulajdonságai iv) 13 Ha ξ folytonos eloszlású valószín½uségi változó f s½ur½uségfüggvénnyel, g : R! R függvény, amire g(ξ) értelmes, akkor E (g(ξ)) = Z g(x) f (x)dx R feltéve, hogy Speciálisan, g(x) = x 2 esetén jg(x)j f (x)dx integrál konvergens. E (ξ 2 ) = Z x 2 f (x)dx MOE (PE MIK) MMAM143VB 9 / 34
A várható érték tulajdonságai v) Állítás Ha E (ξ 2 ) létezik, akkor E (ξ) is létezik. Bizonyítás (folytonos eloszlású v.v. esetén) E (ξ) = R xf (x)dx, lézetéséhez kell: R jxj f (x)dx végessége R jxj f (x)dx = R 1 jxj f (x)dx + R 1 1 jxj f (x)dx + R 1 jxj f (x)dx R 1 x 2 f (x)dx + R 11 f (x)dx + R 1 x 2 f (x)dx 1 + R x 2 f (x)dx = 1 + E (ξ 2 ) Állítás Ha E (ξ 2 ) létezik, akkor E ((ξ c) 2 ) akkor minimális, ha c = E (ξ). Bizonyítás E ((ξ c) 2 ) = E (ξ 2 ) 2cE (ξ) + c 2, ez c másodfokú függvénye, akkor minimális, ha 2E (ξ) = 2c, azaz c=e (ξ). MOE (PE MIK) MMAM143VB 10 / 34
A szórásnégyzet, szórás de níciója ξ valószín½uségi változó. De níció ξ szórásnégyzetén a D 2 (ξ) = E (ξ E (ξ)) 2 számot értjük, amennyiben ez a várható érték létezik, tehát véges. De níció ξ szórásán a D(ξ) = p r D 2 (ξ) = E (ξ E (ξ)) 2 számot értjük. Megjegyzés (ξ E (ξ)) 2 nemnegatív, ezért a várható értéke is az, vagyis a gyökvonás elvégezhet½o. MOE (PE MIK) MMAM143VB 11 / 34
A szórásnégyzet, szórás tulajdonságai i) 1 Ha két valószín½uségi változó eloszlása megegyezik, akkor a szórásnégyzetük és szórásuk is megegyezik. q 2 D 2 (ξ) = E (ξ 2 ) (E (ξ)) 2, D(ξ) = E (ξ 2 ) (E (ξ)) 2 E (ξ 2 ) számolási módját megadtuk a várható érték tulajdonságai között. 3 Ha ξ = c 1 valószín½uséggel, akkor D 2 (ξ) = 0 = D(ξ). 4 Ha D 2 (ξ) = 0 = D(ξ), akkor P(ξ = c) = 1. 5 D 2 (a ξ + b) = a 2 D 2 (ξ), D(a ξ + b) = jaj D(ξ) MOE (PE MIK) MMAM143VB 12 / 34
A szórásnégyzet, szórás tulajdonságai ii) 6 Ha ξ és η függetlenek, akkor Figyelem! D 2 (ξ + η) = D 2 (ξ) + D 2 (η). D(ξ + η)6=d(ξ) + D(η)! 7 Ha ξ 1, ξ 2,..., ξ n független, azonos eloszlású valószín½uségi változók, közös szórásnégyzetük D 2 (ξ 1 ) =... = D 2 (ξ n ) = σ 2 akkor D 2 n i=1 ξ i = n D 2 (ξ 1 ) = n σ 2, továbbá D n i=1 ξ i = p n D(ξ 1 ) = p n σ MOE (PE MIK) MMAM143VB 13 / 34
A szórásnégyzet, szórás tulajdonságai iii) 8 Ha ξ 1, ξ 2,..., ξ n független azonos eloszlású valószín½uségi változók, D(ξ 1 ) =... = D(ξ n ) = σ, akkor D 2 n i=1 ξ i n = σ2 n, továbbá D n i=1 ξ i n = p σ n MOE (PE MIK) MMAM143VB 14 / 34
Módusz De níció Legyen ξ diszkrét eloszlású valószín½uségi változó. ξ móduszán azt a lehetséges értékét értjük, amihez tartozó valószín½uség maximális a lehetséges értékekhez tartozó valószín½uségek között, azaz x1 x ξ : 2 x 3 jelöléssel ξ módusza x p 1 p 2 p 3 i, ha p i p j minden j = 1, 2,... esetén. Megjegyzés ξ módusza nem feltétlenül egyértelm½u (többes módusz, multimodális eloszlás). Megjegyzés Egy valószín½uségi változó felveszi a móduszát. MOE (PE MIK) MMAM143VB 15 / 34
Módusz De níció Legyen ξ folytonos eloszlású valószín½uségi változó f s½ur½uségfüggvénnyel. ξ móduszán f lokális maximumhelyeit értjük. Megjegyzés ξ módusza nem feltétlenül egyértelm½u (multimodális eloszlás). MOE (PE MIK) MMAM143VB 16 / 34
Módusz példa f (x) = 1 7 e x + x 3 e x ha x 0 0 különben módusz: 0, 2.879 y 0.20 0.15 0.10 0.05 0.00 0 1 2 3 4 5 6 7 8 9 10 x MOE (PE MIK) MMAM143VB 17 / 34
Medián i) De níció Legyen ξ v.v. ξ mediánján azt az x értéket értjük, amire P(ξ x) 0.5, és P(ξ x) 0.5 Állítás A folytonos eloszlású ξ mediánja az x érték, ha F (x) = 0.5. Bizonyítás P(ξ x) = P(ξ < x) = F (x) 0.5, P(ξ x) = 1 F (x) 0.5, 0.5 F (x) ) F (x) = 0.5. MOE (PE MIK) MMAM143VB 18 / 34
Medián példa ( F (x) = x 2 1 x 2 +1 ha 1 x 0 különben medián: 1.73 F(x) 1.0 0.8 0.6 0.4 0.2 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 x F (x) = x 2 1 x 2 + 1 = 0.5, x 2 = 3, x = p 3 = 1.73 MOE (PE MIK) MMAM143VB 19 / 34
Medián ii) Állítás Ha ξ diszkrét eloszlású és F (x) 6= 0.5, akkor ξ mediánja az az x érték, amelynél F átugorja a 0.5 szintet. Bizonyítás P(ξ x) 0.5 ) F (x) 0.5, P(ξ x) = F (x) + P(ξ = x) = lim F (u) 0.5 u!x + MOE (PE MIK) MMAM143VB 20 / 34
Medián példa 8 0 ha x 2 >< 1/3 ha 2 < x 1 F (x) = 2/3 ha 1 < x 5 >: 1 ha 5 < x ξ : 2 1 5 1/3 1/3 1/3 medián: 1 F(x) 1.0 0.8 0.6 0.4 0.2 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 x MOE (PE MIK) MMAM143VB 21 / 34
Medián Állítás Ha ξ eloszlásfüggvénye F (x) = 0.5 a < x b esetén, akkor ξ mediánja az (a, b] intervallum minden pontja. Hagyományosan a + b -t szokták 2 alkalmazni a statisztikai számolásokhoz. MOE (PE MIK) MMAM143VB 22 / 34
Medián 8 < 0 ha x 2 F (x) = 1/2 ha 2 < x 5 : 1 ha 5 < x ξ : 2 5 2+5 medián: 1/2 1/2 2 = 1.5 F(x) 1.0 0.8 0.6 0.4 0.2 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 x MOE (PE MIK) MMAM143VB 23 / 34
Kovariancia Legyen ξ, η v.v (egydimenziósak) E (ξ), E (η) léteznek De níció ξ és η kovarianciáján a cov(ξ, η) = E ((ξ E (ξ)) (η E (η))) várható értéket értjük, ha létezik. Megjegyzés cov(ξ, η) = cov(η, ξ) Megjegyzés cov(ξ, ξ) = E ((ξ E (ξ)) (ξ E (ξ))) =D 2 (ξ) MOE (PE MIK) MMAM143VB 24 / 34
Kovariancia tulajdonságai 1 cov(ξ, η) = cov(ξ E (ξ), η E (η)) 2 cov(cξ + a, dη + b) = cdcov(ξ, η) 3 cov(cξ + a, cξ + a) = c 2 D 2 (ξ) 4 Ha ξ = const, akkor cov(ξ, η) = 0. 5 cov(ξ, η) = E (ξ η) E (ξ) E (η)) mivel cov(ξ, η) = E ((ξ E (ξ)) (η E (η))) = E (ξ η ξ E (η) E (ξ) η) + E (ξ)e (η)) 6 Ha E(ξ) = 0, akkor cov(ξ, η) = E (ξ η) 7 Ha ξ és η függetlenek, akkor cov(ξ, η) = 0. MOE (PE MIK) MMAM143VB 25 / 34
Feltétel a kovariancia létezésére Állítás Ha E (ξ 2 ) és E (η 2 ) létezik, akkor cov(ξ, η) is létezik és jcov(ξ, η)j D(ξ) D(η).Egyenl½oség akkor és csak akkor áll fenn, ha ξ = aη + b vagy η = cξ + d. Bizonyítás ξ = q ξ E (ξ), η = η E (η),belátjuk, hogy je (ξ η )j E (ξ 2 ) E (η 2 ) Tekintsük az 0 E ((ξ λη ) 2 ) = E (ξ 2 ) 2λE (ξ η ) + λ 2 E (η 2 ) Ha E (η 2 ) > 0, akkor ez λ másodfokú függvénye, nemnegativitás miatt diszkrimináns nem lehet pozitív. q E (ξ 2 ) E (η 2 ). 4(E (ξ η )) 2 4E (ξ 2 ) E (η 2 ) 0! je (ξ η )j egyenl½oség akkor áll fenn, ha a diszkrimináns 0, azaz E ((ξ λη ) 2 ) = 0, azaz ξ λη = 0 (1 valószín½uséggel) Ha E (η 2 ) = 0, akkor η 2 = 0, azaz η = E (η) azaz η = 0 ξ + E (ξ) MOE (PE MIK) MMAM143VB 26 / 34
Kovariancia tulajdonságai iii) Állítás Ha ξ, η amikre cov (ξ, η) =0 ; ξés η függetlenek. Bizonyítás Példát mutatunk, amikor cov (ξ, η) =0, de ξés η NEM függetlenek. Legyen ξ s½ur½uségfüggvénye f(x)=0.5 ha -1 x 1,egyébként 0, η = ξ 2. Ekkor ξ és η nem függetlenek, mert P(ξ < 0.5, η < 0.25) = P([ 0.5, 0.5)) = 0.5 6=P(ξ < 0.5) P(η < 0.25) = 0.75 0.5. cov(ξ, η) = E (ξη) E (ξ)e (η). E (ξη) = E (ξ 3 ) = R 11 x 3 1 2 dx = 0. E (ξ) = 0, E (ξ)e (η) = 0, cov(ξ, η) = 0. Állítás D 2 (ξ + η) = D 2 (ξ) + D 2 (η) + 2cov(ξ, η) MOE (PE MIK) MMAM143VB 27 / 34
Állítás MOE (PE MIK) MMAM143VB 28 / 34 Korrelációs együttható De níció ξ, η v.v (egydimenziósak) D(ξ), D(η) véges, D(ξ) 6= 0, D(η) 6= 0.ξ, η korrelációs együtthatóján a r(ξ, η) = hányadost értjük. Megjegyzés cov (ξ,η) D (ξ)d (η) Ha D(ξ) = 0, akkor ξ = E (ξ) 1 valószín½uséggel, cov(ξ, η) = 0, r(ξ, η) = 0 megállapodás szerint. Állítás jr(ξ, η)j 1, egyenl½oség pontosan akkor, ha lineáris kapcsolat áll fenn a kett½o v.v között. Állítás Ha ξ, η függetlenek, akkor r(ξ, η) = 0.
Feladat 1 Elgurítunk egy szabályos kockát. Legyen ξ a gurítás értéke. Adja meg ξ várható értékét és szórását! 2 Kétszer elgurítunk egy szabályos kockát.legyen ξ a két gurítás összege. Adja meg ξ várható értékét és szórását! 3 Tízszer elgurítunk egy szabályos kockát.legyen ξ a tíz gurítás összege. Adja meg ξ várható értékét és szórását! MOE (PE MIK) MMAM143VB 29 / 34
Feladat 4 Egységnyi id½o alatt egy gépre érkez½o vírusos le-ok száma olyan ξ valószín½uségi változó, amelynek lehetséges értékei 0,1 2, valamint várható értéke 2 3, szórása p 5 3. 1 Adja meg ξ eloszlását! 2 Ha az egyes id½oegységek alatt érkez½o le-ok száma független val. változók, akkor adja meg 2 id½oegység alatt összesen érkez½o vírusos le-ok számának eloszlását! 3 Ha az egyes id½oegységek alatt érkez½o le-ok száma független val. változók,akkor adja meg 15 id½oegység alatt összesen érkez½o vírusos le-ok számának várható értékét és szórását! 4 Hány id½oegység alatt érkez½o vírusos le-ok számának várható értéke 40? 5 Hány id½oegység alatt érkez½o vírusos le-ok számának szórása 20? MOE (PE MIK) MMAM143VB 30 / 34
Feladat 5 c ha 1 x 10 Legyen ξ s½ur½uségfüggvénye f(x)= 0 különben 1 Számolja ki 1 ξ várható értékét és szórását! 2 Számolja ki sin ξ várható értékét és szórását! 3 Számolja ki exp ξ várható értékét és szórását! 4 Számolja ki lnξ várható értékét! MOE (PE MIK) MMAM143VB 31 / 34
Feladatok Diszkrét-folytonos kapcsolat 6 Egy gép javítási ideje olyan valószín½uségi változó, amelynek 3 s½ur½uségfüggvénye f(x)= 32 x(4 x) ha 0 x 4 0 különben 1 Mennyi a gép javíási idejének várható értéke és szórása? 2 Mennyi a valószín½usége, hogy a javítási id½o 1 óra és 2 óra közé esik? 3 Ha minden megkezdett órát teljesen ki zettetnek, akkor mennyi a valószín½usége, hogy legalább 3 órát ki kell zetni? 4 Ha minden megkezdett órát teljesen ki zettetnek, akkor mennyi a ki zettetett órák számának vártható értéke és szórása? 5 Hogyan járunk jobban, ha folytonos alapon számláztatunk 10000 Ft-os rezsióradíjjal vagy teljes óra alapon 9000 Ft rezsióradíjjal? MOE (PE MIK) MMAM143VB 32 / 34
Feladatok 3 7 Egy ξ v.v s½ur½uségfüggvénye f(x)= 32 x(4 x) ha 0 x 4 0 különben 1 Számolja ki 1 ξ+1 várható értékét! 2 Számolja ki exp(-ξ ) várható értékét! 3 Számolja ki ln(ξ + 10 ) várható értékét! MOE (PE MIK) MMAM143VB 33 / 34
Feladatok 8 1 ha 0 x 1 Legyen ξ s½ur½uségfüggvénye f(x)= 0 különben Határozza meg cov(ξ, η) és r(ξ, η) értékét! 9 exp( Legyen ξ s½ur½uségfüggvénye f(x)= Határozza meg cov(ξ, η) értékét! 1 x x) ha 0 x 0 különben ha e x e2 10 Legyen ξ s½ur½uségfüggvénye f(x)= 0 különben Határozza meg cov(ξ, η) és r(ξ, η) értékét!., η = ξ 2., η = ξ 2, η = ξ 2 MOE (PE MIK) MMAM143VB 34 / 34